
TLP 14 (3): 293–337, 2014. C© Cambridge University Press 2012

doi:10.1017/S1471068412000397 First published online 3 December 2012

293

GEM: A distributed goal evaluation algorithm
for trust management

DANIEL TRIVELLATO and NICOLA ZANNONE

Eindhoven University of Technology, Eindhoven, The Netherlands

(e-mail: {d.trivellato,n.zannone}@tue.nl)

SANDRO ETALLE

Eindhoven University of Technology, Eindhoven, The Netherlands

and

University of Twente, Enschede, The Netherlands

(e-mail: s.etalle@tue.nl)

submitted 30 May 2011; revised 13 March 2012; accepted 24 September 2012

Abstract

Trust management is an approach to access control in distributed systems where access

decisions are based on policy statements issued by multiple principals and stored in a

distributed manner. In trust management, the policy statements of a principal can refer to

other principals’ statements; thus, the process of evaluating an access request (i.e., a goal)

consists of finding a “chain” of policy statements that allows the access to the requested

resource. Most existing goal evaluation algorithms for trust management either rely on a

centralized evaluation strategy, which consists of collecting all the relevant policy statements

in a single location (and therefore they do not guarantee the confidentiality of intensional

policies), or do not detect the termination of the computation (i.e., when all the answers of a

goal are computed). In this paper, we present GEM, a distributed goal evaluation algorithm for

trust management systems that relies on function-free logic programming for the specification

of policy statements. GEM detects termination in a completely distributed way without

disclosing intensional policies, thereby preserving their confidentiality. We demonstrate that

the algorithm terminates and is sound and complete with respect to the standard semantics

for logic programs.

KEYWORDS: trust management, distributed goal evaluation, policy confidentiality

1 Introduction

The widespread availability of the Internet has led to a significant increase in

the number of collaborations, services, and transactions carried out over networks

spanning multiple administrative domains (e.g., web services). Such collaborations

are frequently characterized by the interaction of users and institutions (hereafter

indistinctly referred to as principals) who do not know each other beforehand. For

this reason, in such distributed settings, attribute-based approaches to access control

are mostly preferred to identity-based solutions (Ellison et al. 1999). Consider,

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

294 D. Trivellato et al.

for instance, an international medical research project Alpha involving several

companies worldwide. Project Alpha is funded and coordinated by the multinational

pharmaceutical company mc which, among its tasks, appoints the partners of the

project consortium. In this scenario, it is likely that company mc does not know

the project members of each partner company personally, i.e., does not know their

identity. Therefore, rather than on the identity of the project members, the policies

regulating the access to project’s documents will be based on their attributes (e.g.,

project membership, specialization) and their relationships with other principals

(e.g., partner companies, departments within a company).

Trust management is an approach to access control in distributed systems where

access decisions are based on the attributes of principals, which are attested by

digitally signed certificates called digital credentials (Blaze et al. 1996). Digital

credentials (or simply credentials) are the digital counterpart of paper credentials.

Credentials are defined and derived by means of policy statements that specify

the conditions upon which a credential is issued, where conditions are in turn

represented by credentials. A distinguishing ingredient of trust management is that

all the principals in a distributed system are free to define such policy statements and

determine where to store them. The set of policy statements defined by a principal

forms the policy of that principal. In the scenario above, for instance, the rules of

company mc dictating the conditions for the membership of a user to project Alpha

(e.g., a Master degree in chemistry) form the policy of mc. These statements can be

stored by mc or at another principal’s location (e.g., by each partner company).

In trust management languages, policy statements are often expressed as Horn

clauses (Li and Mitchell 2003) where each atom represents a credential, and is

possibly annotated with the storage location of the statements defining the credential.

Depending on the language, the location can be expressed implicitly (Li et al. 2003;

Czenko and Etalle 2007) or explicitly (Becker 2005; Alves et al. 2006). While

typically principals do not have direct access to each other’ policies, the statements

of a principal can refer to other principals’ policies, thereby delegating authority

to them. For instance, assume that a hospital h authorizes the members of project

Alpha certified by the local pharmaceutical company c1 to access the (anonymized)

medical records of its patients suffering from genetic diseases. The policies governing

this scenario can be represented by the following clauses:

1. mayAccessMedRec(h,X)← memberOfAlpha(c1,X).

2. memberOfAlpha(c1,X)← projectPartner(mc,Y),memberOfAlpha(Y ,X).

3. projectPartner(mc,c2).

4. projectPartner(mc,c3).

5. projectPartner(mc,c4).

6. memberOfAlpha(c2,X)← memberOfAlpha(c1,X).

7. memberOfAlpha(c2,alice).

8. memberOfAlpha(c3,bob).

9. memberOfAlpha(c4,charlie).

where the first parameter of each atom denotes the location where the credential that

the atom represents is defined. Here, hospital h relies on the policy statements of c1

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 295

to determine who is authorized to access the hospital’s medical records (clause 1); in

turn, c1 relies on the policy statements of mc and the partner companies appointed

by mc for the definition of project Alpha ’s members (clause 2). Therefore, the

process of evaluating a request to access the hospital’s records (i.e., a goal) consists

of deriving a “chain” of policy statements delegating the authority from hospital

h (i.e., the resource owner) to the members of project Alpha (i.e., the authorized

principals). This process, referred to as credential chain discovery (Li et al. 2003),

can be addressed using goal evaluation algorithms.

Since in trust management policies are stored at different locations, goal evaluation

algorithms require principals to disclose their policy statements to other principals

to enable credential chain discovery. In particular, for a successful computation,

principals need to disclose at least (part of) their extensional policy, that is, the

credentials that can be derived from their policy and are required for an access

decision. For example, suppose that hospital h wants to determine who can access

the medical records of its patients. To compute the answers of this goal, it is clear

that c1 has to disclose to h the credentials certifying all the project members. Most

of the existing goal evaluation algorithms (e.g., Li et al. 2003; Czenko and Etalle

2007), however, rely on a centralized evaluation strategy and require principals to

disclose also (part of) their intensional policy, i.e., the policy statement used to derive

those credentials (e.g., clause 2 in the example policy).

We argue that one of the advanced desiderata of goal evaluation algorithms

for trust management is that the amount of information about intensional policies

that principals reveal to each other should be minimized. In fact, intensional policies

might contain sensitive information about the relationships among principals, whose

disclosure would leak valuable business information that can be exploited by other

principals in the domain (e.g., rival companies) (Yu and Winslett 2003). For example,

if c1’s policy was disclosed to other principals for evaluation (e.g., to hospital h), the

involvement of mc in project Alpha along with the list of all project partners would be

exposed. As a consequence, some competitors of mc could start investing on similar

projects, or could try to get at the project members to acquire sensitive information

and project results. Furthermore, the loss of confidentiality of intensional policies

can result in attempts by other principals to influence the policy evaluation process

(Stine et al. 2008), and allows adversaries to know what credentials they need to

forge to illegitimately get access to a resource (Frikken et al. 2006).

To protect the confidentiality of intensional policies, it is necessary to design a

completely distributed goal evaluation algorithm that discloses as few information

on intensional policies as possible. Since bottom-up approaches to goal evaluation

[e.g., fixpoint semantics (Park 1969), magic templates (Ramakrishnan 1991) and

magic sets (Chen 1997)] require knowledge of all the policy statements that depend

on a given credential, they do not represent an applicable solution to our problem.

Hence, a top-down approach to goal evaluation needs to be employed. The design of

a distributed top-down algorithm, however, requires addressing two main problems:

(a) loop detection and (b) termination detection. In addition, to reduce network

overhead, the goal evaluation algorithm should attempt to decrease the number of

messages that principals exchange.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

296 D. Trivellato et al.

mayAccessMedRec(h1, X) ��memberOfAlpha(c1, X)

��

��

������������������

����������������� projectPartner(mc, Y)

memberOfAlpha(c2, X)

��

memberOfAlpha(c3, X) memberOfAlpha(c4, X)

Fig. 1. Call graph of the evaluation of the example policies.

Loops are formed when the evaluation of a goal leads to a new request for the

same goal. In our scenario, for example, to determine the set of project members

without disclosing its intensional policy to hospital h, c1 should first request the list

of project partners to mc, and then the list of their project members to c2, c3, and

c4. Since c2 in turn relies on the policy statements of c1 to determine its project

members, c2 would pose the same request back to c1, forming a loop. Figure 1 shows

the “call graph” originating from this sequence of requests. Intuitively, c1 should

detect the loop and refrain from evaluating c2’s request, as doing so could lead to a

non-terminating chain of requests. Even though in the example scenario loops could

be avoided, for instance, by requiring a single company (e.g., mc) to define the set

of project members, this cannot be guaranteed in distributed systems characterized

by the absence of a coordinating principal. Examples of such scenarios include self-

organizing networks (Di Marzo Serugendo et al. 2004) and access control policies

based on independent information sources [e.g., the Friend of a Friend – FOAF –

project (http://www.foaf-project.org/)].

Existing goal evaluation algorithms employ tabling techniques (Tamaki and Sato

1986; Vieille 1987; Bry 1990; Chen and Warren 1996) for the detection of loops.

Although some of these algorithms resort to a distributed tabling strategy (e.g., Hu

1997; Damásio 2000), they rely on centralized data structures to detect termination –

i.e., to detect when all the answers have been collected – thus leaking some policy

information. In fact, the real challenge in designing a goal evaluation algorithm

that does not disclose intensional policies lies in detecting termination distributedly.

In the example, we have the following possible answer flow: c3 returns bob as

answer to c1, which forwards it to h and c2; c4 returns charlie as answer to c1; c1

sends charlie as additional answer to h and c2; c2 returns alice, bob, and charlie

as answer to c1, which sends alice as additional answer to h and c2. At this point,

all the requests have been fully evaluated, but c1 does not know whether c2 will

ever send additional answers. In other words, c1 is waiting for c2 to announce

that its evaluation has terminated, and in turn c2 is waiting for c1 to announce

that its evaluation has terminated. This situation is not acceptable in the context

of access control, where a decision (positive or negative) always needs to be made.

A few top-down goal evaluation algorithms are able to detect the termination of a

computation distributedly (Alves et al. 2006; Zhang and Winslett 2008); however,

they do not detect when the single goals within a computation are fully evaluated.

In top-down goal evaluation, detecting when the evaluation of a goal has terminated

is necessary to allow (a) for memory deallocation and (b) the use of negation, which

is employed by some systems to express non-monotonic constraints (e.g., separation

of duty) (Czenko et al. 2006; Dong and Dulay 2010).

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 297

Finally, another non-trivial issue in designing a distributed goal evaluation

algorithm is determining when a principal should send the answers to a request.

The simplest solution is to force each principal to send an answer as soon as

the principal has computed it, as done, for example, in Alves et al. (2006). This is,

however, suboptimal from the viewpoint of network overhead; in the example above,

c1 eventually sends three distinct messages to h and c2, one for each answer. A more

network-efficient solution would be for c1 to wait for the answers from c3 and c4

before sending its answers to the other principals. A näıve “wait” mechanism, on the

other hand, might cause deadlocks. For instance, if c1 also waits for c2’s answers,

the computation deadlocks. In a trust management system, where network latency

is likely to be a bigger bottleneck than computational power, it is preferable to have

a mechanism that allows principals to wait until they collect the maximum possible

set of answers before sending them to the requester, while avoiding deadlocks. Even

though this solution may delay the identification of the answers of ground goals

(i.e., goals expecting a single answer), the “superfluous” computed answers might

become relevant for the evaluation of other goals, reducing the delay in future

computations.

In this paper we present GEM, a goal evaluation algorithm for trust manage-

ment systems that addresses all the above-mentioned problems. In GEM, policy

statements are expressed as function-free logic programming clauses; each statement

is stored by the principal defining it. GEM computes the answers of a goal in

a completely distributed way without disclosing intensional policies of principals,

thereby preserving their confidentiality. The algorithm deals with loops in three

steps: (1) detection, (2) processing, and (3) termination. To enable loop detection,

we employ a distributed tabling strategy and associate an identifier to each request

for the evaluation of a goal. After its detection, a loop is processed by iteratively

evaluating the goals in the loop until a fixpoint is reached, i.e., no more answers of

the goals in the loop are computed, at which point their evaluation is terminated.

This three-steps approach enables GEM to detect both when the whole computation

has terminated, and when the single goals within a computation are fully evaluated,

allowing for the use of non-monotonic constraints in policies. In addition, by

exploiting the information stored in the table of a goal, principals are able to

delay the response to a request until a “maximal” set of answers of the goal has

been computed without running the risk of deadlocks. We demonstrate that GEM

terminates and is sound and complete with respect to the standard semantics for logic

programs.

The remainder of the paper is structured as follows. Section 2 presents pre-

liminaries on logic programming and Selective Linear Definite (SLD) resolution.

Section 3 introduces GEM and its implementation. Section 4 demonstrates the

soundness, completeness, and termination of the algorithm, and discusses what

information is disclosed by GEM during the evaluation of a goal. Section 5 presents

the results of experiments conducted to evaluate the performance of GEM. A

possible extension of GEM to deal with negation is presented in Section 6. Section 7

discusses related work. Finally, Section 8 concludes and gives directions for future

work.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

298 D. Trivellato et al.

2 Preliminaries on logic programming

In this section we revisit the concepts of logic programming (Apt 1990) that are

relevant to this paper. In particular, we review function-free logic programs.

An atom is an object of the form p(t1, . . . , tn) where p is an n-ary predicate symbol

and t1, . . . , tn are terms (i.e., variables or constants). An atom is ground if t1, . . . , tn
are constants. A clause is an expression of the form H ← B1, . . . , Bn (with n � 0),

where H is an atom called head and B1, . . . , Bn (called body) are atoms. If n = 0, the

clause is a fact. A program is a finite set of clauses. We say that an atom A is defined

in the program P if and only if there is a clause in P that has an atom A′ in its

head such that A and A′ are unifiable. Finally, a goal is a clause with no head atom,

i.e., a clause of the form ← B1, . . . , Bn. Without loss of generality, in this paper, we

restrict to goals with 0 � n � 1, that is, consisting of at most one atom. The empty

goal is denoted by �.

SLD resolution (Selective Linear Definite clause resolution) (Kowalski 1974) is

the standard operational semantics for logic programs. In this paper, we refer to

SLD resolution with leftmost selection rule (extending the algorithm to an arbitrary

selection rule is trivial). Computations are constructed as sequences of “basic”

steps. Consider a goal G0 = ← B1, . . . , Bn and a clause c in a program P . Let

H ← B′1, . . . , B
′
m be a variant of c variable disjoint from ← B1, . . . , Bn. Let B1 and H

unify with most general unifier (mgu) θ. The goal G1 = ← (B′1, . . . , B
′
m, B2, . . . , Bn)θ is

called a resolvent of G0 and c with selected atom B1 and mgu θ. An SLD derivation

step is denoted by G0
θ→ G1. Clause H ← B′1, . . . , B

′
m is called input clause, and atom

B1 is called the selected atom of G0.

