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We propose a general theory of partial n-place operations based solely on the primitive
notion of the application of a (possibly partial) operation to n objects. This theory is strongly
selfdescriptive in that the fundamental manipulations of operations, that is, application,
composition, abstraction, union, intersection and so on, are themselves internal operations. We
give several applications of this theory, including implementations of partial n-ary
A-calculus, and other operation description languages. We investigate the issue of
extensionality and give weakly extensional models of the theory.

1. Introduction

In this paper we propose a tentative axiomatization of the primitive notion of operation.
Our axiomatization builds solely on the intuition of an operation as an object that acts
(operates) on one, or more, objects and possibly produces a result. Hence, our notion
encompasses both total unary operations, as in ordinary A-calculus or Combinatory Logic,
as well as n-place partial operations.

Our theory is intended to unify general notions of operation and application intro-
duced and first investigated in Schonfinkel (1924), Curry (1929), Church (1932) and Von
Neumann (1928). Since this theory is also conceived to be the ‘operational part’ of a foun-
dational theory of Computer Science and Mathematics, it should be highly self-descriptive
and open-ended. Hence the most relevant operations acting on operations are themselves
first class objects of our theory, for example application, abstraction and composition.
Moreover, this theory allows for the possible introduction (‘engrafting’) of qualitatively
new notions, both of a mathematical character and other kinds, for example, categories
and functors, collections and sets, predicates, algorithms, variables, and so on. Therefore
we do not assume that all objects are operations.

Our axiomatization is presented in the semiformal style normally used in basic founda-
tional theories. However, it can be adequately formalized in first-order logic, by means of
a suitable choice of primitive predicates. It could be conceived as an ‘engrafting’ of the
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concept of operation in the Basic Theory TB of De Giorgi et al. (1994), or rather in the
theory TBCS of Forti and Honsell (1994). In fact it originates within the Foundational
Programme that has been developed by Ennio De Giorgi and his group since the late
seventies at the Scuola Normale Superiore in Pisa (Italy).

Technically, we draw inspiration from the work of D. Scott, G. Plotkin and G. Longo
on the categorical and denotational interpretations of A-calculus (Scott 1975; Plotkin
1975; Longo 1983; Asperti and Longo 1991). Our approach is somewhat more general
in that we do not assume that all operations act on all the objects of some appropriate
type, as do morphisms in Cartesian Closed Categories. Our approach is close to that
of Feferman (1974). We assume that all operations are objects, hence any operation is
subject to the action of many other operations, which is different from what happens in
theories a la Godel-Bernays—Von Neumann (Von Neumann 1928) and a la Frege—Aczel
(Frege 1903; Aczel 1980).

In Section 2 we introduce the basic axioms constituting the theory Oper and isolate
its subtheory Comb. In Section 3 we study the theory Comb: we give several examples
of noteworthy operations and show that our theory is powerful enough to accommodate
Combinatory Logic. In Section 4 we study the theory Oper and show how to implement
an expressive operation description language. In Section 5 we present further axioms that
postulate various degrees of extensionality. In Section 6 we give models of these theories.
Final remarks and directions for future work appear in Section 7.

Many ideas appearing in this paper have been presented by the authors at the Seminar
on the Foundations of Mathematics at the Scuola Normale Superiore in Pisa in the years
1994 and 1995 (Lenzi 1994, 1995). The authors are grateful to all the participants of
the seminar and in particular to E. De Giorgi, G. Lenzi and V. M. Tortorelli for helpful
discussions. The authors are also grateful to the referees for useful remarks.

2. The fundamental axioms

We assume the natural numbers as primitive, in order to deal naturally with the notion of
n-place operation. The only other primitive notions that we consider are ‘f is an n-place
operation’ and ‘y is the result of applying the n-place operation f to the objects xy,..., X,
For convenience we introduce the following notation:

— if f is an n-place operation, we writet f € Q,;
— if f € Q, and y is the result of applying f to the objects xi, ..., x,, we write f § x;...x,.

The unusual notation { originates from the theory TB of De Giorgi et al. (1994), see
also Forti and Honsell (1994). In the theory TB objects are classified according to their
relational complexity, called arity, which corresponds to the ‘dimension of the graph’.
Hence the arity of a 1-place (or simple) operation is two, the arity of a 2-place (binary)
operation is three, etc. In general, n-place operations are particular n + l-ary objects.
In the theory TB the { notation is used for the fundamental relation Rfond n+1, which

1 In the theory TB of De Giorgi et al. (1994) this can be substantiated by postulating the existence of the
collections Q, for each positive n € IN; in our context this is merely a notation.
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expresses the action of (n+1)-ary objects. In this context this is a mere notation, which
could have been replaced, e.g., by f(xi...x,) ~ y, following Feferman (1974). We did
not use the latter notation in order to emphasize the fact that we do not deal with a
theory of pseudoterms, as in Feferman (1974). In fact, all our terms denote existing objects.
Therefore, we freely use the primitive notion of identity on objects, rather than a suitably
defined equivalence on terms. When we write fx;...x, =y, we mean that y is the unique
object z such that f § x;...x,z.
We begin by postulating the uniqueness of arity and the functionality of operations.

Axiom Op.1. (Arity and Functionality)

1 Ifn#mandfe€Q,then f ¢ Q,
2 LetfeQuiff$xi...x,yand f§ x1...x,z, then y = z.

If f ¢ x1...x,y we shall refer to the unique such y as fx;...x,.
We postulate the existence of basic combinatorial operations, namely projections, appli-
cations, compositions and abstractions.

