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We propose a general theory of partial n-place operations based solely on the primitive

notion of the application of a (possibly partial) operation to n objects. This theory is strongly

selfdescriptive in that the fundamental manipulations of operations, that is, application,

composition, abstraction, union, intersection and so on, are themselves internal operations. We

give several applications of this theory, including implementations of partial n-ary

λ-calculus, and other operation description languages. We investigate the issue of

extensionality and give weakly extensional models of the theory.

1. Introduction

In this paper we propose a tentative axiomatization of the primitive notion of operation.

Our axiomatization builds solely on the intuition of an operation as an object that acts

(operates) on one, or more, objects and possibly produces a result. Hence, our notion

encompasses both total unary operations, as in ordinary λ-calculus or Combinatory Logic,

as well as n-place partial operations.

Our theory is intended to unify general notions of operation and application intro-

duced and first investigated in Schönfinkel (1924), Curry (1929), Church (1932) and Von

Neumann (1928). Since this theory is also conceived to be the ‘operational part’ of a foun-

dational theory of Computer Science and Mathematics, it should be highly self-descriptive

and open-ended. Hence the most relevant operations acting on operations are themselves

first class objects of our theory, for example application, abstraction and composition.

Moreover, this theory allows for the possible introduction (‘engrafting’) of qualitatively

new notions, both of a mathematical character and other kinds, for example, categories

and functors, collections and sets, predicates, algorithms, variables, and so on. Therefore

we do not assume that all objects are operations.

Our axiomatization is presented in the semiformal style normally used in basic founda-

tional theories. However, it can be adequately formalized in first-order logic, by means of

a suitable choice of primitive predicates. It could be conceived as an ‘engrafting’ of the

† This work was partially supported by 40% and 60% MURST grants, CNR, EEC Science MASK, BRA

Types 6453 contracts. The first author is a member of GNSAGA of CNR.

‡ The main results of this paper were communicated by this author at the 10th International Conference of

Logic, Methodology and Philosophy of Science – Florence, August 1995.
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concept of operation in the Basic Theory TB of De Giorgi et al. (1994), or rather in the

theory TBCS of Forti and Honsell (1994). In fact it originates within the Foundational

Programme that has been developed by Ennio De Giorgi and his group since the late

seventies at the Scuola Normale Superiore in Pisa (Italy).

Technically, we draw inspiration from the work of D. Scott, G. Plotkin and G. Longo

on the categorical and denotational interpretations of λ-calculus (Scott 1975; Plotkin

1975; Longo 1983; Asperti and Longo 1991). Our approach is somewhat more general

in that we do not assume that all operations act on all the objects of some appropriate

type, as do morphisms in Cartesian Closed Categories. Our approach is close to that

of Feferman (1974). We assume that all operations are objects, hence any operation is

subject to the action of many other operations, which is different from what happens in

theories à la Gödel–Bernays–Von Neumann (Von Neumann 1928) and à la Frege–Aczel

(Frege 1903; Aczel 1980).

In Section 2 we introduce the basic axioms constituting the theory Oper and isolate

its subtheory Comb. In Section 3 we study the theory Comb: we give several examples

of noteworthy operations and show that our theory is powerful enough to accommodate

Combinatory Logic. In Section 4 we study the theory Oper and show how to implement

an expressive operation description language. In Section 5 we present further axioms that

postulate various degrees of extensionality. In Section 6 we give models of these theories.

Final remarks and directions for future work appear in Section 7.

Many ideas appearing in this paper have been presented by the authors at the Seminar

on the Foundations of Mathematics at the Scuola Normale Superiore in Pisa in the years

1994 and 1995 (Lenzi 1994, 1995). The authors are grateful to all the participants of

the seminar and in particular to E. De Giorgi, G. Lenzi and V. M. Tortorelli for helpful

discussions. The authors are also grateful to the referees for useful remarks.

2. The fundamental axioms

We assume the natural numbers as primitive, in order to deal naturally with the notion of

n-place operation. The only other primitive notions that we consider are ‘f is an n-place

operation’ and ‘y is the result of applying the n-place operation f to the objects x1, . . . , xn’.

For convenience we introduce the following notation:

— if f is an n-place operation, we write† f ∈ Ωn;

— if f ∈ Ωn and y is the result of applying f to the objects x1, . . . , xn, we write f m x1 . . . xny.

The unusual notation m originates from the theory TB of De Giorgi et al. (1994), see

also Forti and Honsell (1994). In the theory TB objects are classified according to their

relational complexity, called arity, which corresponds to the ‘dimension of the graph’.

Hence the arity of a 1-place (or simple) operation is two, the arity of a 2-place (binary)

operation is three, etc. In general, n-place operations are particular n + 1-ary objects.

In the theory TB the m notation is used for the fundamental relation Rfond n+1, which

† In the theory TB of De Giorgi et al. (1994) this can be substantiated by postulating the existence of the

collections Ωn for each positive n ∈ N; in our context this is merely a notation.
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expresses the action of (n+1)-ary objects. In this context this is a mere notation, which

could have been replaced, e.g., by f(x1 . . . xn) ' y, following Feferman (1974). We did

not use the latter notation in order to emphasize the fact that we do not deal with a

theory of pseudoterms, as in Feferman (1974). In fact, all our terms denote existing objects.

Therefore, we freely use the primitive notion of identity on objects, rather than a suitably

defined equivalence on terms. When we write fx1 . . . xn = y, we mean that y is the unique

object z such that f m x1 . . . xnz.

We begin by postulating the uniqueness of arity and the functionality of operations.

Axiom Op.1. (Arity and Functionality)

1 If n 6= m and f ∈ Ωn, then f 6∈ Ωm

2 Let f ∈ Ωn, if f m x1 . . . xny and f m x1 . . . xnz, then y = z.

If f m x1 . . . xny we shall refer to the unique such y as fx1 . . . xn.

We postulate the existence of basic combinatorial operations, namely projections, appli-

cations, compositions and abstractions.

Axiom Op.2. (Projections and Empty operations)

For any 0 6 i 6 n there exists an operation Πin ∈ Ωn, such that:

∀x1 . . . xn 6 ∃y. Π0n m x1 . . . xny,

∀x1 . . . xn. Πin m x1 . . . xnxi , if 0 < i 6 n.