An SLD derivation is obtained by iterating derivation steps. The sequence δ :=

G0
θ1→ G1

θ2→ · · · θn→ Gn

θn+1→ · · · is called a derivation of P ∪ {G0}, where at every step

the input clause employed is variable disjoint from the initial goal G0 and from the

substitutions and the input clauses used at earlier steps. Given a program P and a

goal G0, SLD resolution builds a search tree for P ∪{G0}, called (derivation) tree of

G0, whose branches are SLD derivations of P ∪{G0}. Any selected atom in the SLD

resolution of P ∪ {G0} is called a subgoal. SLD derivations can be finite or infinite.

If δ := G0
θ1→ · · · θn→ Gn is a finite prefix of a derivation, we say that θ = θ1 · · · θn is

a partial derivation and θ is a partial computed answer substitution of P ∪ {G0}. If

δ ends with the empty goal �, θ is called computed answer substitution (c.a.s.). Let

G0 = ← B1. Then, we also call θ a solution of G0 and B1θ an answer of G0. The

length of a (partial) derivation δ, denoted by len(δ), is the number of derivation

steps in δ.

The most commonly employed technique to prevent infinite derivations is tabling

(Tamaki and Sato 1986; Vieille 1987; Bry 1990; Chen and Warren 1996; Guo and

Gupta 2001; Shen et al. 2001; Zhou and Sato 2003). Given a goal G0 consisting of

an atom defined in a program P , tabling-based goal evaluation algorithms create

a table for each (sub)goal in the SLD resolution of P ∪ {G0}, to keep track of the

previously evaluated goals and thus avoid the reevaluation of a subgoal. Tabling

algorithms differ mainly in the data structures employed for the evaluation of goal

G0. Linear tabling (Shen et al. 2001; Zhou and Sato 2003) and Dynamic Reordering

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 299

of Alternatives (DRA) (Guo and Gupta 2001), for instance, evaluate G0 by building

a single derivation tree of G0. In SLG resolution (Chen and Warren 1996), on the

other hand, goal G0 is evaluated by producing a forest of (partial) derivation trees,

one for each subgoal in the resolution of P ∪ {G0}. In SLG, the evaluation of G0

starts by ordinary resolution with the clauses in P ; as in SLD, a subgoal G1 is

selected in a resolvent of G0. If a tree for a variant of G1 already exists, G1 is

added to the set of consumers of the corresponding table. Otherwise, a tree for G1

is created. When a new answer of a subgoal is found, it is stored in the respective

table and it is propagated to its consumer subgoals. The evaluation of a goal by

means of a forest of derivation trees proposed by SLG resolution is at the basis of

the distributed goal evaluation algorithm proposed in this paper.

3 The GEM algorithm

In this section we first introduce some definitions and basic assumptions underlying

our work. Then, we present GEM and discuss its implementation.

3.1 Definitions and assumptions

Similar to other works on trust management (e.g., Li et al. 2003; Alves et al. 2006),

we consider policy statements expressed as function-free logic programming clauses.

As in most trust management systems, policy statements are stored at different

locations: each location is controlled by a principal who is responsible for defining

and evaluating the policy statements at that location. We assume a one-to-one

correspondence between locations and principals; accordingly, we use a principal’s

identifier to refer to the location she controls. To represent the location where a

policy statement is stored, we require every atom to have the form p(loc, t1, . . . , tn),

where loc is a mandatory term that represents the location where the atom is defined,

and t1, . . . , tn are terms. For instance, p(bob, . . .) refers to p as defined by Bob and

thus stored at Bob’s location.

Let a be a principal in the trust management system. We call the set of policy

statements defined by a the local trust management policy (or simply the policy) of

principal a. The set of clauses with non-empty body in a’s policy is the intensional

policy of a, while the set of facts that can be derived from principal a’s policy forms

the extensional policy of a. The set of all the local policies in the trust management

system is called global policy.

Since we consider the confidentiality of intensional policies to be a main concern

in trust management systems, we assume that principals do not have access to the

policies at other principals’ locations. As a consequence, the answers of a goal cannot

be derived by building the derivation tree of the goal as done by SLD resolution,

as this might involve input clauses defined by different principals. Similar to SLG

resolution, in GEM a principal computes the answers of a goal defined in her policy

by building the partial derivation tree of the goal. Different from a derivation tree,

in the partial derivation tree of a goal G only the first derivation step is obtained by

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

300 D. Trivellato et al.

resolution with the clauses defining G; all the subsequent steps are by substitution

with the solutions of the subgoals of G.

Definition 1

Let G = ← A be a goal and PA be the policy in which A is defined. A partial

derivation tree of G is a derivation tree with the following properties:

• the root is the node (A← A);

• there is a derivation step (A ← A)
θ→ (A ← B1, . . . , Bn)θ, where (A ← A) is

the root, iff there exists a clause H ← B1, . . . , Bn in PA (renamed so that it is

variable disjoint from A) s.t. A and H unify with θ = mgu(A,H);

• let (A ← B1, . . . , Bn) be a non-root node, and Ans be a set of answers of goal

← B1; for each answer B′1 ∈ Ans (renamed so that it is variable disjoint from

B1) there is a derivation step (A ← B1, . . . , Bn)
θ→ (A ← B2, . . . , Bn)θ, where

θ = mgu(B1, B
′
1);

• for each branch (A← A)
θ0→ (A← B1, . . . , Bn)θ0

θ1→ . . .
θn→ (A← �)θ0θ1 · · · θn, we

say that Aθ (with θ = θ0θ1 · · · θn) is an answer of G using clause H ← B1, . . . ,

Bn. �

Note that, to enable the evaluation of an atom B1 in the partial derivation tree of

goal G, the location where B1 is defined must be known by the principal evaluating

G. A straightforward solution for guaranteeing that this requirement is satisfied

would be to impose the location parameter of each atom in a policy to be ground

at policy definition time. This, however, would limit the constraints that a principal

can express. Consider, for instance, clause 2 on page 2. In the clause, the location

parameter of atom memberOfAlpha(Y ,X) is determined at runtime based on the

answers of projectPartner(mc,Y). Therefore, rather than relying on a “static” safety

condition, we require the location parameter of an atom to be ground when the

atom is selected for evaluation. If this is not the case, the computation flounders.

A discussion on how to write flounder-free programs and queries is orthogonal

to the scope of this paper. Here, we just mention that there exist well-established

techniques based on modes (Apt and Marchiori 1994) which guarantee that certain

parameters of an atom are ground when the atom is selected for evaluation.

Finally, we define a classification criteria for goal evaluation algorithms based

on disclosed policy information. We will use such criteria to compare GEM

with the existing algorithms (see Section 7). The classification criteria consists

of two elements: an extensional and an intensional policy confidentiality level.

Intuitively, the first characterizes algorithms in terms of how much information

about extensional policies they disclose during goal evaluation, while the second

refers to the disclosure of intensional policies. Confidentiality levels define an

increasing scale used to characterize from the most conservative approaches where no

policy information is disclosed, to the least confidentiality-preserving solutions which

disclose respectively extensional and intensional policies in full. The extensional and

intensional confidentiality levels are presented in Figure 2. In a goal evaluation

algorithm classified as E1-I2, for example, principals disclose to a requester all the

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 301

Level Disclosed Information

E0 None

E1 Answers of a goal

(a)

Level Disclosed Information

I0 None

I1 Part of the dependency graph

I2 Full dependency graph

I3 Clauses
(b)

Fig. 2. Classification of goal evaluation algorithms in terms of disclosed policy information.

(a) Extensional policy confidentiality levels; (b) intensional policy confidentiality levels.

answers of the requested goals. In addition, all the dependencies among the goals in

the global policy are disclosed to the principals responsible for goal evaluation.

3.2 Intuition

In this section we describe how GEM computes the answers of a goal. Given a

goal G, GEM computes the answers of G by evaluating one branch of its partial

derivation tree at a time; this may involve the generation of evaluation requests for

subgoals that are processed by different principals at different locations. When all

the answers from each branch of the tree of G have been computed, they are sent to

the principal(s) that requested the evaluation of G. G is completely evaluated when

no more answers of G can be computed.

To illustrate how GEM works in detail, we consider the scenario presented

in Section 1, where several pharmaceutical companies collaborate in the research

project Alpha. However, we slightly modify the global policy to better focus on the

algorithm’s features. In particular, we assume that company c1 already knows which

are the partner companies in project Alpha, without needing to request them to mc,

and we reduce the partner companies to c2 and c3 only. Furthermore, we consider

a research institute ri that works on project Alpha in partnership with company c2.

As a result, we have the following global policy:

1. memberOfAlpha(c1,X)← memberOfAlpha(c2,X).

2. memberOfAlpha(c1,X)← memberOfAlpha(c3,X).

3. memberOfAlpha(c2,X)← memberOfAlpha(ri,X).

4. memberOfAlpha(c2,alice).

5. memberOfAlpha(c3,bob).

Recall that the first parameter of the atom in the head indicates the principal

storing and evaluating a clause: clauses 1 and 2 are evaluated by c1, clauses 3 and 4

by c2, and clause 5 by c3. Suppose that hospital h sends to company c1 a request for

(the evaluation of) goal ← memberOfAlpha(c1,X) (for a matter of readability, from

here on we omit the ← symbol when referring to a goal ← A, and we simply refer

to it as A). Figure 3 shows the call graph of the evaluation of memberOfAlpha(c1,X)

with respect to the example global policy. A call graph is a directed graph where

nodes represent goals and edges connect each goal to its subgoals (Leuschel et al.

1998). In other words, edges represent (evaluation) requests.

GEM performs a depth-first computation. When c1 receives the initial goal, it

evaluates the first applicable clause in its policy (i.e., clause 1) and sends a request

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

302 D. Trivellato et al.

��
memberOfAlpha(c1,X)

�� ��
memberOfAlpha(c2,X)

��
memberOfAlpha(c3,X)

memberOfAlpha(ri,X)

Fig. 3. Call graph of the example global policy.

��
memberOfAlpha(c1,X)

�� ��
memberOfAlpha(c2,X)

�� ��
memberOfAlpha(c3,X)

memberOfAlpha(ri,X)

��
memberOfAlpha(c1,X)

memberOfAlpha(c2,X)

(a)

h1��
memberOfAlpha(c1,X)

h1c11��

h1c12

��
memberOfAlpha(c2,X)

h1c11c21��

h1c11c22

��

memberOfAlpha(c3,X)

memberOfAlpha(ri,X)

h1c11c21ri1

��

(b)

Fig. 4. Call graph of the example global policy with loops. (a) Call graph with loops;

(b) compact call graph with request identifiers and loops.

for memberOf-Alpha(c2,X) to c2. In turn, c2 sends a request for memberOfAl-

pha(ri,X) to ri. ri does not have any clause applicable to memberOfAlpha(ri,X)

and returns an empty set of answers to c2. c2 evaluates the next applicable

clause (i.e., memberOfAlpha(c2,alice)), which is a fact. Since c2 does not have

any other clause to evaluate, it sends the computed answer to c1. c1 applies

the next clause (clause 2) and sends a request for memberOfAlpha(c3,X) to c3,

that returns answer memberOfAlpha(c3,bob) to c1 after applying clause 5. At

this point, memberOfAlpha(c1,X) is completely evaluated and c1 sends answers

memberOfAlpha(c1, alice) and memberOfAlpha(c1,bob) to hospital h.

The evaluation of a subgoal of a goal G, however, may lead to new requests for

G, forming a loop. In our scenario, this reflects the “sharing” of project members

among partner companies. Consider, for instance, the global policy above with the

following two additional clauses, stored by c2 and ri respectively:

6. memberOfAlpha(c2,X)← memberOfAlpha(c1,X).

7. memberOfAlpha(ri,X)← memberOfAlpha(c2,X).

The new call graph is shown in Figure 4(a). Now, when ri receives the request

for memberOfAlpha(ri,X) from c2, it applies clause 7 and sends a request for

memberOfAlpha(c2,X) back to c2, forming a loop. Similarly, the evaluation of

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 303

clause 6 by c2 leads to another loop. The requests forming a loop are identified by

boxed atoms in Figure 4(a). Formally, a loop is defined as follows.

Definition 2

Let C be the call graph of the evaluation of a goal G with respect to a global policy

P . A loop is a maximal subgraph of C consisting of goals G1, . . . , Gk such that for

each Gi ∈ {G1, . . . , Gk} there exists a path that leads from G1 to Gi and from Gi to

(a variant of) G1. Then, we say that goals G1, . . . , Gk are involved in the loop. �

Intuitively, requests forming a loop should not be further evaluated. However,

in the example above, c1 and c2 cannot detect whether a request forms a loop, as

in a distributed system several independent requests for the same goal can occur.

In most of the existing goal evaluation algorithms (e.g., Chen and Warren 1996;

Damásio 2000; Li et al. 2003), loop detection (and termination) is made possible

by the system’s “global view” on the derivation process. For example, centralized

goal evaluation algorithms such as SLG (Chen and Warren 1996) and RT (Li et al.

2003) identify loops by observing goal dependencies respectively in the call stack

and in the call graph of the global policy. In a similar way, the distributed algorithm

proposed by Damásio (2000) requires the dependency graph of the global policy to

be known to all principals. Such global view, however, implies the loss of policy

confidentiality. GEM detects loops and their termination in a completely distributed

way without resorting to any centralized data structure. In GEM, loops are handled

in three steps: (1) detection, (2) processing, and (3) termination.

Loop Detection. Loops are detected by dynamically identifying Strongly Connected

Components (SCCs). An SCC is a set of mutually dependent subgoals. More

precisely, a set of goals G1, . . . , Gk is part of a SCC if for each Gi ∈ {G1, . . . , Gk}
there exists a goal Gj ∈ {G1, . . . , Gi−1, Gi+1, . . . , Gk} such that Gi and Gj are involved

in a common loop. To enable the identification of SCCs, we assign to each request

a unique identifier from an identifier domain.

Definition 3

An identifier domain is a triple 〈I,�, ↪→〉, where:

• I is a set of sequences of characters called identifiers;

• � is a partial order on the identifiers in I . Given two identifiers id1, id2 ∈ I

s.t. id1 � id2, we say that id1 is lower than id2, and id2 is higher than id1;

• ↪→ is a partial order on the identifiers in I . Given two identifiers id1, id2 ∈ I

s.t. id1 ↪→ id2, we say that id2 is side of id1.

• The following property holds: ∀id1, id2, id3, id4 ∈ I if id1 � id2, id3 � id4, and

id2 ↪→ id4, then id1 ↪→ id3. �

Intuitively, � defines a top-down ordering and ↪→ defines a left-to-right ordering

with respect to the call graph of the global policy. In other words, � reflects the order

in which the subgoals in a branch of the graph are evaluated, whereas ↪→ reflects

the order in which the branches are inspected. Several identifier domains can be

employed whose identifiers respect these partial orders (e.g., based on alphanumeric

ordering). For the sake of simplicity, in the following we consider identifiers obtained

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

304 D. Trivellato et al.

as follows: given a request for a goal G with identifier id0, the identifier of the request

for a subgoal G1 of G has the form id0s1, denoting the concatenation of id0 with a

sequence of characters s1. Then, � is a prefix relation, and we have that id0s1 � id0.

Ordering ↪→ is a partial order on the strings composing the identifiers. For example,

consider another subgoal G2 of G with identifier id0s2, which is evaluated after

G1. Then, we have that id0s1 ↪→ id0s2. Even though identifiers from this domain

leak some policy information (see Section 4.2 for more details), they allow for an

easy visualization of the relationships among identifiers. When applying GEM in

practice, more confidentiality-preserving identifier domains can be employed.