Axiom Op.2. (Projections and Empty operations)
For any 0 < i < n there exists an operation I1;, € Q,, such that:

Vxi...x, Ay. Mo, ¢ X1...x0Y,
VXX i ¢ X x0x,1f0<i<n.
Axiom Op.3. (Application or Evaluation)
For any n > 0 there exists an operation App, € Q,41, such that for any f € Q,

VX1 . Xpy. Appn § fx1...x0y <= f § X1...x0).
Axiom Op.4. (Generalized Composition)

For any n > 0 and m > 0 there exists an operation Comp,,, € Q1.
If g €Q, and f4,...,f, € Q,, there exists h € Q,, such that Comp,,, § gf1...f:h, and

VX1 Xy, h{ xp...x,y <

Az oz Vifi ¢ x1 ... xmzi and g § 2y ...z, ).

Axiom Op.5. (Currification, Abstraction, Separation or Parametrization)
For any n > 0 and m > 0 there exists an operation Cur,,, € Q;. If f € Q,,,,, there exists
g € Q, such that Cur,, § fg, and

Vxy...x,dh € Q. g ¢ x1... x40,

V1o oymze Wy ymz <= f § X1... Xy V1 -+ Yz
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It is worth noticing that the operation Cur,,f of Axiom Op.5 is everywhere defined,
no matter what arguments it is fed. This has the somewhat unpleasent consequence of
forcing an everywhere undefined (n + m)-place operation to have a total currification.
Cury,f could have been defined differently to ensure that ‘small’ operations have ‘small’
currifications. For example, one could have postulated that the currification cannot assume
empty values, as in the following axiom.

Axiom Op.5'. For any n > 0 and m > 0 there exists an operation Cur),, € Q.
If f € Q. ym, there exists g € Q, such that Cur), § fg and

Vxy...x,(3h € Q. g § X1...x,h <>
3)’1~~~}’mZ- f{}xl---xnyl---ymz)

VX1 X Ve YmZe (F X1 XY ee Y2z <=

Jh. (g x1...xs0h & h{yr...ymz)).

We also introduce four postulates inspired by the logical operators of Predicate Calculus.

Axiom Op.6. (Equality and Inequality Tests)
There exist operations Eq, Neq € Q.

Vxyz. Eq{ xyz < x=y &z=1
Vxyz. Neq § xyz <—=x#+y & z = 1.
Axiom Op.7. (Union or Disjunction)

For each n > 0 there exists an operation Bun, € Q.
If f,g € Q,, there exists h € Q, such that Bun, { fgh and

VX1 Xy W Xx1...xy = {¢x1...x0y Vg X1...X0),
Vxp.o.o Xy Ay, FOX1..oxyVEgdxt...xy) = 3y. h{xi...x,p).
Axiom Op.8. (Universal Quantification)

For each n > 0 there exists an operation V, € Q.
If f € Qu41, there exists g € Q, such that V,, § fg and

Vxi. Xy (g4 X1 X0y = VXupr 4 X100 XaXng1 D).
Axiom Op.9. (Existential Quantification or Hilbert’s ¢)

For each n > 0 there exists an operation 3, € €.
If f € Q,41, there exists g € Q, such that 3, { fg and

Vxpo.oxpy. (€ 4 X1 xpy = g1 [ X1 XaXng1))

VX1 X (31 f 0 X1 Xp X1y = 3y g § xq...x00).
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We call Oper the theory consisting of the axioms Op.1-9, and Comb its subtheory
consisting only of the the axioms Op.1-5.

Given the intensional character of the notion of operation, we judge it inappropriate
to introduce in a theory of operations the axiom of full extensionality Ext given by the
following axiom.

Axiom Ext. Let f,g € Q,, then f = g if and only if
VX1 Xo . F X1 X0y <= g 0 x1... X
In effect, Axiom Ext is consistent with Comb only, and not with Oper, as we shall

see in Section 6. It is therefore useful to introduce the relation of extensional equivalence
between n-place operations:

Definition 2.1. Let f,g € Q,, then f = g if and only if

VX1 Xo . F X1 X0y <= g 0 x1... X

3. Examples and applications: the theory Comb

In this section we derive some interesting consequences of the theory Comb.

3.1. Constants

The operation K, = Cury,I1y,41 produces all n-place constant functions. That is, for all
objects y, x1,...,Xu, Ky § x1...x,).

3.2. Dummy arguments

The operation D,,, = Curypin(Compyit nem+1ApPnllt namtt - - g1 npme1) adds m dummy
arguments to any n-place operation f. That is,

VX1 Xg V1o YmZ. O X1 X0z <= Dy § X1 X010 -2 V2.

3.3. Generalized substitution
For all m,n > 0 the operation

Sn = Curpq n(Coum-s-lkAPPm(AO)(Al) e (Am))>

where k =m+n+ 1, and

AO = Compn+1kApp;11H1 k HWH—Zk ce Hk k>
A1 = CompuiikAppmI ook - Uik,
Am = COW!Pn-H kApp111Hm+1 k Hm+2k ce Hkk
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provides a generalized substitution a la Schonfinkel. Namely, for all gg, g1,...,gn, We have
that S,,20¢1 --.2n 18 defined and is an n-place operation. Moreover, if go, g1,-..,gn € L,

VX1 X0V Sing081---2m § X1... X,y <=
32021z (o § X1+ Xnz0 & g1 § x1...x021 & ...

& gn b x1...xnzm & 20§ 21...ZmY).

The operation Cur;1Sy; generalizes, to the case of partial 1-place operations, Schonfinkel’s
classical combinator S. It is interesting to state the following theorem.

Theorem 3.1. The theory Comb is equivalent to the theory asserting the existence of the
operations IT;, together with the operations K, and S,,, for m,n > 0.

Proof. We need to define operations corresponding to App,, Comp,,, and Cur,, using
I;,, K, and S,,,. For example, we can put

’
Appn = nn+1H1 n+l--- l_In-i—l n+1

Comp;m = Sn+1n+1(Kn+1Snm)(S1 n+1 (Kn+1Km)H1n+1)G1 cee Gm

where G =35 n+l(Kn+1Smm)(Sl n+1(Kn+le)Hi+ln+1)-
One can operate similarly for Cur,,. |

3.4. Compiling A-calculus

Any term of the A-calculus, say M, whose free variables appear in the list xy,..., X,, can
be compiled as an n-place operation |[M| € Q,. For convenience, we assume that the
bound variables of M do not appear in the list xy,..., x,. By induction on the complexity
of the A-term M, we define

— |Ixill, = My for i < n

— [IMNI|,, = Compy,Appy M|, IN,

— |12z.M |, = Curny | M [Xnt1/2]1,415

where M[y/z] denotes ‘capture avoiding substitution’.