Axiom Op.3. (Application or Evaluation)

For any n > 0 there exists an operation Appn ∈ Ωn+1, such that for any f ∈ Ωn

∀x1 . . . xny. Appn m fx1 . . . xny ⇐⇒ f m x1 . . . xny.

Axiom Op.4. (Generalized Composition)

For any n > 0 and m > 0 there exists an operation Compnm ∈ Ωn+1.

If g ∈ Ωn and f1, . . . , fn ∈ Ωm, there exists h ∈ Ωm such that Compnm m gf1 . . . fnh, and

∀x1 . . . xmy. h m x1 . . . xmy ⇐⇒

∃z1 . . . zn∀i.fi m x1 . . . xmzi and g m z1 . . . zny.

Axiom Op.5. (Currification, Abstraction, Separation or Parametrization)

For any n > 0 and m > 0 there exists an operation Curnm ∈ Ω1. If f ∈ Ωn+m, there exists

g ∈ Ωn such that Curnm m fg, and

∀x1 . . . xn∃h ∈ Ωm. g m x1 . . . xnh,

∀y1 . . . ymz. h m y1 . . . ymz ⇐⇒ f m x1 . . . xny1 . . . ymz.
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It is worth noticing that the operation Curnmf of Axiom Op.5 is everywhere defined,

no matter what arguments it is fed. This has the somewhat unpleasent consequence of

forcing an everywhere undefined (n + m)-place operation to have a total currification.

Curnmf could have been defined differently to ensure that ‘small’ operations have ‘small’

currifications. For example, one could have postulated that the currification cannot assume

empty values, as in the following axiom.

Axiom Op.5′ . For any n > 0 and m > 0 there exists an operation Cur′nm ∈ Ω1.

If f ∈ Ωn+m, there exists g ∈ Ωn such that Cur′nm m fg and

∀x1 . . . xn(∃h ∈ Ωm. g m x1 . . . xnh⇐⇒

∃y1 . . . ymz. f m x1 . . . xny1 . . . ymz)

∀x1 . . . xny1 . . . ymz. (f m x1 . . . xny1 . . . ymz ⇐⇒

∃h. (g m x1 . . . xnh & h m y1 . . . ymz)).

We also introduce four postulates inspired by the logical operators of Predicate Calculus.

Axiom Op.6. (Equality and Inequality Tests)

There exist operations Eq,Neq ∈ Ω2.

∀xyz. Eq m xyz ⇐⇒ x = y & z = 1

∀xyz. Neq m xyz ⇐⇒ x 6= y & z = 1.

Axiom Op.7. (Union or Disjunction)

For each n > 0 there exists an operation Bunn ∈ Ω2.

If f, g ∈ Ωn, there exists h ∈ Ωn such that Bunn m fgh and

∀x1 . . . xny. h m x1 . . . xny =⇒ f m x1 . . . xny ∨ g m x1 . . . xny,

∀x1 . . . xn. (∃y. f m x1 . . . xny ∨ g m x1 . . . xny) =⇒ (∃y. h m x1 . . . xny).

Axiom Op.8. (Universal Quantification)

For each n > 0 there exists an operation ∀n ∈ Ω1.

If f ∈ Ωn+1, there exists g ∈ Ωn such that ∀n m fg and

∀x1 . . . xny. (g m x1 . . . xny ⇐⇒ ∀xn+1. f m x1 . . . xnxn+1y).

Axiom Op.9. (Existential Quantification or Hilbert’s ε)

For each n > 0 there exists an operation ∃n ∈ Ω1.

If f ∈ Ωn+1, there exists g ∈ Ωn such that ∃n m fg and

∀x1 . . . xny. (g m x1 . . . xny =⇒ ∃xn+1. f m x1 . . . xnxn+1y)

∀x1 . . . xn. (∃xn+1y. f m x1 . . . xnxn+1y =⇒ ∃y. g m x1 . . . xny).
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We call Oper the theory consisting of the axioms Op.1–9, and Comb its subtheory

consisting only of the the axioms Op.1–5.

Given the intensional character of the notion of operation, we judge it inappropriate

to introduce in a theory of operations the axiom of full extensionality Ext given by the

following axiom.

Axiom Ext. Let f, g ∈ Ωn, then f = g if and only if

∀x1 . . . xny. f m x1 . . . xny ⇐⇒ g m x1 . . . xny.

In effect, Axiom Ext is consistent with Comb only, and not with Oper, as we shall

see in Section 6. It is therefore useful to introduce the relation of extensional equivalence

between n-place operations:

Definition 2.1. Let f, g ∈ Ωn, then f ∼= g if and only if

∀x1 . . . xny. f m x1 . . . xny ⇐⇒ g m x1 . . . xny.

3. Examples and applications: the theory Comb

In this section we derive some interesting consequences of the theory Comb.

3.1. Constants

The operation Kn = Cur1nΠ1n+1 produces all n-place constant functions. That is, for all

objects y, x1, . . . , xn, Kny m x1 . . . xny.

3.2. Dummy arguments

The operation Dmn = Cur1m+n(Compn+1 n+m+1AppnΠ1 n+m+1 . . .Πn+1 n+m+1) adds m dummy

arguments to any n-place operation f. That is,

∀x1 . . . xny1 . . . ymz. f m x1 . . . xnz ⇐⇒ Dmnf m x1 . . . xny1 . . . ymz.

3.3. Generalized substitution

For all m, n > 0 the operation

Smn = Curm+1 n(Compm+1 kAppm(A0)(A1) . . . (Am)),

where k = m+ n+ 1, and

A0 = Compn+1 kAppmΠ1 k Πm+2 k . . .Πk k,

A1 = Compn+1 kAppmΠ2 kΠm+2 k . . .Πk k,

...

Am = Compn+1 kAppmΠm+1 k Πm+2 k . . .Πk k
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provides a generalized substitution à la Schönfinkel. Namely, for all g0, g1, . . . , gm, we have

that Smng0g1 . . . gm is defined and is an n-place operation. Moreover, if g0, g1, . . . , gm ∈ Ωn,

∀x1 . . . xny. Smng0g1 . . . gm m x1 . . . xny ⇐⇒

∃z0z1 . . . zm. (g0 m x1 . . . xnz0 & g1 m x1 . . . xnz1 & . . .

