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Particle dynamics in the channel flow of a
turbulent particle–gas suspension at high Stokes
number. Part 1. DNS and fluctuating force model
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The fluctuating force model is developed and applied to the turbulent flow of a gas–particle
suspension in a channel in the limit of high Stokes number, where the particle relaxation
time is large compared to the fluid correlation time, and low particle Reynolds number
where the Stokes drag law can be used to describe the interaction between the particles and
fluid. In contrast to the Couette flow, the fluid velocity variances in the different directions
in the channel are highly non-homogeneous, and they exhibit significant variation
across the channel. First, we analyse the fluctuating particle velocity and acceleration
distributions at different locations across the channel. The distributions are found to be
non-Gaussian near the centre of the channel, and they exhibit significant skewness and
flatness. However, acceleration distributions are closer to Gaussian at locations away
from the channel centre, especially in regions where the variances of the fluid velocity
fluctuations are at a maximum. The time correlations for the fluid velocity fluctuations and
particle acceleration fluctuations are evaluated, and it is found that the time correlation of
the particle acceleration fluctuations is close to the time correlations of the fluid velocity
in a ‘moving Eulerian’ reference, moving with the mean fluid velocity. The variances of
the fluctuating force distributions in the Langevin simulations are determined from the
time correlations of the fluid velocity fluctuations and the results are compared with direct
numerical simulations. Quantitative agreement between the two simulations are obtained
provided the particle viscous relaxation time is at least five times larger than the fluid
integral time.

Key words: particle/fluid flow, turbulent flows

1. Introduction
Particle-laden turbulent flows find applications in many industrial processes such

as energy conversion, air pollution control, etc. In these types of flows, there is a
strong coupling between the turbulent fluctuations in the fluid velocity fields, and
the fluctuating velocities of the particles. There have been several experimental and
simulation studies of the effect of particle fluctuations on the fluid turbulence. A
compilation of experimental data by Gore & Crowe (1989) indicated that small
particles with size an order of magnitude smaller than the integral length scale of
the fluid will attenuate the turbulence, while large particles will increase the intensity.
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2 P. S. Goswami and V. Kumaran

Kulick, Fessler & Eaton (1994) did the experiments on vertical channels using particle
Stokes numbers (St) ranging from 0.57 to 3.0 with a mass loading up to 80 %, to
investigate the turbulence attenuation. Fessler, Kulick & Eaton (1994) investigated
the instantaneous particle concentration at the centre-plane of a vertical turbulent
channel flow. Khalitov & Longmire (2003) reported the results of their channel
flow experiments, mainly focusing on the two point gas–particle and particle–particle
correlation for Stokes number (based on the integral time scale) in the range 0.2
to 10, and observed that the gas–particle covariance becomes very small when
the Stokes number is >5. Recently Gerashchenko et al. (2008) have investigated
two-dimensional Lagrangian acceleration statistics of inertial particles in a turbulent
boundary layer adjacent to a plate, and found that as the plate is approached, the
tails of the probability density functions become narrower, and their peak occurs
at negative accelerations. Tanaka & Eaton (2008) introduced the particle momentum
number (Pa) to understand the phenomenon of turbulence modification by particles
in the particle-laden flows. One of the earliest numerical simulations of particle-laden
turbulent flows was performed by Riley & Patterson (1974) to study the particle
dispersion in decaying isotropic turbulence. Squires & Eaton (1991) investigated
the effect of isotropic turbulence on the concentration field of the heavy particle.
Elghobashi & Truesdell (1992) used direct numerical simulation (DNS) to investigate
particle dispersion in decaying isotropic turbulence when the particles’ relaxation
time is of the order of the Kolmogorov time scale, and presented the results of
time development of the mean square displacement of the particles, Lagrangian
autocorrelation and the turbulent diffusivity of the particle and the fluid points. Squires
& Eaton (1990) and Elghobashi & Truesdell (1993) studied the effect of particle
fluctuations on homogeneous turbulence. Bec et al. (2006) used DNS to study the
particle acceleration distribution in the case of isotropic turbulence for a range of
particle Stokes numbers from StK = 0.16 to 3.5. They defined the Stokes number as
the ratio of particle relaxation time to the Kolmogorov time scale. Bec et al. (2010)
have investigated the intermittent relative velocity statistics of the inertial particle in
isotropic turbulent suspension. Such studies are important in developing the model for
collision kernels. The study of Bec et al. (2010) shows that as StK > 10, particles
move ballistically in the flow with uncorrelated velocities, and the structure functions
become independent of the separation distance of the particles. In our simulations, the
Stokes number StK based on the Kolmogorov scale is ∼24 times larger than the Stokes
number based on the integral time scale discussed in the next section. We are working
in the regime where the Stokes number based on the Kolmogorov scale is much larger
than 10 in most cases, and so the particle velocities can be considered uncorrelated.

Li & McLaughlin (2001) reported the effect of particle feedback on turbulence, and
the particle concentration profile in the case of a vertical channel flow for particle
of relaxation time (τv ) ∼ 200 when scaled by the wall unit. They have reported the
variation of particle concentration and the particle mean square velocity-fluctuations
along the cross-stream direction. Rouson & Eaton (2001) investigated the preferential
particle concentration field in the case of passive transport of particles by fully
developed channel flow, for particles with time constant 0.6–56 based on the centreline
Kolmogorov time scale, and found that preferential concentration occurs for Stokes
numbers of the order of unity. Yamamoto et al. (2001) have performed large eddy
simulation (LES) including inter-particle collision. They have done the simulation for
Stokes numbers up to 70 based on the inverse of the shear rate (which turns out
to be ∼200 based on the wall time unit). Carlier, Khaliji & Osterle (2005) have
investigated the dispersion of small particles in turbulent shear flow by modelling the
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Turbulent particle–gas suspensions. Part 1 3

directional dependency of fluid Lagrangian time scales. Fevrier, Simonin & Squires
(2005) have investigated the velocity distribution of the heavy particles in the dilute
gas–solid turbulent flow. They have introduced the concept of partitioning of the
particle velocities into mesoscopic Eulerian particle velocity fields. Kraichnan (1958)
analysed the hydromagnetic turbulence using a homogeneous force with a Gaussian
distribution for the fluid phase. Fouxon & Horvai (2008) have introduced the Langevin
description for the separation dynamics of the particles when the particle relaxation
time is comparable to the inertial time scale of the turbulent flow. Later Lavezzo
et al. (2010) performed DNS of turbulent channel flow with suspended inertial
particles to investigate the effect of shear and gravity on the particle acceleration
distribution. Recently, Balachandar & Eaton (2010) have reviewed the experimental
and computational techniques for turbulent dispersed multiphase flows, their strengths
and limitations.

Goswami & Kumaran (2010a) investigated the effect of fluid velocity fluctuations
on the statistics of the particle velocity and accelerations in a turbulent gas–solid
suspension for Couette flow where the particle relaxation time is large compared
to the correlation time for the fluid velocity fluctuations. It was found that the
distribution of particle velocities is very different from Gaussian, especially in the
spanwise and wall-normal directions. However, the distribution of the acceleration
fluctuation of the particles is found to be close to Gaussian, though the distribution
is highly anisotropic. The distribution of the acceleration fluctuations of the particles
are very well approximated by the distribution evaluated from the fluid velocity
fluctuations when there is one-way coupling (effect of fluid on particles is included),
indicating that there is no correlation between the particle and fluid velocities in this
case. Goswami & Kumaran (2010b) have developed a fluctuating force model for
representing the effect of the turbulent fluid velocity fluctuations on the particle phase
in a shear-driven turbulent gas–solid suspension in the limit of high Stokes number,
when the particle relaxation time is large compared to the fluid time scale, and found
that the fluctuating force simulation is able to quantitatively predict the concentration
and mean velocity profiles, the mean square velocities and also the distribution of the
fluctuating velocities for the two distinct regimes: where the viscous relaxation time
is small compared to the time between collisions, as well at higher volume fractions
where the time between collisions is small compared to the viscous relaxation time of
the particle.

In the present analysis, we investigate the effect of turbulence on the particle
velocity fluctuations as a function of the ratio of the viscous relaxation time for
the particles and the time between collisions in a vertical channel. In contrast to
Couette flow, the fluid velocity variances in the different directions in a channel are
highly non-homogeneous, and they exhibit significant variation across the channel.
Throughout the analysis, the particle size is considered to be small enough that
the Reynolds number based on the relative instantaneous velocity of the particle,
the gas density and viscosity, Rep = ρf dvr/η, is in the range Rep = 0.8 to 10. The
Stokes number, which is the ratio of particle relaxation time and fluid integral time
scale, St = (τv /τf ), is large (2.5–30). If the drag force is given by Stokes’ law, the
viscous relaxation time is given by τv = ρpd2/18η. It is also useful to define the
Stokes number StK based on the Kolmogorov time scale for the turbulent flow. The
Kolmogorov time scale increases by a factor of ∼6 from the near-wall region to the
channel centre. The Stokes number based on the minimum Kolmogorov time scale is
around 24 times higher than the Stokes number based on the fluid integral time scale,
that is, StK = 24× St . Here, the Kolmogorov time scale is defined as τη = (ν/ε )1/2,
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4 P. S. Goswami and V. Kumaran

Simulation run ρp φs 2δ/dp τv τcpp τcpw St

(a) τv <τcpp

1 1000 177.7 1400.0 925.9 2.9
2 2000 355.3 1650.3 990.1 5.8
3 3000 9.44×10−5 119.0 533.0 1807.7 978.4 8.6
4 4000 710.6 1999.0 1016.4 11.5

(b) τcpp <τv

5 1000 675.6 617.4 777.6 10.9
6 1500 1013.3 708.7 818.6 16.4
7 2000 7.0×10−4 61.0 1351.1 774.3 846.2 21.9
8 3000 2026.6 912.0 939.6 32.8

TABLE 1. Particle–particle and particle–wall collision time (τcpp and τcpw , respectively) for
particles with different relaxation times (τv) and for different solid volume fractions (φs), scaled
by (ν/u2

∗). The Reynolds number based on the channel half-width and centreline air velocity
is Re= 1994.7, and that based on the channel half-width and friction velocity is 115.5. In all
simulations, the particle diameter is assumed to be 39 µm (to be compared with experiments
in Goswami & Kumaran 2011) and the number of particles in the simulation cell is 8000. The
ratio of the particle diameter to the smallest Kolmogorov scale (dp/ηK) varies between 0.4 (for
τv <τcpp) and 0.7 (for τcpp <τv). ρp, particle density.

where ν is the kinematic viscosity and ε is the local rate of dissipation of turbulent
kinetic energy. The minimum Kolmogorov time in wall units is 2.6.

The fluid and particle velocity fluctuations in the channel are analysed using two
procedures. The first is direct numerical simulation (DNS) of the fluid equations
in order to determine the fluid velocity fluctuations, and the forcing that these
fluctuations cause in the particles. We use only one-way coupling, and neglect the
effect of the forces exerted by the particles on the fluid turbulence. The direct
numerical simulations are supplemented by fluctuating force simulations, using the
Langevin model, where the fluid velocity fluctuations are substituted by random white
noise in the equation for the particle motion. A Gaussian anisotropic random noise
is used, and the second moments of the noise fluctuations are calculated from the
turbulent fluid velocity fluctuations in the moving Eulerian reference frame, which
moves with the local fluid velocities. The time decay of the fluctuations in the moving
Eulerian reference frame is calculated from the DNS. An important assumption that
the force is uncorrelated in time (white noise), which is valid only if the correlation
time for the fluid velocity correlations is small compared to the viscous relaxation time
of a particle.