In order to deal with closed A-terms we would like to extend the above definition to
the case n = 0. This can be done unproblematically for all values in the sense of Plotkin
(1975), i.e., terms starting with an abstraction, by putting [1z.M|l, = [[M[x;/z]|. The
natural definition of |MN||, would be App; [M|, | N|,. But the latter expression need
not be defined when MN is not ‘valuable’. To claim that ||M]|, is defined for all closed
terms would be a further assumption on the Universe.

3.5. Recursion theorem

Put
A = |x1(x2x2)x3l3 = CompyzApp1(Comprz App11113(Comprz App1T231123))33,
B = \|)JC2X3.X1(X2X2)X3”1 = Cury1(CuryA),
Y = [[(Axax3.x1(x2x2)x3)(Ax2X3.X1(X2x2)x3)[|; = Comp,1 App BB.
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Then the following theorem holds.
Theorem 3.2. There exists an operation Y € Q; such that

VieQ3geD. Y § fe&Vxy. (g xy<=3h f{gh&h{xy).

3.6. A partial n-ary A-calculus

In this context, it is natural to generalize the language of ordinary A-calculus to allow for
simultaneous n-ary abstractions and applications. Hence we introduce the language A,
of partial n-ary /Z-calculus as follows

M :=x|c| M[Ml...Mk] | /l[xl...xk].M, for all k > 0,
where the variables xi,..., x; are all different.

The language CL, of partial n-ary Combinatory Logic is the sublanguage of A,
obtained by omitting the last clause.

The compilation introduced in Subsection 3.4 can be extended to terms of these
languages, given an interpretation of constants. The compilation function || ||, is defined
on terms whose free variables appear in the list xy,..., x, and whose bound variables do
not appear in it.

— HX,’Hn = Hin for i <n

— lell, = Kue

— MMy .. MY, = Compiyr,App M|, My ], ... Myl

— |z 2 M, = Cur [MDxusi/ 2

As was the case in Subsection 3.4, the natural definition of || ||, may be undefined in the
case of applicative terms.

The following theorems show that the definition is adequate.

Lemma 3.1. Let M be a term of CL,, whose free variables are in the list xy,..., Xk+,, and
let Nq,..., N, be terms of A, whose free variables are in the list x1,...,x;. Then

Compini IM[N1/Xit15- s Nu/ Xn) lion i -+ T [IN1 [l - [ING [l =

Compieinic | M|y - T [IN1 - [Nl

Proof. The proof is by induction on the structure of M. The base cases are immediate.
The induction step necessitates only simple rewritings using weak associativity of Comp
twice, namely

fad

Compif(Compyihig...gm)...(Compyihagi ... gm)

Compm,k(compn,mfhl cohy)gr . gm
forall f € Q,, hy,...,h, € Q, and gy,..., gy € . ]

1 Alternatively, one could have put
— MMy M = S M M- M
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Theorem 3.3. Let M be a term of CL,, whose free variables are in the list xq,...,x, and
let Nq,..., N, be terms of A, whose free variables are in the list xy,...,x;. Then, for all
ai,...,a, such that the ||N;|, are defined,

Vy. (IM[N1/x1, .., Nu/Xullly § a1 ... aky ==
(Compui M|, INtli-- INull) § ar...ay) .
In particular,
IM[N1/x1,. .., Nu/Xn]ll; = Compu [[M ]|, [Nl - [[Nully
if
— either, all the variables xi,...,x, occur indeed in M

— or, all the functions | N;|, are total functions.

Proof. The proof is similar to the proof of Lemma 3.1. L]

Theorem 3.4. Let M be a term of CL, whose free variables are in the list xi,..., Xg1n,
and let Ny,..., N, be terms of A, whose free variables are in the list xi,...,x;. Then

A st -+ Xkn M)INT NG =
Compieni IMIN1/Xix1s- -5 N/ Xicwn] lepn Tk -+ e ([Nl - (NG -

Proof. We need the following fact:
() for all gy € Q4 and all gy,...,g, € Q,
Compy i1k Appa(Curk, 20)g1 - - - &n = Compyiki gollik ... T g - - gn-
Now, by definition,

1 Xt - X M)ING L NY
= Compuy1xAppn 17 %ics1 - Xl M, INY - [N
= Compus1kAppu(Cur [M 1) INY [ - [Nl

Using (), the last expression is extensionally equivalent to
Comppikk M, Xk . Tl [IN [l - - [Nl o

which, by Lemma 3.1, is extensionally equivalent to

Compyyii IMINt/Xixts o No/ X)Xk -+ Xl INT - [N [l N

4. Examples and applications: the theory Oper

In this section we derive some interesting consequences of the theory Oper.
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4.1. Intersection

For each n > 0 there exists an operation Bint, € Q,, such that for all f, g, h if Bint, { fgh,
then f,g,h € Q, and

Vxpoo.xny. (Fex1...xy &g x1...x,y <= h{xi...x,)).
Simply take
IComp,'TL1, X1 (Compa'Eq x1 x21)!,,

where basic operations are taken autonymously.

4.2. Definition by cases

For each n > 0 there exists an operation Def, € Q4 such that if Def, {§ fo f1 g a h, then
f():fl)gah e Qn and

VX1 Xy (h § xq .. xpy <=

foldxt..xyy&g¥x1...xpa) V(1§ x1...xy &Iz Fa. g §x1...x42)).
Simply take ||Comp,,! Bun, Ay A;! |4, where

Ay = Compy, Ty xo (Compa,' Eq (K,xa) x31)!
Ay = Compy, T x1 (Compy,! Neq (K,xq) x31).