& gm m x1 . . . xnzm & z0 m z1 . . . zmy).

The operation Cur11S11 generalizes, to the case of partial 1-place operations, Schönfinkel’s

classical combinator S. It is interesting to state the following theorem.

Theorem 3.1. The theory Comb is equivalent to the theory asserting the existence of the

operations Πin together with the operations Kn and Smn for m, n > 0.

Proof. We need to define operations corresponding to Appn, Compnm and Curnm using

Πin, Kn and Smn. For example, we can put

App′n = Snn+1Π1 n+1 . . .Πn+1 n+1

Comp′nm = Sn+1 n+1(Kn+1Snm)(S1 n+1(Kn+1Km)Π1 n+1)G1 . . . Gn,

where Gi = S1 n+1(Kn+1Smm)(S1 n+1(Kn+1Km)Πi+1 n+1).

One can operate similarly for Curnm.

3.4. Compiling λ-calculus

Any term of the λ-calculus, say M, whose free variables appear in the list x1, . . . , xn, can

be compiled as an n-place operation ‖M‖ ∈ Ωn. For convenience, we assume that the

bound variables of M do not appear in the list x1, . . . , xn. By induction on the complexity

of the λ-term M, we define

— ‖xi‖n = Πin for i 6 n
— ‖MN‖n = Comp2nApp1 ‖M‖n ‖N‖n
— ‖λz.M‖n = Curn1 ‖M[xn+1/z]‖n+1,

where M[y/z] denotes ‘capture avoiding substitution’.

In order to deal with closed λ-terms we would like to extend the above definition to

the case n = 0. This can be done unproblematically for all values in the sense of Plotkin

(1975), i.e., terms starting with an abstraction, by putting ‖λz.M‖0 = ‖M[x1/z]‖1. The

natural definition of ‖MN‖0 would be App1 ‖M‖0 ‖N‖0. But the latter expression need

not be defined when MN is not ‘valuable’. To claim that ‖M‖0 is defined for all closed

terms would be a further assumption on the Universe.

3.5. Recursion theorem

Put

A = ‖x1(x2x2)x3‖3 = Comp23App1(Comp23App1Π13(Comp23App1Π23Π23))Π33,

B = ‖λx2x3.x1(x2x2)x3‖1 = Cur11(Cur21A),

Y = ‖(λx2x3.x1(x2x2)x3)(λx2x3.x1(x2x2)x3)‖1 = Comp21App1BB.
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Then the following theorem holds.

Theorem 3.2. There exists an operation Y ∈ Ω1 such that

∀f ∈ Ω1 ∃g ∈ Ω1. Y m fg & ∀xy. (g m xy ⇐⇒ ∃h. f m gh & h m xy).

3.6. A partial n-ary λ-calculus

In this context, it is natural to generalize the language of ordinary λ-calculus to allow for

simultaneous n-ary abstractions and applications. Hence we introduce the language Λω

of partial n-ary λ-calculus as follows

M ::= x | c | MdM1 . . .Mk
e | λdx1 . . . xk

e.M, for all k > 0,

where the variables x1, . . . , xk are all different.

The language CLω of partial n-ary Combinatory Logic is the sublanguage of Λω

obtained by omitting the last clause.

The compilation introduced in Subsection 3.4 can be extended to terms of these

languages, given an interpretation of constants. The compilation function ‖ ‖n is defined

on terms whose free variables appear in the list x1, . . . , xn and whose bound variables do

not appear in it.

— ‖xi‖n = Πin for i 6 n
— ‖c‖n = Knc

— ‖MdM1 . . .Mk
e‖n = Compk+1 nAppk ‖M‖n ‖M1‖n . . . ‖Mk‖n†

— ‖λdz1 . . . zk
e.M‖n = Curnk ‖M[xn+i/zi]‖n+k .

As was the case in Subsection 3.4, the natural definition of ‖ ‖0 may be undefined in the

case of applicative terms.

The following theorems show that the definition is adequate.

Lemma 3.1. Let M be a term of CLω whose free variables are in the list x1, . . . , xk+n, and

let N1, . . . , Nn be terms of Λω whose free variables are in the list x1, . . . , xk . Then

Compk+n k ‖M[N1/xk+1, . . . , Nn/xk+n]‖k+nΠ1k . . .Πkk ‖N1‖k . . . ‖Nn‖k ∼=

Compk+n k ‖M‖k+nΠ1k . . .Πkk ‖N1‖k . . . ‖Nn‖k.

Proof. The proof is by induction on the structure of M. The base cases are immediate.

The induction step necessitates only simple rewritings using weak associativity of Comp

twice, namely

Compn,kf(Compm,kh1g1 . . . gm) . . . (Compm,khng1 . . . gm) ∼=

Compm,k(Compn,mfh1 . . . hn)g1 . . . gm,

for all f ∈ Ωn, h1, . . . , hn ∈ Ωm and g1, . . . , gm ∈ Ωk .

† Alternatively, one could have put

— ‖MdM1 . . .Mk
e‖n = Skn ‖M‖n ‖M1‖n . . . ‖Mk‖n.
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Theorem 3.3. Let M be a term of CLω whose free variables are in the list x1, . . . , xn and

let N1, . . . , Nn be terms of Λω whose free variables are in the list x1, . . . , xk . Then, for all

a1, . . . , ak such that the ‖Ni‖k are defined,

∀y. ( ‖M[N1/x1, . . . , Nn/xn]‖k m a1 . . . aky ⇐⇒

(Compnk ‖M‖n ‖N1‖k . . . ‖Nn‖k) m a1 . . . aky) .

In particular,

‖M[N1/x1, . . . , Nn/xn]‖k ∼= Compnk ‖M‖n ‖N1‖k . . . ‖Nn‖k

if

— either, all the variables x1, . . . , xn occur indeed in M

— or, all the functions ‖Ni‖k are total functions.

Proof. The proof is similar to the proof of Lemma 3.1.