Table 1 shows the parameter values for which we have carried out direct numerical
simulations. In all cases, the fluid phase Reynolds number (Re) based on half of the
channel width and the centreline gas velocity has been set equal to 1994.7. The total
number of particles in the simulation cell was fixed at 8000, because of computational
limitations when the number of particles is too large. This imposes a limitation on
the ratio of the channel width to particle diameter at fixed volume fraction, as shown
in table 1. We have assumed that the particle diameter is 39 µm for calculating the
viscous relaxation time in order to make a connection to real flows. This imposes
a limitation on the channel thickness to ∼4 mm when the ratio of channel width
and particle diameter is 100. This is smaller than the channel thickness of 1–10 cm
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Turbulent particle–gas suspensions. Part 1 5

typically encountered in applications. However, increasing the number of particles by
a factor of 10–100 would make it infeasible to probe the large range of parameters
we have been able to access, as shown in table 1. The advantage of restricting the
particle numbers is that we have been able to obtain profiles for all the particle
concentration, velocity and fluctuating velocity across the entire channel over a range
of parameters. The viscous relaxation time was varied independently by changing
the mass density of the particles. The average time between collisions was obtained
by counting the total number of collisions in the simulation, and dividing by the
period of the simulation. Since the channel width is small, particles sometimes travel
from one wall to the other without colliding with other particles. Therefore, we have
also independently calculated the average time between particle–particle collisions and
particle–wall collisions. The Stokes number in the present case is also reported as the
ratio of the integral time scale to the particle viscous relaxation time. Since, in the
case of channel flow, the integral time scale varies in the wall-normal direction, we
have considered the maximum value of the fluid integral time scale for calculating the
Stokes number. All length and velocity scales are reported in dimensionless form, and
they are non-dimensionalized by the friction length and the friction velocity.

In § 2 we describe the governing equations for fluid and particle phases. Particle
velocity and acceleration distributions, obtained from direct numerical simulation, are
described in § 3. Section 4 describes the procedure and results for fluctuating force
simulation with the analysis of different components of particle velocity fluctuations.
Conclusions are given in § 5.

2. Governing equations for direct numerical simulation

The fluid phase is considered to be the incompressible Newtonian fluid which
satisfies the Navier–Stokes equation for mass and momentum,

∇ ·u= 0, (2.1)
∂u
∂ t
+u ·∇u= − 1

ρf
∇p− 1

ρf

dP

dx
ex+ ν∇2u, (2.2)

where u(x, t) represents a three-dimensional instantaneous velocity field, ρf is the
density of the fluid, p(x, t) is the fluctuating pressure field, P is the external pressure
field and ν is the kinematic viscosity. The velocity field satisfies the no-slip boundary
conditions at the solid walls. Periodic boundary conditions in the streamwise (x) and
spanwise (z) directions are used, as shown in figure 1, in order to obtain a fully
developed two-dimensional flow with no variations in the mean fluid and particle
properties in the streamwise and spanwise directions.

In the fluid flow equation we have not included the force exerted by the particles,
therefore we only have one-way coupling of the fluid velocity fluctuations on the
particle motion, as in the case of direct computation of shear-driven suspension by
Goswami & Kumaran (2010a). The solid volume loading is O(10−4), so we can
neglect the particle volume effect. However, the mass loading is (O∼ 1), and the
turbulence field may be modified by the presence of the particles (Li & McLaughlin
2001). We have neglected this effect to focus our attention on the systematic study
of the effect of turbulent flow fields on particle phase statistics using particles with
different mass densities, and compared the results with those obtained from stochastic
simulations based on the anisotropic and inhomogeneous turbulent diffusivity.
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6 P. S. Goswami and V. Kumaran
Flow
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y

z

FIGURE 1. The flow geometry.

The equations of motion for the particle are

dvi

dt
= ui(xPi)−vi

τv
+ 1

mp

∑
i 6=j

Fij+ g (2.3)

and

dxi

dt
= vi, (2.4)

where ui(xPi) is the interpolated fluid velocity at the particle centre, Fij is the force
due to the instantaneous collision and g is the gravitational acceleration. When the
particle Reynolds number is less than 1, the particle relaxation time is defined as

τv =
ρpd2

p

18η
, (2.5)

where dp is the particle diameter. If the particle Reynolds number is larger than 1, the
corrected expression for τv is (Kumaran 2003)

τv =
ρpd2

p

18η (1+ 0.15Re2/3
p )

. (2.6)

We have used the low-Reynolds-number limit of the expression of τv to make it easier
for theoretical comparison, though there is substantial slip in the near-wall region
and the Reynolds number is close to O(10). Modifications to the drag law at higher
particle Reynolds numbers can be included in both direct numerical simulation (DNS)
and fluctuating force simulation (FFS) in a straightforward manner. Gravity acts on the
particles in the direction of the mean flow.
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Turbulent particle–gas suspensions. Part 1 7

Equation (2.3) is obtained by simplifying the original particle equation of motion
described by Maxey & Riley (1983). The simplified equation of motion is obtained
by neglecting the Saffman lift term, inertia of the virtual mass, Basset history term
and considering ρp� ρf . The reason for the simplification has been described in detail
by Goswami & Kumaran (2010a), and the relative magnitude of the forces has been
quantified by Armenio & Fiorotto (2001). Goswami & Kumaran (2010a) discussed
in detail the contribution of different authors to analysing the accuracy and the
computational cost of different interpolation schemes. In the present computation we
have used the same interpolation scheme used by Goswami & Kumaran (2010a). The
algorithm for collision detection for the particle–particle and particle–wall collisions is
the same as that used by Goswami & Kumaran (2010a).

In the coordinate system used here, the x, y and z axes are in the streamwise,
wall-normal and spanwise directions, respectively. The origin of the coordinate system
is located on one of the walls, as shown in figure 1. We have used the primitive
variable formulation and coupled method to solve the Navier–Stokes equation using
Kleiser–Schumann algorithm (Canuto, Hussaini & Zang 1988; Kleiser & Schumann
1980). The code for the two-phase channel flow was developed based on the
open-source single-phase incompressible Navier–Stokes solver channel flow (Gibson
2007). We start the simulation by putting the particles randomly in the simulation
box. The initial velocities are the interpolated fluid velocities at the particle position.
Initially, we run the DNS for the air phase, and when it reaches the statistically
stationary state (after time approximately 7000 in wall units), we initiate the particle
dynamics. The duration of the initialization procedure for reaching steady state is
∼3–5 times the particle viscous relaxation time. After this, we start the sampling for
a duration of 3–4 times the particle relaxation time.

We have non-dimensionalized the variables based on the wall units. The units of
length and time are ν/u∗ and ν/u2

∗ , where ν and u∗ are the kinematic viscosity and
the friction velocity of the particle-free carrier phase. The friction velocity is defined
as u∗ = (τw/ρ )

1/2, where τw is the wall shear stress. The size of our computational
domain is 8πδ × 2δ × (4/3)πδ , where δ is the channel half-width. The domain is
discretized into 128× 65× 64 grids in the x, y and z directions, with a wall-normal
stretching to capture the near-wall physics of the flow. The resolution in wall units
(that is, scaled by (ν/u∗ )) is 22.68 in the streamwise direction, 7.56 in the spanwise
direction. In the wall-normal direction, it varies between 0.13 (near the wall) and 5.67
(at the centre). For all the simulations, the carrier phase is air at ambient conditions,
and the simulation is done in isothermal conditions for which the kinematic viscosity
is 1.4843× 10−5 m2 s−1. The fluid phase Reynolds number based on the centreline
velocity and half-width of the channel is 1997.4, while that based on the friction
velocity, Reτ = u∗ δ/ν , is 115.5. The channel centreline velocity scaled by the friction
velocity is 17.2. If we use dp = 39 µm, with particle density 1000 kg m−3, and air
viscosity at standard temperature and pressure, the viscous relaxation time is τv =
0.004 8286 s. The unit of time based on the kinematic viscosity and friction velocity
(wall units) is ν/u2

∗ = 2.717 9105 s. In calculating the particle Stokes number (St), the
maximum value of the fluid integral time scale is used, which is 61.7 in wall units.
In the results section, all the variables are described in wall units unless explicitly
mentioned. The different mass densities of the particles are varied by a factor of 4 in
the simulations, as shown in table 1. The validation of the code is shown in figure 2.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.294


8 P. S. Goswami and V. Kumaran
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FIGURE 2. Air mean velocity (a) and root mean square velocity fluctuation (b). In (a), (—)
is obtained from our simulation at Reτ = 115.5, and (◦) is from Li & McLaughlin (2001)
at Reτ = 125. In (b), uxrms (—), uyrms (-·-) and uzrms (–) are obtained from present DNS and
uxrms (�), uyrms (◦) and uzrms (�) are obtained from Li & McLaughlin (2001). Different regions
considered for distribution function calculations are A (y+= 5.8–17.3), B (y+= 34.7–46.2),
and C (y+= 104.0–115.5).

3. Particle velocity and acceleration distributions from DNS
With the assumption that the force on the particle is given by the Stokes drag law,

the particle acceleration a between collisions can be written as

a= u−v
τv

, (3.1)

where u is the instantaneous velocity of the fluid at the particle location, and v is the
instantaneous particle velocity. The particle acceleration can be divided into a mean
and a fluctuating component. The fluctuating part of the particle acceleration is

a′ = a− ā= u′ −v′

τv
, (3.2)

where u′ = u− ū is the fluctuating fluid velocity at the particle location, and v′ =
v− v̄ is the fluctuating particle velocity at the particle location; v̄ is the average
particle velocity at the particle location, and ū is the mean velocity of the fluid at the
particle location. In calculating the velocity distribution function, we have considered
the particle fluctuating velocity obtained by subtracting the local particle-averaged
velocity from the instantaneous particle velocity. To obtain the particle-averaged
velocity, the channel was divided into 50 intervals in the wall-normal direction, and
the particle-averaged velocity was obtained by averaging over all the particles existing
within each interval. There was no binning in the streamwise and spanwise directions,
as both these directions are homogeneous and periodic. At any instant, there are more
than 150 particles in each interval. After this, the distribution function is obtained by
averaging over 20 000 ‘snapshots’ of the flow. Following this procedure, the statistical
standard deviation in the distribution function turns out to be approximately 5–6 %
of the mean value (Goswami & Kumaran 2010a). Similarly, the average acceleration,
which is proportional to the difference between the mean fluid and mean particle
velocities, was subtracted while calculating the acceleration distribution function. It
should be noted that while calculating the acceleration distribution, we have only
included the local acceleration of the particles due to the effect of the fluid velocity,
and we have neglected the acceleration during a collision. This is because the collision
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Turbulent particle–gas suspensions. Part 1 9

processes are already included in the collision integral in theories for granular flows,
and so they should not be incorporated into the random forcing due to turbulent
fluctuations.

Since the mean and fluctuating velocity distributions in a channel are highly
anisotropic, we analyse the probability distributions of the fluctuating velocities and
accelerations over regions of thickness about ten wall units in the gradient directions
at three locations, as shown in figure 2(b). The location A is located close to the wall
of the channel where the gradient in the mean velocity is large, and the amplitude of
the fluctuating velocity in the streamwise direction passes through a maximum. The
location C is at the centre of the channel, where the mean velocity gradient as well
as the amplitude of the fluctuating velocity are small. The location B is between these
two.

The three important time scales in the problem are the viscous relaxation time for
the particles, τv , the time between particle collisions, τc, and the correlation time
for the fluid velocity fluctuations, which is the integral time τf . The present analysis
is restricted to the parameter regime where τf is small compared to the collision
and viscous relaxation time, so that the effect of fluid velocity fluctuations can be
modelled as Gaussian white noise. We consider the fluid and particle velocity in
the parameter regimes τv < τc, where the particle velocity equilibrates to the local
fluid velocity between successive collisions, and τc < τv , where the time between
collisions is smaller than the time required for the equilibration of the particle
velocity with the local fluid velocity. A distinction can also be made between two
different types of collisions, particle–particle and particle–wall collisions; the time
between particle–particle collisions is denoted by τcpp , while that between particle–wall
collisions is denoted τcpw . For dilute suspensions when τv < τc, two different cases
may arise. The first is τv < τcpp and τv∼ or >τcpw , and in the other case τv is smaller
than both τcpp and τcpw . These cases were analysed separately in Goswami & Kumaran
(2010a,b). However, it was found that there is not much difference in the statistics for
the velocity and acceleration distributions for τv < τcpw and τv > τcpw . Therefore, in the
present analysis, we have examined only two regimes, the first at low volume fraction
where τv < τc, and the other at larger volume fractions where τc < τv .