4.3. Singleton

For each n > 0 there exists an operation Sing, € Q,.1. For all objects xi,..., x,, y, there
exists h € Q, such that Sing, ¢ x;...x,yh and

Vzg,eoszw. (W zi...z0Ww <= X1 =21,...,X = Zp, Y = W).
Simply take

A = Curyi1n(Bintyy1 E{(Binty1Ey(. .. (Bintyy1Eq—1 Ey)...))),
where E; = |Eq Ixixp14i] 2,1 and then put

Sing, = Compp+1App1 [ Knt1 Xnt1 Hn+1A~

4.4. Inversion

There exists an operation Inv € Q. If f € Qy, there exists g € Q; such that Inv § fg and
Vy((Ez.g § yz) <= (3x.f § xy))

Vyz.(g $ yz = [ { zy).
Simply take
Curi1(33 | Eq'(x11x31) x2115).
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4.5. Totality test

There exists an operation Tot € Qy, such that for any f € Q, Tot § f1 if and only if

Vx3dy.f § x y.
Simply take
V233 1Eq'(x1Txa1) x315).

4.6. A functional programming language

Following the line of Feferman (1984), we extend the language A, to a (non-executable)
functional programming language FL, by adding the syntactic class of formule and a
new clause in the definition of terms. Namely, put

M,N ::=... | if ® then M else N
QDY . M=N|0&Y|DOVY | D | VxD | Ix.D.

The compilation of FL, in Oper is motivated by the natural ‘three-valued’-logic interpre-
tation of connectives and quantifiers:

— ||lif ® then M else N||, = Def, |[M|,|N|, |®], O;
— HM = NHn = Bun,,Fle, where
Fy = Compy, Eq |M]||, [N, and
F, = (Compy1(K,1) Compay Neq [|M||, [N]],);
— |=®], = Compy,Sc||®@||,;
— ||® & Y|, = Bun,G;G,, where
Gi = Bint, |®], |'Y], and
G> = Buny(Neg, [|®]],,) (Negn ['¥1,);
— ||®V Y|, = Bun,H{H>, where
H; = Bint, |®], ['Y|, and
H, = Bun,(Pos, H(DHn) (Posy, HlPHn),
— IVxu11. @, = Buny(¥,(Posy | @], 1))(Fn(Negu [|P],,,1));
- Hzlxn-f-l-q)Hn = Bunn(an(Posn H(I)Hn.q.l))(vn(Negn H(DHn.t,_l))

The operation Sc = Bun;(Sing;0 1)(Sing;1 0) exchanges the ‘truth values’ 0 and 1, while
Pos, = H(COI?’lp1nEq(Knl)X1)H1, and
[(Compy,Sc(CompinEq(K,0)x1)) ]

Neg,

yield the restrictions of a given n-ary operation to n-tuples, which are mapped respectively
to 1 and 0.
Finally, we extend the adequacy Theorem 3.4 to FL, as follows.

Theorem 4.1. Let M be a term of FL, not containing abstractions whose free variables
are in the list xi,... X, and let Ny,...N, be terms of FL, whose free variables are in
the list x1,...x;. Then

(AT Xkt - Xken M)INY N
Compini IMIN1/Xix15- s N/ Xicgn] lepn ik -+ e ([Nl - (NG -
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5. Extensionality axioms

So far we have only been able to show extensional equivalence of operations. This approach
is closer, in spirit, to Combinatory Logic rather than A-calculus. The following theorem
shows that any sufficiently rich theory of operations is non-extensional in a very strong
sense, i.e., it is inconsistent with the axiom of selection Sel:

Axiom Sel. For all n there exists an operation €, € Q; such that for all f € Q,
ef=f and VgeQ,(f=g = e,f =€)

Theorem 5.1. Comb + Sel + ‘there exists Sing;’ is inconsistent.

Proof. Put f = Compy1(Sing1(e111p1)(K10))eq. Then f is defined on x if and only if x
is an empty operation, and then fx = K;0. Now using the operation Y of Theorem 3.2,
we have that Y f is defined on x if and only if f is defined on Y f and f(Y f) is defined
on x. This is clearly impossible since f is defined only on empty operations. Hence Y f
is empty, but then f(Y f) = K;0, which cannot be extensionally equal to Y f, contrary to
Theorem 3.2. L]

We do not elaborate on the consequences of the Axiom Sel, we only remark that the
Recursion Theorem 3.2 can be strengthened by asserting the existence of an operator Y
such that

- el(f(Yf)) if f(Yf) exists and belongs to ©
Yf= .
eIy otherwise

Simply take Y = |\€1[Y[C0mp11[>€1€1m ll-

As in Feferman (1974), we can show that the Theory Oper is inconsistent even with the
‘full’ extensionality of the sole ‘total’ operations.

Theorem 5.2. Comb + ‘there exists Def;” = ‘there exist two different extensionally
equivalent total operations’.

Proof. Clearly, Def{(K;(K11))(K{(K0))(IT{;)(K0) is a total operation with no fixed
points. However, if total operations are extensional, Y f gives a fixed point of f, whenever
f is a total operation assuming total operations as values. L]

Hence, since we have to give up general extensionality axioms, it is interesting to
investigate lists of ‘milder’ extensionality axioms, corresponding to the usual ‘algebraic’
properties of the fundamental operations. For example, one could postulate associativity of
composition, neutrality of projections and idempotency, commutativity and associativity
of union and intersection. All these axioms postulate the equality of otherwise only
extensionally equivalent operations.

Axiom MExt.1. (Neutrality of Projections)
For all f € Q, Compy, fIly, ... I, = f.
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Axiom MExt.2. (Associativity of Composition)
For all f S Qn, h1,...,hn (S Qm, g1,-..,8m € Qk

Compuy f(Compychigy ... 2m) ... (Compyh,gy ... 2m) =

Compy(Comppufhy ... hy)g1 ... 2.

