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Abstract. Let X be a compact, metric and totally disconnected space and let f : X→ X be
a continuous map. We relate the eigenvalues of f∗ : Ȟ0(X; C)→ Ȟ0(X; C) to dynamical
properties of f , roughly showing that if the dynamics is complicated then every complex
number of modulus different from 0, 1 is an eigenvalue. This stands in contrast with a
classical inequality of Manning that bounds the entropy of f below by the spectral radius
of f∗.
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1. Introduction
Manning’s theorem [5] essentially says that if X is a compact manifold (or, more generally,
an absolute neighborhood retract for metric spaces) and f : X→ X is a continuous map,
then

h( f )≥ log(|λ|)

for any eigenvalue λ of f∗ : H1(X; C)→ H1(X; C). Here h( f ) stands for the topological
entropy of f and H denotes singular homology with coefficients in C. Motivated by this
result, Shub stated the entropy conjecture which asks if Manning’s theorem is true in all
dimensions. In this paper we consider this problem in dimension zero, obtaining results
that relate the eigenvalues of f∗ to certain detailed dynamical properties of the system.

We will concentrate on X compact and totally disconnected (and metrizable). The
reason is the following. Since zero-dimensional homological invariants measure, roughly,
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only connectedness properties, it is to be expected that the results that we obtain do not
involve the dynamical behaviour within the connected components of our phase space,
but rather among them. Thus we may as well collapse each component to a singleton,
obtaining a compact, totally disconnected space, and consider the induced map in this
quotient space.

The interesting cases arise when X is infinite and has a very complicated topological
structure, which is a common situation in both discrete and continuous dynamical systems.
The homology or cohomology theory that best suits the study of these spaces is not singular
homology as in Manning’s theorem, but rather Čech homology or even Čech cohomology.
In dimension zero these have a relatively simple description. For an arbitrary compact
space Z , its Čech cohomology group Ȟ0(Z; C) can be identified with the set of all locally
constant maps ϕ : Z→ C. Because coefficients are taken in C, in this case Ȟ0(Z; C) is
actually a vector space over C. Čech homology, on the other hand, can be shown to be the
dual vector space to Čech cohomology; that is, Ȟ0(Z; C)= Hom(Ȟ0(Z; C), C) (a proof
is given in Appendix A).

The result for Čech cohomology is very simple to state.

PROPOSITION 1. Let X be compact, metric and totally disconnected space and let
f : X→ X be continuous. Consider the induced map f ∗ : Ȟ0(X; C)→ Ȟ0(X; C). Then
every non-zero eigenvalue of f ∗ is a root of unity.

In particular, the inequality of Manning’s theorem holds trivially since it just says that
h( f )≥ 0. The scenario changes radically, however, when one considers Čech homology.

THEOREM 2. Let X be compact, metric and totally disconnected space and let f : X→ X
be continuous. Consider the induced map f∗ : Ȟ0(X; C)→ Ȟ0(X; C). Then the following
statements are equivalent.
(i) There exists λ ∈ C with |λ| 6= 0, 1 that is not an eigenvalue of f∗.
(ii) No λ ∈ C with |λ| 6= 0, 1 is an eigenvalue of f∗.
(iii) (X, f ) admits dynamical ε-partitions for every ε > 0.

A dynamical ε-partition U is a finite partition of X into clopen (that is, simultaneously
closed and open) subsets of diameter smaller than ε and such that the image under f of
any element of U is completely contained in another (not necessarily different) element of
U .

The existence of a dynamical ε-partition U implies that if x, y belong to the same
element of U then their forward images never separate a distance greater than ε. Thus,
if δ is a Lebesgue number for U (for instance, if δ is smaller than the minimum distance
among elements of U), it follows that for every pair of points such that d(x, y) < δ then
d( f n(x), f n(y)) < ε for every n ≥ 1. That is, f is not positively expansive unless X is
finite. This argument also shows that the number of ε-distinguishable positive semiorbits
is finite and, in particular, the entropy of f is zero. Thus, we have the following corollary
of Theorem 2.

COROLLARY 3. Let X be a compact, metric and totally disconnected space and
f : X→ X continuous. If the topological entropy of f is non-zero or f is positively
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expansive and X is infinite, then every λ ∈ C with |λ| 6= 0, 1 is an eigenvalue of
f∗ : Ȟ0(X; C)→ Ȟ0(X; C).

In particular, the inequality of Manning’s theorem certainly does not hold in general: for
any dynamical system with positive but finite topological entropy we have sup log(|λ|)=
+∞ as λ ranges over the eigenvalues of f∗.

Actually, the existence of dynamical ε-partitions for every ε > 0 is a very stringent
condition, so much so that it leads to a fairly detailed description of the dynamical system
(X, f ).

THEOREM 4. Let X be compact, metric and totally disconnected space and let f : X→ X
be continuous. The following statements are equivalent.
(i) (X, f ) admits dynamical ε-partitions for every ε > 0.
(ii) The ω-limit of every point in X is either a periodic orbit or an adding machine;

moreover, these are stable with respect to clopen sets.

Recall that a closed invariant subset Y ⊂ X is said to be Lyapunov stable if it has a basis
of positively invariant neighborhoods. We introduce stability with respect to clopen sets
as an even stronger condition: it means that Y has a basis of clopen positively invariant
neighborhoods. This condition will arise naturally as we prove Theorem 2.

The characterization of Theorem 4 is closely related to work by Buescu, Kulczyki and
Stewart [1, 2].

The paper is organized as follows. Section 2 presents elementary definitions and results
about partitions. Section 3 contains the proof of Proposition 1. Theorem 2 will be proved in
§4. Theorem 4 will be proved in §5. We thank the referee for suggesting an approach that
allowed us to shorten the proofs in this section. For completeness we have included a brief
appendix that contains basic definitions and results about Čech homology and cohomology.

2. Elementary definitions and results about partitions
Here we gather some definitions and simple results about partitions that we will use
frequently throughout the paper. As usual, X denotes a compact, totally disconnected
metric space and f : X→ X is a continuous map. We recall that such a space X has a
topological basis of clopen sets. We will also tacitly assume X to be metrizable so that
we can measure the smallness of our partitions with the numerical parameter ε. (This
assumption can be easily dispensed with at the cost of the additional burden of having to
speak of cofinal families of partitions within the family of all open coverings of X .)

The pair (X, f ) is a (semi)-dynamical system. An action map π between dynamical
systems (X, f ) and (Y, g) is a continuous map π : X→ Y such that g ◦ π = π ◦ f , that is,
π takes f -orbits onto g-orbits. A surjective action map is typically called a semiconjugacy
and if the action map is a homeomorphism then it is a conjugacy between dynamical
systems.

A partition of X is a collection U of pairwise disjoint subsets of X whose union is equal
to X . We remark once and for all that the partitions in this work will always consist of
clopen sets, although for the sake of brevity we will not state this explicitly in what follows.
Since X is compact, any such partition is finite. We shall say that U is an ε-partition if
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all its elements have diameter smaller than ε. Letting δ be the minimum distance between
pairs of elements of U gives a Lebesgue number for the partition; that is, any set of diameter
less than δ is contained in precisely one member of U . As a consequence, if V is a δ′-
partition and δ′ < δ then V refines U .