3.1. Viscous relaxation time less than collision time
In this subsection, we present the fluctuating particle velocity and acceleration
distribution function (p.d.f.) for the case when the particle relaxation time is less
than the inter-particle collision time. In the simulations, we have varied the viscous
relaxation time by changing the particle density, and keeping the solid volume fraction
(φ ) equal to 9.4× 10−5. Figure 3(a) shows the normalized distribution functions of
the streamwise particle velocity fluctuation at the central region (location C) of the
channel for which y+ = 104.0–115.5. The figure clearly shows a highly asymmetric
and non-Gaussian distribution of the particle velocities, where there is a long nearly
exponential tail in the negative velocity region. This indicates that there are a relatively
small number of particles with velocity much larger than the mean velocity and a
larger number with velocity less than the mean velocity. This is because the mean
velocity is largest at the centre of the channel, and so particles that are transported
to the centre from location B have a lower mean velocity than the mean velocity at
the centre. Figure 3(b) shows the acceleration distribution functions for the particles
in the same region. In this case, we observe a slowly decaying tail in the acceleration
distribution for positive accelerations. This corresponds to the tail in the velocity
distribution at negative velocities, which experience a positive acceleration due to the
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FIGURE 3. Components of particle velocity distribution function (a,c,e) and acceleration
distribution function (b,d,f ) at the centre of the channel (y+= 104.0–115.5), when viscous
relaxation time of the particle is less than the particle–particle collision time, τv <τcpp , and
φ=9.44×10−5. Streamwise (a,b), wall-normal (c,d), and spanwise (e,f ). DNS, run 1 (◦); DNS,
run 2 (∗); DNS, run 3 (�). In (a) fluctuating force simulation (FFS), run 1 (-·-); FFS, run 2 (—),
and FFS, run 3 (−−). In (b,d,f ) Gaussian fits for acceleration distributions are run 1 (-·-),
run 2 (—), and run 3 (−−). Results of FFS are discussed in § 4.2. Parameters for all the runs
are given in table 1.

difference between the mean velocity and the particle velocity. It is observed that
the departure of the acceleration distribution from a Gaussian distribution is actually
smaller than the departure of the velocity distribution from Gaussian.

Figure 3(c,d) shows the distribution functions for the wall-normal component of the
particle velocity and acceleration. In contrast to the streamwise velocity distribution,
the distribution of the wall-normal velocity fluctuations is symmetric, and it shows
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very little variation with the viscous relaxation time of the particle. The velocity
distribution shows very slow decay at higher values of fluctuations. As in the case
of Couette flow, even when the velocity distribution is very different from Gaussian,
the acceleration distribution is actually well described by a Gaussian distribution, even
when the distribution function is 10−2 times its maximum value. This indicates that
the slow decay of the particle velocity distribution is not due to a change in the
form of the acceleration of the particles, but rather due to inter-particle collisions.
For Couette flow (Goswami & Kumaran 2010a), it was observed that when the
inter-particle collisions are switched off in the simulations, the slowly decaying tails
in the velocity distribution disappear. A similar effect is observed in the present
case of a channel flow, indicating that there are two distinct regimes in the velocity
distribution in the transverse direction, one due to the fluid velocity fluctuation at low
velocities, and the second due to inter-particle collisions, which results in relatively
larger transverse velocities. The inter-particle collision effect is primarily due to the
large anisotropy of the mean square of the fluctuating velocities. It should be noted
from figure 3(a–d), that the mean square velocities and accelerations in the streamwise
direction are significantly larger than those in the cross-stream direction. The particle
velocity fluctuations in the streamwise direction induce collision between particles,
and these collisions generate fluctuations in the wall-normal and spanwise directions.
Such fluctuations result in highly non-Gaussian velocity distributions, even when the
acceleration distribution is close to Gaussian. Identical conclusions can be drawn
regarding the velocity and acceleration distributions in the spanwise direction from
figure 3(e,f ).

Next we analyse the effect of particle–particle collisions on mean acceleration
and r.m.s. of the acceleration fluctuation. Since the collisions are instantaneous, the
acceleration at a collision is infinite. So it is not possible to directly compare the
average acceleration due to drag with that due to collisions. Since momentum is
conserved in collisions, there is no net acceleration in a differential volume due to
collisions. This is in contrast to fluid drag, where there is a net deceleration due
to the drag force. The net momentum in a control volume could change only if a
particle with its centre within the volume collides with one that has its centre outside,
and thereby gains momentum. This momentum transfer process is subdominant in a
dilute system, since the transport of momentum due to particle streaming (particle
entering/leaving a differential volume) is large compared to collisional transport.
The effect of collisions is best inferred by comparing simulation with and without
collisions. In the latter case, one just permits the particles to go through each other,
so that there are no collisions. The effect of collision is best inferred by comparing
simulation with and without collisions. In the latter case, one just permits the particle
to go through each other, so that there are no collisions. One such comparison is
shown in figure 4.

It is found from figure 4(a) that acceleration near the wall is negative as particles
move faster than the fluid, and positive at the centre of the channel as fluid velocity
is higher than the particle velocity. The presence of collisions increases the particle
velocity near the wall and decreases at the centre. Therefore the magnitude of
acceleration increases near the wall and decreases at the channel centre in the presence
of collisions. Figure 4(b,c) shows that collisions reduce the acceleration fluctuations in
all three directions.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.294


12 P. S. Goswami and V. Kumaran

0 20 40 60 80 100
–12

–10

–8

–6

–4

–2

0

2

4
(× 10–3)

(× 10–3) (× 10–3)

y+

y+ y+
0 20 40 60 80 100

1

2

3

4

5

6

7

8

20 40 60 80 1000

0.2

0.4

0.6

0.8

1.0

1.2

(a)

(b) (c)

a x

FIGURE 4. Mean and r.m.s. of particle acceleration in the presence and absence of
particle–particle collisions across the width of the channel. (a) Mean particle acceleration,
(b) r.m.s. of streamwise component of particle acceleration, and (c) r.m.s. of spanwise and
cross-stream particle accelerations. (a) Run 2, without collisions (—); run 2, with collisions
(—◦); run 4, without collisions (−−); run 4, with collisions (−−�). (b) Run 4, without
collisions (—); run 4, with collisions (—�). (c) 〈a′2z 〉1/2, run 4, without collisions (—); 〈a′2z 〉1/2,
run 4, with collisions (—◦); 〈a′2y 〉1/2, run 4, without collisions (−−); 〈a′2y 〉1/2, run 4, with
collisions (−−�).

3.2. Collision time less than the viscous relaxation time
In this section, we focus on the regime where particle–particle collision time, τc, is
less than the viscous relaxation time, τv , of the particles. For all the simulations in
this section, the volume fraction of the particles is φ = 7.0× 10−4, and the mass
density of the particle has been changed to vary the relaxation time. The increase in
viscous relaxation time τv increases the particle–particle collision time τc by reducing
the mean square particle fluctuation (granular temperature), subject to the constraint
τc < τv . Figure 5(a,b) shows the streamwise velocity distribution and acceleration
distributions for different values of the viscous relaxation time at location C near
the centre of the channel. In contrast to the regime τv < τc, we find here that the
acceleration distribution in all directions is well described by a Gaussian distribution
for a variation in the probability distribution of up to two decades even in the
streamwise direction. The velocity distributions are also well approximated by a
Gaussian distribution, though the agreement is not as good as that for the acceleration
distribution. It is observed that, as expected, the Gaussian fit becomes better as the
ratio of the viscous relaxation time and the collision time increases. Figures 5(c,d)
and 5(e,f ) show the wall normal and spanwise velocity and acceleration distribution
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FIGURE 5. Components of particle velocity distribution function (a,c,e) and acceleration
distribution function (b,d,f ) at the centre of the channel (y+= 104.0–115.5), when
particle–particle collision time is less than the viscous relaxation time of the particle, τcpp <τv ,
and φ= 7.0×10−4. Streamwise (a,b), wall-normal (c,d), and spanwise (e,f ). DNS, run 5 (◦);
DNS, run 7 (∗); DNS, run 8 (�). (a) FFS, run 5 (-·-); FFS, run 7 (—); FFS, run 8 (−−). (b,d,f )
Gaussian fits for acceleration distributions are run 5 (-·-), run 7 (—), and run 8 (−−). Results
of FFS are discussed in § 4.2. Parameters for all the runs are given in table 1.

functions. As in the streamwise case, we observe that the acceleration distribution is
well described by a Gaussian distribution. The higher frequency of collisions reduces
the anisotropy in the distribution of the fluctuating velocities. In addition to the greater
collisional redistribution of energy, collisions also lead to a near-Gaussian velocity
distribution.

The analysis of the particle acceleration distribution functions at different cross-
stream positions for both regimes τv < τc and τc < τv indicates that the streamwise
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component of the acceleration distribution at the centre of the channel shows the
largest deviation from a Gaussian distribution, and the acceleration distributions in
regions A and B are better approximated by a Gaussian distribution.

3.3. Components of particle acceleration
In this subsection, we focus on the acceleration of the particles, and examine
separately the effect of the fluid velocity and the particle velocity fluctuations.
The motivation for this detailed analysis is as follows. The results of the previous
two subsections has shown that the particle velocity fluctuations and the particle
acceleration fluctuations show large deviations from a Gaussian distribution, especially
in the centre of the channel and in the regime τv < τc. There are three contributions to
the acceleration of the particles: the first is due to the difference in the mean velocities
of the particle and fluid, the second is the fluctuating velocity of the particles and
the third is the fluctuating velocity of the fluid. The total acceleration is the sum of
these three components. However, in the fluctuating force formulation, we approximate
the acceleration due to fluid velocity fluctuations alone as random white noise with a
Gaussian distribution. Therefore, the fluctuating force simulations will be accurate if
the distribution of the fluid velocity fluctuations is close to a Gaussian distribution,
even though the distribution of particle velocities may deviate significantly from a
Gaussian distribution. Therefore, it is necessary to examine the distribution of the
different components of the acceleration separately.

The centre region C of the channel is chosen for the analysis, since it shows the
most interesting behaviour and the largest departure from a Gaussian distribution. The
particle acceleration-fluctuation can be divided into two parts, the first due to the fluid
velocity fluctuations, u′/τv , and the second due to the particle velocity fluctuations,
v′/τv , in (3.2). We examine the distributions for each of these two separately. We also
investigate the skewness and the flatness for particle acceleration due to fluid velocity
fluctuation.

Figure 6 shows the p.d.f. for the acceleration due to fluid velocity fluctuation
and the particle velocity fluctuation for the cases τv < τc, while figure 7 shows the
acceleration distribution for τc < τv . In the regime τv < τc, from figure 6(a) it is
observed that the acceleration due to particle velocity fluctuation has a long tail for the
negative acceleration fluctuation, in contrast to the long tail for positive acceleration
of the overall particle acceleration fluctuation. Both of these distributions deviate
magnificently from the Gaussian distribution. However, the acceleration due to fluid
velocity fluctuation is close to a Gaussian function, though it is slightly skewed to
negative acceleration. This is consistent with the fluid velocity skewness reported by
Dinavahi (1992) and Kim, Moin & Moser (1987), though it should be noted that
their Reynolds number is, respectively, 2.5 and 1.5 times higher than that in the
present study. In the wall-normal and spanwise directions, however, the acceleration
due to the fluid velocity fluctuations is symmetric and Gaussian over a decrease in the
distribution function of two orders of magnitude. The acceleration due to the particle
velocity fluctuations is small compared to that due to the fluid velocity fluctuations,
and the p.d.f. for the total acceleration is close to the p.d.f. for the acceleration due to
fluid velocity fluctuations. Therefore, the total acceleration can be well approximated
as a Gaussian function due to the fluid velocity fluctuations alone.