Axiom MExt.3. (Union) For all f,g,h € Q,
Bun,ff = f, Bun,fg = Bun,gf and Bun,(Bun,fg)h = Bun,f(Bun,gh).

Axiom MExt.4. (Intersection) For all f,g,h € Q,
Bint,ff = f, Bint,fg = Bint,gf and Bint,(Bint,fg)h = Bint,f(Bint,gh).

We can also consider axioms corresponding to the ‘full n-ary version of the f-axiom of
Ay-calculus’, namely

Axiom MExt.5. (ff-reductions)
(i) For all f € Q44

Compl11+1 n+mApmenn+1 m+n .- 1_[m+n m+n = f:

where F = Compn n+m(curn mf)Hl m+n .- Hn m+n-
(i) For all f € Quim, G1s---s8m € O

Compyyi nAPPm(Canf)gl - 8m = COum-«-nanI PR | P ST

6. Some models

In this section we sketch the constructions of two models that yield the consistency of the
theories:

Ty = Comb+ Ext
T, = Oper+ MExt. 1—5.

6.1. A model for T,

A model for the theory T; can be obtained by a simple generalization of standard
techniques of denotational semantics. Namely, take the initial solution of the recursive
domain equation
D~p[p" > D] @ A,
n=1

in the category of (possibly bottomless) C.P.0.’s and Scott continuous functions, where @
denotes the disjoint sum constructor, D" denotes the C.P.0. consisting of all n-tuples of
elements of D, [ — ] denotes the Scott continuous function space constructor, (), denotes
the ‘lifted’ space constructor, A4 is a ‘flat’ C.P.0. of atoms, and @;@1 D, denotes the infinite
disjoint union of the D,’s.
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Once we fix an isomorphism 1 : D — @, [D" — D] & A4, the interpretations are all
natural. Namely,
— f € Q, means that 1(f) € [D" — D, ]
— f { x1...x,y means that 1(f)(x,...,x,) =y and y € D
— TI;, = 1" (m;,), where m;, € [D" — D] is the i""-projection
— Appn = 1" Y(eval,), where eval, € [D"t' — D] is defined by

1(Xo)(x1...x,) if 1(xo) € [D" — D]

eval,(xox1...x,) = { n otherwise

— Compyy = 17 (yum) and Cury, = 17 (k) for suitable Scott continuous functions
Ynm € [Dn+1 — D] and x,, € [D — D.].

The Axiom Ext is clearly valid in D, since 1 is injective.

Moreover, one can immediately see that every countable subset of D is the codomain
of a suitable unary operation in D. However, as usual in partially ordered models, points
cannot be freely mapped in D because of the continuity constraints. In particular, the
following ‘axiom of finite displacement’ (or ‘finite separability’ or ‘discreteness’ (Flagg and
Myhill 1989)) fails in the model D.

Axiom FinDisp. (Finite Displacement)
Given n different points xy,...,x, and arbitrary points yy,...,y, there exists an operation
f €Q such that f § x;y; fori=1,...,n.

We conjecture that a model for theory T; + FinDisp can be obtained using a suitable
term model over the language A, (A). This language is obtained by adding to A, an infinite
sequence A of constants, whose intended meaning is that of unary ‘finite displacement
operations’. Such a construction should exploit a natural generalization of the machinery
of d-reductions of ordinary A-calculus, see e.g., Barendregt (1984). A similar idea has been
successfully exploited in Plotkin (1995).

6.2. A model for T,

We now proceed to sketch a model of the theory T,, starting from a model .# of
ZF~U + ‘there exist universe-many urelements’. We fix an external well-ordering of the
universe in order to determine the values of the non-deterministic operations 3, and Bun,,.
Urelements are partitioned in o classes Q,,, equinumerous with the universe. They will be
‘activated’ as operations by a suitable transfinite induction. We operate in various stages:

1. to each functional n + 1-ary graph G in .# we associate a fixed urelement ug in Q,;

2. to each of the basic operations Il;,, App,, Cury,, Compy,, Eq, Neq, Bun,, Bint,, ¥,, 3,
we associate new urelements ur,,, Udpp,> UCur,,> UCompyms UEqs UNeq> WBuny,> UBint,» Uy, U3,
in the appropriate Qy;

3. to each possible value of Curyy,V,,3, we assign new urelements denoted by ucur,,f,
uy,f, U3,; in the appropriate C;
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4.

for each f € Q, and each s-tuple (xi,...,X5) € 4%, s < n, we associate a new
urelement us, . in Q,_,, whose intended meaning is the value of (Cur,,—_,f) applied
to X, ..., Xg;

we fix a subclass Y,, of Q, of the same size as Q, and we associate to each finite subset
E, of size at least 2, of Q, \ Y, a new urelement u_g € Y,, whose intended meaning is
the “‘union’ of the corresponding operations;

we fix a subclass Z, of Q,, of the same size as Q, and we associate to each finite subset
E, of size at least 2, of Q, \ Z, a new urelement u~g € Z, whose intended meaning is
the ‘intersection’ of the corresponding operations;

in order to deal with the intended values of Comp,,, we need to take care of iterated
applications of composition, since we want to model a composition operator satisfying
MExt. 1, 2, 5. To this end we associate different urelements only to ‘irreducibile’ well-
formed terms of a suitable language for representing iterated compositions. For each
n we fix a subclass X, of Q, of the same size as Q,. The terms of the language are
defined inductively, starting from a class of constants standing for the elements of
Un=0(€4 \ X,,), as the expressions of the form ug[t;...t,] where uy € (Q, \ X,) and
ty, ..., t, are terms. One can naturally introduce a notion of ‘order’ on such terms:
each constant from Q, \ X, has order n and ug[t;...t,] is a term of order m if and
only if all the ¢;’s have order m. Well-formed terms are those having an order. The
reduction rules on well-formed terms are:

- f[unln te unmx] ~ f
T uAPPm [ucurnmf [unlrr1+n e unnr11+n]unn+l mn * "t unrr1+nrrx+17] ~ f
— UWapp, [UCur,,f81---8m] ~ flum,, ... umn,,81-.-gml-

The set of irreducible well-formed terms of order n is put into one-to-one correspon-
dence with X,,. If s is a term of order n, we denote by s* (¢, ..., t,) the term obtained
from s by replacing each occurrence of a non-applied constant ¢ in s by c[t...t,].