A partition U is said to be dynamical if for every U ∈ U there exists U ′ ∈ U such that
f (U )⊂U ′. Notice that then f induces a map τ : U→ U defined by τ(U ) :=U ′. If f is
surjective clearly this map τ is surjective (hence a bijection, since U is finite). The carrier
map i : X→ U associates to every p ∈ X the member U of U to which p belongs. This
carrier map is an action map (in fact, it is a semiconjugacy) between the dynamics given
by f on X and that given by τ on U ; that is, τ ◦ i = i ◦ f . Observe that i takes the f -orbit
of a point p ∈ X onto the τ -orbit of i(p) in U . For notational convenience, on occasion we
will index the elements of U with some index set 3 and then the map τ can equivalently
be thought of as a map τ : 3→3.

Given two clopen partitions U and U ′, their common refinement U ∨ U ′ is defined as
the partition whose elements are U ∩U ′ where U ∈ U and U ′ ∈ U ′ (of course, many of
these sets will usually be empty). Clearly U ∨ U ′ is also a clopen partition. The following
are easy to prove.
• If U and U ′ are dynamical partitions, then so is U ∨ U ′.
• If U or U ′ is an ε-partition, then so is U ∨ U ′.
• More generally, suppose that U and U ′ are such that for every p ∈ X the element in

either U or U ′ (or both) that contains p has diameter smaller than ε. Then again U ∨ U ′
is an ε-partition.

Let U = {U0, . . . ,Un} be a partition of X . The itinerary I of a point p ∈ X with respect
to the partition U is the sequence I = a0a1 . . . where each ak is the label i of the set Ui
to which f k(p) belongs; that is, if f k(p) ∈Ui we set ak = i . Notice that the itinerary of
f (p) is then a1a2 . . . , which can be thought of as the result of deleting the first symbol in
I and shifting everything one position to the left, so that a1 now occupies the 0th position
and so on. This is nothing but the well known shift map acting on I . We shall denote this
map by σ .

We will often write ‘there are only finitely many itineraries with respect to U’ to mean
that the set I of itineraries with respect to U that are actually realized by points in X is
finite. If p realizes an itinerary I then f (p) realizes σ(I ); thus, σ maps I into I. The
following two assertions should be clear.
• If U and U ′ are two partitions such that there are only finitely many itineraries with

respect to each of them, the same is true of U ∨ U ′.
• If U is a dynamical partition, then there are only finitely many itineraries with respect

to U (this uses our tacit convention that all partitions that we consider are finite).
Suppose that there are only finitely many itineraries with respect to a partition U and

let I be as before the set of those itineraries. Consider the shift map σ : I→ I and the
nested sequence of images I ⊃ σ(I)⊃ σ 2(I)⊃ · · · . Since I is finite by assumption,
there exists k such that σ k(I)= σ k+1(I)= · · · . Let us call I0 this set onto which the
images of σ stabilize. Then the restriction σ |I0 : I0→ I0 is surjective and, since I0 is
finite, a bijection. In particular there exists s such that (σ |I0)

s
= id. This amounts to

saying that every itinerary in I0 is periodic of (not necessarily minimal) period s. Thus we
have proved the following.
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• If there are only finitely many itineraries with respect to U , there exist k and s such
that for any p ∈ X the itinerary of f k(p) is s-periodic.

Notice that the set of itineraries of points in f (X) is precisely σ(I). If f is surjective
then f (X)= X and so σ(I)= I must hold. Then we may take k = 0 in the above
arguments and conclude that every itinerary is s-periodic. In particular f s(Ui )⊂Ui and,
because the Ui partition X and f is surjective, we must actually have f s(Ui )=Ui .

This finiteness condition plays an important role in constructing dynamical partitions,
as attested by the following lemma.

LEMMA 5. Let V = {V0, . . . , Vn} be a clopen partition of X and suppose that there are
only finitely many itineraries with respect to V . Let I be the set of those itineraries.
Consider the collection U := {U (I ) : I ∈ I}, where U (I ) contains the points of X that
follow the itinerary I . Then U is a dynamical partition of X that refines V .

Conversely, if V has a refinement U that is a dynamical partition, then the set of
itineraries with respect to V is finite.

Proof. Clearly U is a finite (because I is finite by assumption) partition of X . If the
itinerary I reads a0a1 . . . then U (I ) admits the description U (I )=

⋂
k≥0 f −k(Vak ), which

exhibits it as an intersection of closed sets and shows that it is closed. Since the U (I ) are
finite in number, partition X , and are all closed, it follows that they are all open. Thus U is
a partition of X into clopen sets. Notice that p ∈ Vi if and only if its itinerary with respect
to V begins with an i . Thus Vi is the union of U (I ) where I ranges over all the itineraries
in I that begin with the symbol i and so U refines V . Finally, observe that if p follows
an itinerary I then f (p) follows the itinerary σ(I ) so f (U (I ))⊂U (σ (I )). Thus U is a
dynamical partition.

The proof of the converse is similarly easy. �

Sometimes we will consider partitions of the form U = {X \U,U }, where U is a clopen
subset of X , and speak of the itinerary with respect to U rather than U . Labelling the
elements in U as U0 := X \U and U1 :=U , the itinerary of a point p ∈ X with respect to
U is just a sequence of zeroes and ones that records f k(p) ∈U with a 1 and f k(p) 6∈U
with a 0. Equivalently, the itinerary of p is just the sequence χU ( f k(p))= χ f −kU (p).
This seemingly pedantic expression will be useful later on.

We conclude this subsection with two extension lemmas whose interest will become
clear later on. Recall from the introduction that a closed set Y ⊂ X is said to be stable with
respect to clopen sets if it has a basis of clopen positively invariant neighborhoods.

LEMMA 6. (Extending a dynamical ε-partition I) Let Z ⊂ X be stable with respect to
clopen sets and suppose that W = {Wi }i∈3 is a dynamical ε-partition of Z (with the
induced topology). Then, there exists a dynamical ε-partition V = {Vi }i∈3 of a clopen,
positively invariant neighborhood of Z in X such that Vi ∩ Z =Wi .