Figure 7 shows the p.d.f. for the acceleration distribution for the case where the time
between collisions is small compared to the viscous relaxation time. In this case, we
observe that the acceleration distribution function is a Gaussian function in all three
directions. The component of the acceleration fluctuations due to the particle velocity
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FIGURE 6. Streamwise (a), wall-normal (b), and spanwise (c) components of particle
acceleration distribution function at the centre of the channel (y+= 104.0–115.5), calculated
from the particle acceleration fluctuation, fluid velocity fluctuation at particle position, particle
velocity fluctuation and fluid velocity fluctuation at the DNS grids within the specified y+. In
this case the viscous relaxation time of the particle is less than the particle–particle collision
time, τv <τc, φ= 9.44×10−5, simulation run 2. f (a′i) (◦), f (u′i/τv) at particle positions (∗),
f (v′i/τv) (�), and f (u′i/τv) at the fluid grid points (×). The Gaussian fits are f (a′i) (-·-), f (u′i/τv)
(—), f (v′i/τv) (−−), and for f (u′i/τv) at the fluid grid points (···). Parameters for run 2 are given
in table 1.

fluctuations is small in all three directions, and the total acceleration is very close
to the acceleration due to the fluid velocity fluctuations. In addition, the root mean
square of the acceleration in the streamwise direction is only ∼45 % larger than that
in the wall-normal and spanwise directions. This is in contrast to the case τv < τc,
where it was observed that the root mean square of the acceleration fluctuations in
the streamwise direction is about ∼2.5 times larger than that in the spanwise and
wall-normal directions.

Another important distribution that is plotted in figures 6 and 7 is the distribution
of the quantity u′/τv in the fluid. While plotting the different components of the
acceleration distributions, we had measured acceleration due to the fluid velocity
fluctuations, u′/τv , and the acceleration due to the particle velocity fluctuations,
v′/τv , in the simulation. Independently, we have also measured the distribution of
u′/τv in the fluid itself, and the distribution of this is plotted in figures 6 and 7. It is
observed that there is very good agreement between the distributions for u′/τv at the
particle positions and that in the fluid, indicating that there is no correlation between
the particle and fluid velocities at the Stokes number considered here. A similar feature
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FIGURE 7. Streamwise (a), wall-normal (b), and spanwise (c) components of particle
acceleration distribution functions at the centre of the channel (y+= 104.0–115.5), calculated
from the particle acceleration fluctuation, fluid velocity fluctuation at particle position, particle
velocity fluctuation and fluid velocity fluctuation at the DNS grids within the specified y+.
In this case the particle–particle collision time is less than the viscous relaxation time of the
particle, τc<τv , φ= 7.0×10−4, simulation run 7. f (a′i) (◦), f (u′i/τv) at particle positions (∗),
f (v′i/τv) (�), and f (u′i/τv) at the fluid grid points (×). The Gaussian fits are f (a′i) (-·-), f (u′i/τv)
(—), f (v′i/τv) (−−), and for f (u′i/τv) at the fluid grid points (···). Parameters for run 7 are given
in table 1.

was also observed in Couette flow in Goswami & Kumaran (2010a). Therefore, the
acceleration distribution function can be estimated from the distribution of the fluid
fluctuating velocities. It should be noted that our calculation is limited to the case
of one-way coupling, where the effect of the particles on the fluid velocity is not
taken into account. It is necessary to carry out further studies to examine the effect
of particle forcing on the correlation between the fluid and particle velocities.

In order to quantify the departure from a Gaussian distribution, we have also
calculated the skewness and flatness of the particle acceleration due to fluid velocity
fluctuation for both the regimes. For the velocity distribution, the skewness and
flatness are defined by

skewness= 〈v ′3i 〉
(〈v ′2i 〉)3/2

, (3.3)

flatness= (〈v ′4i 〉 − 3(〈v ′2i 〉)2)

(〈v ′2i 〉)2
. (3.4)

A similar definition is used for the acceleration distribution.
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FIGURE 8. Skewness (a) and flatness (b) of the fluctuating particle acceleration which
originates from the fluid velocity fluctuation for τv <τcpp , and simulation run 2. The
components of particle acceleration are streamwise (◦), wall-normal (∗), and spanwise (�).
The fluid velocity fluctuations are streamwise (-·-), wall-normal (—), and spanwise (−−).

For the case τv < τc, both the skewness of fluid velocity fluctuation and the
streamwise particle acceleration are negative across nearly 80 % of the channel width
(figure 8). This is due to the long tail in the acceleration distribution for negative
accelerations in figure 6. The skewness of the streamwise acceleration due to the
particle velocity fluctuations becomes positive near the wall, but it is nearly zero at
the point where the root mean square of the fluid fluctuating velocity is a maximum.
The skewness in the cross-stream direction is numerically smaller than that in the
streamwise direction. The skewness in the spanwise direction is zero across the
channel, as required by symmetry. The flatness in the distribution is small near the
centre of the channel, but becomes large only near the walls. The results for the
regime τc < τv are nearly identical to that shown in figure 8. This is expected due
to a combination of two effects. Firstly, we have only one-way coupling in the present
simulations, and the presence of particles does not affect the fluid velocity fluctuations.
Secondly, the analysis of the different components of the acceleration distribution has
shown that the acceleration due to the fluid velocity fluctuations is identical to that
calculated from the fluid velocity fluctuations in the absence of particles, indicating
that there is no correlation between the particle and fluid fluctuations. Due to this, the
distributions of the acceleration due to fluid velocity fluctuations should be unaffected
by the presence of the particles. We have verified, in simulations, that this is true,
and the acceleration distribution due to fluid velocity fluctuations is unaffected by the
ratio of the viscous relaxation time and the collision time. For simplicity, we consider
the distribution of the particle acceleration due to fluid velocity fluctuations to be
Gaussian. Figure 8 shows that the maximum departure from the Gaussian distribution
is near the walls of the channel. Despite this, we get reasonably good agreement
between the DNS and the fluctuating force simulations even near the walls when the
viscous relaxation time is smaller than the collision time, as shown in § 3. This is
probably because the amplitude of the fluid velocity fluctuations decreases as the wall
is approached, and the dominant contribution to the particle velocity fluctuations is the
inter-particle collisions induced by the mean shear.

3.4. Acceleration correlation function
The time correlation of the particle acceleration is an issue of importance in the
modelling of the effect of turbulent fluctuations on the particle phase (Goswami &
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Kumaran 2010a). The time correlation function of the particle acceleration has been
computed and compared with the time correlation for the fluid velocity fluctuations.

It is necessary to define, carefully, the procedures used for calculating the fluid
velocity and the particle acceleration correlations. It should be noted that the objective
of the present analysis is to propose a fluctuating force model for the effect of
turbulent flow on the particles, and to calculate the moments of the force distribution
which correctly reproduces the effect of the fluid on the particles. The moments are
obtained from the time integrals of the velocity autocorrelation functions, and it is an
issue of importance to determine how the autocorrelation function should be calculated.
In Goswami & Kumaran (2010a,b), the autocorrelation functions were calculated over
the central 20 % of the Couette flow, where the mean velocity passes through zero.
Therefore, there was no difference in the autocorrelation functions in a fixed reference
frame and that in a reference frame moving with the mean fluid velocity. In the
present case, the mean velocity is at a maximum at the centre of the channel, and so
it is necessary to determine the correct procedure for calculating the autocorrelation
function. We have computed the time correlation for the fluid velocity fluctuation in
two different reference frames; the first is the fixed Eulerian reference frame at a given
location in space, and the second is a ‘moving Eulerian’ reference frame, where the
location of the measurement of fluid velocity fluctuation moves with the mean velocity
of the fluid. The acceleration correlation on the particles is calculated in a Lagrangian
reference frame moving with the particles. A comparison of the correlation times has
been used to determine the correct variances of the force distributions to be used in
the Langevin description.

The acceleration correlation coefficient is given by

Raa(τ ) = 〈a
′ (t) ·a′ (t+ τ )〉
〈a′ (t) ·a′ (t)〉 . (3.5)

Here, the accelerations at different times have been calculated in a reference frame
moving with the particle, and the angular brackets in the above equation represents
an average over a large number of particles. The fluctuation of the acceleration has
been calculated by subtracting the local average of the acceleration from instantaneous
acceleration of the particle.

Figure 9(a–c) shows the acceleration correlation coefficient as a function of time
for the case when particle relaxation time is less than the particle–particle collision
time. For clarity, we have cut off the time axis at a non-dimensional time of 100. The
long time integration of the acceleration correlation function provides the acceleration
correlation time of the particle, proportional to the Lagrangian fluid time scale in a
reference frame moving with the particle, provided that the main contribution to the
particle acceleration fluctuation is the fluid velocity fluctuation. It is observed that
the correlation of fluid velocity fluctuation in a fixed Eulerian reference frame decays
much faster than that in a moving Eulerian reference frame, but the latter decays
at a similar rate to that of the correlation of particle acceleration fluctuation. This
is because of the convection of eddies across a location due to the mean velocity,
which results in a faster decorrelation in a fixed Eulerian reference frame. It is clearly
observed that there is good agreement between the acceleration correlation function
and the fluid correlation function in a moving Eulerian reference frame moving with
the mean velocity of the fluid. It is important to note that the moving Eulerian
reference frame is different from a Lagrangian reference frame moving with the fluid
velocity.
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FIGURE 9. Time correlation of the fluid velocity fluctuations and particle acceleration
fluctuations at the centre of the channel. For particle acceleration correlation y+=104.0–115.5
and simulation run 1, and for fluid velocity correlation y+= 104.0. The plots are fluid velocity
correlation in the fixed Eulerian frame (-·-), in the moving Eulerian frame (−−), and particle
acceleration correlation (—) for streamwise (a), wall-normal (b) and spanwise (c) components
of fluid velocities and particle accelerations. All the parameters for run 2 are given in table 1.

Since the flow is highly inhomogeneous in the wall-normal direction, verification
of the comparability of the particle acceleration correlation time with the fluid
velocity correlation time at different cross-stream positions becomes an important issue.
Particle acceleration correlation coefficients have been calculated in each of the three
cross-stream positions A, B and C (figure 2). The particle acceleration correlation time,
which is obtained from the time integration of the correlation coefficient, has been
calculated by considering 10 ensembles of 200 particles each. During the simulation,
we separately consider the particles that are located in the different wall-normal
regions of the channel (positions A, B and C in figure 2 of the article). If a particle
moves out of a particular region due to its transverse motion at any instant, this
particle is not included in the correlation calculation for later times. For each ensemble,
we have considered the trajectories of at least 200 particles. When the particle number
in the region becomes less than 200, we stop the sampling. Averaging is carried out
over 10 such ensembles to determine the correlation time. The acceleration correlation
time is calculated along with the fluid velocity correlation time in both the fixed
Eulerian and moving Eulerian reference frame at the different cross-stream positions
A, B and C (figure 2). The calculation shows that the acceleration correlation times
are of the same order of magnitude as the Eulerian velocity autocorrelation time in the
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Cross-
stream
positions

Particle acceleration correlation
time

Fluid velocity
correlation

time in a moving
Eulerian frame

Fluid velocity
correlation

time in fixed
Eulerian

frame
τ a

x
(% std
dev.)

τ a
y

(% std
dev.)

τ a
z

(% std
dev.)

τx τy τz τx τy τz

A 81.9 (1.9) 9.1 (13.7) 27.6 (13.7) 52.7 19.5 21.8 13.0 5.0 4.5
B 71.5 (6.2) 19.4 (5.2) 23.8 (10.9) 61.7 29.3 33.8 10.6 3.8 2.5
C 69.2 (2.5) 23.4 (12.8) 33.5 (15.2) 51.3 21.5 23.0 8.2 1.2 1.2

TABLE 2. Particle acceleration correlation time and fluid velocity time scale at three positions
across the channel.

moving Eulerian frame, but larger than that in the fixed Eulerian frame, at all locations
as shown in table 2.