Theorem 3.4. Let M be a term of CLω whose free variables are in the list x1, . . . , xk+n,

and let N1, . . . , Nn be terms of Λω whose free variables are in the list x1, . . . , xk . Then

‖(λdxk+1 . . . xk+n
e.M)dN1 . . . Nn

e‖k ∼=

Compk+n k ‖M[N1/xk+1, . . . , Nn/xk+n]‖k+nΠ1k . . .Πkk ‖N1‖k . . . ‖Nn‖k.

Proof. We need the following fact:

(†) for all g0 ∈ Ωn+k and all g1, . . . , gn ∈ Ωk ,

Compn+1 k Appn(Curk n g0)g1 . . . gn ∼= Compn+k k g0Π1k . . .Πkkg1 . . . gn.

Now, by definition,

‖(λdxk+1 . . . xk+n
e.M)dN1 . . . Nn

e‖k
= Compn+1 kAppn ‖λdxk+1 . . . xk+n

e.M‖k ‖N1‖k . . . ‖Nn‖k
= Compn+1 kAppn(Curkn ‖M‖n+k) ‖N1‖k . . . ‖Nn‖k.

Using (†), the last expression is extensionally equivalent to

Compn+k k ‖M‖n+kΠ1k . . .Πkk ‖N1‖k . . . ‖Nn‖k,

which, by Lemma 3.1, is extensionally equivalent to

Compn+k k ‖M[N1/xk+1, . . . , Nn/xk+n]‖k+nΠ1k . . .Πkk ‖N1‖k . . . ‖Nn‖k.

4. Examples and applications: the theory Oper

In this section we derive some interesting consequences of the theory Oper.

https://doi.org/10.1017/S0960129597002272 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129597002272


An axiomatization of partial n-place operations 291

4.1. Intersection

For each n > 0 there exists an operation Bintn ∈ Ω2, such that for all f, g, h if Bintn m fgh,
then f, g, h ∈ Ωn and

∀x1 . . . xny. (f m x1 . . . xny & g m x1 . . . xny ⇐⇒ h m x1 . . . xny).

Simply take

‖Comp2n
dΠ12 x1 (Comp2n

dEq x1 x2
e)e‖2,

where basic operations are taken autonymously.

4.2. Definition by cases

For each n > 0 there exists an operation Defn ∈ Ω4 such that if Defn m f0 f1 g a h, then

f0, f1, g, h ∈ Ωn and

∀x1 . . . xny.(h m x1 . . . xny ⇐⇒

(f0 m x1 . . . xny & g m x1 . . . xna) ∨ (f1 m x1 . . . xny & ∃z 6= a. g m x1 . . . xnz)).

Simply take ‖Comp2n
dBunn A0 A1

e‖4, where

A0 = Comp2n
dΠ12 x0 (Comp2n

dEq (Knx4) x3
e)e

A1 = Comp2n
dΠ12 x1 (Comp2n

dNeq (Knx4) x3
e)e.

4.3. Singleton

For each n > 0 there exists an operation Singn ∈ Ωn+1. For all objects x1, . . . , xn, y, there

exists h ∈ Ωn such that Singn m x1 . . . xnyh and

∀z1, . . . , zn, w. (h m z1 . . . znw ⇐⇒ x1 = z1, . . . , xn = zn, y = w).

Simply take

A = Curn+1 n(Bint2n+1 E1(Bint2n+1E2(. . . (Bint2n+1En−1 En) . . .))),

where Ei = ‖Eq dxixn+1+i
e‖2n+1 and then put

Singn = Comp2 n+1App1 ‖Kn+1 xn+1‖n+1A.

4.4. Inversion

There exists an operation Inv ∈ Ω1. If f ∈ Ω1, there exists g ∈ Ω1 such that Inv m fg and

∀y.((∃z.g m yz)⇐⇒ (∃x.f m xy))

∀yz.(g m yz =⇒ f m zy).

Simply take

Cur11(∃3 ‖Eqd(x1
dx3
e) x2

e‖3).
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4.5. Totality test

There exists an operation Tot ∈ Ω1, such that for any f ∈ Ω1, Tot m f1 if and only if

∀x∃y.f m x y.

Simply take

∀2(∃3 ‖Eqd(x1
dx2
e) x3

e‖3).

4.6. A functional programming language

Following the line of Feferman (1984), we extend the language Λω to a (non-executable)

functional programming language FLω by adding the syntactic class of formulæ and a

new clause in the definition of terms. Namely, put

M,N ::= . . . | if Φ then M else N

Φ,Ψ :: M = N | Φ & Ψ | Φ ∨Ψ | ¬Φ | ∀x.Φ | ∃x.Φ.

The compilation of FLω in Oper is motivated by the natural ‘three-valued’-logic interpre-

tation of connectives and quantifiers:

— ‖if Φ then M else N‖n = Defn ‖M‖n ‖N‖n ‖Φ‖n 0;

— ‖M = N‖n = BunnF1F2, where

F1 = Comp2n Eq ‖M‖n ‖N‖n and

F2 = (Comp11(Kn1) Comp2n Neq ‖M‖n ‖N‖n);
— ‖¬Φ‖n = Comp1nSc ‖Φ‖n;
— ‖Φ & Ψ‖n = BunnG1G2, where

G1 = Bintn ‖Φ‖n ‖Ψ‖n and

G2 = Bunn(Negn ‖Φ‖n) (Negn ‖Ψ‖n);
— ‖Φ ∨Ψ‖n = BunnH1H2, where

H1 = Bintn ‖Φ‖n ‖Ψ‖n and

H2 = Bunn(Posn ‖Φ‖n) (Posn ‖Ψ‖n);
— ‖∀xn+1.Φ‖n = Bunn(∀n(Posn ‖Φ‖n+1))(∃n(Negn ‖Φ‖n+1));

— ‖∃xn+1.Φ‖n = Bunn(∃n(Posn ‖Φ‖n+1))(∀n(Negn ‖Φ‖n+1)).

The operation Sc = Bun1(Sing10 1)(Sing11 0) exchanges the ‘truth values’ 0 and 1, while

Posn = ‖(Comp1nEq(Kn1)x1)‖1, and

Negn = ‖(Comp1nSc(Comp1nEq(Kn0)x1))‖1

yield the restrictions of a given n-ary operation to n-tuples, which are mapped respectively

to 1 and 0.