A loop is detected when a principal receives a request with identifier id2 for a

goal G such that a request id1 for a variant of G has been previously received and

id2 � id1. Accordingly, we call request id2 a lower request for G, while request id1 is

a higher request for G. We use the identifier of the higher request for G, id1, as the

loop identifier. Goal G is called the coordinator of the loop. An SCC may contain

several loops. Given two loops with identifiers id1 and id2, we say that loop id2 is

lower than loop id1 if id2 � id1. The coordinator of the highest loop of the SCC

(i.e., the loop with the highest identifier) is called the leader of the SCC.

Figure 4(b) represents a compact version of the call graph in Figure 4(a), where

loop coordinators are depicted only once. In addition, in Figure 4(b) edges are

labeled with the corresponding request identifier. In the remainder of the paper,

we concatenate the identifier of a request for a goal evaluated by company c1

with meta-variables of the form c1i. Thus, for instance, c11 and c12 are two

distinct sequences of characters generated by c1. In the figure, identifiers h1,

h1c11, h1c12, and h1c11c21 identify higher requests for goals memberOfAlpha(c1,X),

memberOfAlpha(c2,X), memberOfAlpha(c3,X), and memberOfAlpha(ri,X) respec-

tively; identifiers h1c11c21ri1 and h1c11c22 identify lower requests for goals

memberOfAlpha(c2,X) and memberOfAlpha(c1,X) respectively. Goals inherit the or-

dering associated with the identifier of their higher request. Therefore, in Figure 4(b)

goal memberOfAlpha(c1,X) is higher than memberOfAlpha(c2,X),

memberOf-Alpha(c3,X), and memberOfAlpha(ri,X). Goals memberOfAlpha(c2,X)

and memberOfAl-pha(c1,X) are the coordinators of loops h1c11 and h1 respectively.

Loop h1c11 is lower than loop h1, which is the highest loop of the SCC; therefore,

memberOfAlpha(c1,X) is the leader of the SCC. The identifier of the lower requests

enables c1 and c2 to determine the subgoals involved in the loop, which are

memberOfAlpha(c2,X) and memberOfAlpha(ri,X) respectively.

Loop Processing. When a loop is detected, GEM sends the answers of the coordinator

already computed to the requester of the lower request together with a notification

about the loop. The loop is then processed iteratively as follows: in turn, each

principal (a) processes the received answers, (b) “freezes” the evaluation of the

subgoal involved in the loop and evaluates other branches of the partial derivation

tree of the locally defined goal. Then, when all branches have been evaluated, (c)

the new answers are sent to the requester of the higher request with a notification

about the loop. We call the execution of actions (a), (b), and (c) a loop iteration

step.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 305

Definition 4

Let G be a goal, and G1, . . . , Gk be the subgoals of G s.t. G,G1, . . . , Gk are involved

in a loop id . A loop iteration step for goal G is a three-phases process in which the

principal evaluating G:

1. Receives a set of answers of the subgoals G1, . . . , Gk of G.

2. Evaluates all the nodes in the partial derivation tree of G whose selected atom

is not involved in a loop.

3. Sends the newly derived answers of G to the requester of G. �

The definition above applies to all the goals involved in a loop but the loop

coordinator. The loop iteration step for a loop coordinator differs in the order in

which the phases occur. In particular, for the coordinator phase (c) precedes (a)

and (b), and the latter two are executed only after a loop iteration step for the

other goals in the loop has been performed. In other words, the processing of the

coordinator occurs only after all the other goals in the loop have been processed.

This is because the coordinator, being the “highest goal” in the loop, is assigned the

task of overseeing its processing. More precisely, it is in charge of starting [phase

(c)] a new loop iteration whenever the answers of its subgoals lead to new answers

of the coordinator [computed in phases (a) and (b)], i.e., until a fixpoint is reached.

This difference is reflected in the definition below.

Definition 5

Let G1, . . . , Gk be the goals involved in a loop id1 s.t. goal G1 is the loop coordinator.

A loop iteration is a process where:

1. The answers of G1 that have not been previously sent are sent to the requesters of

the lower requests for G1 (phase (c) of the loop iteration step for the coordinator).

2. For each Gi ∈ {G2, . . . , Gk} a loop iteration step for Gi is performed, s.t. for each

Gj ∈ {G2, . . . , Gk}, if Gj is lower than Gi then the loop iteration step for Gj is

executed before the loop iteration step for Gi.

3. The principal evaluating G1 receives a set of answers of the subgoals of G1

involved in loop id1 (phase (a) of the loop iteration step for G1). All the nodes

in the partial derivation tree of G1 whose selected atom is not involved in a loop

are processed (phase (b) of the loop iteration step). �

If the processing of the received answers leads to new answers of the coordinator,

these new answers are sent to the requesters of lower requests, starting a new

iteration. Otherwise, a fixpoint has been reached (i.e., all possible answers of the

goals in the loop have been computed) and the answers of the coordinator are

sent to the requester of the higher request. Note that a goal in a higher loop may

eventually provide new answers to a goal in a lower loop: the fixpoint for a loop

must be recalculated every time new answers of its coordinator are computed.

In the example [Fig. 4(b)], when c2 identifies loop h1c11, it informs ri that they

are both involved in loop h1c11. Since ri has no more clauses to evaluate, it returns

an empty set of answers to c2 notifying it that memberOfAlpha(ri,X) is in loop

h1c11. The further evaluation of memberOfAlpha(c2,X) leads to the identification

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

306 D. Trivellato et al.

of loop h1 and to a new answer memberOfAlpha(c2,alice), which is sent first to ri

in the context of loop h1c11. In turn, ri computes answer memberOfAlpha(ri,alice)

and sends it to c2. Now, a fixpoint for loop h1c11 has been reached and c2 sends

memberOfAlpha(c2,alice) to c1 notifying it that memberOfAlpha(c2,X) is in loop h1.

Note that memberOfAlpha(c2,X) is also in loop h1c11, but since this loop does not in-

volve c1, c1 is not notified of it. Next, c1 computes answers memberOfAlpha(c1,alice)

and memberOfAlpha(c1,bob) (the latter being found through the evaluation of

memberOfAlpha(c3,X)), and sends them to c2 in the context of loop h1. In turn,

c2 computes memberOfAlpha(c2,bob). Now, c2 has to find a fixpoint for loop h1c11

given the new answer before proceeding with the evaluation of loop h1. It is worth

noting that ri is not aware of loop h1. This is because loop notifications are only

transmitted to higher requests (except for the lower request that has formed the

loop).

Loop Termination. The termination of the evaluation of all the goals in an SCC

is initiated by the principal handling the leader of the SCC when a fixpoint for

the loop it coordinates has been reached. In the example, when the answers of

memberOfAlpha(c2,X) do not lead to new answers of memberOfAlpha(c1,X), c1

informs c2 (which in turn informs ri) that the evaluation of memberOfAlpha(c1,X) is

terminated and sends answers memberOfAlpha(c1,alice) and memberOfAlpha(c1,bob)

to h.

Side Requests. So far we have only considered “linear” loops, i.e., loops formed

by lower requests. However, higher requests can also lead to a loop. Consider, for

instance, the following additional clause stored by company c3:

8. memberOfAlpha(c3,X)← memberOfAlpha(ri,X).

The new (compact) call graph is shown in Figure 5(a). Now, the evaluation of

goal member-OfAlpha(c3,X) by c3 leads to a request for goal memberOfAlpha(ri,X),

which is involved in loop h1c11. ri can identify that the request originates from

the evaluation of a goal in the same SCC as memberOfAlpha(ri,X), since the

request identifier h1c12c31 is side of the identifier h1c11c21 of the initial request for

memberOfAlpha(ri,X) (i.e., h1c11c21 ↪→ h1c12c31). However, it cannot identify the

loop in which the goal evaluated by c3 is involved. This is because loop notifications

are only transmitted to higher goals, and thus ri is not aware of loop h1. We refer to

the request from c3 as side request, and we call memberOfAlpha(c3,X) a side goal.

The main problem with side requests is that it is difficult to determine when they

should be responded to. For example, if ri sends answers to c3 at every iteration of

loop h1c11, c1 would not know when to stop waiting for answers from c3 (since c1

does not know on which goals memberOfAlpha(c3,X) depends). On the other hand,

ri cannot wait until a fixpoint is reached for loop h1c11, since only c2 (the principal

handling the coordinator) is aware of that. To enable the detection of termination,

however, a side request should be responded to only when a fixpoint is computed

for all the loops lower than the loop in which the side goal is involved.

A simple yet effective solution to this problem is to treat a side request for a goal

as a “new” request (i.e., a request for a goal that has not yet been evaluated) and

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 307

h1��
memberOfAlpha(c1,X)

h1c11��

h1c12

��
memberOfAlpha(c2,X)

h1c11c21��

h1c11c22

��

memberOfAlpha(c3,X)

h1c12c31		memberOfAlpha(ri,X)

h1c11c21ri1

��

(a)

h1��
memberOfAlpha(c1,X)

h1c11��
h1c12

�������������

memberOfAlpha(c2,X)

h1c11c21��

h1c11c22

��

memberOfAlpha(c3,X)

h1c12c31��
memberOfAlpha(ri,X)

h1c11c21ri1

��

memberOfAlpha(ri,X)

h1c12c31ri2 ��
memberOfAlpha(c2,X)

h1c12c31ri2c23

��
��

��
h1c12c31ri2c24��

(b)

Fig. 5. Call graphs for side requests. (a) Call graph with side request; (b) unfolded call graph.

to reevaluate the goal. Accordingly, when a side request is received, GEM creates

a new partial derivation tree for the goal and proceeds with its evaluation. This

corresponds to inspecting multiple times some branches of the call graph of the

program [Fig. 5(b)]; however, it allows us to obtain a call graph formed only by

linear loops which, as shown previously in this section, can be successfully evaluated

by GEM. Note that, despite in the unfolded graph in Figure 5(b) some nodes and

edges are duplicated with respect to the folded graph in Figure 5(a), the flow of

answers among goals is equivalent. This can be easily seen by the fact that edges

connect the same nodes in both call graphs. In Section 4 (Theorem 3) we show that

a call graph is always finite.

Even though possible in theory, we expect side requests not to occur frequently

in the evaluation of a policy. For instance, no side request was present in any of the

example policies in the literature. Therefore, we believe the overhead imposed by

the proposed solution to be negligible in practice. Nevertheless, we point out that

the size of the unfolded graph is in the worst case exponential with respect to the

number of nodes in the original graph. The reevaluation of side requests, in fact,

resembles the approach adopted by SLD resolution, which reevaluates every goal

encountered during a computation. However, thanks to our ability to detect loops,

the number of goals evaluated by GEM during a computation is never higher than

the number of goals that would be evaluated using SLD resolution.

Since we treat side requests in the same way as new requests, the partial order

↪→ is not exploited by the version of GEM presented here. An alternative solution

that prevents the reevaluation of side requests and thus requires their identification

could be achieved by transmitting loop notifications to the requesters of both higher

and lower requests, so that all the principals evaluating a goal in an SCC would be

aware of the identifiers of all the loops in the SCC. Furthermore, when a fixpoint

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

308 D. Trivellato et al.

for a loop is reached, the principal handling the loop coordinator should start a

new loop iteration to inform all the goals in the loop that the fixpoint has been

reached. These two modifications would enable principals that receive a side request

to know (a) in which loop the side request is involved and (b) when to reply to the

side request, that is, when all the loops lower than the one in which the side goal is

involved have reached a fixpoint. Given the complexity of the solution, in this paper

we present only the “basic” version of GEM, which reevaluates side requests; the

implementation of the described optimization is subject of future work.

To conclude, we point out that evaluating every higher request for a goal

that is not yet completely evaluated is fundamental for enabling loop detection.

Consider, for instance, a global policy consisting only of clauses 1 and 6 on pages 9

and 10 respectively. Assume that hospital h issues at the same time a request for

goals memberOfAlpha(c1,X) and memberOfAlpha(c2,X) with identifier id1 and id2

respectively. The evaluation of the request by principals c1 and c2 leads to a higher

request for goals memberOfAlpha(c2,X) and memberOfAlpha(c1,X) respectively.

When these second higher requests are received, a partial derivation tree for the

requested goals already exists. If the requests were not further processed, the loop

identification would not be possible as no lower request would be issued, and the

computation would deadlock. Therefore, both initial requests must be processed

independently. This “problem” is common to all the distributed goal evaluation

algorithms whose termination detection exploits request identifiers (e.g., Alves et al.

2006). Even though relatively simple solutions to this problem can be found (e.g.,

using timestamped requests, where only the oldest is evaluated), in this paper we

focus on a “basic” solution for distributed goal evaluation, and do not address

efficiency-related issues.

3.3 Implementation

Here, we introduce the data structures and procedures used by GEM to evaluate a

goal.

Data Structures. In GEM, principals communicate by exchanging request and

response messages. We rely on blocking communication, that is, whenever a principal

a sends (respectively receives) a request or response message, no other operation is

performed by a until the sending (resp. receipt) process is completed. In addition,

we assume that a message sent by principal a to a principal b is always received

(once) by principal b.

Definition 6

A request is a triple 〈id ,req, G〉, where:

• id is the request identifier;

• req is the principal issuing the request, called requester;

• G is a goal ← p(loc, t1, . . . , tn), where loc is a constant. �

A request is an enquiry issued by principal req for the evaluation of goal G.

Each request is uniquely identified by an identifier id and is sent to the principal

defining G.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 309

Definition 7

Let r = 〈id ,req, G〉 be a request. A response to r is a tuple 〈id ,Ans, Sans, Loops〉,
where:

• id is the response identifier;

• Ans is a (possibly empty) set of answers of G;

• Sans ∈ {active,loop(id 1),disposed} is the status of the evaluation of G, where id1

is a loop identifier;

• Loops is a set of loop identifiers. �

A response has the same identifier of the request to which it refers. It contains

a (possibly empty) set of answers of the requested goal G (Ans) together with

the status of G’s evaluation (Sans) and information about the loops in which it

is involved (Loops). Sans is disposed if G has been completely evaluated, active if

additional answers of G may be computed, and loop(id1) if the response is sent in

the context of the evaluation of loop id1.

As discussed in Section 3.2, GEM computes the answers of a goal by a depth-

first evaluation of its partial derivation tree (Definition 1), which may involve

the generation of requests for subgoals evaluated at different locations. In the

implementation, we represent a partial derivation tree as a data structure called

evaluation tree. Compared to partial derivation trees, an evaluation tree keeps track

of the identifier of the request and status of the evaluation of the selected atom of

each node in the evaluation tree.

Definition 8

A node is a triple 〈id , c, S〉, where:

• id is the node identifier;

• c is a clause;

• S ∈ {new , active, loop(ID), answer , disposed} is the status of the evaluation of

the selected atom in c, where ID is a set of loop identifiers. �

The status of a node is new if no atom from the body of c has yet been selected for

evaluation. It is set to active when a body atom is selected, and to disposed when the

selected atom is completely evaluated. The status is set to loop(ID) if the selected

atom is involved in some loops, where ID is the set of identifiers of those loops, and

to answer if c is a fact. As mentioned in Section 2, we employ the leftmost selection

rule. Thus, the selected atom of c is always the first body atom.