Proof. Denote by τ the map in 3 that satisfies f (Wi )⊂Wτ(i). Since X is totally
disconnected, for each i ∈3 we can choose a clopen neighborhood (in X ) of Wi , say
W ′i , of diameter smaller than ε and such that f (W ′i ) ∩W ′j 6= ∅ only for j = τ(i).
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Since
⋃

i W ′i is a neighborhood of Z in X and Z is stable with respect to clopen sets,
there exists a clopen, positively invariant neighborhood P of Z contained in

⋃
i W ′i . Define

Vi =W ′i ∩ P . As an intersection of clopen sets, Vi is clopen in X , and {Vi } constitutes a
partition of P . Notice also that the choice of W ′i guarantees that diam(Vi ) < ε. It only
remains to check that {Vi } is a dynamical partition. Consider any i ∈3. On the one
hand, Vi ⊂ P so f (Vi )⊂ f (P)⊂ P =

⋃
j V j , where we have used the fact that that P

is positively invariant. On the other, Vi ⊂W ′i so f (Vi )⊂ f (W ′i ) and therefore f (Vi ) ∩

V j ⊂ f (W ′i ) ∩W ′j , which is empty unless j = τ(i). Since we have just seen that f (Vi ) is
contained in the union of all V j , it follows that f (Vi )⊂ Vτ(i). �

LEMMA 7. (Extending a dynamical ε-partition II) Assume P is a clopen positively
invariant subset of X and V = {Vi } is a dynamical ε-partition of P. Then, we can add
clopen sets of X to V to obtain a dynamical ε-partition of f −1(P).

Proof. Note that f −1(P) \ P is clopen in X and is naturally partitioned in the sets
{ f −1(Vi ) \ P}, which are also clopen in X . Since X is totally disconnected, each of these
can be partitioned into clopen sets of diameter smaller than ε. Adding them to V we obtain
a dynamical ε-partition of f −1(P). �

3. Proof of Proposition 1
In this brief section we prove Proposition 1, which states that (if any) the non-zero
eigenvalues of f ∗ : Ȟ0(X; C)→ Ȟ0(X; C) are all roots of unity.

Recall that Ȟ0(X) can be identified with the C-vector space of all locally constant
functions on X . Under this identification, the action of the induced homomorphism
f ∗ : Ȟ0(X)→ Ȟ0(X) is simply ϕ 7→ ϕ ◦ f . (See Appendix A for more details.)

Now suppose that λ ∈ C is a non-zero eigenvalue of f ∗ : Ȟ0(X)→ Ȟ0(X). Then there
exists a non-zero, locally constant map ϕ : X→ C such that f ∗(ϕ)= λϕ; that is, ϕ ◦ f =
λϕ. Using the fact that ϕ is locally constant and X is compact it is easy to see that ϕ
takes only finitely different values c0, c1, . . . , cn , where at least one of them is non-zero
because ϕ is non-zero, and the collection U := {Ui := ϕ

−1(ci )} constitutes a partition of
X into clopen sets. From ϕ ◦ f = λϕ, for any i we have that ϕ f (Ui )= λϕ(Ui )= λci , so
ϕ is constant over f (Ui ) and there exists j with c j = λci and f (Ui )⊂U j . Therefore, in
the terminology introduced earlier, U is a dynamical partition of X . Recall from Section 2
that this automatically yields that there are only finitely many itineraries with respect to
U and in particular there exist k and s such that the itinerary of any point is s-periodic.
Take p such that ϕ(p) 6= 0. The previous statement and the definition of U imply that
ϕ( f k+s(p))= ϕ( f k(p)), so that λk+sϕ(p)= λkϕ(p) and consequently λs

= 1.

4. Eigenvalues and ε-partitions
In this section we prove Theorem 2. It will be convenient to prove the theorem in this
slightly different form.

THEOREM 8. Let X be compact and totally disconnected and let f : X→ X be
continuous. Consider the induced map f∗ : Ȟ0(X; C)→ Ȟ0(X; C). Then the following
statements are equivalent.
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(i) There exists λ ∈ C with |λ| 6= 0, 1 that is not an eigenvalue of f∗.
(ii) No λ ∈ C with |λ| 6= 0, 1 is an eigenvalue of f∗.
(iii) (X, f ) admits dynamical ε-partitions for every ε > 0.
(iv) The number of different itineraries with respect to every clopen partition of X is

finite.
(v) The number of different itineraries with respect to every clopen subset of X is finite.

The part of Theorem 8 that requires more effort is the proof of (i) ⇒ (iii). We will
therefore address it first. Since the argument is slightly intricate we give a brief outline
here. The main technical difficulty lies in the set Perr ( f ), which is defined as the set of
f -periodic points with period bounded above by a certain natural number r . It will be
easy to produce the desired partition away from this set and also on this set, but matching
them will require some work. First we shall consider the case when f is surjective. An
arithmetical argument will produce a natural number r(λ) that only depends on λ and, for
any r ≥ r(λ), we shall show that:
(1) restricting our attention to the dynamical system (Perr ( f ), f |Perr ( f )), the latter has

a dynamical ε-partition;
(2) this can be extended to a dynamical ε-partition of a clopen, positively invariant

neighborhood P of Perr ( f );
(3) letting A be the set of points in X whose forward orbit eventually enters P (and

remains there thereafter, since P is positively invariant), the partition in (ii) can be
extended to a dynamical ε-partition of A;

(4) there is a dynamical partition of X \ P that is an ‘ε-partition modulo P’: every
element of the partition either has diameter less than ε or, if not, is contained in P;

(5) taking the common refinement of the partitions in (3) and (4) yields a dynamical
ε-partition of all of X .

The proof when f is not surjective will build on the surjective case. We will consider
the smallest invariant set in which f is surjective, which is Y =

⋂
n≥0 f n(X), and prove

that:
(6) the hypotheses of the theorem still hold for the restriction f |Y : Y → Y and so (since

f |Y is surjective) there is a dynamical ε-partition of Y ;
(7) the partition in (6) can be extended to a clopen, positively invariant neighborhood of

Y in X ;
(8) the partition in (7) can be extended to a dynamical ε-partition of the whole X .

As the reader can see, extending dynamical partitions is a key step in the proofs. This
is where Lemmas 6 and 7 from §2 will become useful. The first extends dynamical ε-
partitions from a closed set (which needs to satisfy some additional hypothesis) to a clopen,
positively invariant neighborhood; this is used in going from (1) to (2) and also from (6)
to (7). The second extends dynamical ε-partitions of a clopen positively invariant set to its
preimage under f ; we use it to go from (2) to (3) and also from (7) to (8).

4.1. Proof of (i) ⇒ (iii) for surjective f . First, we need a technical lemma. This
does not involve dynamics or topology. For any r = 0, 1, 2, . . . denote by Sr the set of
sequences (ak) of zeroes and ones such that whenever a term of the sequence is one,
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the following r terms (at least) are zero. That is, if ak = 1 then ak+1 = · · · = ak+r = 0.
Here Sr is a subshift of finite type of the full one-sided shift {0, 1}N.

LEMMA 9. Let λ ∈ C have modulus |λ|> 1. For big enough r, whenever two sequences
(ak) and (bk) belonging to Sr satisfy∑

k≥0

akλ
−k
=

∑
k≥0

bkλ
−k

then the sequences themselves must be equal.

Proof. Suppose that the sequences (ak) and (bk) differ. By cancelling the (potentially
empty) initial block of terms where the sequences coincide we may assume without loss
of generality that a0 6= b0 so that the difference a0 − b0 =±1. Taking modulus and
rearranging terms we have

1≤
∑
k≥1

|ak − bk |

|λ|k
=

∑
k≥1

ck

|λ|k
, (1)

where we have defined ck := |ak − bk |. Notice that (ck) is a sequence of zeroes and ones
with c0 = 1. The condition that (ak) and (bk) belong to Sr implies that the following
property holds: any block B of r consecutive terms of (ck) contains, at most, two non-zero
entries (which are, therefore, ones).