From figure 9, it is clear that the acceleration correlation time is largest in the
streamwise direction, while it is lower in the wall-normal and spanwise directions.
The acceleration correlation time does not show much variation when the ratio of
the viscous relaxation time and collision time is changed, and it is of the same
order of magnitude as the Eulerian velocity autocorrelation time (integral time). More
importantly, this acceleration correlation time is much smaller than both the viscous
relaxation time and the time between collisions for the Reynolds numbers and the
Stokes numbers considered here. This implies that the acceleration of the particles due
to the fluid velocity fluctuations can be well represented by Gaussian white noise, over
time scales comparable to the viscous relaxation time or the collision time. However,
it should be noted that the noise has to be highly anisotropic, since the magnitude of
the fluid velocity fluctuations in the flow direction is significantly larger than that in
the cross-stream and spanwise directions.

The good correlation between the acceleration correlation function and the fluid
velocity correlation function in a moving Eulerian reference frame can be explained as
follows. There are two issues to be noted with regard to the parameter regime being
considered here. The first is that in the high-Stokes-number regime, particle inertia is
large and so particles do not follow the fluid streamlines. Therefore, the relaxation
of fluid velocity fluctuations along fluid streamlines is not relevant for the particle
acceleration. Secondly, when the viscous relaxation time is small compared to the time
between collisions, the particles relax locally to the fluid mean velocity. Therefore, it
is sufficient to consider the fluid velocity correlation function in a reference frame
moving with the local fluid velocity. However, it should be noted that the above
approximation is a good one only when the slip between the fluid and particle phases
is relatively small. When the slip is substantial, the particle mean velocity cannot be
well approximated by the fluid mean velocity, and so the acceleration correlation time
cannot be calculated from the fluid velocity correlation time in a moving Eulerian
reference frame. This issue has been addressed further in § 4.1.

4. Fluctuating force simulation
Here, we briefly describe the theory and the simulation procedure for the fluctuating

force simulation, which was discussed in detail in Goswami & Kumaran (2010b).
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The Boltzmann equation for the particle velocity distribution function, for a two-
dimensional flow with velocity in the x direction and velocity gradient in the
y direction, can be expressed as

∂ f (v′ )
∂ t
+ ( v̄i+ v ′i )

∂ f (v′ )
∂xi

− γ̇ ∂ v
′
yf (v

′ )

∂ v ′x

− 1
τv

∂ ((v ′i + v̄i− ūi)f (v′ ))
∂ v ′i

−Dij
∂ 2f (v′ )
∂ v ′i ∂ v ′j

= ∂cf (v′ )
∂ t

, (4.1)

where f (v′ ) is the particle velocity distribution function, defined such that f (v′ )dv is
the probability of finding a particle in the volume dv′ about v′ in the velocity space.
Here, it is important to note that v′ is the particle fluctuating velocity. The particle
instantaneous velocity is v ′i + v̄i(y), where v̄i(y) is the mean velocity parallel to the
streamwise direction, which is a function of the cross-stream coordinate y. The first
term on the left-hand side of (4.1) is the rate of change of distribution function with
time, the second term is the rate of change of the distribution function due to particle
motion, and the third term is the change in the distribution function due to mean shear
on the particles, where γ̇ = dv̄ /dy is the mean strain rate. The fourth term represents
the effect of drag force on the particles, where τv is the viscous relaxation time of
the particle. The fifth term is the change in distribution function due to fluctuating gas
velocity modelled as Gaussian random noise. The term on the right-hand side of (4.1)
is the rate of change of the distribution function due to particle collisions, and is called
the ‘collision integral’:

∂cf (v′ )
∂ t

= ρχ (φ )
∫

dk
∫

dv′∗ (f (v′b)f (v
′∗
b )− f (v′ )f (v′∗ ))w ·k. (4.2)

In (4.2), v′b and v′∗b are the velocities of the pair of particles before the collision, and
v′ and v′∗ are the post-collision velocities, k is the unit vector in the direction of
the line joining the centres of the colliding particles, w= v′ −v′∗ is the difference
in velocity of the particles, χ (φ ) is the pair distribution function, which is 1 in the
limit of low volume fractions analysed here. The integral in (4.2) is carried out for
the condition w ·k> 0, so that the particles approach each other before the collision.
Further details of the fluctuating force model is given in the Appendix.

4.1. Simulation technique
The configuration and coordinate system is the same as that in figure 1. The
fluctuating force simulations have been carried out using a variable-time-step
molecular dynamics procedure, and the time step for advancement is less than the
integral time scale of the fluid. We have seen in the § 3.3 that the acceleration
distribution on the particles due to the fluid velocity fluctuations can be accurately
captured from the distribution of fluid velocity fluctuations in an Eulerian reference
frame moving with the mean velocity of the fluid. This is because, as described in
§ 3.4, the integral time calculated in a reference frame moving with the local mean air
velocity is closer to the particle acceleration correlation time, whereas the fluid integral
time scale obtained in the fixed Eulerian reference frame is very different. It would
be more exact to calculate the diffusion coefficients in a reference frame moving
with the mean velocity of the particles, since we are considering the correlation of
the acceleration of the particles. To examine if the difference in the fluid and the
particle mean velocities cause a substantial variation in the correlation time, we have
compared the integral times in two moving Eulerian reference frames, one moving
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FIGURE 10. Fluid integral time scale in a reference frame moving with local fluid mean
velocity (filled symbols) and with particle average velocity (open symbols). The particle
relaxation time τv = 1351.1. The components of the time scale are streamwise ◦, spanwise
�, and wall-normal �.
with the local mean velocity of the fluid and the other moving with the local mean
velocity of the particles. The result is shown in figure 10. We find that the maximum
difference in time scale is 15 % if the velocity of the reference frame is either the
air velocity or the particle velocity. There are errors in the correlation time estimates
near the wall due to the difference in velocities between the particle and fluid phase.
However, the diffusivities themselves decrease to zero at the wall, because the fluid
velocity fluctuations decrease to zero. The dominant contribution to particle velocity
fluctuations near the wall is due to the mean fluid shear and the cross-stream migration
of the particles. Therefore, the error in the diffusivities do not have a significant effect
on the particle dynamics near the wall. This indicates that we can obtain a good
approximation for the diffusion coefficients by calculating the correlation functions
in a reference frame moving with the mean fluid velocity. This is a significant
simplification, since the fluid velocity is known a priori from the direct numerical
simulations when we use one-way coupling, whereas the particle mean velocity has
to be calculated by solving the equations for the particle phase using the fluctuating
velocity in the fluid. Therefore, in order to determine components of Dij, we estimate
the autocorrelation in a moving Eulerian reference frame moving with the same mean
velocity as the fluid.

The second moments for the random force distributions are calculated from the
velocity autocorrelation function for the fluid fluctuating velocity in a moving Eulerian
reference frame in the absence of the particles, and using

Dij =
〈u′i (0)u′j (0)〉

τ 2
v

∫ ∞
0

dt′
〈u′i (t′ )u′j (0)〉
〈u′i (0)u′j (0)〉

= 〈u
′
i (0)u

′
j (0)〉

τ 2
v

∫ ∞
0

dt′Rij, (4.3)

where Rij is the Eulerian time correlation tensor of the turbulent flow field. From the
direct numerical simulation, we can calculate the Eulerian time correlation function in
a moving Eulerian reference frame. The non-zero components of the diffusion tensor,
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FIGURE 11. Velocity space diffusion coefficient across the width of the channel: Dxx (—),
Dyy (-·-), Dzz (−−), Dxy (···).

obtained using (4.3), have been shown to be functions of the wall-normal coordinate
in figure 11.

The simulation is initiated with a random initial configuration of the particles. At
each step, we calculate the fluid drag on the particle which is generated due to
the difference in particle instantaneous velocity and the local average fluid velocity;
the latter is obtained from the results of the DNS channel flow simulation in the
absence of the particles. We use cubic spline interpolation in the wall-normal direction
to obtain the average fluid velocity at the particle position. Particle collisions are
implemented using the usual collision rules between spherical elastic particles, where
the relative velocity along the line joining the centres is reversed in a collision, while
the relative velocity perpendicular to the line joining the centres remains unchanged.
Impending particle collisions are predicted by a deterministic method, as done in the
case of DNS, and not using the type of stochastic procedure used in direct simulation
Monte Carlo. We consider only binary collisions, because the probability of multi-body
collision is small at low volume fractions. To make the collision prediction more
computationally efficient, we divide the simulation domain into three-dimensional
lattice cells, and then we find the collision time for each particle by scanning potential
collision partners from the same cell, or from a neighbouring cell. We have used 153

lattice cells with an average of 2–3 particles per cell. The updating of the particle
velocity is done in accordance with (A 3), with the random noise chosen in accordance
with (A 6). At every step, we calculate the drag on the particle, which depends on
its wall-normal position. If a collision occurs within the simulation time step 1t, we
advance all the particles in position and velocities by the time 1tc up to the collision
time. After each collision the post-collision velocities of the colliding particles are
calculated, as described in Goswami & Kumaran (2010b). The parameters used for the
simulations are given in table 1.

4.2. Results of the fluctuating force simulation
The results of the fluctuating force simulations are now compared with the results of
the direct numerical simulations for a suspension with different τv < τc and τc < τv .
First, we compare the mean velocity profiles, the concentration profiles, and the root
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FIGURE 12. Streamwise mean velocity of the particle phase for different particle relaxation
times τv <τcpp (a) and τcpp <τv (b). (a) Simulation run 1, DNS (◦); run 2, DNS (∗); run 4,
DNS (�); run 1, FFS (-·-); run 2, FFS (—); run 3, FFS (−−); and air velocity profile (···). (b)
Simulation run 5, DNS (◦); run 7, DNS (∗); run 8, DNS (�); run 5, FFS (-·-); run 7, FFS (—);
run 8, FFS (−−). Parameters for all the runs are given in table 1.

mean square fluctuating velocities of the particles across the width of the channel. The
second is a comparison of the velocity distributions from the fluctuating force and the
direct numerical simulations, in order to determine whether the non-Gaussian nature
of the velocity distribution functions can be obtained using a Gaussian acceleration
distribution function. The fluctuating force simulations are run for a time period 3–5
times τv , required for steady state to be achieved. Then, we carry out the sampling for
a duration of three times τv .

First, we consider the flow for a volume fraction of 9.44× 10−5, where the viscous
relaxation time is small compared to the time between particle–particle collisions.
Figure 12(a) shows the mean streamwise particle velocities at different wall-normal
positions of the channel for three different values of the particle relaxation time. A
salient feature of these mean velocity profiles is the significant difference between the
particle and fluid mean velocities near the wall. Figure 13 shows the mean slip velocity
scaled with the Stokes terminal velocity, v+ts , of the particles at different wall-normal
positions. The slip velocity is positive near the wall, where particles move faster than
air, and it is negative at the centre, where the particles move slower than the fluid.
From figure 12, it is also clear that locally, the magnitude of the slip velocity is much
larger than the Stokes terminal velocity of the particles in all cases. This indicates that
the gravitational force on the particles is small compared to the drag force due to the
difference in the mean velocity between the fluid and the particles locally. However,
the two have to balance when integrated over the channel cross-section from force
balance, since there is no force exerted by the sidewalls due to the elastic collision law
assumed. For this reason, the slip velocity is positive near the wall and negative at the
centre, in such a way that the macroscopic streamwise force balance on the particle
phase is satisfied.