We can now ‘activate’ the urelements of Q by inductively defining on ordinals the sets

Ay ={(f, xt, ..o, X, V)1 F€Q fPxi...x,y atlevel af.

At level 0 we put

— (ug, X1, ..., Xy, y) € Ay if and only if G is functional and (xy,...,x,,y) € G
— (um,, X1, ..., Xp, X;) € A for all (x1,...,x,) € M

— (Ueq, X, x, 1) € Ag for all x € M

— (Uneg» X, ¥, 1) €Agforall x#ye ./

— (uv”, f, uvnf) € Ay for all f € Qn+1

— (u3,, f, ug,z) € Ao for all f € Q44

— (uCur,,ma fa uCur,,,,,f) € Ao for all f € Qn+m

— (UCurpmfs X1s +vvr Xns Uf, x,, .. x,) € Ao for all f € Q4 and xq, ..., x, € M

https://doi.org/10.1017/50960129597002272 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129597002272

An axiomatization of partial n-place operations 297

— (UBun,» f> & uug) € Ap for f #+ g € Q, where

fog iff, g¢Ys

UG iff ¢ Y, and g = usg
{g}UF ifg¢Y,and f =uyr
FUG if f=uyr and g = uyg

and (uBun,,: fs fa f) € AO for f € Qn
— (uBini,» [ & Ung) € Ao for f # g € Q, where

{f.gb iff g¢Z,

b ) UG ifféY,andg=ung
{gfUF ifg¢Y,and f=unr
FUG if f =unr and g = ung

and (uBint,,; f7 f> f) S AO for f € Qn
— (UcCompms f> 81s -5 Enthvpy)) € Ao for f € Q,, g1, ..., g € Q, where v(¢) is the
‘normal form’ of the term

t:{ flg1-- gl if f ¢ X,
sx[gi...gal if fe€X,and f =u,

At level o + 1 we put
— Aa E A“+1

- (uAanﬂ fa X15 «ens Xna)/) EA(X+1
if feQ,and (f, x1, ..., Xp,y) € 4y

- (UV,,f, XI, ceey xm )”) eASH‘]
if f €Quyyand Vz € A(f, X1, ...\ Xn, 2, V) € Ay

- (uﬂnf’ X1, «evy Xy )’) € AOH'I
if f € Qu41 and for no y (u3,f, X1, ..., X, ¥) € A, and and y is the ‘least’ element
such that 3z € A4 .(f, x1, ..., Xp, 2, V) € A,

- (“f, X1, ey Xno Xn4ls «oos Xntms Y) € A%+1
if fe€Qumand (f, X1, ..., Xpam, V) € Ay

- (uUEa X1y e XnaY) EAOH»l
if E €Q, and for no y (ugg, X1, ..., Xu, ¥) € 4, and y is the least element such
that 3f € E.(f, x1, ..., X, V) € Ay

7 (uﬁEa X1y e xnay) EAG(+1
if E<Q,and Vf € E(f, x1, ..., Xp, ) € Ay

— (U, X1 ovs Xp, V) € Autt
if Uy € X, V(t) = uo[t1 tk] and, fori=1,...,k,
dzi € M (Uvs)), X15 ..., Xn,Zi) € Ay) and (uo, z1, ..., Zk,y) € Aa.

At limit A we put 4, = J,_; 4y
Finally, we extend .# to a model of Oper by putting

fﬁxl-uan":’(fa X1y covs Xpy JJ)EAV,

where v is the least ordinal such that A, = 4,..
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The model .# thus defined satisfies T, by construction and also the following axiom
concerning ‘graph’ operations.

Axiom GrOp. (Graph Operations)
Given any functional set of n + 1-tuples G, there exists an operation g € Q, such that
g { x1...x,y if and only if (xy,...,x,, ) € G.

7. Final remarks
7.1. Alternative axiomatizations

7.1.1. In axiomatizing a theory of operations, different primitive notions can be taken.
For instance, one can focus on 1-place operations only. Two alternatives then arise:

— directly code (n + 1)-place operations as total 1-place operations, whose values are
n-place operations;

— first introduce a primitive notion of n-tuple, and then code n-place operations as
operations acting only on n-tuples.

The n-place approach taken in this paper is, in our view, much more natural. Moreover,
it allows us to represent both alternatives above.
The first alternative can be encoded by putting Op; = Q; and

Opnt1 = {f € Qy | f is total and Vx.fx € Op,}.

The second alternative can be encoded by defining a notion of n-tuple as a fixed 1-place
operation defined on [1,2,...,n], and then by putting

Q"W = (f €Q | f is defined only on n-tuples}.

7.1.2.  The theory Oper can be formalized as a first-order theory in various ways. A direct
approach is that of introducing countably many unary predicates {A,},>1 representing
the Q,’s and countably many predicates {B,},>1, such that B, has arity n + 2 and
B, fxy...x,y represents the relation f { x;...x,y. Then, by introducing suitable sequences
of constants, one can formalize directly each axiom of Oper as a sequence of axioms.
Following this approach, however, we assume implicitly that the natural numbers N ‘live’
in the metatheory.

Alternately, one can formalize the notion of natural number within the theory, thus
allowing for a finite axiomatization, albeit possibly also capturing non-standard natural
numbers. In this case, however, the presentation of the theory should be substantially
modified, so as to use only a single predicate for all { relations. For example, one could
introduce an internal notion of tuple.