Definition 9

The evaluation tree of a goal G = ← A is a tree with the following properties:

• the root is node 〈id0, A← A, S0〉;
• there is an edge from the root to a node 〈id1, (A ← B1, . . . , Bn)θ, S1〉, where

id1 � id0, iff there exists a derivation step (A← A)
θ→ (A← B1, . . . , Bn)θ in the

partial derivation tree of G;

• there is an edge from node 〈id2, A← B1, . . . , Bn, S2〉 to node 〈id3, (A← B2, . . . ,

Bn)θ, S3〉, where id2 � id0 and id3 � id0, iff there exists a derivation step

(A← B1, . . . , Bn)
θ→ (A← B2, . . . , Bn)θ in the partial derivation tree of G. �

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

310 D. Trivellato et al.

When a principal receives a higher request for a goal G, it creates a table for G.

A table contains all the information about the evaluation of G.

Definition 10

The table of a goal G, denoted Table(G), is a tuple 〈HR,LR,ActiveGoals,AnsSet,Tree〉,
where:

• HR is a higher request for G;

• LR is a set of lower requests for G;

• ActiveGoals is a set of pairs 〈id , counter〉 where id is a loop identifier and

counter is an integer value;

• AnsSet is a set of pairs 〈ans, ID〉 where ans is an answer of G and ID is a set

of request identifiers;

• Tree is the evaluation tree of G. �

The table of a goal G stores the higher request HR for which it has been created,

the set of answers computed so far (AnsSet), and the evaluation tree of G (Tree).

Possible lower requests for G are stored in LR. ActiveGoals keeps a counter for

each loop in which G is involved. The counter of a loop id indicates the number of

subgoals of G which are involved in loop id , i.e., the number of nodes in Tree with

status loop(ID) such that id ∈ ID . The counter is decreased whenever an answer

of one of these subgoals is received. The status of the root node of Tree indicates

the status of the evaluation of G. When G is completely evaluated, the fields of its

table are erased, but the answers of G are maintained to speed up the evaluation of

future requests for G.

Procedures. To initiate the evaluation of a goal G, a principal a generates a unique

sequence of characters id0 and sends a request 〈id0, a, G〉 to the principal defining

G. A response 〈id0,Ans, disposed, {}〉 is returned to a when the evaluation of G

terminates. GEM computes the answers of G (defined in policy PG) using the

following procedures:

• Process Request: if the request is not a lower request, invokes Create Table

to initiate the evaluation of G. Otherwise, it sends a loop notification to the

requester;

• Create Table: creates a table for G and initializes its evaluation tree with the

applicable clauses in PG;

• Activate Node: activates a new node in the evaluation tree of G;

• Process Response: processes the answers received for a subgoal of G;

• Generate Response: determines the requesters of G to whom a response must

be sent. It is invoked when there are no more nodes in the evaluation tree of

G to activate;

• Send Response: sends the computed answers of G to the requesters of G;

• Terminate: disposes the table of G. It is invoked when G is completely

evaluated.

Each principal in the trust management system runs a listener that waits for

incoming requests and responses. Whenever a request is received, the listener invokes

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 311

Fig. 6. Interaction among the procedures for the evaluation of a goal G.

Algorithm 1: Process Request

input: a request 〈id0, req, G〉
if ∃Table(G′) = 〈〈id1, req

′, G′〉,LR, AG, AS, T 〉 s.t. G′ is a variant of G then1

let Sroot be the status of the root node of T2

if Sroot = disposed then3

Send Response(〈id0, req, G
′〉, disposed, {})4

else if id0 � id1 then5

LR := LR ∪ {〈id0, req, G
′〉}6

Send Response(〈id0, req, G
′〉, active, {id1})7

else8

let G′′ be a variable renaming of G s.t. � ∃Table(G′′)9

Create Table(〈id0, req, G
′′〉)10

else11

Create Table(〈id0, req, G〉)12

Process Request. Similarly, Process Response is invoked upon receiving a response

to a previously issued request. The interactions and dependencies among the different

procedures are shown in Figure 6.

Process Request (Algorithm 1) takes as input a request 〈id0, req, G〉 and, if there

exists no table for a variant of G, invokes procedure Create Table to create a table

for G (lines 11–12). If another request for goal G (or a variant of G) has been

previously received, three situations are possible:

1. The request refers to a goal which has been completely evaluated (lines 3–4). A

response with the answers of G is sent to the requester by invoking Send

Response.

2. The request is a lower request for G (lines 5–7). This corresponds to the detection

of a loop id1, where id1 is the identifier of HR. The request is added to the set

of lower requests LR and the answers computed so far are sent to the requester

together with a notification about loop id1, initiating the loop processing phase.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

312 D. Trivellato et al.

Algorithm 2: Create Table

input: a request 〈id0, req, G = ← A〉
create Table(G)1

initialize Table(G) to 〈〈id0, req, G〉, {}, {}, {}, 〈id0, A← A, new〉〉2

foreach clause H ← B1, . . . , Bn applicable to G in the local policy do3

let H ′ ← B′1, . . . , B
′
n be a variable renaming of the clause s.t. it is variable disjoint from A, and4

θ = mgu(A,H ′)
let s be a unique sequence of characters5

add subnode 〈id0s, (H
′ ← B′1, . . . , B

′
n)θ, new〉 to the root6

end7

Activate Node(G)8

Algorithm 3: Activate Node

input: a goal G = ← A

let Table(G) be 〈HR,LR, AG, AS, T 〉1

if (� ∃ a non-root node t ∈ T with status new) or (〈A, ID〉 ∈ AS) then2

Generate Response(G)3

else4

let Sroot be the status of the root node of T5

if Sroot = new then6

Sroot := active7

select the leftmost non-root node t = 〈id1, H ← B1, . . . , Bn, new〉 from T8

if n = 0 then9

set the status of t to answer10

if H is not subsumed by any answer in AS then11

AS := AS ∪ {〈H, {}〉}12

Activate Node(G)13

else14

if the location of B1 is not ground then15

halt with an error message /* floundering */16

else17

set the status of t to active18

send request 〈id1, local, B1〉 to the location of B119

3. The request is a side request or originates from a different initial request (lines 8–

10). We treat the request as a new request; accordingly, a new table for G is

created by invoking Create Table.

Create Table (Algorithm 2) inputs a request 〈id0, req, G〉 and creates a table for

goal G with HR set to 〈id0, req, G〉, and Tree initialized with the clauses in the local

policy applicable to G (renamed so that they share no variable with G) (lines 1–7).

The identifiers of the subnodes of the root are obtained by concatenating id0 with

a unique sequence of characters s. When the initialization of the table of G is

terminated, Activate Node is invoked (line 8).

Activate Node (Algorithm 3) activates a new node from the evaluation tree of

a goal G. First, it sets the status of the root node of the evaluation tree T of goal

G to active (lines 5–7). Then, a node with status new is selected from T (line 8).

If the node’s clause is a fact and represents a new answer, it is added to the set

of answers AS (with an empty set of recipients), and Activate Node is invoked

again (lines 9–13). The answer subsumption check (line 11) is important to avoid

sending the same answers of a goal more than once. If the clause is not a fact, the

leftmost body atom B1 of the node’s clause is selected for evaluation. In case that

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 313

Algorithm 4: Send Response

input: a request 〈id0, req, G〉, a response status Sans, a set of loop identifiers Loops

let Table(G) be 〈HR,LR, AG, AS, T 〉1

Ans := {}2

foreach 〈ans, ID〉 ∈ AS s.t. id0 /∈ ID do3

Ans := Ans ∪ {ans}4

ID := ID ∪ {id0}5

end6

send response 〈id0,Ans, Sans,Loops〉 to Req7

Algorithm 5: Process Response

input: a response 〈id0,Ans, Sans,Loops〉
let t = 〈id0, H ← B1, . . . , Bn, St〉 be the node in the evaluation tree of goal G = ← A to which the1

response refers
let Table(G) be 〈HR,LR, AG, AS, T 〉2

let 〈id1, A← A, Sroot〉 be the root node of T3

if Sroot �= disposed then4

if Sans = disposed then5

if St = loop(ID) then6

dispose all the nodes in T involved in any loop7

St := disposed8

else9

if St = loop(ID) then10

ID := ID ∪ Loops11

else if Loops �= {} then12

St := loop(Loops)13

AG := AG ∪ {〈id2, 0〉|id2 ∈ Loops and 〈id2, c〉 /∈ AG}14

if Sans = loop(id3) then15

decrease the counter of id3 in AG by 116

if Sroot = active then17

Sroot := loop({id3})18

foreach ans ∈ Ans do19

let ans′ be a variable renaming of ans s.t. it is variable disjoint from B1, and θ = mgu(B1, ans
′)20

let s be a unique sequence of characters21

add subnode 〈id1s, (H ← B2, . . . , Bn)θ, new〉 of t22

end23

if (Sroot = active) or (Sroot = loop(ID) and ∀id4 ∈ ID, 〈id4, 0〉 ∈ AG) then24

Activate Node(G)25

the location parameter of B1 is not ground, an error is raised and the computation

is aborted by floundering (lines 15–16). Otherwise, a request for B1 is sent to the

corresponding location; the node identifier is used as request identifier (lines 17–19).

If there are no more nodes with status new, or G is in the set of computed answers

AS , Generate Response is invoked (lines 2–3).

Send Response (Algorithm 4) inputs a request, a response status, and a set of

loop identifiers and sends a response message to the requester, which includes the

answers of G that have not been previously sent to that requester (lines 3–7).

Response messages are processed by Process Response (Algorithm 5). The node

t to which the response refers is identified by looking at the response identifier

(line 1). If the status of the response is disposed, the selected atom B1 of t is

completely evaluated. Therefore, t is disposed and, if B1 is in a loop, also all the

other nodes in any loop of the SCC are disposed (lines 5–8). This is because the

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

314 D. Trivellato et al.

Algorithm 6: Generate Response

input: a goal G = ← A

let Table(G) be 〈HR,LR, AG, AS, T 〉1

if (� ∃〈id0,c,loop(ID)〉 ∈ T) then2

Terminate(G)3

else4

let 〈id1, A← A, Sroot〉 be the root node of T5

if G is the coordinator of a loop id1 and ∃ans ∈ AS s.t. ans has not been sent to some request in6

LR then
set the counter of id1 in AG to the number of subgoals in T involved in loop id17

if Sroot = loop(ID1) then8

Sroot := loop(ID1 ∪ {id1})9

else10

Sroot := loop({id1})11

foreach 〈id2,req, G〉 ∈ LR do12

Send Response(〈id2, req, G〉, loop(id1), {})13

end14

else if G is the leader of the SCC then15

Terminate(G)16

else17

let Loops be the set {id3|〈id3, C〉 ∈ AG and id1 � id3}18

set the counter of each id3 ∈ Loops to the number of subgoals in T in loop id319

if Sroot = loop(ID1) and ∃id4 ∈ ID1 s.t. id1 � id4 then20

Send Response(HR, loop(id4),Loops)21

else22

Send Response(HR, active,Loops)23

Sroot := active24

termination of a loop is ordered by the principal handling the leader of the SCC once

all the goals (and consequently, all the loops) in the SCC are completely evaluated.

Otherwise, the status of t is updated depending on whether the response contains

a loop notification, i.e., set Loops contains some loop identifier (lines 10–13). In this

case, an entry is added to the set of active goals AG for each new loop in Loops

(line 14). If the response has been sent in the context of the evaluation of a loop

id3, the counter of id3 in AG is decreased and the status of the table is changed to

loop({id 3}) (lines 15–18).

After updating the node and table status, the set of answers in the response is

processed (lines 19–23). In particular, a new subnode of t is created for each answer.

The clause of the new node is (H ← B2, . . . , Bn)θ, where θ is the mgu of B1 and

the answer, and its identifier is obtained by concatenating the identifier id1 of the

root node of T with a unique sequence of characters s. When all answers have

been processed, if the principal is not waiting for a response for any subgoal in the

evaluation tree of G, Activate Node is invoked to proceed with the evaluation of

G (line 25).

Generate Response (Algorithm 6) is invoked when all the clauses in the

evaluation tree of a goal G (except for the ones in a loop) have been evaluated. If

G is not part of a loop, Terminate is invoked (lines 2–3). Otherwise, we distinguish

three cases:

1. If set LR is not empty, then goal G is the coordinator of a loop id1, where id1 is

the identifier of the higher request for G. If there are new answers of G that have

not yet been sent to the lower requests in LR, a response with status loop(id1)

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 315

Algorithm 7: Terminate

input: a goal G

let Table(G) be 〈HR,LR, AG, AS, T 〉1

dispose all non-answer nodes in T2

foreach 〈id0, req, G〉 ∈ {HR} ∪ LR do3

Send Response(〈id0, req, G〉, disposed, {})4

end5

HR := null6

LR := AG := {}7

is sent to each of them (lines 6–14). This corresponds to starting a new loop

iteration for loop id1. The status of the root node of the evaluation tree T is

updated to keep track of the loops that are currently being processed (lines 8–11)

and the counter of id1 in the set of active goals AG is set to the number of

subgoals in T involved in loop id1 (i.e., the number of nodes with status loop(ID)

such that id1 ∈ ID , line 7). This number corresponds to the number of subgoals

for which a response in the context of loop id1 will be returned.

2. If G is the leader of the SCC and no new answers of G have been computed, the

loop is terminated by invoking Terminate (lines 15–16). G is the leader of the

SCC if the only loop identifier in set AG is the identifier of the higher request

for G.

3. Otherwise, a response including the identifier of the loops in which G is involved

is sent to the requester of HR (lines 18–24). The status of the response depends on

whether HR is involved in one of the loops currently being processed (lines 20–

23).

Terminate (Algorithm 7) is responsible of disposing a table once all the answers

of its goal G have been computed. More precisely, all the table fields are erased

except for the set AS of answers of G, which are kept in case of future requests

for goal G. A response with status disposed is sent to the requesters of HR and LR

(lines 3–5).

An example of execution of GEM is in the online appendix of the paper

(Appendix B).

4 Properties of GEM

This section presents the soundness, completeness, and termination results of GEM.

Moreover, we discuss what information is disclosed by GEM during the evaluation

of a goal.

4.1 Soundness, completeness, and termination

Here, we refer to an arbitrary but fixed set P1, . . . , Pn of policies, and to the corre-

sponding global policy P = P1 ∪ . . . ∪ Pn. To prove its soundness and completeness,

we demonstrate that GEM computes a solution if and only if such a solution can

be derived via SLD resolution, which has been proved sound and complete (Apt

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

316 D. Trivellato et al.

1990). The proofs of the theorems presented in this section are provided in the online

appendix of the paper (Appendix A).

The following theorem states that each solution computed by GEM can also be

derived via SLD resolution using the global policy P , and is thus correct. Intuitively,

this is due to the fact that the solutions generated by the algorithm are obtained

using the clause resolution mechanism, which produces correct results.