It should be cautioned that the relative magnitude of the gravitational force and
the drag force depends on the fluid mean velocity. This ratio is small in the present
configuration, because we have considered a channel of width ∼3–4 mm, so that
a quantitative comparison can be made between the DNS and the fluctuating force
simulations. Since the channel width is significantly smaller than that in practical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.294


Turbulent particle–gas suspensions. Part 1 25

101 102
–100

0

100

200

300

400

y+

(V
x+

 –
 U

+
) 

  t
s+

FIGURE 13. Slip velocity of the particle at different cross-stream positions of the channel for
the cases τv <τcpp and τcpp <τv . Simulation run 1, DNS (◦); run 2, DNS (∗); run 4, DNS (�);
run 1 , FFS (-·-); run 2, FFS (—); run 4, FFS (−−); run 5, DNS (M); run 7, DNS (�), run 8,
DNS (O); run 5, FFS, (-·-); run 7, FFS (— ); run 8, FFS (−−). Parameters for all the runs are
given in table 1.
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FIGURE 14. Variation of normalized particle concentration (a) and mean square of the particle
concentration fluctuation (b) at different cross-stream positions in the channel for the cases
τv <τcpp and τcpp <τv . Simulation run 1, DNS (◦); run 2, DNS (∗); run 1, FFS (···); run 2, FFS
(-·-); run 5, DNS (�); run 7, DNS (�); run 5, FFS (−−); run 7, FFS (—). Parameters for all the
runs are given in table 1. For clarity in (b) we have shown results for run 1 and run 5 only.

applications, the fluid velocity is much larger at a fixed Reynolds number. Due to this,
the ratio of the Stokes terminal velocity and the fluid velocity is small.

The variation in normalized particle concentration and fluctuation in particle
concentration are shown in figure 14(a,b), where the normalization has been done
with respect to the average particle concentration across the channel. The particle
concentration profile shows that there is a migration of the particles towards the wall
of the channel at lower particle relaxation time; this is because of the inhomogeneity in
the fluctuating force exerted on the particles. Since the mean square of the fluctuating
force (due to the fluid velocity fluctuations) in the wall-normal direction is lower
near the wall of the channel when compared to the centre, there is a diffusion of
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particles towards the wall. In the case of the velocity profile, it is observed that
there is quantitative agreement between the DNS and fluctuating force simulations,
even though the relaxation time is only about three times the fluid integral time
scale. In the case of the concentration profile, there is a maximum difference of
∼18 % for the lowest viscous relaxation time. Moreover, the concentration profile for
fluctuating force simulation shows a non-monotonic variation of concentration with y+ .
This correlates with the diffusion coefficient data (figure 11), where the cross-stream
diffusion coefficient is highest at position B, and decreases from there both to the
centre and walls. Due to the cross-stream diffusion, particles diffuse from position B
both to the centre and the walls, resulting in a concentration minimum in the region B.
The concentration at the wall increases because the cross-stream diffusivity there goes
to zero. The difference between the DNS and FFS results is possibly because the
particle relaxation time is only about three times larger than the fluid relaxation time
for run 1 (this has the lowest particle relaxation time). Figure 14(b) shows a variation
of mean square of the concentration fluctuation, 〈c′2〉/C2, where c′ is the difference
between the instantaneous and the average concentration at each location, and the
average is taken over time. It is clearly observed that the root mean square of the
concentration fluctuations is small compared to the mean concentration in this case.
The concentration fluctuations increase as the wall is approached, and this increase is
captured by the fluctuating force simulations.

Figure 15 shows the variation of the second moments of the particle velocity
distributions across the channel. Figure 15(a) shows that the mean square velocities
in the flow direction are quantitatively predicted by the fluctuating force simulations.
The streamwise mean square velocities increase as the wall is approached, for two
reasons. The first is the increase in the velocity gradient as the wall is approached,
which results in greater fluctuations due to the cross-stream motion of the particles.
The second is that the mean square of the fluid velocity fluctuations also exhibit
maxima near the wall of the channel, as shown in figure 2. It should be noted that the
particle–wall collisions are considered to be elastic and smooth, so that particle–wall
collisions do not result in fluctuations in the streamwise direction.

The second moment of the velocity distribution 〈v ′xv ′y〉, which is also the particle
phase streaming stress, is also quantitatively predicted by the fluctuating force
simulations. This stress has to go to zero at the wall (figure 15d) for the particle–wall
collision model we have chosen, because particle–wall collisions are elastic and
smooth, and they do not exert any net stress on the particles. The mean square
velocities in the wall-normal and spanwise directions (figure 15b,c) are also in good
agreement, though the difference (the maximum difference is ∼25 %) is larger than
that in the streamwise direction (the maximum difference is <5 %). It should be
noted that the mean square velocities in the wall-normal and spanwise directions are
numerically smaller than those in the streamwise direction in both DNS and FFS; this
could be the reason for the poorer agreement.

Finally, we note that the agreement between the fluctuating force simulation and
direct numerical simulation is relatively poor for the lowest viscous relaxation time
used here, which is only about three times the correlation time for the fluid velocity
fluctuations. The agreement gets much better as the viscous relaxation time is
increased. This is expected, because a Langevin formulation is applicable only when
the fluid velocity correlation time is small compared to that for the particle relaxation
time. The results here indicate that the viscous relaxation time has to be at least about
five times greater than the fluid velocity correlation time for the present model to
provide accurate results.
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FIGURE 15. Variation of the second moments of the particle velocity distribution 〈v′2x 〉 (a),
〈v′2y 〉 (b), 〈v′2z 〉 (c), and 〈v′xv′y〉 (d) at different cross-stream positions. In all the cases the viscous
relaxation time of the particle is less than the particle–particle collision time, τv <τcpp , and
φ= 9.44×10−5. Simulation run 1, DNS (◦); run 2, DNS (∗); run 4, DNS (�); run 1, FFS (-·-);
run 2, FFS (—); run 4, FFS (−−). Parameters for all the runs are given in table 1.

The velocity distribution functions for the case τv < τcpp are shown as a function
of the particle fluctuating velocity in figure 3(a,c,e) for streamwise, wall-normal and
spanwise components of particle velocity fluctuations. The distribution functions have
been calculated in the central 10 % (y+ = 104.0–115.5) of the channel, where the
fluid root mean square velocities are nearly a constant. The first important results
of this comparison is that the fluctuating force simulation is able to quantitatively
capture the distribution of the particle velocities, and not just the moments of
the velocity distribution. The second important result is that the fluctuating force
simulation accurately captures the non-Gaussian nature of the velocity distribution
in the wall-normal and spanwise directions that is observed in the direct numerical
simulations. The agreement in all cases is quantitative up to about three decades of
variation in the distribution function. To validate the efficiency of the fluctuating force
model in capturing the particle velocity distribution function at different cross-stream
positions, we have compared the distribution function of all three components of
velocity fluctuation at three different cross-stream positions (A, B and C in figure 2)
of the channel as shown in figure 16. We find that fluctuating force simulation predicts
the distribution accurately for all the cases and shows the departure from Gaussian at
all the locations. The particle velocity distributions in the wall-normal and spanwise
directions (figure 16b,c) exhibit two distinct regimes: fast decay at low velocities due
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FIGURE 16. Particle velocity distribution function at different cross-stream positions of
the channel for streamwise (a), wall-normal (b), and spanwise (c) components of velocity
fluctuations. The viscous relaxation time of the particle is less than the particle–particle
collision time, τv <τcpp , φ= 9.44×10−5 and simulation run 2, τv = 355.3, τcpp = 1650.3 and
τcpw = 990.1 at positions A, DNS (�), FFS (−−); B, DNS (∗), FFS (—); C, DNS (◦), FFS (-·-).
Positions A, B and C are shown in figure 2. Parameters for run 2 are given in table 1.

to the effect of the fluid velocity fluctuations, and slow decay at larger velocities due
to inter-particle collisions at all the cross-stream positions.

In the channel flow, the turbulent velocity fluctuations are highly anisotropic and
inhomogeneous, and the fluctuation in the streamwise direction is much larger than
that in the wall-normal and spanwise directions. We have analysed the source of
particle velocity fluctuation at three different wall-normal positions (positions A,
B and C in figure 2b). There could be three driving forces for the streamwise
particle velocity fluctuations (Goswami & Kumaran 2010b). The first is due to the
force exerted by the fluid turbulent velocity fluctuations in the streamwise direction,
for which particle mean square velocity is expected to be scaled as Dxxτv . The second
mechanism is the transport of the particles across the streamline due to cross-stream
(y) turbulent velocity fluctuations. The magnitude of the particle velocity fluctuation
in the cross-stream direction is (Dyyτv )

1/2, and this fluctuation transports the particle
a distance (Dyyτv )

1/2× τv in the cross-stream direction. The streamwise mean square
velocity difference due to that cross-stream transport is (Dyyτv )( γ̇ τv )

2 ∼ St2
γ (Dyyτv ),

where St γ = γ̇ τv is the Stokes number based on the mean strain rate. A third
mechanism is due to particle collisions induced by the mean velocity gradient of the
particle phase. The frequency of such collisions is proportional to nd2( γ̇ d), where
γ̇ is the mean velocity gradient for the particle phase, d is the particle diameter,
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τv Stγ τvDxx τvDyy (τvDyy)St
2
γ (γ̇ d)2 φ(γ̇ d)2St3

γ Txx

(a) At position A (y+= 5.8–17.3)

177.66 44.31 2.00 0.026 51.57 0.234 1.927 8.05
355.32 54.50 1.00 0.013 39.00 0.089 1.355 6.36
532.98 63.70 0.67 0.009 35.52 0.054 1.314 5.33
710.64 68.13 0.50 0.007 30.48 0.035 1.035 4.25

(b) At position B (y+= 34.7–46.2)

177.66 10.08 1.10 0.074 7.57 0.012 1.17×10−3 4.38
355.32 15.30 0.55 0.037 8.73 0.007 2.37×10−3 2.96
532.98 17.75 0.36 0.025 7.57 0.004 2.21×10−3 2.32
710.64 23.66 0.27 0.019 10.43 0.002 2.96×10−3 1.88

(c) At position C (y+= 104.0–115.5)

177.66 1.056 0.196 0.040 0.045 1.33×10−4 1.48×10−8 1.83
355.32 1.331 0.098 0.020 0.035 5.29×10−5 1.18×10−8 1.74
532.98 1.535 0.065 0.013 0.031 3.13×10−5 1.07×10−8 1.57
710.64 1.597 0.049 0.010 0.025 1.90×10−5 7.32×10−9 1.41

TABLE 3. Expected magnitudes of the streamwise mean square velocity due to different
sources of streamwise particle velocity fluctuations at positions A, B, C in the channel.