Now think of the sequence (ck) grouped in blocks of r terms thus:

c0c1 . . . cr−1, cr cr+1 . . . c2r−1, c2r c2r+1 . . . c3r−1, . . . .

As just mentioned each of these blocks contains at most two ones, the remaining terms
being zero. Moreover, the first block begins with c0 = 1 so among c1 . . . cr−1 there is at
most one non-zero term. The contribution of c1 . . . cr−1 to the series in equation (1) is
therefore bounded above by 1/|λ|. The contribution of the remaining blocks, each of which
contains at most two ones, attains its maximum value when the two ones appear in the first
two positions of the block; thus, their contributions are bounded above by 1/|λ|r + 1/|λ|r+1,
by 1/|λ|2r + 1/|λ|2r+1, and so on. Putting all this together, the series in equation (1) can be
bounded above by(

1
|λ|

)
+

(
1
|λ|r
+

1
|λ|r+1

)
+

(
1
|λ|2r +

1
|λ|2r+1

)
+ · · · =

(
1
|λ|
+

1
|λ|r

)
1

1− 1/|λ|r
.

To arrive at a contradiction we need to choose r so that the right-hand side of the above is
<1, because then equation (1) is violated. Imposing this condition and rearranging terms
r must be chosen to satisfy

1
|λ|
+

1
|λ|r
+

1
|λ|r

< 1,

which will certainly hold for big enough r since |λ|> 1. �

Notation. From now on we will write r(λ) to denote any number big enough so that
Lemma 9 is satisfied.

To simplify subsequent writing, for the results in this subsection the notation and
assumptions are as in Theorem 8, together with the hypothesis that f is surjective.
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PROPOSITION 10. Let r ≥ r(λ) and let V be a clopen set having the following property: V
is disjoint from f V, f 2V, . . . , f r V . Then there are only finitely many different itineraries
with respect to V := {X \ V, V }.

Proof. By assumption there exists λ ∈ C with |λ| 6= 0, 1 that is not an eigenvalue of f∗.
As explained in the Appendix A, this implies that f ∗ − λId is surjective, where f ∗ is the
homomorphism induced by f in Ȟ0(X). In particular, there exists a locally constant
function ψ ∈ Ȟ0(X) such that ( f ∗ − λId)(ψ)= χV , where χV is the characteristic
function of V . Unravelling the notation, this means that ψ f − λψ = χV .

By the surjectivity of f , for any point p ∈ X there exists a full orbit {pn}
+∞

n=−∞ through
p (that means p0 = p and f (pn)= pn+1 for every n). The eigenvalue equation yields two
possible expansions for ψ(p): one in terms of the backward semiorbit (first equation) and
another in terms of the forward semiorbit (second equation):

ψ(p)= χV (p−1)+ λψ(p−1)= · · · =

n−1∑
k=0

λkχV (p−(k+1))+ λ
nψ(p−n),

ψ(p)=−
1
λ
χV (p0)+

1
λ
ψ(p1)= · · · = −

n−1∑
k=0

1
λk+1χV (pk)+

1
λnψ(pn).

Now, because ψ is locally constant and X is compact, ψ takes only finitely many values
and in particular it is bounded. Thus we may take n→+∞ in the equalities above and
conclude that ψ(p) can be expressed as

1
λ

+∞∑
k=1

λkχV (p−k) or −
1
λ

+∞∑
k=0

λ−kχV (pk) (2)

depending on whether |λ|< 1 or |λ|> 1, respectively. It follows that the power series
(actually only one of them is well-defined depending on λ) only takes a finite number of
values as we evaluate all possible semiorbits of f .

The condition on V in the statement ensures that the sequence of coefficients of both
power series in consideration in (2) belongs to Sr . Thus, Lemma 9 can be applied to
conclude that:
(a) if |λ|> 1 there are only finitely many different sequences of the form

(χV (p0), χV (p1), . . .) as {pn}n≥0 ranges over all forward semiorbits in X ;
(b) if |λ|< 1 there are only finitely many different sequences of the form

(χV (p−1), χV (p−2), . . .) as {pn}n≤−1 ranges over all backward semiorbits in X .
In the first case (|λ|> 1) we directly obtain the existence of a finite number of different

itineraries with respect to V . To address the case |λ|< 1 note that, for a given backward
semiorbit {pn}n≤−1, the sequence {pn}n≤−k is also a backward semiorbit (for the point
p−k+1) for every k ≥ 1. By (b), there must exist two of these backward semiorbits for
which the sequences (χV (pn)) coincide. Thus if we denote by q the (finite) number of
values attained by ψ , there exist positive integers 1≤ s < s′ ≤ q + 1 such that

(χV (p−s), χV (p−(s+1)), . . .)= (χV (p−s′), χV (p−(s′+1)), . . .).

Consequently, both sequences and also (χV (p−1), χV (p−2), . . .) are periodic of period
s′ − s and, in particular, periodic of period at most q . The same statement then carries
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over to forward semiorbits as well. Then, all itineraries of points p with respect to V are
periodic of period at most q so there are only finitely many of them. �

In view of the previous lemma, the set Perr ( f ) that consists of all the periodic points
of X whose period is bounded by r plays an importante role: any p /∈ Perr ( f ) has a
neighborhood to which we can apply Proposition 10.

PROPOSITION 11. Let r ≥ r(λ) and let O be a clopen neighborhood of Perr ( f ). Then, for
any ε > 0 there exists a dynamical partition U of X whose elements of diameter greater
than ε are contained in O. Moreover:
(i) O is a union of elements of U;
(ii) there exists an element U∗ ∈ U which is positively invariant and satisfies Perr ( f )⊂

U∗ ⊂ O.

Thus, although U is not necessarily a dynamical ε-partition because it may have
elements of diameter bigger than ε, the latter are controlled in the sense that they are
contained in O .

Proof. Since X \ O is disjoint from Perr ( f ), each point p /∈ O satisfies the condition that
p is different from f (p), . . . , f r (p) (notice however that, if f is not injective, the latter
need not be all different). In particular p has a neighborhood Vp such that Vp is disjoint
from f Vp, . . . , f r Vp. We may also assume Vp to be disjoint from O (since O is closed),
have diameter smaller than ε and also to be a clopen set, since X is totally disconnected.
Doing this for every p /∈ O yields a cover of X \ O , of which we may extract a finite
subcover which we relabel as V1, . . . , Vm . Consider, for each of them, the clopen partition
Vi := {X \ Vi , Vi } of X . By Proposition 10 the set of itineraries with respect to each Vi is
finite. Let V := V1 ∨ · · · ∨ Vm . This is a clopen partition of X and there are only finitely
many itineraries with respect to it by the remark before Lemma 5. Notice that O belongs
to V , since it is the intersection (X \ V1) ∩ · · · ∩ (X \ Vm)= X \ (V1 ∪ · · · ∪ Vm). Any
other element V in V is an intersection of elements from the various Vi where at least one
of them is Vi (rather than X \ Vi ), which implies that V ⊂ Vi and so it has diameter less
than ε. Finally, let U be the partition constructed from V as in Lemma 5, by letting U (I )
be the set of points that follow itinerary I with respect to V . This is a clopen dynamical
partition that refines V . In particular, if U ∈ U has diameter bigger than ε then the element
V ∈ V that contains U also has diameter bigger than ε and so it must be V = O; that is,
U ⊂ V = O .