Theorem 1 (Soundness)

Let G1 be a goal. Let S be the set of tables resulting from running GEM on G1

(w.r.t. P = P1 ∪ . . .∪Pn). Let G1, . . . , Gk be the goals for which there exists a table in

S . For each goal Gi ∈ {G1, . . . , Gk} let Soli = {θi,1, . . . , θi,ki} be the (possibly empty)

set of solutions of Gi generated by the algorithm. Then, for each Gi ∈ {G1, . . . , Gk}
and for each θi,j ∈ Soli there exists an SLD derivation of P ∪ {Gi} with c.a.s. σ s.t.

Giθi,j is a renaming of Giσ.

Next, we present the completeness result.

Theorem 2 (Completeness)

Let G1 be a goal. Let S be the set of tables resulting by running GEM on G1 (w.r.t.

P = P1 ∪ . . . ∪ Pn). Assume that running GEM on G1 (w.r.t. P = P1 ∪ . . . ∪ Pn) did

not result in floundering. If there exists an SLD derivation of P ∪ {G1} with c.a.s. θ,

then there exists a solution σ of G1 in S s.t. G1θ is a renaming of G1σ.

Finally, we state that GEM always terminates.

Theorem 3 (Termination)

Given a goal G evaluated with respect to a finite global policy P , GEM terminates.

4.2 Disclosed information

A primary objective of GEM is to preserve the confidentiality of intensional policies.

Here, we discuss what policy information principals are able to collect during the

evaluation of a goal, and classify GEM according to the confidentiality levels defined

in Section 2.

First, let us define the following notation. Let P be a global policy, and Ga and

Gb be two goals in P defined by principals a and b respectively. We say that goal

Ga depends on goal Gb if there is a path from Ga to Gb in the call graph of the

evaluation of Ga with respect to P . Since each edge in the call graph represents a

request in GEM, and in trust management each request corresponds to a delegation

of authority, if Ga depends on Gb then we say that there is a chain of trust from

principal a to principal b.

We also introduce some notation on request identifiers. As mentioned in Sec-

tion 3.2, the identifiers in an identifier domain can be defined in several ways (e.g.,

applying a hash function to the identifier of a higher request). In this paper, we have

considered an identifier domain where identifiers are obtained by concatenating the

identifier of a higher request with a sequence of characters. Here, we discuss what

information is disclosed by GEM during goal evaluation using this identifier domain.

We classify identifiers obtained by concatenation according to two dimensions:

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 317

traceability and length. Given two request identifiers id1 and id2 for goals G1 and

G2 respectively, such that id2 � id1, the traceability dimension refers to the ability

of a principal to infer which principals are involved in the evaluation of the goals in

the path from G1 to G2. On the other hand, the length dimension defines the ability

to determine the number of goals in the path from G1 to G2. Let id0s1 · · · sn be a

request identifier, where id0 is the identifier of the initial request and each si (for

i ∈ {1, . . . , n}) is a sequence of characters added by a principal pi to the identifier

id0s1 · · · si−1 of a higher request. For what concerns the traceability dimension, we say

that id0s1 · · · sn is a traceable identifier if each string si uniquely identifies (the location

of) principal pi (as done, for instance, by the identifiers in the example in Section 3.2);

otherwise, we say that identifier id0s1 · · · sn is untraceable. The length dimension is

defined based on the number of characters concatenated by each principal pi to

the request identifier id0s1 · · · si−1. Let len(si) denote the number of characters in

the string si. If len(s1) = . . . = len(sn), then we say that id0s1 · · · sn is a fixed-length

identifier; otherwise, we say that id0s1 · · · sn is a variable-length identifier (we assume

that cryptographic techniques are in place to avoid collision of identifiers; Hoch

and Shamir 2008). Note that a traceable identifier does not necessarily disclose

information about the number of goals in the path between two goals; this is

because a goal defined by a principal a can have several subgoals defined in a’s

policy. Consider, for instance, the traceable request identifier h:12c1:345, obtained by

concatenating a request identifier with a principal’s identifier and a variable-length

sequence of digits for each goal evaluated by the principal. Even though identifier

h:12c1:345 shows that the principals involved in the computation are hospital h and

company c1, it does not confer information about the number of goals evaluated

by those principals. Company c1, for example, might have evaluated two locally

defined goals, concatenating the higher request h:12 received from hospital h first

with its identifier c1 and digit “3” (separated by a semicolon), and then with the

sequence of digits “45.”

We are now ready to present what information a principal b is able to learn

about the local policy of a principal a where a goal Ga is defined. First of all,

by requesting the evaluation of Ga, b learns the set of answers to the request,

i.e., the extensional policy relative to Ga; this is necessary for any goal evaluation

algorithm. As mentioned in Section 1, the confidentiality of extensional policies

can be protected, for instance, by relying on hidden credentials (Bradshaw et al.

2004; Frikken et al. 2006) or trust negotiation algorithms (Winsborough et al. 2000;

Winslett 2003). Here, we are more interested in what b can learn about the intensional

policy defining Ga.

By sending a request for Ga (say, with identifier id1), b can learn whether Ga

depends on some goal Gb defined in her policy. Indeed, if b receives a request for

Gb with identifier id2 such that id2 � id1, then b knows that Ga depends on Gb.

If Ga depends on a number of goals defined by b, then by requesting Ga b learns:

• what are the goals Gb1
, . . . , Gbn defined in her policy on which Ga depends;

• for each Gbi ∈ {Gb1
, . . . , Gbn}, b knows who is the principal pi that requested

Gbi; therefore, b learns that Ga depends on a goal defined by pi, i.e., that there

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

318 D. Trivellato et al.

��
memberOfAlpha(c1,X)

���
�
�

������

...(c2, ...)

��
...(c3, ...)

����������

memberOfAlpha(ri,X)

��
memberOfAlpha(c2,X)

�����	
� � � �

��
�
�
�
�
�
�

����� ��

(a)

��
memberOfAlpha(c1,X)

�� ����������

������ ...(c2, ...)

��
...(c3, ...)

����������

memberOfAlpha(ri,X)

��
memberOfAlpha(c2,X)

�����	
� � � �

�
�
�
�
�
�
�

(b)

Fig. 7. Part of the call graph that can be inferred by ri using (a) variable-length, untraceable

request identifiers and (b) fixed-length request identifiers.

is a chain of trust from a to pi (and from pi to b). Principal b, however, does

not necessarily learn which is the goal defined by pi on which Ga depends;

• depending on how the identifiers are constructed, b might be able to learn

additional information about the path from Ga to Gbi . In particular, if the

identifier of the request for Gbi is fixed-length, b is able to infer the number of

goals in the path from Ga to Gbi . Additionally, if the identifier is traceable, b

also learns who are the principals defining those goals.

Thus, GEM can be classified as E1-I1 according to the classification criteria in

Section 2. In fact, principals learn all the answers of a goal along with some

dependencies among the goals involved in an evaluation.

We now illustrate the concepts presented above with an example, using the global

policy introduced in Section 3.2 and the call graph shown in Figure 5(a) (ignore,

for now, the request identifiers depicted in the figure). Assume that the research

institute ri requests goal memberOfAlpha(c1,X) to c1. If the identifiers used in the

computation were variable-length and untraceable, ri would be able to learn that:

• memberOfAlpha(c1,X) depends on goal memberOfAlpha(ri,X) defined in its

policy;

• memberOfAlpha(c1,X) depends on some goal GC2 defined in c2’s policy and

on some goal GC3 defined by c3; however, it does not learn which goals they

are. Furthermore, due to the loop notification received from c2 following the

evaluation of goal memberOfAlpha(c2,X), ri learns that memberOfAlpha(c2,X)

depends on some goal in the path from memberOfAlpha(c1,X) to GC2.

Figure 7(a) represents ri ’s “view” of Figure 5(a), that is, the part of the call

graph that ri can infer. In the graph, we denote with dots (“...”) the predicate

symbols and terms that ri does not learn; a dashed edge from a goal G1 to a

goal G2 indicates that ri is able to infer that G1 depends on G2, but not the

(number of) goals and principals in the path from G1 to G2. Since ri does not learn

that GC2 is actually goal memberOfAlpha(c2,X), with respect to the call graph in

Figure 5(a), in Figure 7(a) goal memberOfAlpha(c2,X) is “duplicated.” The reason

why ri is not able to infer that GC2 is memberOfAlpha(c2,X), and even more, does

not learn whether memberOfAlpha(c2,X) is in the path from memberOfAlpha(c1,X)

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 319

to memberOfAlpha(ri,X) or is a lower goal, is that the only information that ri

receives in response to the request for memberOfAlpha(c2,X) (besides the answers

of the goal) is a notification that memberOfAlpha(c2,X) is in a loop, say with

identifier idl . ri can observe that idl corresponds to a request higher than the

request for memberOfAlpha(ri,X), i.e., that the loop coordinator is higher than

memberOfAlpha(ri,X). However, ri cannot infer whether the loop was formed by

its own request (in which case ri would learn that GC2 is memberOfAlpha(c2,X)),

or by a request issued by c2 when evaluating memberOfAlpha(c2,X), or even by

the evaluation of a goal on which memberOfAlpha(c2,X) depends. In other words,

because of the variable-length and untraceable nature of identifiers, ri does not know

the number of goals in the path from memberOfAlpha(ri,X) to the loop coordinator.

In addition to the information above, if the identifiers used in the computations

were fixed-length, ri would also be able to learn that:

• one of the paths from memberOfAlpha(c1,X) to memberOfAlpha(ri,X) con-

sists of three goals: memberOfAlpha(c1,X), GC2, and memberOfAlpha(ri,X).

Furthermore, ri can infer that GC2 is the coordinator of loop idl . However, ri

still does not learn whether GC2 is memberOfAlpha(c2,X);

• the other path from memberOfAlpha(c1,X) to memberOfAlpha(ri,X) consists

of three goals: memberOfAlpha(c1,X), GC3, and memberOfAlpha(ri,X).

The part of the call graph that ri can infer in a computation with fixed-length

identifiers is shown in Figure 7(b). Note that, in this example, the information that

ri can infer is the same independently from the traceability of the identifiers. This is

because ri already knows all the principals in the paths from memberOfAlpha(c1,X)

to memberOfAlpha(ri,X): c1 is the principal to whom ri sent the initial request,

and c2 and c3 are the principals from whom ri received the request for mem-

berOfAlpha(ri,X). Even with traceable identifiers, ri would not be able to infer

more information about the path from memberOfAlpha(c2,X) to GC2, as the only

information received by ri from c2 is the loop identifier.

A principal might attempt to infer a bigger portion of the call graph by

issuing requests for each goal defined by the principals in the trust manage-

ment system. For instance, ri can infer more information by issuing a request

for each goal defined by companies c1, c2, and c3. In particular, by issuing a

request for memberOfAlpha(c2,X), in a computation with fixed-length and traceable

identifiers ri would learn that memberOf-Alpha(c2,X) is the goal defined by c2

that depends on memberOfAlpha(ri,X) [Fig. 8(a)]. By also issuing a request for

memberOfAlpha(c3,X), ri could infer the whole call graph [Fig. 8(b)]. Note, however,

that the global policy considered here is a relatively simple policy with few goals

and principals. A more complex policy would complicate and sometimes prevent

the inference of goal dependencies. Moreover, some information about the global

policy would not be deducible by ri when using variable-length and untraceable

identifiers. All the edges in the call graph in Figure 8(b), for instance, would be

dashed edges if variable-length untraceable identifiers were used. Finally, it is worth

noting that even though ri might be able to learn the whole call graph, that graph

might correspond to different intensional policies (Costantini 2001). For example, ri

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

320 D. Trivellato et al.

��
memberOfAlpha(c2,X)

��

��						

...(c1, ...)

��
...(c3, ...)

��

memberOfAlpha(ri,X)

��

(a)

��
memberOfAlpha(c1,X)

�� �������������

memberOfAlpha(c2,X)

��

��

memberOfAlpha(c3, X)

�������������

memberOfAlpha(ri,X)

��

(b)

Fig. 8. Part of the call graph that can be inferred by ri by (a) requesting goal

memberOfAlpha(c2,X) and (b) issuing a request for the goals defined by each principal

in the trust management system.

is not able to learn whether memberOfAlpha(c2,X) and memberOfAlpha(c3,X) are

connected by disjunction or conjunction in c1’s policy.

To conclude, we argue that when using an appropriate identifier domain the

knowledge about goal dependencies disclosed by GEM is not sufficient for a principal

b to infer the intensional policy relative to a goal Ga defined by a principal a.

Principal b always learns whether Ga depends on goals defined in her policy, but

most likely not all the goals in the global policy on which Ga depends. Consider,

for instance, clause 2 on page 2. A principal other than c1 and mc cannot learn

that memberOfAlpha(c1,X) depends on projectPartner(mc,Y). We believe that the

information that b can infer is consistent with the concept of trust management. In

fact, if Ga depends on a goal defined by b, then there is a chain of trust from a to

b; it seems legitimate that the existence of such a chain may not remain secret to b.

5 Practical evaluation

We implemented the algorithms presented in Section 3.3 in Java and conducted

several experiments to evaluate the performance of GEM. In particular, we first

tested the implementation with the example policies defined in Section 3.2 and in

the online appendix of the paper (Appendix B). Then, we modified those policies to

assess the scalability of GEM with respect to an increase in the number of principals

in the trust management system and the number of clauses in the global policy.

We carried out the experiments by running GEM on four machines located in

different area networks. More precisely, we employed two machines located within

the Eindhoven University of Technology (TU/e) network, and two located at the

University of Twente (UT). The two TU/e machines mount an Intel Core 2 Quad

2.4 GHz processor with 3 GB of RAM and a 32 bit Windows operating system.

The UT machines are 32 bit Ubuntu machines with the same processor but 2 GB

of RAM. In each experiment, we have assigned approximately one-fourth of the

principals (i.e., one-fourth of the local policies) in the global policy to each machine.

The exchange of messages between principals on different machines is via HTTP

(javax.servlet.http Servlet API).

To present the results of the experiments, we group them into two sets. The

first set of experiments (Section 5.1) studies the performance of GEM for an

increasing number of principals, clauses, and loops in the global policy. The second

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 321

set (Section 5.2) shows, for some of the global policies in the first set, the effects

of increasing the size of the extensional policy (i.e., the number of facts in the

global policy). For each experiment we report the following results: the number of

principals involved in the computation (denoted by Princ); the number of tables

created by GEM during the computation (Tab); the number of clauses evaluated

(Clauses); the sum of the computation times on the four machines, expressed

in milliseconds (CTime); the total time (TTime), expressed in milliseconds, given

by the CTime plus network communication time; the total memory occupied by

GEM on the four machines, expressed in kilobytes (TMem); the maximum memory

occupied by the tables of the goals created by GEM on the four machines, expressed

in kilobytes (TabMem); the memory occupied by the tables of the goals created

by GEM on the four machines after the tables’ disposal, expressed in kilobytes

(EndTabMem); the number of requests issued during the computation (Req); the

number of loops identified during the computation (Loops); the number of response

messages exchanged between principals (Resp); the number of non-empty response

messages (i.e., response messages containing at least one answer) exchanged between

principals (Resp&Ans); the total number of answers computed by GEM during the

evaluation of the policy (Ans).

5.1 Experiments set 1: increasing the number of principals, clauses, and loops

In the first set of experiments, we conducted three groups of (sub)experiments to

evaluate the performance of GEM in response to an increase in (1) the number

of principals and clauses, (2) the number of loops, and (3) both the number of

principals, clauses, and loops in a global policy. To evaluate GEM in response to an

increase in the number of principals and clauses (experiments group 1), we created

six variants of the global policy in the online appendix of the paper (Appendix B).