Finally, we extend the adequacy Theorem 3.4 to FLω as follows.

Theorem 4.1. Let M be a term of FLω not containing abstractions whose free variables

are in the list x1, . . . xk+n, and let N1, . . . Nn be terms of FLω whose free variables are in

the list x1, . . . xk . Then

‖(λdxk+1 . . . xk+n
e.M)dN1 . . . Nn

e‖k ∼=

Compk+n k ‖M[N1/xk+1, . . . , Nn/xk+n]‖k+nΠ1k . . .Πkk ‖N1‖k . . . ‖Nn‖k.
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5. Extensionality axioms

So far we have only been able to show extensional equivalence of operations. This approach

is closer, in spirit, to Combinatory Logic rather than λ-calculus. The following theorem

shows that any sufficiently rich theory of operations is non-extensional in a very strong

sense, i.e., it is inconsistent with the axiom of selection Sel:

Axiom Sel. For all n there exists an operation εn ∈ Ω1 such that for all f ∈ Ωn

εnf ∼= f and ∀g ∈ Ωn(f ∼= g ⇒ εnf = εng).

Theorem 5.1. Comb + Sel + ‘there exists Sing1’ is inconsistent.

Proof. Put f = Comp11(Sing1(ε1Π01)(K10))ε1. Then f is defined on x if and only if x

is an empty operation, and then fx = K10. Now using the operation Y of Theorem 3.2,

we have that Y f is defined on x if and only if f is defined on Y f and f(Y f) is defined

on x. This is clearly impossible since f is defined only on empty operations. Hence Y f

is empty, but then f(Y f) = K10, which cannot be extensionally equal to Y f, contrary to

Theorem 3.2.

We do not elaborate on the consequences of the Axiom Sel, we only remark that the

Recursion Theorem 3.2 can be strengthened by asserting the existence of an operator Y

such that

Y f =

{
ε1(f(Y f)) if f(Y f) exists and belongs to Ω1

ε1Π01 otherwise

Simply take Y = ‖ε1
dY dComp11

dx1ε1
eee‖1.

As in Feferman (1974), we can show that the Theory Oper is inconsistent even with the

‘full’ extensionality of the sole ‘total’ operations.

Theorem 5.2. Comb + ‘there exists Def1’ =⇒ ‘there exist two different extensionally

equivalent total operations’.

Proof. Clearly, Def1(K1(K11))(K1(K10))(Π11)(K10) is a total operation with no fixed

points. However, if total operations are extensional, Y f gives a fixed point of f, whenever

f is a total operation assuming total operations as values.

Hence, since we have to give up general extensionality axioms, it is interesting to

investigate lists of ‘milder’ extensionality axioms, corresponding to the usual ‘algebraic’

properties of the fundamental operations. For example, one could postulate associativity of

composition, neutrality of projections and idempotency, commutativity and associativity

of union and intersection. All these axioms postulate the equality of otherwise only

extensionally equivalent operations.

Axiom MExt.1. (Neutrality of Projections)

For all f ∈ Ωn CompnnfΠ1n . . .Πnn = f.
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Axiom MExt.2. (Associativity of Composition)

For all f ∈ Ωn, h1, . . . , hn ∈ Ωm, g1, . . . , gm ∈ Ωk

Compnkf(Compmkh1g1 . . . gm) . . . (Compmkhng1 . . . gm) =

Compmk(Compnmfh1 . . . hn)g1 . . . gm.

Axiom MExt.3. (Union) For all f, g, h ∈ Ωn

Bunnff = f, Bunnfg = Bunngf and Bunn(Bunnfg)h = Bunnf(Bunngh).

Axiom MExt.4. (Intersection) For all f, g, h ∈ Ωn

Bintnff = f, Bintnfg = Bintngf and Bintn(Bintnfg)h = Bintnf(Bintngh).

We can also consider axioms corresponding to the ‘full n-ary version of the β-axiom of

λv-calculus’, namely

Axiom MExt.5. (β-reductions)

(i) For all f ∈ Ωn+m

Compm+1 n+mAppmFΠn+1m+n . . .Πm+nm+n = f,

where F = Compnn+m(Curnmf)Π1m+n . . .Πnm+n.

(ii) For all f ∈ Ωn+m, g1, . . . , gm ∈ Ωn

Compm+1 nAppm(Curnmf)g1 . . . gm = Compm+n nfΠ1 n . . .Πn ng1 . . . gm.

6. Some models

In this section we sketch the constructions of two models that yield the consistency of the

theories:

T1 = Comb + Ext

T2 = Oper + MExt. 1− 5.

6.1. A model for T1

A model for the theory T1 can be obtained by a simple generalization of standard

techniques of denotational semantics. Namely, take the initial solution of the recursive

domain equation

D '
⊕
n>1

[Dn → D⊥]⊕ A,

in the category of (possibly bottomless) C.P .O.’s and Scott continuous functions, where ⊕
denotes the disjoint sum constructor, Dn denotes the C.P .O. consisting of all n-tuples of

elements of D, [→ ] denotes the Scott continuous function space constructor, ( )⊥ denotes

the ‘lifted’ space constructor, A is a ‘flat’ C.P .O. of atoms, and
⊕

n>1 Dn denotes the infinite

disjoint union of the Dn’s.
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Once we fix an isomorphism ι : D −→
⊕

n>1[Dn → D⊥]⊕ A, the interpretations are all

natural. Namely,

— f ∈ Ωn means that ι(f) ∈ [Dn → D⊥]

— f m x1 . . . xny means that ι(f)(x1, . . . , xn) = y and y ∈ D
— Πin = ι−1(πin), where πin ∈ [Dn → D⊥] is the ith-projection

— Appn = ι−1(evaln), where evaln ∈ [Dn+1 → D⊥] is defined by

evaln(x0x1 . . . xn) =

{
ι(x0)(x1 . . . xn) if ι(x0) ∈ [Dn → D⊥]

⊥ otherwise

— Compnm = ι−1(γnm) and Curnm = ι−1(κnm) for suitable Scott continuous functions

γnm ∈ [Dn+1 → D⊥] and κnm ∈ [D → D⊥].