Let us check that (i) and (ii) hold. The fact that O is a union of elements of U is a
direct consequence of Lemma 5(b). As for (ii), observe the following. By assumption
Perr ( f )⊂ O and, since Perr ( f ) is positively invariant under f , the forward orbit of each
point in Perr ( f ) remains in O . Thus the itinerary of all the points of Perr ( f ) with respect
to V is the same, namely the constant sequence I0 = ∗ ∗ · · · where ∗ is the label of O
in the partition V . Consequently Perr ( f ) is contained in the single element U (I0) of U ,
which is in turn contained in O . Moreover, f (U (I0))⊂U (σ (I0))=U (I0), so U (I0) is
positively invariant. Setting U∗ :=U (I0) finishes the proof. �
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Since O was arbitrary in the previous proposition and U∗ is a clopen neighborhood of
Perr ( f ), as a consequence we obtain the following corollary.

COROLLARY 12. Perr ( f ) is stable with respect to clopen sets.

(We recall that this terminology was introduced just before Lemma 6 and means that
Perr ( f ) has a basis of clopen, positively invariant neighborhoods.)

PROPOSITION 13. Let P be a clopen, positively invariant neighborhood of Perr ( f ). Let
A be the set of points p ∈ X whose positive semiorbit eventually enters P (and remains
there thereafter, since P is positively invariant). Then there exists n0 such that f n(p) ∈ P
for every n ≥ n0 and every p ∈ A.

More briefly stated: all the points in X that eventually enter P will have done so after a
number of iterates that is independent of p.

Proof. Apply Proposition 11 to O := P to obtain the corresponding dynamical partition
U . Then P is a union of elements of U , and we may assume without loss of generality
that these correspond to the labels 0, 1, . . . , s. Thus, points in A are characterized as
those whose itinerary with respect to U contains at least one appearance of the symbols
0, 1, . . . , s. For each p ∈ A let k(p) be the first position in its itinerary where a symbol
among 0, 1, . . . , s appears or, equivalently, let k(p) be the first iterate of p that belongs
to P . Since there are only finitely many itineraries with respect to U because U is a
dynamical partition, the set of all k(p) as p runs in A is finite, and we may set n0 equal to
the maximum of them. Then f n(p) ∈ P whenever n ≥ n0 for every p ∈ A. �

PROPOSITION 14. For every ε > 0 there exists a clopen, positively invariant
neighborhood P of Perr ( f ) that has a dynamical ε-partition.

Proof. The set Perr ( f ) is invariant, so we may consider the restriction
(Perr ( f ), f |Perr ( f )). Let W0 be an arbitrary partition of Perr ( f ) by clopen sets (with the
induced topology) of diameter less than ε. This exists because Perr ( f ) is closed in X and
therefore compact and totally disconnected. Since the period of any point in Perr ( f ) is
bounded above by r , the itineraries of points with respect to W0 are periodic of period at
most r . This readily implies that there are only finitely many itineraries with respect to W0

and so by Lemma 5 (applied to the restriction (Perr ( f ), f |Perr ( f ))) there is a dynamical
partition W of Perr ( f ) that refines W0. In particular, it is an ε-partition. Corollary 12
entitles us to apply Lemma 6 to Perr ( f ) and W to obtain a dynamical ε-partition of a
clopen, positively invariant neighborhood P of Perr ( f ). �

Now we are ready to prove Theorem 8 in the surjective case. Choose any r ≥ r(λ).
By Proposition 14 the set Perr ( f ) has a clopen, positively invariant neighborhood P that
has a dynamical ε-partition V . Consider the set A of points whose positive semiorbit
eventually enter P . According to Proposition 13 there exists n0 such that A = f −n0(P).
Applying Lemma 7 consecutively to P , then to f −1(P) and so on up to f −n0+1(P) yields
a dynamical ε-partition of A. Notice that X \ A is a positively invariant clopen set, so
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adjoining it to the partition just obtained gives a dynamical partition U of the whole X
such that every element of U other than X \ A has diameter less than ε.

We are almost finished. By Proposition 11 there is a dynamical partition U ′ of X such
that every element in U ′ having diameter bigger than ε is contained in P . Then the common
refinement U ∨ U ′ is a dynamical partition of X , and it is in fact an ε-partition. The reason
is that for every p ∈ X either the element of U or the element of U ′ that contain it have
diameter less than ε by construction.

4.2. Proof of (i)⇒ (iii) for an arbitrary f . Let us address the general case. Since f
need not be surjective, we cannot apply Proposition 10 and subsequent results directly to
f . The idea is now to restrict our considerations to the smallest invariant set in which
f is surjective, which is Y =

⋂
n≥0 f n(X). Building on the previous case we will be

able to construct dynamical ε-partitions of Y which we shall later on extend to dynamical
ε-partitions of the whole space X .

More specifically, we will prove the following two lemmas.

LEMMA 15. Denote by f |Y : Y → Y the map f with both domain and image restricted to
Y . If λ 6= 0 is an eigenvalue of ( f |Y )∗ : Ȟ0(Y )→ Ȟ0(Y ), then it is also an eigenvalue of
f∗ : Ȟ0(X)→ Ȟ0(X).

LEMMA 16. Let X be a compact totally disconnected space and f : X→ X continuous.
Then Y =

⋂
n≥0 f n(X) is stable with respect to clopen sets.

Let us see how the general case of Theorem 8 follows from these. As a consequence of
Lemma 15, the assumption of Theorem 8 implies that there exists λ ∈ C with |λ| 6= 0, 1
that is not an eigenvalue of ( f |Y )∗ : Ȟ0(Y )→ Ȟ0(Y ). Since Y is compact and totally
disconnected and f |Y : Y → Y is surjective, we may apply the results of the previous
section to conclude that for every ε > 0 there exists a dynamical ε-partition W of Y .
Now, since Y is stable with respect to clopen sets by Lemma 16, we may apply Lemma 6
to W and obtain a dynamical ε-partition of a clopen neighborhood P of Y in X . The
compactness of X ensures that P contains f m(X) for some integer m, so f −m(P)= X .
Thus, if we apply m times Lemma 7 consecutively to P, f −1(P), . . . , f −m+1(P) and W
and the subsequent augmented partitions we obtain a dynamical ε-partition of the whole
X as desired, finishing the proof of Theorem 8 in full generality.

It remains to prove the two auxiliary lemmas stated above.