For the second group of experiments, we created six variant of the global policy

defined in Section 3.2. Similarly, other six variants of the same policy were created

for the experiments in the third group, in order to increase the number of both

principals, clauses, and loops. The call graphs of the six variants of the global

policies are shown in Figure C 1 of the online appendix of the paper. Each variant

is denoted by an identifier that goes from x.0 to x.5 (where x is either 1, 2, or 3

depending on the experiment group for which they are used), where variant x.0

represents the original policy. Note that for the sake of compactness, Figures C 1(b)

and 1(c) show the folded graph of the global policies, i.e., they do not represent the

reevaluation of goals due to side requests. Since in GEM the computation is based

on the unfolded versions of the graph [e.g., the graph in Figure 5(b) for variants 2.0

and 3.0], the number of lower requests occurring in the actual computation is higher

than the one displayed in the figures. For instance, the number of lower requests

for the leader of the SCC goes up to seven in variants (and hence experiments) 2.5

and 3.5.

Table 1 presents the results of the three groups of experiments. Each row in the

table shows the results for the variant of the global policy with identifier indicated

in column ID. The total time (TTime) and the computation time (CTime) are

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

3
2
2

D
.
T

rivella
to

et
a
l.

Table 1. Performance evaluation results: experiments set 1

TTime (CTime) TMem TabMem Resp

ID Princ Tab Clauses in ms in kB (EndTabMem) in kB Req Loops (Resp&Ans) Ans

1.0 4 4 6 286.1 (6.3) 32 18 (15) 5 1 9 (6) 9

1.1 7 7 12 305.9 (8.5) 53 39 (27) 9 2 17 (11) 26

1.2 10 10 18 315.2 (11.2) 78 66 (44) 13 3 25 (17) 49

1.3 13 13 24 322.8 (14.7) 108 97 (63) 17 4 33 (22) 78

1.4 16 16 30 327.0 (17.0) 140 134 (85) 21 5 41 (27) 113

1.5 19 19 36 331.7 (19.8) 180 175 (108) 25 6 49 (33) 154

2.0 4 6 8 830.3 (10.7) 47 37 (32) 10 4 31 (17) 20

2.1 5 10 10 1037.2 (13.0) 68 61 (50) 16 6 48 (19) 32

2.2 6 15 12 1283.8 (16.5) 92 91 (74) 23 8 72 (30) 46

2.3 7 21 14 1459.9 (19.9) 124 122 (100) 31 10 95 (34) 62

2.4 8 28 16 1673.6 (23.4) 163 153 (127) 40 12 125 (47) 80

2.5 9 36 18 1840.0 (27.2) 206 189 (159) 50 14 154 (53) 100

3.0 4 6 8 830.3 (10.7) 47 37 (32) 10 4 31 (17) 20

3.1 7 16 16 1653.6 (23.9) 151 149 (110) 28 12 113 (71) 112

3.2 10 36 24 3029.0 (45.2) 454 427 (297) 64 28 309 (199) 384

3.3 13 76 32 5672.4 (78.8) 1210 1133 (752) 136 60 773 (535) 1088

3.4 16 156 40 10479.7 (134.4) 3024 2827 (1824) 280 124 1789 (1276) 2800

3.5 19 316 48 21939.5 (310.2) 7285 6862 (4267) 568 252 4569 (3477) 6816

https://doi.org/10.1017/S1471068412000397 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 323

the average times for 100 runs of each experiment; the values in all the other

columns are constant for every run, as they depend on the structure of the global

policy.

Before interpreting the results of the experiments, let us provide some general

comments on the relationship between the values in different columns of Table 1.

First, in every experiment the number of requests (Req) is equal to the number of

tables generated (Tab) plus the number of loops identified by GEM (Loops); this

is because a request is either a higher request, which leads to the creation of a

table, or a lower request, and thus forms a loop. Second, the number of response

messages (Resp) is always at least as large as the number of requests, since to every

request is given a response, even if with an empty set of answers. The number of

empty response messages (i.e., response messages with an empty set of answers) can

be observed by subtracting the number of response messages containing at least

one answer (Resp&Ans) from the total number of response messages Resp. Finally,

for some experiments (namely in the computation of variants 2.2 to 2.5 and 3.2

to 3.5), the number of tables generated by GEM is higher than the number of

clauses (Clauses) and thus the number of goals defined in the global policy. This is

because while column Tab reports the total number of tables generated during a

computation, column Clauses shows the number of different clauses being evaluated.

In other words, we do not count twice the clauses used for the evaluation of a goal

that is reevaluated because of a side request. The reason behind this choice is that,

on the one hand, we are interested in showing the impact of the number of tables

generated and answers computed (Ans) during the evaluation of a policy on the

memory usage (TMem and TabMem); on the other hand, considering the number

of different clauses gives a better insight on the size of a policy.

A first interesting outcome of the experiments is that the time and memory results

in Table 1 increase approximately linearly with the number of loops in the global

policy (see Fig. C 2 of the online appendix of the paper for a graphical overview).

When the number of loops is low (experiments in groups 1 and 2), the time and

memory usage are negligible, but as the number of loops increases considerably

(experiments group 3), the TTime, TMem, and TabMem get substantially higher.

This is because an increase in the number of loops [especially if nested, as in the

global policy in Fig. C 1(b) of the online appendix of the paper] leads to an increase

in the number of response messages, answers, and (since GEM reevaluates side

requests) tables generated in a computation.

Another interesting result is represented by the difference between total time

and computation time [see Fig. C 2(a) of the online appendix]. In fact, the TTime

ranges from 16.7 times the CTime for policy variant 1.5, up to 80.1 times the

CTime for variant 2.1. This implies that most of the TTime is devoted to network

communication. Therefore, we can conclude that the larger the number of requests

and response messages and the number of answers per response message, the higher

is the difference between TTime and CTime. Furthermore, we point out that in a real

distributed system where to each principal corresponds a different machine (possibly

in a different area network) the TTime would be much higher than the results in

Table 1, especially when the number of principals increases.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

324 D. Trivellato et al.

Finally, Table 1 shows that the number of answers in a computation is always

larger than the number of response messages containing at least one answer; in other

words, each message in Resp&Ans carries more than one answer on average. This

information, combined with the observation on the difference between TTime and

CTime, suggests that GEM can consistently reduce network overhead with respect

to other goal evaluation algorithms which send one message for each computed

answer (e.g., Alves et al. 2006), especially when the number of principals and facts

in the global policy increases.

5.2 Experiments set 2: Increasing the size of extensional policies

In a real-world policy, we expect the size of the extensional policy (i.e., the number

of facts that can be derived from the policy) to substantially exceed the size of the

intensional policy (i.e., the number of clauses used to derive new facts). Consider,

for example, the students of a university: while there are only a few rules that

define the procedure for becoming a student, the number of students usually goes

beyond several thousands. The goal of the experiments presented in this section is

to evaluate the impact on the performance of GEM of an increase in the number

of facts in a global policy. To this end, we considered some of the global policies

introduced in Section 5.1 and increased the size of their extensional policies by a

factor of 10, 50, and 100; in particular, we modified variants 1.0, 1.5, 2.0, 2.5, and 3.2.

We could not perform experiments on variants 3.3–3.5 due to the limited memory

available on some of the machines used in the experiments.

Table 2 shows the results of the second set of experiments. In the table, suffix

“a” on a variant’s identifier indicates an increase by a factor of 10 of the number

of facts in that variant of the global policy, suffix “b” indicates an increase by

a factor of 50, and suffix “c” indicates an increase by a factor of 100. Note that

the number of answers (Ans) computed on variants 1.0 and 1.5 grows less than a

factor of 10, 50, and 100 because, in order to not modify the structure of the global

policy, the number of facts in the policies of principals mc1 to mc6 in Fig. C 1(a) of

the online appendix of the paper was not increased; more precisely, those policies

always consist of only two facts. Similar to the previous experiments, TTime and

CTime are the average times for 100 runs of each experiment.

The results in Table 2 show that memory usage (TMem and TabMem) and

computation time grows faster than the other values for policies with a very large

number of computed answers (i.e., variants 1.5c, 2.5c, and 3.2c). For what concerns

memory usage [Fig. C 3(b) of the online appendix of the paper], the extra overhead is

due to the accompanying increase of the information that needs to be stored in tables

(i.e., clauses, loops, and answers). After the disposal of the tables employed in the

computation, there is a decrease of up to 38% of the memory usage (EndTabMem).

This suggests that it is very important to delete as much information as possible

from the table of a goal when the goal is completely evaluated, as this leads to a

substantial reduction of memory usage. In this respect, GEM has the advantage of

enabling principals to detect when the evaluation of the single goals involved in a

computation is completed, and immediately clean up the table of those goals.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

G
E

M
:

A
d
istrib

u
ted

g
o
a
l
eva

lu
a
tio

n
a
lg

o
rith

m
3
2
5

Table 2. Performance evaluation results: experiments set 2

TTime (CTime) TMem TabMem Resp

ID Princ Tab Clauses in ms in kB (EndTabMem) in kB Req Loops (Resp&Ans) Ans

1.0 4 4 6 286.1 (6.3) 32 18 (15) 5 1 9 (6) 9

1.0a 4 4 24 293.7 (13.5) 81 69 (58) 5 1 9 (6) 72

1.0b 4 4 104 334.8 (33.9) 308 300 (255) 5 1 9 (6) 352

1.0c 4 4 204 519.8 (78.8) 590 586 (498) 5 1 9 (6) 702

1.5 19 19 36 331.7 (19.8) 180 175 (108) 25 6 49 (33) 154

1.5a 19 19 144 391.6 (80.3) 1215 1210 (790) 25 6 49 (33) 1432

1.5b 19 19 624 1589.4 (817.7) 5857 5764 (3786) 25 6 49 (33) 7112

1.5c 19 19 1224 4356.5 (2986.9) 11711 11541 (7098) 25 6 49 (33) 14212

2.0 4 6 8 830.3 (10.7) 47 37 (32) 10 4 31 (17) 20

2.0a 4 6 26 843.7 (23.9) 192 184 (144) 10 4 31 (17) 200

2.0b 4 6 106 948.4 (68.6) 846 844 (651) 10 4 31 (17) 1000

2.0c 4 6 206 1441.2 (161.3) 1672 1658 (1279) 10 4 31 (17) 2000

2.5 9 36 18 1840.0 (27.2) 206 189 (159) 50 14 154 (53) 100

2.5a 9 36 36 1871.8 (58.1) 1017 976 (726) 50 14 154 (53) 1000

2.5b 9 36 116 2490.1 (259.1) 4665 4534 (3315) 50 14 154 (53) 5000

2.5c 9 36 216 3875.9 (755.2) 9225 8984 (6538) 50 14 154 (53) 10000

3.2 10 36 24 3029.0 (45.2) 454 427 (297) 64 28 309 (196) 384

3.2a 10 36 78 3142.3 (158.1) 3306 3259 (2081) 64 28 309 (196) 3840

3.2b 10 36 318 6277.8 (1789.6) 16103 15954 (10032) 64 28 309 (196) 19200

3.2c 10 36 618 13906.3 (6346.1) 31938 31883 (19968) 64 28 309 (196) 38400

https://doi.org/10.1017/S1471068412000397 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068412000397

326 D. Trivellato et al.

Further to the increase in the number of exchanged messages, we believe the extra

overhead in TTime and CTime in computations with a large number of answers

[the peaks for variants 1.5c, 2.5c, and 3.2c in Fig. C 3(a) of the online appendix of

the paper] to be due to the growth of the data structures used by GEM to search,

for example, for new answers and clauses to be activated. In addition, contrary to

experiments set 1, in this set of experiments the TTime is not always dominated by

network communication time. In particular, for variant 1.5c the CTime is twice the

network time, and for variant 1.5b the CTime is slightly larger than the network

time. In the remaining experiments, the TTime ranges from 2.2 times the CTime

for policy variant 3.2c, up to 77.7 times the CTime for variant 2.0. Moreover, note

that the difference between TTime and CTime always decreases as the number of

facts grows. This is due to the fact that the number of messages exchanged between

principals remains constant while the size of the extensional policy is increased.

To conclude, we highlight again how the “wait” mechanism that GEM employs

to collect a maximum set of answers before sending a response can contribute to

reduce the network overhead, especially for global policies with a large extensional

policy. For example, in the experiment on variant 3.2c, GEM sends “only” 196

response messages, while other distributed goal evaluation algorithms (e.g., Alves

et al. 2006) would send 38,400 messages, one for each computed answer. Intuitively,

the latter approach would lead to a network communication time much higher than

the 7.5 seconds spent by GEM.

6 Dealing with negation

GEM is devised to work with definite logic programs, i.e., programs without negation.

Negation is used by some trust management systems (e.g., Czenko et al. 2006; Dong

and Dulay 2010) to express non-monotonic constraints, such as separation of duty or

“distrust” in principals with certain attributes (e.g., employees of a rival company).

Here, we discuss how GEM can be extended to support the use of negation as

failure.

Negation as failure is an inference rule that derives the truth of a negated body

atom not(B) by the failure to derive B. The problem when allowing the use of

negation (as failure) is that in the presence of loops through negation (i.e., loops

involving negated atoms) a program may have several minimal models (Gelfond

and Lifschitz 1988). For instance, program p← not(q), q ← not(p) has two minimal

models: {p} and {q}. Moreover, these two models are not well-founded (Van Gelder

et al. 1991), as there is no clause in the program demonstrating that p respectively q

are true. Another undesired consequence of loops through negation is that they may

introduce “inconsistencies” in a program, as shown at the end of this section. There

are additional consequences of loops through negation (Van Gelder et al. 1991; Apt

and Bol 1994), which we do not discuss further as they go beyond the scope of this

paper. In fact, our goal is not to have a full-fledge handling of negation, but to

allow the use of negation in policies while preventing loops through negation.

Loops through negation are a well-studied issue in the logic programming litera-

ture. There are three standard solutions to the problems they raise: (a) forbidding

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 327

the presence of loops through negation, as done by the weakly perfect model

semantics (Przymusinska and Przymunsinski 1990), which is defined only for weakly

stratified programs [that include locally stratified (Przymusinski 1988) and stratified

programs (Apt et al. 1988)]; (b) using a three-valued semantics (Przymusinski 1990),

including the truth value undefined next to true and false, as done by the well-founded

semantics (Van Gelder et al. 1991) and Fitting’s semantics (Fitting 1985), where the

semantics of p in the program p ← not(p) is undefined; (c) following a multi-model

approach, as in stable models (Gelfond and Lifschitz 1988).

Our solution follows an approach similar to (a), since solutions (b) and (c) are not

suitable for trust management systems. In fact, relying on a three-valued semantics

(b) requires additional mechanisms to determine whether the truth value of the goals

involved in a loop through negation is true, false, or undefined [e.g., delaying in SLG

resolution (Chen and Warren 1996)]. In trust management, however, loops through

negation are inherently wrong, as they indicate conflicting policy statements issued

by principals among which there is a mutual trust relationship, and thus should not

be processed. Similarly, solution (c) would imply that an access request should be

either granted or revoked depending on which (truth) value we “choose” to assign

to the goals in a computation, which is clearly not a safe approach. Solution (a)

can also not be applied straightforwardly in our context because the definition of

weakly stratified program relies on a “global ordering” among all the (ground)

atoms in a global policy. This would require principals to agree beforehand on the

allowed dependencies among (ground) goals; however, in a trust management system

principals often do not know each other until their first interaction. Therefore, rather

than forbidding the presence of loops through negation, we prevent their evaluation.