γ̇ d is the velocity difference between particles on streamlines separated by one
particle diameter, and n is the number density of the particles. When expressed in
terms of the volume fraction φ ∼ nd3, the collision frequency is φ γ̇ . The transverse
velocity fluctuation induced due to this collision is proportional to γ̇ d, and so the
particle travels a distance γ̇ dτv in the horizontal direction due to the collision. The
rate of increase in the fluctuating velocity due to collisions is φ γ̇ ( γ̇ d)2St2

γ . The
rate of decrease in the mean square of the streamwise fluctuations is O(Txx/τv ),
where Txx (the streamwise granular temperature) is the mean square of the streamwise
particle velocity fluctuations. From this, we find that the granular temperature Txx ∼
φ (γ̇ d)2St3

γ , where the Stokes number St γ = γ̇ τv .
The expected velocity fluctuations due to these three mechanisms at locations A, B

and C (figure 2b) are shown in table 3. It is clear that the dominant contributions
are from the fluid turbulent velocity fluctuations in the cross-stream direction inducing
streamwise particle velocity fluctuations at locations A and B, whereas the streamwise
fluid turbulent velocity fluctuations provide the maximum contribution to Txx at the
centre of the channel, location C. The generation of particle velocity fluctuations due
to collisions induced by mean shear, which scales as (d γ̇ )2, is not the largest source
of fluctuations even at location A nearest to the wall of the channel, where the mean
strain rate of the particles is the largest. At the centre of the channel, the value of Txx

is significantly larger than τvDxx and (τvDyy)St
2
γ , implying that the largest source of

fluctuations is non-local (i.e. not only due to the sources of fluctuations at the centre
of the channel) and the cross-stream motion of the particle plays an important role in
magnifying the fluctuations at the centre. The opposite is true at location A, where Txx

is smaller than (τvDyy)St
2
γ , due to the transport of Txx from location A towards the

centre of the channel.
We have verified that the second mechanism (streamwise fluctuations induced

by particle transport and cross-stream velocity fluctuations of the particle phase)
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FIGURE 17. Particle velocity fluctuation in the streamwise direction in the presence of mean
flow and cross-stream fluid velocity fluctuation but in the absence of streamwise fluid velocity
fluctuation, when the viscous relaxation time of the particle is less than the particle–particle
collision time, τv <τcpp , φ= 9.44×10−5 at position A (a), B (b) and C (c) in the channel
(shown in figure 2).

is dominant by carrying out simulations where the streamwise turbulent velocity
fluctuations are switched off, and only the cross-stream turbulent fluctuations are
incorporated. The Stokes number in these simulations is changed by changing the
particle density while keeping the flow velocity constant, which in turn changes the
viscous relaxation time of the particles. The results for T0

xx/(Dyyτv ) versus St2
γ , are

shown in figure 17 at different wall-normal positions in the channel. The figures show
two linear regimes. The linear fit at low Stokes number passes through the origin,
as expected, because the streamwise velocity fluctuations should become zero when
the strain rate is zero. The linear fit at high Stokes number, which is of primary
interest in the present analysis, does have a non-zero intercept at zero Stokes number
and also the slope of the fits varies from one wall-normal position of the channel to
the other. The reason for such behaviour could be because fluctuations are not being
generated locally, but are being transported across the channel from regions of high to
low mean square velocities by a mechanism similar to conduction in fluids. We also
consider the situation where streamwise particle velocity fluctuations are induced due
to the streamwise diffusivity Dxx and also for the particle motion across streamlines
due to the cross-stream turbulent fluctuations. In this case, our aim is to verify whether
these two contributions are additive. Figure 18 shows that the contributions are not
additive, since there is a maximum deviation of 40 % of the simulation results from
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FIGURE 18. Scaling for streamwise velocity fluctuation in the presence of shear and the
streamwise fluid velocity fluctuation to depict the contribution of the two sources at position A,
B and C (shown in figure 2) in the channel. The viscous relaxation time of the particle is less
than the particle–particle collision time, τv <τcpp , φ= 9.44×10−5.

the theoretical predictions. This is contrary to the situation for a shear-driven Couette
flow (Goswami & Kumaran 2010b), where there is significantly less inhomogeneity in
the cross-stream direction. This indicates that streamwise particle velocity fluctuations
cannot simply be predicted by adding the contributions from those streamwise and
cross-stream diffusivities.

Next, we analyse the cross-stream velocity fluctuations in the limit where the
viscous relaxation time is small compared to the time between collisions. Cross-stream
particle velocity fluctuations could be due to three reasons. One is cross-stream fluid
velocity fluctuations. The second reason is the collisions between particles travelling
on nearby streamlines with different mean velocities; this mechanism was analysed
by Tsao & Koch (1995). The post-collisional cross-stream velocity is O(d γ̇ ), and
so one would expect the particle velocity fluctuations generated by this mechanism
to be O(d γ̇ ). The frequency of collisions due to this mechanism is O((nd2)(d γ̇ )),
where n is the number of particles per unit volume. Therefore, the rate of increase
in the mean square of the fluctuating velocity due to collisions is O((nd2)(d γ̇ )3) ∼
φ γ̇ (d γ̇ )2. The rate of decrease in the mean square of the cross-stream fluctuations
is O(Tyy/τv ), where Tyy (the cross-stream granular temperature) is the mean square of
the cross-stream velocity fluctuations. From this, we find that the granular temperature
Tyy ∼ φ (d γ̇ )2St γ , where the Stokes number St γ = ( γ̇ τv ). The third mechanism for
the generation of cross-stream fluctuations is the collisions induced by the streamwise
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τv Stγ τvDyy (γ̇ d)2 φ(γ̇ d)2Stγ Txx φ(T1/2
xx τv/d)Txx Tyy

(a) At position A (y+= 5.8–17.3)

177.7 44.31 0.026 0.235 9.81×10−4 8.05 0.197 0.159
355.3 54.50 0.013 0.089 4.57×10−4 6.36 0.277 0.153
533.0 63.70 0.009 0.054 3.24×10−4 5.33 0.319 0.152
710.6 54.82 0.007 0.022 1.16×10−4 4.25 0.303 0.150

(b) At position B (y+= 34.7–46.2)

177.7 10.08 0.074 0.012 1.15×10−5 4.38 0.079 0.242
355.3 15.30 0.037 0.007 1.01×10−5 2.96 0.088 0.195
533.0 17.75 0.025 0.004 7.00×10−6 2.32 0.091 0.180
710.6 23.66 0.019 0.002 5.29×10−6 1.88 0.089 0.163

(c) At position C (y+= 104.0–115.5)

177.7 1.056 1.33×10−4 6.25×10−5 1.33×10−8 1.83 0.021 0.175
355.3 1.331 5.29×10−5 1.73×10−4 6.64×10−9 1.74 0.020 0.160
533.0 1.535 3.13×10−5 3.13×10−5 4.53×10−9 1.57 0.017 0.156
710.6 1.597 1.90×10−5 1.36×10−5 2.87×10−9 1.41 0.014 0.145

TABLE 4. Expected magnitudes of the cross-stream mean square velocity due to different
sources of wall-normal particle velocity fluctuations at positions A, B and C in the channel.

velocity fluctuations. If Txx is the mean square of the streamwise velocity fluctuations
(granular temperature in the streamwise direction), then the frequency of collisions due
to this mechanism is (nd2T1/2

xx ). The post-collisional cross-stream velocity due to this
mechanism is O(

√
Txx), and so the rate of increase of the cross-stream fluctuations

due to this mechanism is O(nd2T3/2
xx ). The rate of decrease of the cross-stream

velocity fluctuations due to viscous drag is O(Tyy/τv ). A balance between these
indicates that Tyy ∼ (nd2T1/2

xx τv )Txx ∼ φ (√Txxτv /d)Txx. The magnitude of particle
velocity fluctuations due to these three mechanisms, as well as the mean square
velocities, are shown in table 4’s different wall-normal positions of the channel.
From these, it is clear that the inter-particle collisions due to the streamwise velocity
fluctuations provide the dominant contribution to the cross-stream velocity fluctuations,
though the contribution due to the cross-stream turbulent diffusivity is also significant
at location B and C. As in the case of streamwise fluctuations, we find that Tyy is
smaller than φ (T1/2

xx τv /d)1/2Txx at location A, but the opposite is true at location C.
This indicates that there is significant cross-stream transport from regions of high to
low fluctuating velocities for the cross-stream fluctuations as well.

Next, we consider the case where the inter-particle collision time is less than
the viscous relaxation time at a solid volume fraction of 7× 10−4. Figure 12(b)
and figure 13 show the mean particle velocity and the mean slip velocity (scaled
with Stokes terminal velocity) at different wall-normal positions in the channel,
and figure 14 shows the concentration profile. It is found that the variation in
the concentration and mean velocity is smaller when the collision time is small
compared to the viscous relaxation time. This is because the fluctuations generated
by inter-particle collisions transport mass and momentum across the flow, thus
homogenizing the concentration and mean velocity fields. We also find that there is
substantial slip at the wall of the channel, and the mean particle velocity is not zero
at the wall. There is, once again, quantitative agreement between the complete DNS
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FIGURE 19. Variation of the second moments of the particle velocity distribution (a) 〈v′2x 〉,
(b) 〈v′2y 〉, (c) 〈v′2z 〉, and (d) 〈v′xv′y〉 at different cross-stream positions. In all the cases the
particle–particle collision time is less than the viscous relaxation time of the particle, τcpp <τv ,
and φ= 7.0×10−4. Simulation run 5, DNS (◦); run 7, DNS (∗); run 8, DNS (�); run 5, FFS
(-·-); run 7, FFS (—); run 8, FFS (−−). Parameters for all the runs are given in table 1.

and the fluctuating force simulation. The ratio of the viscous relaxation time and the
integral time scale varies in the range 10 to 30 for this regime. This explains the
excellent agreement between the DNS and the Brownian dynamics simulations for
wide range in Stokes number. Therefore, the assumption of Gaussian white noise for
the fluctuating force is a good one in this case.

Figure 19 shows the variation of the mean square of the particle velocities in the
three directions, and also the second moment of the fluctuating velocity 〈v ′xv ′y〉 for
τcpp < τv . In this case, collisions tend to equalize the root mean square velocities
across the channel, therefore the variations across the channel are much less than those
for τv < τcpp . The mean square velocity in the streamwise direction is larger than that
in the wall-normal and spanwise directions by a factor of ∼5 in the centre of the
channel, though the streamwise mean square velocity is much larger near the wall.
This is due to an increase in the mean square of the fluid velocity fluctuations near
the wall, which results in a greater fluctuating force in this region. An interesting
observation is that 〈v ′2y 〉, 〈v ′2z 〉 and the concentration are nearly uniform across the
channel. This implies that the component τ p

yy of the streaming stress tensor for the
particle phase, is nearly constant across the channel. (Note that at the very low volume
fractions under consideration, the collisional stress is negligible in comparison to the
streaming stress.) This implies that the net force exerted by the fluid on the particles
in the y and z directions is negligible, because the gradient of the stress is equal to the
net force. The component τ p

xy is found to be non-zero, indicating that there is a local
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FIGURE 20. Particle velocity distribution function at different cross-stream positions of
the channel for streamwise (a), wall-normal (b) and spanwise (c) components of velocity
fluctuations. Particle–particle collision time is less than the viscous relaxation time of the
particle, τcPP <τv , φ= 7.0×10−4, and simulation run 7, at positions A, DNS (�), FFS (−−);
B, DNS (∗), FFS (—); C, DNS (◦), FFS (-·-). Positions A, B and C are shown in figure 2.
Parameters for run 7 are given in table 1.

non-zero net force exerted by the fluid on the particles in the x direction. Therefore,
the particle velocity fluctuations are driven by the force exerted by the fluid velocity
fluctuations in the x direction, and the difference between the particle and fluid mean
velocities; this is then transmitted to the cross-stream directions due to collisions. The
results of the fluctuating force simulations are, once again, in quantitative agreement
with those of the complete direct numerical simulations.

Figure 5(a,c,e) shows the distribution functions for the three directions. As found
in the case of DNS, the particle velocity distribution function in all cases are
non-Gaussian. The velocity distribution in the streamwise direction from DNS is
asymmetric, and the asymmetric nature of the distribution is captured by the
fluctuating force simulation. The distributions in the other two directions seem to show
an exponential variation with velocity in the limit of high velocity; the fluctuating
force simulation captures quantitatively the probability distribution function for the
velocities even when the value of the distribution function is as small as 10−2. The
distribution function of all three components of velocity at three different cross-stream
positions of the channel are compared in figure 20. This figure shows that the
fluctuating force model quantitatively captures the distribution function along different
cross-stream positions as well.
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5. Conclusions
The objective of the present analysis was to model the dynamics of the particle

phase in a channel flow of a turbulent gas–solid suspension using the fluctuating
force model. In this model, the effect of fluid velocity fluctuations are replaced by
a fluctuating force, whose distribution is given by Gaussian white noise. An implicit
assumption in this model is that the viscous relaxation time of the particles is large
compared to the correlation time of the fluid velocity fluctuations, so that the effect
of the fluid on the particles can be represented as Gaussian white noise, therefore
the analysis is restricted to relatively massive particles with high Stokes number. The
Reynolds number based on the particle diameter and fluid density is relatively small
(less than ∼10), so that the drag force can be described by a modification of Stokes’
drag law. The strategy in the modelling procedure is to obtain the variance of this
noise from the variance of the fluid velocity fluctuations in the gas phase evaluated
using DNS. This fluctuating force is then incorporated into a Langevin simulation
model for the particle phase alone, and the particle concentration, mean velocity
and velocity variances are calculated. The results are compared with complete direct
numerical simulations which incorporate the particles as well, in order to examine
whether this model can be used for quantitative prediction of the dynamics of the
particle phase in a gas–solid suspension.