Proof of Lemma 15. Let i : Y ⊂ X be the inclusion. Consider an eigenvector u ∈ Ȟ0(Y )
associated to λ and set v := i∗(u) ∈ Ȟ0(X). Since i f |Y = f i , it is straightforward to check
that v satisfies the condition f∗(v)= λv, so to prove the lemma we only need to show that
v is non-zero.

The inclusions X ⊃ f (X)⊃ f 2(X)⊃ · · · induce homomorphisms Ȟ0(X)→
Ȟ0( f (X))→ Ȟ0( f 2(X))→ · · · . Thinking of the elements of Ȟ0 as locally constant
maps, these inclusion induced homomorphisms are simply given by restrictions:
ϕ 7→ ϕ| f (X) 7→ ϕ| f 2(X) 7→ · · · .
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By the continuity property of Čech cohomology Ȟ0(Y )= lim
−→

Ȟ0( f n X). Then observe
that

Ȟ0(Y )=Hom(Ȟ0(Y ); C)= Hom(lim
−→

Ȟ0( f n X); C)

= lim
←−

Hom(Ȟ0( f n X); C)= lim
←−

Ȟ0( f n X)

where in all limits the bonding maps are induced by inclusions (here we have tacitly used
several results from algebraic topology that are succinctly explained in Appendix A). Since
u 6= 0 and Ȟ0(Y )= lim

←−
Ȟ0( f n X), there must exist some n such that the inclusion j : Y ⊂

f n X carries u onto a non-zero vector.
Consider picking a point p ∈ Y , acting on it with f n and then viewing the resulting

point as an element in f n X . This can be written as the composition of two maps in two
different ways:

Y
i
−→ X

f n

−→ f n X

and
Y
( f |Y )n
−→ Y

j
−→ f n X

(attention should be paid to the source and target spaces of each map). In particular
( f n)∗i∗ = j∗( f |Y )n∗ and acting with this on u we have

( f n)∗i∗(u)= j∗( f |Y )n∗(u)= j∗(λnu)= λn j∗(u).

The right-hand side of this expression is non-zero, since we argued earlier that j∗(u) 6= 0
and λ 6= 0 by assumption. Thus i∗(u) must also be non-zero, as we wanted to prove. �

Proof of Lemma 16. Let O be a clopen neighborhood of Y and take n0 big enough so that
f n0(X)⊂ O (this exists by the compactness of X ). Now consider the set O ′ of points
whose first n0 iterates (including the zeroth one) belong to O; that is,

O ′ := O ∩ f −1(O) ∩ · · · ∩ f −(n0−1)(O).

This is a clopen set since it is a finite intersection of clopen sets. Clearly Y ⊂ O ′ ⊂ O , so
we only need to check that O ′ is positively invariant. Pick p ∈ O ′. Since its first n0 iterates
belong to O , the first n0 − 1 iterates of f (p) also belong to O . The n0th iterate of f (p)
satisfies f n0−1( f (p))= f n0(p) ∈ f n0(X)⊂ O by the choice of n0, so it also belongs to
O and therefore f (p) belongs to O ′ indeed. �

4.3. Proof of (iii) ⇒ (iv) ⇒ (v) ⇒ (ii). Let us show first that (iii) ⇒ (iv). Take
an arbitrary clopen and finite partition U of X and denote δ its Lebesgue number. By
hypothesis, there exists a dynamical δ′-partition V of X for some δ′ < δ and this implies,
in particular, that V is a dynamical refinement of U . By the converse statement in Lemma 5,
the set of itineraries with respect to U is finite and we obtain (iv). Implication (iv)⇒ (v)
is obvious.

Finally we prove that (v)⇒ (ii). Suppose that λ is an eigenvalue of f∗ and let 0 6= T ∈
Ȟ0(X) be an eigenvector for λ, so that f∗(T )= λT . Since Ȟ0(X) is dual to Ȟ0(X), we
may think of T as a linear map T : Ȟ0(X)→ C. Recall that {χU :U is clopen in X} is a
generating system of Ȟ0(X) (see Appendix A) so, since T 6= 0, there must exist a clopen
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U such that T (χU ) 6= 0. By assumption there are only finitely many itineraries with respect
to U , so from the results in §2 there exist positive integers k, s such that for every p ∈ X
the itinerary of f k(p) is s-periodic. Consider the sets f −k(U ) and f −(k+s)(U ). The first
can be alternatively described as the set of points p ∈ X such that the itinerary of f k(p)
with respect to U begins with a one; the second, as the set of points such that the itinerary
of f k+s(p) begins with a one. But, because of the s-periodicity, these conditions are
equivalent and so f −k(U )= f −(k+s)(U ). Then from

λk T (χU )= ( f∗)k T (χU )= T (( f ∗)kχU )= T (χ f −k (U )),

λk+s T (χU )= ( f∗)k+s T (χU )= T (( f ∗)k+sχU )= T (χ f −(k+s)(U ))

it follows that λk
= λk+s so |λ| = 0, 1.

5. ε-partitions and dynamics. Proof of Theorem 4
The conclusion of Theorem 8 naturally leads to the following question: what are the
discrete dynamical systems (X, f ), where X is compact and totally disconnected and
f : X→ X is continuous, that admit dynamical ε-partitions for every ε > 0? As a first
step towards an answer let us prove the following.

PROPOSITION 17. Let X be compact and totally disconnected, and let f : X→ X be
continuous. Then (X, f ) admits dynamical ε-partitions for every ε > 0 if, and only if,
(X, f ) is conjugate to the inverse limit of an inverse sequence of discrete dynamical
systems (Fn, τn) where each Fn is a finite space endowed with the discrete topology.

Proof. (⇒) Suppose first that (X, f ) admits dynamical ε-partitions for every ε > 0. Then
it is easy to construct inductively a sequence of dynamical partitions of X by clopen sets
whose diameters tend to 0 and such that each partition refines the previous one:

U1 < U2 < · · ·< Un < · · · .

Since each covering Un refines the previous one, there are natural bonding maps
jn : Un+1→ Un . Also, since the Un are dynamical partitions for every n there is an action
map in : X→ Un ; furthermore, clearly these commute with the jn ( jn ◦ in+1 = in). Thus
there is a commutative diagram

U1 U2
j1oo U3

j2oo · · ·oo

X

i1

OO

Xoo

i2

OO

Xoo

i3

OO

· · ·oo

where the unlabeled arrows in the lower row denote the identity. Taking the inverse limits
of the upper and lower rows and identifying the latter with X itself we see that the in

induce a continuous map i : X→ lim
←−

Un . The elements of lim
←−

Un are nested sequences
U1 ⊃U2 ⊃U3 ⊃ · · · where each Un is a member of Un . The map i sends p ∈ X to the
nested sequence of Un ∈ Un such that p ∈Un for every n. Conversely, any sequence (Un) ∈

lim
←−

Un uniquely determines a point p ∈
⋂

n≥1 Un , yielding a continuous map lim
←−

Un→ X
which is clearly the inverse of i . Thus i is a homeomorphism between X and lim

←−
Un .
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Recall that each Un carries a map τn : Un→ Un given by the dynamics in the partition;
so that f (Un)⊆ τn(Un) for any Un ∈ Un . Since the bonding maps between the Un
commute with the τn , the latter induce a continuous map τ on lim

←−
Un . Furthermore, the in

semiconjugate f and τn , so that their limit i semiconjugates f and τ . We showed earlier
that i is a homeomorphism, so we conclude that it is actually a conjugation between f and
τ . This proves (⇒), where the finite sets Fn are just the partitions Un .