In this respect, the added value of GEM is its ability to detect loops at runtime. We

exploit this feature by introducing an additional runtime check to the algorithm,

which causes the computation to flounder if a loop involving a negated goal is

detected. The check is safe in that if the computation does not flounder, then it

always returns a correct answer.

In summary, GEM can be extended to allow the use of negation in policy

statements as follows. Given a clause with a literal not(B) selected for evaluation:

1. if B is not ground, an error is raised and the computation flounders;

2. if the evaluation of B succeeds with an answer, then not(B) fails and the clause

is disposed;

3. if B is completely evaluated and has no answers, then not(B) succeeds and a new

node is added to the evaluation tree of the goal, removing not(B) from the body;

4. if a loop notification for atom B is received, an error is raised and the computation

flounders.

Conditions (1)–(3) are standard when defining negation as failure: (1) is necessary to

guarantee correctness (Apt 1990), while (2) and (3) define the semantics of negation.

Note that condition (3) also captures the case of infinite failure, as done, for instance,

by the well-founded semantics (Van Gelder et al. 1991). For example, given a policy

composed of clauses q ← not(p) and p ← p, and a goal q, GEM first completely

evaluates clause p ← p, detecting the loop and deducing that no answer of p can

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

328 D. Trivellato et al.

be derived; consequently, it concludes that q is true. Condition (4) states that the

algorithm flounders if it detects a loop through negation. The “floundering message”

is propagated to all the goals involved in the loop similarly to a response message,

so that their evaluation is aborted.

Note that floundering due to condition (1) can be avoided by restricting to

well-moded programs (Apt and Marchiori 1994). Different from weakly stratified

programs, which require an ordering among all the goals in a global policy,

the definition of well-moded program requires each clause independently to be

well-moded. Therefore, by requiring local policies to be well-moded, this type of

floundering can be prevented.

It is straightforward to demonstrate that the proposed extension of GEM:

• always terminates (for arbitrary global policies and requests), because the only

difference with the standard GEM algorithm (which terminates) is the presence

of an additional termination condition, and

• for non-floundering computations, it is sound and complete with respect to

the stable models and well-founded semantics.

We now show how the extended algorithm deals with negation by means of

an example. We consider a scenario inspired by the one introduced in Section 1,

where the pharmaceutical company c1 needs to determine the set of principals

participating to project Alpha. Project Alpha is a multidisciplinary project which

requires the collaboration of experts from several fields: physicians, biologists,

chemists, etc. Company c1 already formed a team of qualified chemists to work on

the project and delegates to the partner company c2 the authority of determining

the remaining project members. To avoid interference with the work of its trusted

chemists, however, c1 wants to prevent chemists of c2 to take part to the project. In

its definition of project members, c2 also includes the members of project Alpha at

c1. This scenario can be represented by the following policy statements:

1. memberOfAlpha(c1,X)← memberOfAlpha(c2,X), not(chemist(c2,X)).

2. memberOfAlpha(c1,david).

3. chemist(c1,david).

4. memberOfAlpha(c2,X)← memberOfAlpha(c1,X).

5. memberOfAlpha(c2,alice).

6. chemist(c2,alice).

7. memberOfAlpha(c2,eric).

To compute the answers of goal memberOfAlpha(c1,X), GEM proceeds as follows.

First, clause 1 is evaluated by c1, leading to a request for goal memberOfAlpha(c2,X)

to c2. The evaluation of the first applicable clause in c2’s policy (clause 4) forms a

loop, identified by c1. The loop processing phase continues at c2, which identifies

the first two answers of memberOfAlpha(c2,X) (i.e., memberOfAlpha(c2,alice) and

memberOfAlpha(c2,eric), clauses 5 and 7 resp.) and sends them to c1. For each

of these answers, c1 requests to c2 whether the project member is a chemist. The

evaluation of chemist(c2,alice) succeeds at c2 (clause 6), while chemist(c2,eric) fails;

therefore, their negated counterpart in clause 1 fails and succeeds respectively, leading

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 329

to a new answer at c1, namely memberOfAlpha(c1, eric). This answer, together with

the answer derived by evaluating clause 2 (i.e., memberOf-Alpha(c1,david)), is sent

by c1 to c2, starting the second loop iteration. In this iteration, c2 finds one

new answer, memberOfAlpha(c2,david), which is immediately returned to c1. Now,

c1 evaluates clause 1 based on the new answer received from c2. Since David

is not a chemist at c2, c1 derives again answer memberOfAlpha(c1,da-vid), which

had already been computed in the previous iteration. Thus, the evaluation of

memberOfAlpha(c1,X) terminates with two answers: memberOfAlpha(c1,eric) and

memberOfAlpha(c1,david).

The example above shows that GEM can easily support policies including both

loops and negation. We now show how GEM operates in presence of loops through

negation. Consider the following policy statements complementing the global policy

above:

8. chemist(c2,X)← memberOfAlpha(c1,X), chemist(c3,X).

9. chemist(c3,eric).

Clause 8 states that all the members of project Alpha at c1 that work as chemists

at the other partner company c3 are also chemists at c2. Note that clause 8 is

“inconsistent” with clause 1. In fact, clause 1 defines as members of project Alpha

principals that are not chemists at company c2; at the same time, clause 8 states

that chemists at c2 are members of project Alpha at c1. For this reason, when c1

ascertains that goals memberOfAlpha(c1,eric) and chemist(c2,eric) are in a loop, it

raises an error and the computation flounders. In fact, in the example computation

above, the evaluation of chemist(c2,eric) by c2 would lead to a contradiction: if Eric

were not a chemist at c2, he would be a member of project Alpha; however, if Eric

were a member of project Alpha, he would be a chemist at c2.

7 Related work

Research on goal evaluation has been carried out in the field of both logic

programming and trust management. In this section we compare our work with

existing frameworks focusing on the information disclosed during the evaluation

process, based on the classification criteria defined in Section 3.1. Additionally,

we indicate whether the analyzed systems employ a centralized or distributed goal

evaluation strategy and discuss the termination detection mechanism they adopt.

Within termination detection, we distinguish between termination of the whole

computation initiated by a particular request and termination of the single goals

involved in the computation (i.e., detecting when a goal is completely evaluated).

Table 3 summarizes the results of this analysis. In the table, LP denotes the

algorithms proposed in the logic programming domain, while TM denotes trust

management systems.

SLG resolution (Chen and Warren 1996), TP resolution (Shen et al. 2001),

DRA (Guo and Gupta 2001), OPTYap (Rocha et al. 2005), and the work by

Hulin (1989) are centralized tabling systems in which the complete program (i.e., the

global policy) is available during the evaluation. Therefore, these five systems are

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

330 D. Trivellato et al.

Table 3. Comparison between goal evaluation algorithms

Computation Goal

Frameworks Evaluation termination termination Classification

SLG (Chen and Warren 1996) Centralized Centralized Centralized E1-I3

TP resolution (Shen et al.

2001)

Centralized Centralized Centralized E1-I3

DRA (Guo and Gupta 2001) Centralized Centralized Centralized E1-I3

LP
OPTYap (Rocha et al. 2005) Centralized Centralized Centralized E1-I3

Hulin (1989) Centralized Centralized Centralized E1-I3

Damásio (2000) Distributed Distributed Distributed E1-I2

Hu (1997) Distributed Distributed Distributed E1-I2

RT (Li et al. 2003) Centralized Centralized Centralized E1-I3

Tulip (Czenko and Etalle 2007) Centralized Centralized Centralized E1-I3

SecPAL (Becker et al. 2010) Centralized Centralized Centralized E1-I3

SD3 (Jim and Suciu 2001) Distributed N/A N/A E1-I3

Becker et al. (2009) Distributed N/A N/A E1-I3

TM Cassandra (Becker 2005) Distributed No No E1-I0

PeerTrust (Alves et al. 2006) Distributed Distributed No E1-I1

Distributed Distributed Distributed E1-I2

MTN (Zhang and Winslett

2008)

Distributed Distributed No E1-I1

GEM Distributed Distributed Distributed E1-I1

classified as E1-I3 according to the classification criteria defined in Section 3.1, that

is, they do not preserve the confidentiality of neither extensional nor intensional

policies. SLG identifies loops by observing goal dependencies in the “call stack” of

the program; termination is detected when no more operations can be applied to the

goals in the stack. SLG resolution is employed in a number of Prolog systems such

as, for instance, XSB (Swift and Warren 2012). The evaluation strategy employed

by GEM is similar to the XSB scheduling strategy called local evaluation, which

completely evaluates an SCC before returning the answers of the leader to a goal

outside the SCC. Similar to SLD resolution (Kowalski 1974), in TP resolution and

DRA a goal is evaluated by building a single derivation tree for the goal. Loops are

detected when a subgoal appears more than once in a branch of the tree, and the

evaluation of a goal terminates when there are no more nodes in the derivation tree

to be evaluated. OPTYap and Hulin propose a parallel tabled execution strategy

to improve the efficiency of goal evaluation. OPTYap resorts to centralized data

structures to identify loops and detect termination. In Hulin (1989), each process

communicates its termination to a global variable, whose access is limited to one

process at a time by means of a deadlock mechanism.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 331

Distributed goal evaluation frameworks are presented in Hu (1997) and Damásio

(2000). To detect termination, the work by Hu (1997) assumes the presence of

global data structures and requires goal dependencies to be propagated among

the different principals. In Damásio (2000), termination detection resorts to a

static dependency graph known to all principals and determined at compile time.

Consequently, the confidentiality of (part of) the intensional policies is not preserved,

and both algorithms are classified as E1-I2.

In trust management, distributed goal evaluation is a main issue since policies

are distributed among principals. The trust management frameworks RT (Li et al.

2003) and Tulip (Czenko and Etalle 2007) rely on a centralized goal evaluation

strategy, where all the clauses necessary for the evaluation of a goal are collected in

a single location. Similarly, SecPAL (Becker et al. 2010) assumes all the clauses in a

global policy to be available to the principal responsible for the evaluation of a goal.

In SD3 (Jim and Suciu 2001), when queried for a goal, a principal returns to the

requester the clauses defining the goal, with the locally defined (body) atoms already

evaluated. Becker et al. (2009) present an algorithm in which the body atoms of the

clauses defining a goal are sent in turn to the principals defining them; each principal

evaluates the atom(s) defined in her policy and sends its answers and the remaining

atoms to the next principal, until the evaluation fails or all atoms are evaluated. As

a result, policy confidentiality is not preserved by any of these algorithms, which

are thus classified as E1-I3. Furthermore, neither Jim and Suciu (2001) nor Becker

et al. (2009) discuss how termination is detected. Cassandra (Becker 2005) employs

a distributed evaluation strategy in which no information about intensional policies

is disclosed. However, it does not detect neither the complete evaluation of single

goals nor the termination of the whole computation.

PeerTrust (Alves et al. 2006) and Multiparty Trust Negotiation (MTN) (Zhang and

Winslett 2008) detect termination of the computation started by a particular request

in a fully distributed way; this is achieved by “observing” when no more messages

are exchanged among principals and all goals are quiescent. In Alves et al. (2006),

the authors present two solutions: the first, based on the work in Damásio (2000),

is also able to detect the completion of single goals, but requires the dependency

graph of the global policy to be known to all principals beforehand. The second

solution, which is also adopted in Zhang and Winslett (2008), detects termination of

the computation without disclosing information about intensional policies. However,

since all request and response messages are tagged with the identifier of the initial

request, some information about goal dependencies can be inferred (hence the E1-I1

classification); more precisely, a principal can learn whether a given goal depends on

a goal defined in her policy. In addition, neither PeerTrust nor MTN features a loop

identification mechanism. Consequently, they are not able to detect termination of

individual goals, which is required to free the resources used during the computation

and to allow the use of negation. Furthermore, when using negation, the detection

of loops through negation allows to preserve the soundness and completeness of

the computation with respect to the standard semantics for logic programs. We

enable the identification of loops and the detection of goal termination at the cost

of possibly revealing more information about goal dependencies. In fact, in GEM

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

332 D. Trivellato et al.

all the principals involved in a loop are notified about the loop: on the one hand,

this enables the principal(s) handling negated goals to terminate the computation

with floundering. On the other hand, this implies that GEM discloses information

about the presence of mutual dependencies among goals to more principals than

PeerTrust and MTN. In the example in Section 4.2, for instance, with PeerTrust

and MTN the research institute ri would not receive any loop notification from

company c2; therefore, ri would not learn that there exists a mutual dependency

between memberOfAlpha(ri,X) and memberOfAlpha(c2,X).

Besides the protection of intensional policies, preserving the confidentiality of

extensional policies is also an important requirement of trust management systems,

as the answers of a goal might contain sensitive information (e.g., the list of patients

of a mental hospital). Even though none of the existing goal evaluation algorithms

satisfies this requirement (see Table 3), GEM can be easily adapted to protect

the confidentiality of extensional policies. In particular, by enabling the distributed

evaluation of policies, GEM allows principals to discriminate between goals that

may be accessed by other principals and goals that may only be used for internal

computations, because of their sensitivity. This distinction is not possible when

using an algorithm that relies on a centralized evaluation strategy. A finer-grained

protection of extensional policies can be achieved by integrating GEM with trust

negotiation algorithms (Winsborough et al. 2000; Winslett 2003). Trust negotiation

algorithms protect the disclosure of extensional policies (i.e., possibly sensitive

credentials) by means of disclosure policies that specify which credentials a requester

must provide to get access to the requested credentials. Some trust negotiation

algorithms also deal with the protection of disclosure policies (e.g., Seamons

et al. 2001); however, they assume that all the credentials of the principals in

a trust management system have already been derived when a transaction takes

place (Winsborough and Li 2002). GEM, on the other hand, provides a way of

deriving those credentials. Thus, GEM and trust negotiation algorithms can be

combined in such a way that a GEM request is evaluated only if the requester

satisfies the disclosure policy of that goal, i.e., if she is trustworthy enough to see the

answers to the request. The resulting integrated algorithm enables distributed goal

evaluation while preserving the confidentiality of both intensional and extensional

policies. A similar approach is presented in Koshutanski and Massacci (2008) and

Lee et al. (2009). However, in Koshutanski and Massacci (2008) the authors do not

discuss how to deal with recursive policy statements, while the algorithm presented in

Lee et al. (2009) raises an error in the case that cyclic dependencies are detected, and

for this reason is not complete. MTN (Zhang and Winslett 2008) also applies trust

negotiation strategies to distributed goal evaluation, but as discussed in Section 7 this

algorithm is not able to detect termination of individual goals within a computation.

In Minami et al. (2011), the authors present a framework to analyze and compare

distributed goal evaluation algorithms based on the information about extensional

policies that they disclose during a computation.