The Axiom Ext is clearly valid in D, since ι is injective.

Moreover, one can immediately see that every countable subset of D is the codomain

of a suitable unary operation in D. However, as usual in partially ordered models, points

cannot be freely mapped in D because of the continuity constraints. In particular, the

following ‘axiom of finite displacement’ (or ‘finite separability’ or ‘discreteness’ (Flagg and

Myhill 1989)) fails in the model D.

Axiom FinDisp. (Finite Displacement)

Given n different points x1, . . . , xn and arbitrary points y1, . . . , yn there exists an operation

f ∈ Ω1 such that f m xiyi for i = 1, . . . , n.

We conjecture that a model for theory T1 + FinDisp can be obtained using a suitable

term model over the language Λω(∆). This language is obtained by adding to Λω an infinite

sequence ∆ of constants, whose intended meaning is that of unary ‘finite displacement

operations’. Such a construction should exploit a natural generalization of the machinery

of δ-reductions of ordinary λ-calculus, see e.g., Barendregt (1984). A similar idea has been

successfully exploited in Plotkin (1995).

6.2. A model for T2

We now proceed to sketch a model of the theory T2, starting from a model M of

ZF−U + ‘there exist universe-many urelements’. We fix an external well-ordering of the

universe in order to determine the values of the non-deterministic operations ∃n and Bunn.

Urelements are partitioned in ω classes Ωn, equinumerous with the universe. They will be

‘activated’ as operations by a suitable transfinite induction. We operate in various stages:

1. to each functional n+ 1-ary graph G in M we associate a fixed urelement uG in Ωn;

2. to each of the basic operations Πin, Appn, Curnm, Compnm, Eq, Neq, Bunn, Bintn, ∀n, ∃n
we associate new urelements uΠin

, uAppn , uCurnm , uCompnm , uEq , uNeq, uBunn , uBintn , u∀n , u∃n
in the appropriate Ωk;

3. to each possible value of Curnm, ∀n, ∃n we assign new urelements denoted by uCurnmf ,

u∀nf , u∃nf in the appropriate Ωk;
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4. for each f ∈ Ωn and each s-tuple (x1, . . . , xs) ∈ Ms, s < n, we associate a new

urelement uf,x1 ,...,xs in Ωn−s, whose intended meaning is the value of (Curs,n−sf) applied

to x1, . . . , xs;

5. we fix a subclass Yn of Ωn of the same size as Ωn and we associate to each finite subset

E, of size at least 2, of Ωn \ Yn a new urelement u∪E ∈ Yn, whose intended meaning is

the ‘union’ of the corresponding operations;

6. we fix a subclass Zn of Ωn of the same size as Ωn and we associate to each finite subset

E, of size at least 2, of Ωn \ Zn a new urelement u∩E ∈ Zn whose intended meaning is

the ‘intersection’ of the corresponding operations;

7. in order to deal with the intended values of Compmn we need to take care of iterated

applications of composition, since we want to model a composition operator satisfying

MExt. 1, 2, 5. To this end we associate different urelements only to ‘irreducibile’ well-

formed terms of a suitable language for representing iterated compositions. For each

n we fix a subclass Xn of Ωn of the same size as Ωn. The terms of the language are

defined inductively, starting from a class of constants standing for the elements of⋃
n>0(Ωn \ Xn), as the expressions of the form u0[t1 . . . tn] where u0 ∈ (Ωn \ Xn) and

t1, . . . , tn are terms. One can naturally introduce a notion of ‘order’ on such terms:

each constant from Ωn \ Xn has order n and u0[t1 . . . tn] is a term of order m if and

only if all the ti’s have order m. Well-formed terms are those having an order. The

reduction rules on well-formed terms are:

— f[uΠ1n
. . . uΠnn

] ; f.

— uAppm[uCurnmf[uΠ1m+n
. . . uΠnm+n

]uΠn+1m+n
. . . uΠm+nm+n

] ; f

— uAppm[uCurnmfg1 . . . gm] ; f[uΠ1 n
. . . uΠn n

g1 . . . gm].

The set of irreducible well-formed terms of order n is put into one-to-one correspon-

dence with Xn. If s is a term of order n, we denote by s ? (t1, . . . , tn) the term obtained

from s by replacing each occurrence of a non-applied constant c in s by c[t1 . . . tn].

8. We can now ‘activate’ the urelements of Ω by inductively defining on ordinals the sets

Aα = {(f, x1, . . . , xn, y) | f ∈ Ωn f m x1 . . . xny at level α}.

At level 0 we put

— (uG, x1, . . . , xn, y) ∈ A0 if and only if G is functional and (x1, . . . , xn, y) ∈ G
— (uΠin

, x1, . . . , xn, xi) ∈ A0 for all (x1, . . . , xn) ∈ M
— (ueq, x, x, 1) ∈ A0 for all x ∈ M
— (uneq, x, y, 1) ∈ A0 for all x 6= y ∈ M
— (u∀n , f, u∀nf) ∈ A0 for all f ∈ Ωn+1

— (u∃n , f, u∃nf) ∈ A0 for all f ∈ Ωn+1

— (uCurnm , f, uCurnmf) ∈ A0 for all f ∈ Ωn+m

— (uCurnmf , x1, . . . , xn, uf, x1 , ..., xn) ∈ A0 for all f ∈ Ωn+m and x1, . . . , xn ∈ M
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— (uBunn , f, g, u∪E) ∈ A0 for f 6= g ∈ Ωn where

E =


{f, g} if f, g 6∈ Yn
{f} ∪ G if f 6∈ Yn and g = u∪G
{g} ∪ F if g 6∈ Yn and f = u∪F
F ∪ G if f = u∪F and g = u∪G

and (uBunn , f, f, f) ∈ A0 for f ∈ Ωn

— (uBintn , f, g, u∩E) ∈ A0 for f 6= g ∈ Ωn where

E =


{f, g} if f, g 6∈ Zn
{f} ∪ G if f 6∈ Yn and g = u∩G
{g} ∪ F if g 6∈ Yn and f = u∩F
F ∪ G if f = u∩F and g = u∩G

and (uBintn , f, f, f) ∈ A0 for f ∈ Ωn

— (uCompnm , f, g1, . . . , gn, uν(t)) ∈ A0 for f ∈ Ωn, g1, . . . , gn ∈ Ωm where ν(t) is the

‘normal form’ of the term

t =

{
f[g1 . . . gn] if f 6∈ Xn

s ? [g1 . . . gn] if f ∈ Xn and f = us.