7.2. Extensions of the theory Oper

7.2.1.  Although natural, the axioms MExt of Section 5 were given just by way of example.
In fact, many more ‘mild’ extensionality properties could have been ‘forced’ in the model
M of Section 6.2, using the same techniques: e.g.,
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o for all f € Q, CuryAppif = f = Compy Il f

eforall he Qn+k+s and f], . ale—k S Qn
Comppiin(Curpish)f1 .. fook =

/ ’
Curns(compn+k+s n+shf1 R fn+knn+1 n+s - - Hn+s n+s)a

!
where f = Comppptsfilli ngs - - s

We conjecture that suitable ‘mild’ extensionality axioms could be added consistently to
Oper, so as to obtain the following strengthening of Theorems 3.4 and 4.1:

Theorem 7.1. Let M be a term of FL, whose free variables are in the list x,... xx4, and
let Nq,...N, be terms of FL, whose free variables are in the list x1,... Xy, then

[T X1+ X MYINY N =

Compreinic IMIN1/Xies 15+ s N/ Xien] ik - T [N 1N -

7.2.2. Generalizing the inductive technique used in the construction of the model .#
of Section 6.2, one could add to .# many more operations. For example, in the style
of Feferman (1974), one could add ‘selectors for total operations’ satisfying the n-place
counterpart of the axiom (E) of Feferman (1974), namely:

Axiom E*. For each n > 0 there exists an operation €' € Q; such that
Elgfi:m $fg=(f€Q & Vxi...x,3y.f § x1...x0Y)

Vige Qe f=f & f=g=¢)f=¢g)

7.3. Essential non-determinacy of union and existential quantification

It is interesting to note that the non-deterministic nature of the operations Bun, and 3, is
in general unavoidable. For instance, it is inconsistent to assume that Bun, ‘flatly’ picks the
value of the first argument whenever possible, i.e., if f § x;...x,y, then Bun,fg § x1...x,).
In fact, assuming this, one can define, given f € Q;, an operation g whose domain is the
complement of that of f. Simply take

g = Bint(K10)(Buni(Compy1(K{1)f)(K10)).

Then ‘Curry’s paradox’ can be derived at once.

7.4. Comparison with related work

7.4.1. Notice that the natural structure of ‘operations as computations’, consisting of all
partial recursive functions, is a model of all axioms of Oper but Op.8.
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7.4.2. We shall not carry out here a detailed comparison of the theory Comb with
existing work on ‘unary’ partial A-calculus. We just point out that in our system partiality
is forced at the very beginning, because ‘arities’ are taken seriously, and so the operations
Appy are necessarily partial.

7.4.3. In comparing the theory Oper to that of Feferman (1974), it is more natural
to consider the n-ary counterparts of the comprehension scheme (C) and of the selection
scheme (S), namely:

Axiom C*. 3f € Q, (Vuy...u,3y. dp(uq,...,uy,y) = Iy, f Qur...uyy) &
(Vur . .uyVy. 4 ur..cuny — Pur,...,un, y)))

Axiom S*. 3f € Q, (Vuy...u,3y. ¢(ug,...,up,y) = Iy, f Qup...uyy) &
(Vuy...u ¥y, fQur...uny — dut, ..., uny)))

where ¢(uy,...,uy,y) is a formula of the appropriate language (for example that of
Subsection 7.1.2), whose free variables are among uy,...,u,, y, and which is monotonic in
the sense of Feferman (1974).

It is worth noticing that this n-ary formulation of the axioms avoids an elaborate
encoding of the explicit dependence of f on the parameters.

One can easily see that the schema S*, and hence also the schema C*, hold in any
model of the theory Oper. In fact, any monotonic formula is equivalent to a prenex
disjunctive normal form, all whose atomic subformul® are positive. Hence, by induction
on the structure of such formul®, one can easily prove that, for any monotonic formula
¢(uy,. .., uy,y), there exists g € Q41 such that

Yug . oupgttyr1y (@ Q.. oty Uppr y o (PUg,. .U, y) A Uprp = Y)) .

Then the operation f € Q, defined by f = 3, g satisfies the instantiation of the schema
S* to the formula ¢.

7.5. A non-reductionist foundational theory

As remarked in the Introduction, the theory of operations presented in this paper was
originally conceived as the theory of operations of the Basic Theory TB of De Giorgi et
al. (1994) and Forti and Honsell (1994). The theory TB is a general foundational theory for
Mathematics, Logic and Computer Science, which is a significant step in the Foundational
Programme of Ennio De Giorgi (Clavelli et al. 1988; Forti and Honsell 1989; De Giorgi
et al. 1994; Lenzi 1994, 1995). This Foundational Programme is informed by the following
principles:

— Non-reductionism: the fact that there are many kinds of qualitatively different objects
and concepts should be taken seriously. For instance the intuitive notion of operation
brings about the non-extensional concept of computation process, which escapes any
description of operations in terms of graphs only. Similarly, conceiving collections as
truth-valued operations forces unnecessary commitments on the definition of collection,
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and does not make apparent their intrinsic extensionality. Taking natural numbers as
primitives saves us from having to fix priorities among different implementations, such
as Von Neumann Ordinals (Von Neumann 1928), Church Numerals (Church 1932),
etc..

— Self-description: the most relevant operations and relations that a foundational theory
utilizes should themselves be objects of the theory. For example, in the present paper,
application, abstraction and composition are first class objects, similar to the main
operations on collections (union, relative complement, cartesian product, and so on) in
Forti and Honsell (1994).

— Open-endedness: a foundational theory should be open to extensions. The introduction
of qualitatively new notions, both of a mathematical character and other kinds,
should always be possible. A foundational theory should be a framework suitable for
accommodating most of the classical and modern theories arising in Mathematics,
Logic, Computer Science, and possibly other sciences (Economics, Linguistics, etc.).
Any sufficiently clear concept should be ‘engraftable’ (innestabile) in a natural way
in it. For example, the concept of wvariable in classical Mathematical Physics and
Economics is engrafted in De Giorgi et al. (1994). Also, metamathematical notions,
such as formula, proposition, and interpretation, are engrafted, in the same style, in (De
Giorgi et al. 1995), by introducing suitable kinds of objects together with relations
and operations acting on them.