A limitation of our calculation is that in the direct numerical simulations, we have
only considered the effect of the fluid velocity fluctuations on the particle phase
(one-way coupling), and we have neglected the effect of the particles on the fluid
phase. This is because our objective is to model the effect of the turbulent velocity
fluctuations on the dynamics of the particle phase, which can then be incorporated
into theories for granular flows. This has enabled us to evaluate the fluid velocity
fluctuations in a simulation where the particles do not exert any reverse force on the
fluid phase. However, in a more comprehensive model, it is also necessary to examine
the effect of particles on the fluid velocity fluctuations, since the modification of the
fluid velocity fluctuations could, in turn, alter the fluctuating force on the particles.
Therefore, this should only be considered as a first step in a more complete model
where the effect of the particles on the fluid phase is also incorporated.

In Goswami & Kumaran (2010b), we modelled the Couette flow of a turbulent
gas–particle suspension in the absence of gravity using the fluctuating force model,
where the effect of the turbulent velocity fluctuations on the particle phase was
replaced by white noise. This model gave quantitatively accurate results when the
relaxation time of the particles is large compared to the fluid integral time scale.
However, the Couette flow has some features which make it amenable to description
by a simple model. Among these are the small mean velocity and the nearly constant
root mean square of the fluctuating velocities at the centre of the channel; in addition,
it was found that the acceleration distributions are also well described by Gaussian
distributions in Couette flow. The objective of the present analysis was to examine
whether a more complicated and realistic turbulent gas–particle flow, which is the
pressure-driven flow in a channel, can be modelled using the fluctuating force model.

The flow in a channel is more complicated than Couette flow for a number of
reasons. There is a sharp gradient in the mean fluid velocity near the wall of the
channel, and the velocity increases to a maximum near the centre. The distribution
of fluctuating velocities is highly anisotropic, and the root mean square velocity in
the flow direction is much larger than that in the gradient and spanwise directions.
In addition, there is substantial slip between the fluid and particle phase at the
wall. A more important complication is that the root mean square velocity shows
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large variations across the channel; it has a pronounced maximum near the wall,
and decreases towards the centre of the channel. This is in contrast to Couette flow,
where the root mean square velocity is approximately constant in the central region,
and decreases to zero only within a thickness of ∼5 wall units from the wall. Our
simulations also show that the fluid velocity fluctuations are also anisotropic near the
centre of the channel, and both the skewness and flatness are O(1). The purpose of
the present analysis was to examine whether a fluctuating force model can be used in
a channel flow as well, since this would provide a first step towards wider application
for industrially relevant systems such as fluidized and circulating beds.

For analysing the fluid velocity fluctuations, three regions in the channel of
thickness ∼10 wall units at different locations in the wall-normal direction were
chosen, one of which was near the wall where the root mean square fluid velocity
fluctuations pass through a maximum, the second was at the centre of the channel, and
the third was in-between.

First, we considered the regime where the viscous relaxation time is smaller than the
time between collisions. In the flow direction, the particle velocity and acceleration
distributions were found to be highly skewed at the centre of the channel, but the
skewness is less at the other two locations. The acceleration distributions in the
other two directions were found to be close to Gaussian distributions at all locations,
though the velocity distributions showed the slowly decaying tails (similar to those
observed in Couette flow) due to collisions between particles induced by fluid velocity
fluctuations in the flow direction. In the regime where the collision time is small
compared to the viscous relaxation time, we find that the velocity distributions are
different from Gaussian distributions, but the anisotropy in the distributions is less.
It is also found that an estimate of the fluctuating particle acceleration distribution,
obtained from the fluctuating velocity in the fluid, is in very good agreement with the
actual acceleration distribution on the particles evaluated using DNS. A similar feature
was observed in the case of Couette flow as well. However, it is necessary to examine
whether this approximation is also valid when the effect of the particles on the fluid
turbulence (reverse coupling) is included; the reverse coupling has not been included
in the present calculation.

The time correlations of the fluid velocity fluctuations and the acceleration
fluctuations on the particles were evaluated and compared. It was found that the time
correlation functions for the fluid in the fixed Eulerian were not in agreement with the
time correlation of the acceleration of the particles. However, the time correlations of
the particle acceleration were in good agreement with the velocity time correlations in
the fluid in a ‘moving Eulerian’ reference frame, moving with the mean velocity of
the fluid. There are two reasons for this. Firstly, the particle mean velocity is close to
the fluid mean velocity in most of the channel, though there is slip at the wall. The
second reason is that the mean square of the spanwise and wall-normal components
of particle fluctuating velocity is much smaller than the fluid fluctuating velocity. Due
to this, it is sufficient to calculate the velocity time correlation in a reference frame
moving with the fluid mean velocity. It should be noted that there is substantial slip
between the particle mean velocity and the fluid mean velocity very close to the wall
of the channel, between 1 and 10 wall units away from the wall. However, the mean
square of the fluctuating velocity decreases to zero at the wall, and it is numerically
small in the region 1–10 wall units away from the wall. Therefore, any errors due to
the use of the moving Eulerian reference frame does not seem to affect the particle
acceleration statistics in the fluctuating force simulations.
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The variances of the fluctuating force were calculated from the fluid velocity
fluctuations in a moving Eulerian reference frame, and these were inserted into the
fluctuating force simulations. The results of the simulations were compared with the
results of the DNS. In the limit where the viscous relaxation time is small compared
to the time between collisions, it was found that the results of the two simulations
for the mean velocity and the root mean square velocity in the flow direction are in
very good agreement. When the viscous relaxation time is only about three times the
fluid velocity autocorrelation time, there is a difference of ∼18 % in the results for the
concentration field and the mean square velocities in the wall-normal and spanwise
directions. When the particle viscous relaxation time is larger, there is quantitative
agreement for the concentration, mean velocity and the mean square velocities.

In addition to the mean and the mean square velocities, we have also examined
the velocity distribution functions at the centre of the channel. We find that the
fluctuating force simulation is able to quantitatively capture the non-Gaussian nature
of the velocity distribution at the centre of the channel. It should be noted that we
have used a Gaussian force distribution in the fluctuating force simulation, whereas
the actual distribution of the particle acceleration was found to be highly non-Gaussian
in the direct numerical simulations. The reason for this agreement is as follows. The
mean square fluid velocity in the centre of the channel is actually much smaller
than the maximum mean square velocity at about twenty wall units away from the
wall. Consequently, the acceleration fluctuations on the particles at the centre is small
compared to that near the wall, and the source of fluctuating energy is primarily
located in the region ∼10–20 wall units away from the wall, where the fluid velocity
fluctuations pass through a maximum. The particle fluctuating velocity at the centre is
primarily determined by the transport of particles across the flow from the wall region
due to fluctuations, and the damping effect due to fluid drag. Since the fluid velocity
distribution near the wall (at the position of maximum mean square fluid velocity)
is a Gaussian distribution, this is accurately modelled in the fluctuating force model.
Therefore the model is also able to capture, quantitatively, the fluctuations near the
centre, though the acceleration distribution in the centre is not Gaussian.

The main conclusions of the present analysis are as follows.
(a) The fluctuating force model does accurately capture the particle dynamics in a

channel flow, where there are large variances in the turbulent fluid velocity fluctuations
across the channel, when one-way coupling (the effect of fluid on the particles)
is included, provided care is taken in determining the autocorrelations of the fluid
velocity fluctuations which are used to specify the Gaussian force distributions.

(b) It is necessary to evaluate the autocorrelations of the fluid velocity fluctuations
in a ‘moving Eulerian’ reference frame, moving with the fluid mean velocity, instead
of a fixed reference frame.

(c) The fluctuating force model quantitatively predicts the mean square of the
particle velocity fluctuations. In addition, the form of the particle velocity distribution
is well predicted even in situations where this is very different from a Gaussian
distribution.

(d) From direct numerical simulations, the fluid velocity distributions are well
approximated by Gaussian distributions in regions where the amplitude of the
fluctuations is at a maximum. However, the fluid velocity distributions are very
different from Gaussian distributions near the wall. Despite this, the fluctuating force
model is successful near the wall as well, probably because the dominant contribution
to the particle velocity fluctuations is the mean fluid shear, and not the turbulent
fluctuations (which decrease to zero as the wall is approached).
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It is necessary to carry out further research to examine whether the model is
applicable in the presence of two-way coupling, where the effect of the particles on
the fluid is incorporated.

The authors would like to thank the Department of Science and Technology,
Government of India, for financial support.

Appendix. Fluctuating force model
In a discrete particle simulation (event-driven simulations, for example), the collision

term is explicitly modelled in the form of instantaneous collisions between particles.
The effect of the mean shear is also explicitly included due to the variation of the
particle mean velocity with position. Therefore, it is necessary to modify the rules for
particle advancement between collisions in order to include the effect of the random
noise (representing the diffusivity in (4.1)) and the particle drag (which is the fourth
term on the left in (4.1)). If we consider a steady state in which the mean shear and
collisions are neglected, then the Boltzmann equation (4.1) reduces to

∂ f (v)
∂ t
= 1
τv

∂ (vif (v))
∂ vi

+Dij(x)
∂ 2f (v)
∂ vi∂ vj

. (A 1)

Equation (A 1) is equivalent to the Fokker–Planck equation, with the position-
dependent coefficient of diffusion in velocity space, Dij(x), given by

Dij(x) =
∫ ∞

0
dt′ 〈a′i (t′ )a′j (0)〉 =

1
τ 2
v

∫ ∞
0

dt′ 〈u′i (t′ )u′j (0)〉 . (A 2)

Here a′ is the acceleration fluctuation, which is equal to u′/τv if we only consider
the acceleration due to the fluid velocity fluctuations and assume Stokes’ law. Implicit
in (A 2) is the assumption that the decay time for the fluid velocity fluctuations is
small compared to the viscous relaxation time or the collision time, so that the effect
of fluid velocity fluctuations can be accurately represented by Gaussian white noise.
The diffusion tensor Dij is a symmetric tensor, and has dimensions of (length2/time3).
When the fluid is driven by the shear in the x–y plane, the components Dxz and Dyz are
zero because the probability distribution for the velocity fluctuation in the z direction
is an even function of u′z.

The detailed description of the Langevin formulation of particle equation of motion
is given in Goswami & Kumaran (2010b). In the case of particle suspension in a
gravity-driven channel flow, the equation for particle motion between collisions is
modified as follows:

dvi

dt
= − vi− ūi(xp)

τv
+Fi(t)+ gex, (A 3)

where ūi(xp) is the mean velocity at the local particle position, Fi is a stochastic
force which is generated due to turbulence fluctuations. The force magnitudes
cannot be generated in the usual manner used for isotropic Gaussian noise, because
the off-diagonal component Dxy of the diffusion matrix in (A 2) is non-zero. The
magnitude of the force is determined by generating three independent normal random
deviates, ζ1, ζ2 and ζ3, with zero mean and unit variance. The components of the
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force, Fi, are then expressed as

Fx =
√

2Dxxζ1√
1t

, (A 4)

Fy =
√

2Dyy√
1t

(
Dxyζ1√
DxxDyy

+ ζ2

√
1− D2

xy

DxxDyy

)
, (A 5)

Fz =
√

2Dzzζ3√
1t

. (A 6)

Equation (A 3) is combined with instantaneous collisions when two particles come
in contact using the collision laws for spherical elastic particles, to carry out the
‘fluctuating force’ simulation for the particle phase.
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