At level α+ 1 we put

— Aα ⊆ Aα+1

— (uAppn , f, x1, . . . , xn, y) ∈ Aα+1

if f ∈ Ωn and (f, x1, . . . , xn, y) ∈ Aα
— (u∀nf , x1, . . . , xn, y) ∈ Aα+1

if f ∈ Ωn+1 and ∀z ∈ M.(f, x1, . . . , xn, z, y) ∈ Aα
— (u∃nf , x1, . . . , xn, y) ∈ Aα+1

if f ∈ Ωn+1 and for no y (u∃nf , x1, . . . , xn, y) ∈ Aα and and y is the ‘least’ element

such that ∃z ∈ M.(f, x1, . . . , xn, z, y) ∈ Aα
— (uf, x1 , ..., xn , xn+1, . . . , xn+m, y) ∈ Aα+1

if f ∈ Ωn+m and (f, x1, . . . , xn+m, y) ∈ Aα
— (u∪E, x1, . . . , xn, y) ∈ Aα+1

if E ⊆ Ωn and for no y (u∪E, x1, . . . , xn, y) ∈ Aα and y is the least element such

that ∃f ∈ E.(f, x1, . . . , xn, y) ∈ Aα
— (u∩E, x1, . . . , xn, y) ∈ Aα+1

if E ⊆ Ωn and ∀f ∈ E.(f, x1, . . . , xn, y) ∈ Aα
— (uν(t), x1, . . . , xn, y) ∈ Aα+1

if uν(t) ∈ Xn, ν(t) = u0[t1 . . . tk] and, for i = 1, . . . , k,

∃zi ∈ M.(uν(ti), x1, . . . , xn, zi) ∈ Aα) and (u0, z1, . . . , zk, y) ∈ Aα.
At limit λ we put Aλ =

⋃
α<λ Aα.

Finally, we extend M to a model of Oper by putting

f m x1 . . . xny ⇐⇒ (f, x1, . . . , xn, y) ∈ Aν,

where ν is the least ordinal such that Aν = Aν+1.
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The model M thus defined satisfies T2 by construction and also the following axiom

concerning ‘graph’ operations.

Axiom GrOp. (Graph Operations)

Given any functional set of n + 1-tuples G, there exists an operation g ∈ Ωn such that

g m x1 . . . xny if and only if (x1, . . . , xn, y) ∈ G.

7. Final remarks

7.1. Alternative axiomatizations

7.1.1. In axiomatizing a theory of operations, different primitive notions can be taken.

For instance, one can focus on 1-place operations only. Two alternatives then arise:

— directly code (n + 1)-place operations as total 1-place operations, whose values are

n-place operations;

— first introduce a primitive notion of n-tuple, and then code n-place operations as

operations acting only on n-tuples.

The n-place approach taken in this paper is, in our view, much more natural. Moreover,

it allows us to represent both alternatives above.

The first alternative can be encoded by putting Op1 = Ω1 and

Opn+1 = {f ∈ Ω1 | f is total and ∀x.fx ∈ Opn}.

The second alternative can be encoded by defining a notion of n-tuple as a fixed 1-place

operation defined on [1, 2, . . . , n], and then by putting

Ω(n) = {f ∈ Ω1 | f is defined only on n-tuples}.

7.1.2. The theory Oper can be formalized as a first-order theory in various ways. A direct

approach is that of introducing countably many unary predicates {An}n>1 representing

the Ωn’s and countably many predicates {Bn}n>1, such that Bn has arity n + 2 and

Bnfx1 . . . xny represents the relation f m x1 . . . xny. Then, by introducing suitable sequences

of constants, one can formalize directly each axiom of Oper as a sequence of axioms.

Following this approach, however, we assume implicitly that the natural numbers N ‘live’

in the metatheory.

Alternately, one can formalize the notion of natural number within the theory, thus

allowing for a finite axiomatization, albeit possibly also capturing non-standard natural

numbers. In this case, however, the presentation of the theory should be substantially

modified, so as to use only a single predicate for all m relations. For example, one could

introduce an internal notion of tuple.

7.2. Extensions of the theory Oper

7.2.1. Although natural, the axioms MExt of Section 5 were given just by way of example.

In fact, many more ‘mild’ extensionality properties could have been ‘forced’ in the model

M of Section 6.2, using the same techniques: e.g.,
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• for all f ∈ Ωk , Cur1kAppkf = f = Comp1kΠ11f

• for all h ∈ Ωn+k+s and f1, . . . , fn+k ∈ Ωn

Compn+k n(Curn+k sh)f1 . . . fn+k =

Curns(Compn+k+s n+shf
′
1 . . . f

′
n+kΠn+1 n+s . . .Πn+s n+s),

where f′i = Compnn+sfiΠ1 n+s . . .Πn n+s.

We conjecture that suitable ‘mild’ extensionality axioms could be added consistently to

Oper, so as to obtain the following strengthening of Theorems 3.4 and 4.1:

Theorem 7.1. Let M be a term of FLω whose free variables are in the list x1, . . . xk+n and

let N1, . . . Nn be terms of FLω whose free variables are in the list x1, . . . xk , then

‖(λdxk+1 . . . xk+n
e.M)dN1 . . . Nn

e‖k =

Compk+n k ‖M[N1/xk+1, . . . , Nn/xk+n]‖k+nΠ1k . . .Πkk ‖N1‖k . . . ‖Nn‖k.