In this view, the theory TBCS of Forti and Honsell (1994), integrated with the theory
Oper, presented in this paper, appears as a very rich foundational theory, which can
be taken as a natural, general basis for the developments of Set Theory, Mathematics
and Theoretical Computer Science. In fact, it deals simultaneously with the concepts of
collections and sets, functions and correlations, natural numbers and operations, in a
highly self-descriptive way. The theory TBCS + Oper could be interestingly compared to
those of Flagg and Myhill (1989), Grue (1992) and Berline and Grue (to appear).

A model for the full theory TBCS + Oper can be obtained by carrying out the
construction of Section 6.2, starting from the model ¥~ of the Theory TBCS given in Forti
and Honsell (1994), and then suitably extending the inductive definitions of R_fond h and
R_univ h.

References

Aczel, P. (1980) Frege Structures and the Notions of Propositions, Truth and Sets. In: Barwise, J.
et al. (eds.) The Kleene Symposium, North-Holland 31-59.

Asperti, A. and Longo, G. (1991) Categories, Types, and Structures, MIT Press.

Barendregt, H. (1984) The Lambda Calculus, North-Holland.

Berline, C. and Grue, K. (to appear) A simple semantic consistency proof for map theory based on
zeta-denotational semantics. Theoretical Computer Science.

Church, A. (1932) A Set of Postulates for the Foundation of Logic. Ann. Math. 33 346-366. Second
Paper, ibid. (1933) 34 839-864.

Clavelli, M., De Giorgi, E., Forti, M. and Tortorelli, V.M. (1988) A self-reference oriented theory
for the Foundations of Mathematics. In: Analyse Mathématique et applications - Contributions en
I’honneur de Jacques-Louis Lions, Gauthier-Villars 67-115.

https://doi.org/10.1017/50960129597002272 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129597002272

M. Forti, F. Honsell and M. Lenisa 302

Curry, H. B. (1929) An Analysis of Logical Substitution. Am. J. Math. 51 363-384.

Curry, H. B. (1930) Grundlagen der kombinatorischen Logik. Am. J. Math. 52 509-536, 789-834.

De Giorgi, E. (1990) Rapporti tra matematica e altre forme del sapere umano. Atti Acc. Naz. Lincei
Rend. Adunanze Solenni 9 9-15.

De Giorgi, E., Forti, M. and Lenzi, G. (1994) Una proposta di Teorie Base dei Fondamenti della
Matematica. Rend. Mat. Acc. Lincei (9) 5 11-22.

De Giorgi, E., Forti, M. and Lenzi, G. (1994) Introduzione delle variabli nel quadro delle Teorie
Base dei Fondamenti della Matematica. Rend. Mat. Acc. Lincei (9) 5 117-128.

De Giorgi, E., Forti, M., Lenzi, G. and Tortorelli, V.M. (1995) Calcolo dei Predicati e Concetti
Metateorici in una Teoria Base dei Fondamenti della Matematica. Rend. Mat. Acc. Lincei (9) 6
79-92.

Feferman, S. (1974) Non-extensional type-free theories of partial operations and classifications, I.
In: Diller, J. et al. (eds.) Proof Theory Symposium. Springer-Verlag Lecture Notes in Mathematics
500 73-118.

Feferman, S. (1984) Toward Useful Type-Free Theories, 1. J. Symb. Logic 49 75-111.

Flagg, R. and Myhill, J. (1989) A Type-Free System Extending ZFC. Ann. Pure Appl. Logic 43
79-97.

Forti, M. and Honsell, F. (1989) Models of Selfdescriptive Set Theories. In: Colombini, F. et al.
(eds.) Partial Differential Equations and the Calculus of Variations, Essays in Honor of Ennio De
Giorgi, Birkhduser 473-518.

Forti, M. and Honsell, F. (1994) Collections and sets within the Basic Theories for the Foundations
of Mathematics. Technical Report 11 Ist. Mat. Appl. ‘U.Dint’, Pisa.

Frege, G. (1903) Grundgesetze der Arithmetic, begriffsschriftlich abgeleitet, Breslau.

Grue, K. (1992) Map Theory. Theoretical Computer Science 102 (1) 1-133.

Jech, T.J. (1978) Set theory, Academic Press.

Lenzi, G. (editor) (1994,1995) Scuola Normale Superiore, Seminario sui Fondamenti della Matem-
atica del prof. E. De Giorgi, aa.aa. 1993-94, 1994-95. Typeset Lecture Notes, Pisa.

Longo, G. (1983) Set-theoretical models of A-calculus: theories, expansions, isomorphisms. Ann.
Pure Appl. Logic 24 153-188.

Plotkin, G. (1975) Call-by-value, call-by-name and the A-calculus Theor. Comp. Sci. 1 125-159.

Plotkin, G. (1995) On a question of Friedman (manuscript).

Quine, W.V.0. (1937) New Foundations for Mathematical Logic. Amer. Math. Monthly 44 70-80.

Schonfinkel, M. (1924) Uber die Bausteine der mathematischen Logik Math. Ann. 92 305-316.

Scott, D. (1975) Some Philosophical issues concerning Theories of Combinators. In: Bohm, C. (ed.)
A-Calculus and Computer Science. Springer-Verlag Lecture Notes in Computer Science 37 346-366.

Scott, D. (1976) Data Types as Lattices. SIAM J. Comp. 5 522-587.

Von Neumann, J. (1928) Die Axiomatisierung der Mengenlehre. Math. Zeitsch. 27 669-752.

https://doi.org/10.1017/50960129597002272 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129597002272