(⇐) Since the property of having dynamical ε-partitions is independent of the choice of
metric and preserved by topological conjugacy, it will suffice to show that inverse limits of
finite dynamical systems have this property. Thus, suppose we have an inverse sequence
of finite spaces

F1 F2
j1oo F3

j2oo · · ·
j3oo

where each Fn is endowed with a map τn : Fn→ Fn which commutes with the bonding
maps jn . Let τ be the inverse limit of the maps τn . We claim that (lim

←−
Fn, τ ) has dynamical

ε-partitions for any ε > 0. Denote by πn : lim
←−

Fn→ Fn the canonical projections.
Consider, for every n, the family Un := {π

−1
n (e) : e ∈ Fn}. Clearly each Un is a finite

partition of lim
←−

Fn by clopen sets (recall that πn are continuous and Fn is endowed with
the discrete topology). Moreover, each Un is a dynamical partition because the behaviour
of τ on the elements of Un is conjugate (via the projection πn) to the τn on Fn . The result
follows from the fact that the family {Un : n ≥ 1} is cofinal among all clopen coverings of X
because the topology in lim

←−
Fn is the initial topology with respect to the projections πn . �

For the next few paragraphs suppose that (X, f ) indeed admits dynamical ε-partitions
for every ε > 0, so that we can identify X = lim

←−
Fn and f = τ in the notation of

Proposition 17. This allows for a complete description of the closed invariant subsets
of (X, f ) as follows. If L is a closed τ -invariant subset of lim

←−
Fn (that is, τ(L)= L),

the same is true of its projection Ln = πn(L) onto Fn . Thus, Ln is a finite union of
periodic orbits and L is the inverse limit of the inverse sequence determined by the sets
Ln . Furthermore, we also obtain that L is stable with respect to clopen sets because the
sequence {π−1

n (Ln) : n ≥ 1} is a basis of clopen and invariant neighborhoods of L .
Recall that if f is surjective then each τn is surjective as well; hence a bijection of Fn .

Thus each Fn consists of a disjoint union of τn-periodic orbits. Given a point p ∈ lim
←−

Fn ,
for each n we may consider the periodic orbit Pn ⊆ Fn of the element πn(p) in Fn . The
bonding maps between the Fn restrict to bonding maps between the Pn , and the latter
form an inverse sequence whose inverse limit is the smallest closed invariant subset that
contains p; that is, the closure of the orbit of p. Such an inverse limit is known as an
adding machine (if the periods of the orbits go to infinity) or a periodic orbit (if the periods
of the orbits stabilize). We recall that adding machines are minimal sets, that is, every
(full) orbit is dense in them. In fact, something even stronger is true: the positive and the
negative semiorbit of any point in an adding machine is dense.

When f is not surjective a similar picture emerges because every orbit of a map defined
on a finite set is eventually periodic. Thus, the projection onto Fn of the orbit of p ∈ lim

←−
Fn

under τ is an orbit that is eventually equal to a τn-periodic orbit Pn . The ω-limit of p
in lim
←−

Fn is equal to the inverse limit of these Pn as above. Thus we have shown the
following.
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Remark 18. The ω-limit of every p ∈ X is either a periodic orbit or an adding machine
and it is stable with respect to clopen sets.

Whereas above we have used the definition of adding machines as inverse limits of
periodic orbits, it might be convenient to recall an alternative description that is somewhat
more pictorial. Consider a sequence b1, b2, . . . of arbitrary positive integers that one
should think of as bases (in the sense of elementary arithmetic) and let 3 be the space
of sequences of integers (a1, a2, . . .) subject to the condition that 0≤ ai < bi (endowed
with the product of the discrete topology on each entry). Each of these sequences can,
heuristically, be thought of as some sort of multi-base expansion of an integer where the
i th digit is referred to base bi . Then the operation ‘addition of one unit’ is represented by a
map ν : 3→3 that is defined in the natural way taking into account the ‘carryover’ onto
the next position whenever bi is reached at some position i . More explicitly, ν maps (ai )

to (a′i ) where
• a′1 = a1 + 1 and a′i = ai for i ≥ 2 if a1 + 1< b1 (no carryover at all);
• a′1 = 0, a′2 = a2 + 1 and a′i = ai for i ≥ 3 if a1 + 1= b1 and a2 + 1< b2 (carryover

from the first position to the second);
and so on. In general, if k is the smallest position such that ak + 1< bk , one sets a′i = 0
for i < k, a′k = ak + 1, and a′i = ai for i > k. The pair (3, ν) is an adding machine.

Remark 18 agrees with and partly reproduces results of Buescu, Kulczycki and
Stewart [1, 2]. Adapting their result to our setting, they proved that a compact invariant
subset of X that is transitive and Lyapunov stable is either a periodic orbit or a Cantor set
in which the dynamics is topologically conjugate to an adding machine. This statement
follows easily from our arguments because a transitive compact invariant set in lim

←−
Fn

must be the limit of an inverse sequence that at every level Fn is a transitive set and hence
a single periodic orbit.

We are now ready to prove the characterization of dynamical systems that admit
dynamical ε-partitions for every ε > 0 stated in Theorem 4.

THEOREM 19. Let X be compact and totally disconnected and let f : X→ X be
continuous. The following statements are equivalent.
(i) (X, f ) admits dynamical ε-partitions for every ε > 0.
(ii) The ω-limit of every point in X is either a periodic orbit or an adding machine;

moreover, these are stable with respect to clopen sets.

Proof. The arguments above prove (i)⇒ (ii). For the converse, let ε > 0 be fixed. We first
claim that for every p ∈ X , its ω-limit set ω(p) admits a dynamical ε-partition. This is
clear if ω(p) is a periodic orbit. If it is an adding machine, we may identify (ω(p), f |ω(p))
as an inverse limit lim

←−
Pn where the Pn are finite sets with periodic dynamics. Denoting

by πn the projection of ω(p) onto Pn , the desired dynamical ε-partition of ω(p) is given
by {π−1

n (P) : P ∈ Pn} for sufficiently large n.
Since ω(p) is stable with respect to clopen sets by assumption, we can use Lemma 6

to extend the partition from the previous paragraph to a dynamical ε-partition of a
neighborhood of ω(p). The stability condition forces the union of ω(p) over all p ∈ X
to be equal to Y =

⋂
n≥0 f n(X) so, in particular, Y is closed. Then by compactness we

https://doi.org/10.1017/etds.2018.139 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.139


2450 L. Hernández-Corbato et al

can find a dynamical ε-partition of a neighborhood of Y and Lemma 7 finally produces a
dynamical ε-partition of X . �

A. Appendix. Čech homology and cohomology
We collect here some information about Čech homology and cohomology that might be
convenient for the reader that is not familiar with these theories. As suitable references we
might suggest [3, 7]. We have not strived for generality but for simplicity; thus, many of
the arguments will be quick and tailored for dimension zero. Coefficients are always taken
in C and not displayed explicitly in the notation.