7.2.2. Generalizing the inductive technique used in the construction of the model M
of Section 6.2, one could add to M many more operations. For example, in the style

of Feferman (1974), one could add ‘selectors for total operations’ satisfying the n-place

counterpart of the axiom (Ẽ) of Feferman (1974), namely:

Axiom E*. For each n > 0 there exists an operation εtotn ∈ Ω1 such that

∃g.εtotn m fg ⇐⇒ (f ∈ Ωn & ∀x1 . . . xn∃y.f m x1 . . . xny)

∀fg ∈ Ωn(ε
tot
n f
∼= f & f ∼= g =⇒ εtotn f = εtotn g).

7.3. Essential non-determinacy of union and existential quantification

It is interesting to note that the non-deterministic nature of the operations Bunn and ∃n is

in general unavoidable. For instance, it is inconsistent to assume that Bunn ‘flatly’ picks the

value of the first argument whenever possible, i.e., if f m x1 . . . xny, then Bunnfg m x1 . . . xny.

In fact, assuming this, one can define, given f ∈ Ω1, an operation g whose domain is the

complement of that of f. Simply take

g = Bint1(K10)(Bun1(Comp1 1(K11)f)(K10)).

Then ‘Curry’s paradox’ can be derived at once.

7.4. Comparison with related work

7.4.1. Notice that the natural structure of ‘operations as computations’, consisting of all

partial recursive functions, is a model of all axioms of Oper but Op.8.

https://doi.org/10.1017/S0960129597002272 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129597002272


M. Forti, F. Honsell and M. Lenisa 300

7.4.2. We shall not carry out here a detailed comparison of the theory Comb with

existing work on ‘unary’ partial λ-calculus. We just point out that in our system partiality

is forced at the very beginning, because ‘arities’ are taken seriously, and so the operations

Appn are necessarily partial.

7.4.3. In comparing the theory Oper to that of Feferman (1974), it is more natural

to consider the n-ary counterparts of the comprehension scheme (C̃) and of the selection

scheme (S̃ ), namely:

Axiom C*. ∃f ∈ Ωn ((∀u1 . . . un∃!y. φ(u1, . . . , un, y)→ ∃y. f m u1 . . . uny) &

(∀u1 . . . un∀y. f m u1 . . . uny → φ(u1, . . . , un, y)))

Axiom S*. ∃f ∈ Ωn ((∀u1 . . . un∃y. φ(u1, . . . , un, y)→ ∃y. f m u1 . . . uny) &

(∀u1 . . . un∀y. f m u1 . . . uny → φ(u1, . . . , un, y)))

where φ(u1, . . . , un, y) is a formula of the appropriate language (for example that of

Subsection 7.1.2), whose free variables are among u1, . . . , un, y, and which is monotonic in

the sense of Feferman (1974).

It is worth noticing that this n-ary formulation of the axioms avoids an elaborate

encoding of the explicit dependence of f on the parameters.

One can easily see that the schema S*, and hence also the schema C*, hold in any

model of the theory Oper. In fact, any monotonic formula is equivalent to a prenex

disjunctive normal form, all whose atomic subformulæ are positive. Hence, by induction

on the structure of such formulæ, one can easily prove that, for any monotonic formula

φ(u1, . . . , un, y), there exists g ∈ Ωn+1 such that

∀u1 . . . unun+1y (g m u1 . . . un un+1 y ↔ (φ(u1, . . . , un, y) ∧ un+1 = y)) .

Then the operation f ∈ Ωn defined by f = ∃n g satisfies the instantiation of the schema

S* to the formula φ.

7.5. A non-reductionist foundational theory

As remarked in the Introduction, the theory of operations presented in this paper was

originally conceived as the theory of operations of the Basic Theory TB of De Giorgi et

al. (1994) and Forti and Honsell (1994). The theory TB is a general foundational theory for

Mathematics, Logic and Computer Science, which is a significant step in the Foundational

Programme of Ennio De Giorgi (Clavelli et al. 1988; Forti and Honsell 1989; De Giorgi

et al. 1994; Lenzi 1994, 1995). This Foundational Programme is informed by the following

principles:

— Non-reductionism: the fact that there are many kinds of qualitatively different objects

and concepts should be taken seriously. For instance the intuitive notion of operation

brings about the non-extensional concept of computation process, which escapes any

description of operations in terms of graphs only. Similarly, conceiving collections as

truth-valued operations forces unnecessary commitments on the definition of collection,
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and does not make apparent their intrinsic extensionality. Taking natural numbers as

primitives saves us from having to fix priorities among different implementations, such

as Von Neumann Ordinals (Von Neumann 1928), Church Numerals (Church 1932),

etc..

— Self-description: the most relevant operations and relations that a foundational theory

utilizes should themselves be objects of the theory. For example, in the present paper,

application, abstraction and composition are first class objects, similar to the main

operations on collections (union, relative complement, cartesian product, and so on) in

Forti and Honsell (1994).

— Open-endedness: a foundational theory should be open to extensions. The introduction

of qualitatively new notions, both of a mathematical character and other kinds,

should always be possible. A foundational theory should be a framework suitable for

accommodating most of the classical and modern theories arising in Mathematics,

Logic, Computer Science, and possibly other sciences (Economics, Linguistics, etc.).

Any sufficiently clear concept should be ‘engraftable’ (innestabile) in a natural way

in it. For example, the concept of variable in classical Mathematical Physics and

Economics is engrafted in De Giorgi et al. (1994). Also, metamathematical notions,

such as formula, proposition, and interpretation, are engrafted, in the same style, in (De

Giorgi et al. 1995), by introducing suitable kinds of objects together with relations

and operations acting on them.

In this view, the theory TBCS of Forti and Honsell (1994), integrated with the theory

Oper, presented in this paper, appears as a very rich foundational theory, which can

be taken as a natural, general basis for the developments of Set Theory, Mathematics

and Theoretical Computer Science. In fact, it deals simultaneously with the concepts of

collections and sets, functions and correlations, natural numbers and operations, in a

highly self-descriptive way. The theory TBCS + Oper could be interestingly compared to

those of Flagg and Myhill (1989), Grue (1992) and Berline and Grue (to appear).

A model for the full theory TBCS + Oper can be obtained by carrying out the

construction of Section 6.2, starting from the modelV of the Theory TBCS given in Forti

and Honsell (1994), and then suitably extending the inductive definitions of R fond h and

R univ h.
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