To conclude, we point out that contrary to other works on goal evaluation (e.g.,

Lee et al. 2010)), the distributed evaluation strategy of GEM does not allow to

build the complete “proof” of a goal. Building such a proof is in fact similar to

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 333

constructing the derivation tree of a goal. Even though cryptographic techniques can

be employed to prevent the disclosure of the facts used in the derivation process (Lee

et al. 2009), the construction of such a proof cannot be obtained without disclosing

the intensional policies of the principals involved in the evaluation, which is what

GEM aims to avoid. We argue that the approach followed by GEM is consistent

with the concept of trust management. In trust management, in fact, if the policy of

a principal a refers to the policy statements of a principal b, then a trusts b for the

definition and evaluation of those statements. When the proof of a goal is required,

the confidentiality requirement should be put aside in favor of a goal evaluation

strategy that allows the construction of such a proof (e.g., RT; Lee et al. 2003).

8 Conclusions

In this paper we have presented GEM, a distributed goal evaluation algorithm for

trust management systems. Different from many of the existing algorithms, GEM

detects the termination of a computation in a completely distributed way without

disclosing intensional policies, thereby preserving their confidentiality. In addition,

GEM is able to detect when the single goals within a computation are fully evaluated,

by enabling the identification of strongly connected components. Even though this

may lead to the disclosure of some additional information about goal dependencies,

it also enables the use of negation (as failure) in policies. In Section 4.2 we show

that the information disclosed by GEM is not sufficient to infer the intensional

policy of a principal; thus, we believe that the benefits of our solution overcome the

drawbacks. GEM always terminates and is sound and complete with respect to the

standard semantics for logic programs. As future work, we plan to extend GEM to

support constraint rules (Li and Mitchell 2003) and subsumptive tabling.

Although efficiency is not a primary objective of this paper, GEM can contribute

to keep network traffic low. In fact, in most distributed goal evaluation systems

(e.g., Alves et al. 2006) answers are sent as soon as they are computed. On the

contrary, GEM delays the communication of the answers of a goal until all possible

answers have been computed, i.e., until all the branches of the partial derivation

tree of the goal have been inspected. This strategy may delay the identification

of the answers of ground goals. However, it simplifies the termination detection

mechanism and we believe reduces the number of messages exchanged by principals

during a computation. The experiments presented in Section 5 suggest that since

the computation time is dominated by network communication, a reduction in the

number of messages exchanged between principals leads to a consistently lower

computation time. In addition, since the answers of a goal can be reused for future

computations, the proposed solution may reduce the computation time of later

evaluations.

Based on the results of the experiments presented in Section 5, we can conclude

that GEM performs well both in terms of computation time and memory occupation

even for very large global policies. To confirm this conviction, we have employed

GEM in some prototype of real-world distributed systems in the maritime safety and

security (Trivellato et al. 2011) and employability (Böhm et al. 2010) domains. In

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

334 D. Trivellato et al.

addition, we are currently designing an advanced version of GEM that implements

an “early loop detection” strategy to avoid the reevaluation of side requests. Finally,

since the policy language proposed in this paper can be used to represent the

semantics of several existing trust management languages (e.g., RT, Li et al. 2003;

and PeerTrust, Alves et al. 2006), we point out that GEM can be used to evaluate

goals over policies expressed in any of those languages.

Acknowledgements

This work has been carried out as part of the POSEIDON project under the

responsibility of the Embedded Systems Institute (ESI). This project is partially

supported by the Dutch Ministry of Economic Affairs under the BSIK03021

program.

References

Alves, M., Damasio, C. V., Nejdl, W. and Olmedilla, D. 2006. A distributed tabling

algorithm for rule based policy systems. In Proc. of International Workshop on Policies for

Distributed Systems and Networks. IEEE Computer Society, Washington, DC, 123–132.

Apt, K. R. 1990. Logic programming. In Handbook of Theoretical Computer Science (vol. B):

Formal Models and Semantics. MIT Press, Cambridge, MA, 493–574.

Apt, K. R., Blair, H. A. and Walker, A. 1988. Towards a Theory of Declarative Knowledge.

Morgan Kaufmann, San Francisco, CA, 89–148.

Apt, K. R. and Bol, R. N. 1994. Logic programming and negation: A survey. Journal of

Logic Programming 19–20, 9–71.

Apt, K. R. and Marchiori, E. 1994. Reasoning about Prolog programs: From modes through

types to assertions. Formal Aspects of Computing 6, 6A, 743–765.

Becker, M. Y. 2005. Cassandra: Flexible Trust Management and Its Application to Electronic

Health Records. PhD thesis, Computer Laboratory, University of Cambridge, UK.

Becker, M. Y., Fournet, C. and Gordon, A. D. 2010. SecPAL: Design and semantics of a

decentralized authorization language. Journal of Computer Security 18, 619–665.

Becker, M. Y., Mackay, J. F. and Dillaway, B. 2009. Abductive authorization credential

gathering. In Proc. of the 10th International Conference on Policies for Distributed Systems

and Networks. IEEE Press, Piscataway, NJ, 1–8.

Blaze, M., Feigenbaum, J. and Lacy, J. 1996. Decentralized trust management. In Proc. of

the IEEE Symposium on Security and Privacy. IEEE Computer Society, 164–173.

Böhm, K., Etalle, S., den Hartog, J., Hütter, C., Trabelsi, S., Trivellato, D. and Zannone,

N. 2010. Flexible architecture for privacy-aware trust management. Journal of Theoretical

and Applied Electronic Commerce Research 5, 77–96.

Bradshaw, R. W., Holt, J. E. and Seamons, K. E. 2004. Concealing complex policies

with hidden credentials. In Proc. of the 11th Conference on Computer and Communications

Security, V. Atluri, B. Pfitzmann and P. D. McDaniel, Eds. ACM, New York, 146–157.

Bry, F. 1990. Query evaluation in recursive databases: Bottom-up and top-down reconciled.

Data Knowl. Eng. 5, 4, 289–312.

Chen, Y. 1997. Magic sets and stratified databases. International Journal of Intelligent

Systems 12, 3, 203–231.

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic

programs. Journal of the ACM 43, 1, 20–74.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 335

Costantini, S. 2001. Comparing different graph representations of logic programs

under the Answer Set semantics. In Proc. of the 1st International Workshop on

Answer Set Programming, A. Provetti and T. C. Son, Eds. AAAI Press. Available at

http://www.cs.nmsu.edu/∼tson/ASP2001/7.ps

Czenko, M. and Etalle, S. 2007. Core TuLiP logic programming for trust management. In

Proc. of the 23rd International Conference on Logic Programming, V. Dahl and I. Niemelä,

Eds. LNCS, vol. 4670. Springer-Verlag, Berlin, 380–394.

Czenko, M., Tran, H., Doumen, J., Etalle, S., Hartel, P. and den Hartog, J. 2006.

Nonmonotonic trust management for P2P applications. Electronic Notes in Theoretical

Computer Science 157, 3 (May), 113–130.

Damásio, C. V. 2000. A distributed tabling system. In Proc. of the 2nd Conference on Tabulation

in Parsing and Deduction. 65–75.

Di Marzo Serugendo, G., Foukia, N., Hassas, S., Karageorgos, A., Mostéfaoui, S. K.,

Rana, O. F., Ulieru, M., Valckenaers, P. and van Aart, C. 2004. Self-organisation:

Paradigms and applications. Engineering Self-Organising Systems 2977, 1–19.

Dong, C. and Dulay, N. 2010. Shinren: Non-monotonic trust management for distributed

systems. In Proc. of the 4th International Conference on Trust Management, M. Nishigaki,

A. Jøsang, Y. Murayama and S. Marsh, Eds. IFIP, vol. 321. Springer, Boston, MA, 125–140.

Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B. and Ylonen, T. 1999. SPKI

Certificate Theory, RFC Editor, United States.

Fitting, M. 1985. A Kripke–Kleene semantics for general logic programs. Journal of Logic

Programming 2, 4, 295–312.

Frikken, K., Atallah, M. and Li, J. 2006. Attribute-based access control with hidden policies

and hidden credentials. IEEE Transactions on Computers 55, 1259–1270.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In

Proc. of the 5th International Conference and Symposium on Logic Programming, (ICLP’88),

R. A. Kowalski and K. A. Bowen, Eds. MIT Press, Cambridge, MA, 1070–1080.

Guo, H.-F. and Gupta, G. 2001. A simple scheme for implementing tabled logic programming

systems based on dynamic reordering of alternatives. In Proc. of the 17th International

Conference on Logic Programming, P. Codognet, Ed. Springer-Verlag, London, 181–196.

Hoch, J. and Shamir, A. 2008. On the strength of the concatenated hash combiner when

all the hash functions are weak. In Automata, Languages and Programming, L. Aceto,

I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir and I. Walukiewicz, Eds.

LNCS, vol. 5126. Springer-Verlag, Berlin, 616–630.

Hu, R. 1997. Efficient Tabled Evaluation of Normal Logic Programs in a Distributed

Environment. PhD thesis, State University of New York at Stony Brook.

Hulin, G. 1989. Parallel processing of recursive queries in distributed architectures. In

Proc. of the 15th International Conference on Very Large Data Bases, P. M. G. Apers and

G. Wiederhold, Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA, 87–96.

Jim, T. and Suciu, D. 2001. Dynamically distributed query evaluation. In Proc. of the 20th

Symposium on Principles of database systems, P. Buneman, Ed. ACM, New York, 28–39.

Koshutanski, H. and Massacci, F. 2008. Interactive access control for autonomic

systems: From theory to implementation. ACM Transactions on Autonomous and Adaptive

Systems 3, 3, 1–31.

Kowalski, R. 1974. Predicate logic as a programming language. Information Processing 74,

556–574.

Lee, A. J., Minami, K. and Borisov, N. 2009. Confidentiality-preserving distributed proofs of

conjunctive queries. In Proc. of the 4th International Symposium on Information, Computer,

and Communications Security, W. Li, W. Susilo, U. K. Tupakula, R. Safavi-Naini and

V. Varadharajan, Eds. ACM, New York, 287–297.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

336 D. Trivellato et al.

Lee, A. J., Minami, K. and Winslett, M. 2010. On the consistency of distributed proofs with

hidden subtrees. ACM Transactions on Information and System Security 13, 3, 1–32.

Leuschel, M., Martens, B. and Sagonas, K. 1998. Preserving termination of tabled logic

programs while unfolding. In Proc. of the 7th International Workshop on Logic Program

Synthesis and Transformation, N. E. Fuchs, Ed. LNCS, vol. 1463. Springer-Verlag, Berlin,

189–205.

Li, N. and Mitchell, J. C. 2003. Datalog with constraints: A foundation for trust

management languages. In Proc. of the 5th International Symposium on Practical Aspects

of Declarative Languages, V. Dahl and P. Wadler, Eds. LNCS, vol. 2562. Springer-Verlag,

London, 58–73.

Li, N., Winsborough, W. H. and Mitchell, J. C. 2003. Distributed credential chain discovery

in trust management. Journal of Computer Security 11, 1, 35–86.

Minami, K., Borisov, N., Winslett, M. and Lee, A. J. 2011. Confidentiality-preserving

proof theories for distributed proof systems. In Proc. of the 6th Symposium on Information,

Computer and Communications Security, B. S. N. Cheung, L. C. K. Hui, R. S. Sandhu and

D. S. Wong, Eds. ACM, New York, 145–154.

Park, D. 1969. Fixpoint induction and proofs of program properties. Machine Intelligence 5,

59–78.

Przymusinska, H. and Przymunsinski, T. C. 1990. Weakly stratified logic programs.

Fundamenta Informaticae 13, 1, 51–65.

Przymusinski, T. C. 1988. On the Declarative Semantics of Deductive Databases and Logic

Programs. Morgan Kaufmann, San Francisco, CA, 193–216.

Przymusinski, T. 1990. The well-founded semantics coincides with three-valued stable

semantics. Fundamenta Informaticae 13, 4, 445–463.

Ramakrishnan, R. 1991. Magic templates: A spellbinding approach to logic programs.

Journal of Logic Programming 11, 189–216.

Rocha, R., Silva, F. and Costa, V. S. 2005. On applying or-parallelism and tabling to logic

programs. Theory and Practice of Logic Programming 5, 1–2, 161–205.

Seamons, K. E., Winslett, M. and Yu, T. 2001. Limiting the disclosure of access control

policies during automated trust negotiation. In Proc. of the Network and Distributed System

Security Symposium. The Internet Society, San Diego, CA.

Shen, Y.-D., Yuan, L.-Y., You, J.-H. and Zhou, N.-F. 2001. Linear tabulated resolution based

on Prolog control strategy. Theory and Practice of Logic Programming 1, 71–103.

Stine, K., Kissel, R., Barker, W. C., Lee, A. and Fahlsing, J. 2008. Guide for Mapping

Types of Information and Information Systems to Security Categories . Special Publication

SP 800-60 Rev. 1, National Institute of Standards and Technology (NIST), Gaithersburg,

MD.

Swift, T. and Warren, D. S. 2012. XSB: Extending prolog with tabled logic programming.

Theory and Practice of Logic Programming 12, 1–2, 157–187.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In Proc. of the 3rd International

Conference on Logic Programming, E. Y. Shapiro, Ed. Springer-Verlag, London, 84–98.

Trivellato, D., Zannone, N. and Etalle, S. 2011. A security framework for systems of

systems. In Proc. of the 12th International Conference on Policies for Distributed Systems

and Networks. IEEE Computer Society, Piscataway, NJ.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM 38, 619–649.

Vieille, L. 1987. A database-complete proof procedure based on SLD-resolution. In Proc.

of the 4th International Conference on Logic Programming, J. L. Lassez, Ed. MIT Press,

Cambridge, MA, 74–103.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

GEM: A distributed goal evaluation algorithm 337

Winsborough, W. H. and Li, N. 2002. Protecting sensitive attributes in automated trust

negotiation. In Proc. of Workshop on Privacy in the Electronic Society, S. Jajodia and

P. Samarati, Eds. ACM, New York, 41–51.

Winsborough, W. H., Seamons, K. E. and Jones, V. E. 2000. Automated trust negotiation.

In Proc. of the DARPA Information Survivability Conference and Exposition. Vol. 1. IEEE

Computer Society, Los Alamitos, CA, 88–102.

Winslett, M. 2003. An introduction to trust negotiation. In Proc. of International Conference

on Trust Management, P. Nixon and S. Terzis, Eds. LNCS, vol. 2692. Springer-Verlag, Berlin,

275–283.

Yu, T. and Winslett, M. 2003. A unified scheme for resource protection in automated trust

negotiation. In Proc. of the IEEE Symposium on Security and Privacy. IEEE Computer

Society, Washington, DC, 110–122.

Zhang, C. C. and Winslett, M. 2008. Distributed authorization by multiparty trust

negotiation. In Proc. of the 13th European Symposium on Research in Computer Security,

S. Jajodia and J. López, Eds. LNCS, vol. 5283. Springer-Verlag, Berlin, 282–299.

Zhou, N.-F. and Sato, T. 2003. Efficient fixpoint computation in linear tabling. In Proc.

of the 5th International Conference on Principles and Practice of Declarative Programming,

K. Sagonas and D. Miller, Eds. ACM, New York, 275–283.

https://doi.org/10.1017/S1471068412000397 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000397