Let X be a compact subset of some Euclidean space Rm . (For the purposes of the present
paper this is no restriction, since any compact, metric, totally disconnected space is zero-
dimensional and can therefore be embedded in R by the classical theorem of Menger and
Nöbeling; see for instance [4].) Taking successively finer cubical grids of Rm one easily
sees that X has a basis of nested neighborhoods that are compact polyhedra (Pn). The
inclusion maps Pn+1 ⊂ Pn induce homomorphisms Hq(Pn+1)→ Hq(Pn) and Hq(Pn)→

Hq(Pn+1), where Hq and Hq denote singular homology and cohomology, respectively.
The Čech homology and cohomology of X (with coefficients in some group G) can be
defined as the suitable limit of the homology and cohomology of these Pn (again, with
coefficients in G); namely,

Ȟq(X) := lim
←−
{Hq(P1)← Hq(P2)← Hq(P3)← · · · } (A.1)

and
Ȟq(X) := lim

−→
{Hq(P1)→ Hq(P2)→ Hq(P3)→ · · · }. (A.2)

It is a theorem that these limits are a topological invariant of X ; that is, they do not depend
on how X is embedded in Rn .

Let f : X→ X be a continuous mapping. Still thinking of X as a subset of Rn , by the
Tietze extension theorem we may extend f to a continuous mapping f̂ : Rm

→ Rm . The
compactness of X then ensures that for each n there exists n′ such that f̂ (Pn′)⊂ Pn , and
so f̂ induces homomorphisms f̂∗ : Hq(Pn′)→ Hq(Pn) and f̂ ∗ : Hq(Pn)→ Hq(Pn′). The
inverse and direct limits of these are the homomorphisms f∗ and f ∗ induced by f in Čech
homology and cohomology; they are endomorphisms of Ȟq(X) and Ȟq(X) respectively.
Again, it is a theorem that they are independent of the particular extension f̂ .

Let us examine these definitions in dimension zero.

Čech cohomology. For the polyhedra Pi it is well known that H0(Pi ; C) can be identified
with the set of maps from Pi to C that are constant over each connected component of Pi .
Under this identification the inclusion induced homomorphisms H0(Pi )→ H0(Pi+1) just
correspond to restricting such a map ϕi : Pi → C to a map ϕi+1 := ϕi |Pi+1 : Pi+1→ C.
Pushing this forward along the direct limit (A.1) yields an element ϕ ∈ Ȟ0(X; C) which
is the restriction ϕ := ϕi |X : X→ C. Notice that ϕ is locally constant. Conversely, suppose
that ϕ : X→ C is locally constant. Then for every c ∈ C the preimage ϕ−1(c) is a (possibly
empty) open set and the whole collection {ϕ−1(c) : c ∈ C} is an open partition of X . Since
X is compact, this covering must have a finite subcovering, which implies that in fact ϕ
takes only finitely many values c j and their preimages C j := ϕ

−1(c j ) are actually clopen
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subsets of X . Let N j be disjoint open neighborhoods of C j in Rm and choose i big enough
so that Pi ⊂

⋃
j N j . Then every connected component of Pi is connected in one N j and

therefore intersects, at most, one ϕ−1(c j ). Thus there exists ϕi : Pi → C that is constant on
the components of Pi and such that ϕi |X = ϕ. Consequently ϕ is an element of the direct
limit (A.1). Summing up, we conclude that Ȟ0(X; C) can be identified as the C-vector
space of locally constant mappings ϕ : X→ C. Furthermore:
• in the notation introduced above ϕ =

∑
j c jχC j , where the C j are clopen subsets of

X and thus the set {χU :U is a clopen subset of X} generates Ȟ0(X; C);
• the induced homomorphism f ∗ : Ȟ0(X; C)→ Ȟ0(X; C) is similarly easy to interpret

in these terms: it just maps ϕ to the composition ϕ ◦ f .
Let us mention that there is a cohomology theory called Alexander–Spanier

cohomology which coincides with the theory of Čech over paracompact spaces and
where the interpretation of elements of Ȟ0(X) as locally constant mappings is completely
straightforward. See [6] and [7, §6.4 ff.] for more information.

The continuity property of Čech cohomology. Suppose that X is the intersection of a
nested sequence of compacta Xn , all of them embedded in Rm . Any locally constant map
from Xn to C restricts to a locally constant map from X to C, providing homomorphisms
Ȟ0(Xn)→ Ȟ0(X) which are none other than the homomorphisms induced by the
inclusions in : Xn ⊂ X . Conversely, any locally constant map ϕ from X to C can be
extended to a locally constant map ϕ̂ from a neighborhood of X to C as argued earlier
so in particular it can be extended to Xn for big enough n. Thus every element of Ȟ0(X)
belongs to the image of some i∗n . All this shows that Ȟ0(X)= lim

−→
{Ȟ0(Xn)}, with the

bonding homomorphisms being induced by the inclusions Xn+1 ⊂ Xn . This (which holds
in every dimension q) is known as the continuity property of Čech cohomology.

Čech homology. The group H0(Pn) is the C-vector space having the set of connected
components of Pn as a basis and therefore can be identified as the dual vector space to
H0(Pn) when the latter is thought of as the set of maps from Pn to C that are constant
on the components of Pn , as we did before. Thus H0(Pn)= Hom(H0(Pn); C). It is
easy to see from the definitions of direct and inverse limit that Hom(lim

−→
{Vn}; C)=

lim
←−
{Hom(Vn; C)} (this essentially amounts to saying that to define a homomorphism on

a monotonically increasing sequence of vector spaces one only needs to define it on each
vector space and make sure that each definition extends the previous one). Applying all
this to Vn = H0(Pn) we then have the identification

Ȟ0(X)= lim
←−
{H0(Pn)} = lim

←−
{Hom(H0(Pn); C)}

=Hom(lim
−→
{H0(Pn)}; C)= Hom(Ȟ0(X); C)

which exhibits Čech homology as the dual of Čech cohomology. Similar arguments
show that f∗ is dual to f ∗. (This reasoning is completely general and applies in any
dimension q.)

If λ is an eigenvalue of f∗ then there exists T ∈ Ȟ0(X) which is non-zero and such
that ( f∗ − λId)(T )= 0. Regarding Ȟ0(X) as the dual of Ȟ0(X) as explained above and
therefore thinking of T as a linear map from Ȟ0(X) to C, this is equivalent to saying that
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T ◦ ( f ∗ − λId)= 0; that is, im( f ∗ − λId)⊂ ker(T ). Thus λ is an eigenvalue of f∗ if and
only if there exists a linear map T : Ȟ0(X)→ C that satisfies im( f ∗ − λId)⊂ ker(T ), and
this clearly happens if and only if f ∗ − λId is not surjective.
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