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Synthetic domain theory (SDT) is a version of Domain Theory where ‘all functions are

continuous’. Following the original suggestion of Dana Scott, several approaches to SDT

have been developed that are logical or categorical, axiomatic or model-oriented in character

and that are either specialised towards Scott domains or aim at providing a general theory

axiomatising the structure common to the various notions of domains studied so far.

In Reus and Streicher (1993), Reus (1995) and Reus (1998), we have developed a logical and

axiomatic version of SDT, which is special in the sense that it captures the essence of

Domain Theory à la Scott but rules out, for example, Stable Domain Theory, as it requires

order on function spaces to be pointwise. In this article we will give a logical and axiomatic

account of a general SDT with the aim of grasping the structure common to all notions of

domains.

As in loc.cit., the underlying logic is a sufficiently expressive version of constructive type

theory. We start with a few basic axioms giving rise to a core theory on top of which we

study various notions of predomains (such as, for example, complete and well-complete

S-spaces (Longley and Simpson 1997)), define the appropriate notion of domain and verify

the usual induction principles of domain theory.

Although each domain carries a logically definable ‘specialization order’, we avoid

order-theoretic notions as much as possible in the formulation of axioms and theorems. The

reason is that the order on function spaces cannot be required to be pointwise, as this would

rule out the model of stable domains à la Berry.

The consequent use of logical language – understood as the internal language of some

categorical model of type theory – avoids the irritating coexistence of the internal and the

external view pervading purely categorical approaches. Therefore, the paper is aimed at

providing an elementary introduction to synthetic domain theory, albeit requiring some

knowledge of basic type theory.

† This work was partially supported by the German Academic Exchange Office (DAAD) in the project ‘Vigoni’.
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1. Introduction

1.1. Origins of synthetic domain theory

In various lectures in the 1980’s, Dana Scott strongly promoted the idea of using intuition-

istic higher order logic or set theory as an adequate logical framework for axiomatising

Domain Theory as an Extensional Theory of Computation.

The key idea behind traditional Domain Theory à la Scott (Scott 1970; Scott 1972;

Scott 1993) and Eršhov (Eršhov 1973; Eršhov 1977) is to approximate the notion of

computability by the notion of continuity. This amounts to a systematic axiomatic gen-

eralisation of the well-known Myhill–Shepherdson Theorem saying that all effective op-

erations are continuous with respect to the finite information topology – see, for example,

Rogers (1967).

When working in classical set theory – where functions are identified with functional

relations – one has to live with the coexistence of full and continuous function spaces

of domains (which both carry a domain structure). Although one may have classical

theories of domains with continuous function spaces only (such as, for example, LCF

(Paulson 1987; Regensburger 1994)), in such theories one cannot have the intuitively

appealing Axiom of Unique Choice (AUC) stating that any functional relation is traced

by a continuous function.

But it is consistent with intuitionistic logic to claim that all functions between domains

are continuous and even that all functions between domains are computable. Moreover,

there are intended models for this situation, namely the various realisability models. These

might be considered as the standard model built relative to some partial combinatory

algebra (pca) and providing an untyped model of computation. A prominent example is

the Kleene algebra of Gödel numbers of partial recursive functions.

Nevertheless, until the end of the 1980’s there was not much activity seriously taking

up Scott’s suggestion of developing Domain Theory in a purely axiomatic way in an

intuitionistic setting. A notable exception is the Ph. D. Thesis of Giuseppe Rosolini

(Rosolini 1986), which introduced the basic notion of synthetic domain theory: the ‘r.e.

subobject classifier’ Σ – see also Rosolini (1987). Using Σ, one may define for every

intuitionistic set a relation of ‘observational inequality’ corresponding to the ‘information

ordering’ of classical domain theory. But, in contrast with classical domain theory, this

‘information ordering’ appears as a derived notion and not as a structure component

supporting the view that ‘domains are certain sets’ and not a ‘certain kind of structure’,

be it order-theoretic or topological.

This line of research was taken up again by Wesley Phoa in his Ph. D. Thesis (Phoa

1990), where he gave a detailed account of Domain Theory in the Effective Topos, i.e.,

the model built on Kleene realisability.

Whereas these approaches were model based, in 1989, Martin Hyland (Hyland 1991)

and Paul Taylor (Taylor 1991) independently introduced two different, but essentially

equivalent, formulations of a synthetic theory of domains. Their idea was to define

predomains as so-called Σ-replete objects, that is, the objects of the least internal full

reflective subcategory (of the ambient category of intuitionistic sets) containing the r.e.

subobject classifier Σ. This property of Σ-repleteness can be rephrased as closure under
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‘all generalised limit processes’, cf. Streicher (1998). Both Hyland and Taylor strongly

advertised the use of the so-called ‘internal language’ of a topos or a model of type

theory, which amounts to jumping back and forth between the diagrammatic language of

category theory and the language of higher order logic.

1.2. The logical approach to SDT

The starting point of our Logical Approach to SDT is that an axiomatic theory of domains

has to be developed in a purely logical way if it should be suitable as a logical framework

for the verification of functional programs.

Of course, this does not mean avoiding categorical notions and diagrams altogether, but

understanding them in the sense of the internal language. In order to make this possible,

we have to assume the existence of an internal full subcategory Set† of the ambient

category that establishes a model of the type theory in use. From a type-theoretic point

of view, such an internal full subcategory is nothing but an appropriate type-theoretic

universe Set.

Fortunately, realisability models – even over arbitrary partial combinatory algebras

– provide such universes, namely the full internal subcategory of partial equivalence

relations (pers). Moreover, these universes are even impredicative in the sense that they are

closed under arbitrary (internal) products of families whose index set need not itself be an

element of the universe Set. However, impredicativity of Set is not needed for developing

a substantial part of general SDT, though it is necessary to require that the universe Set

is closed under products of families whose index set is in Set. But the pleasant aspect of

impredicativity of Set is that (pre)domains will provide a model of polymorphic λ-calculus.

However, for sheaf models of SDT, see, for example, Fiore and Rosolini (1997), there

arises the problem that it is not even obvious whether they only contain predicative

universes (one definitely knows that Grothendieck toposes cannot contain nontrivial

impredicative universes). This seems to have the consequence that for sheaf models not

all concepts and arguments can be expressed in the internal language, which certainly

is a drawback when one desires SDT to provide a convenient logic of domains. But we

do not worry too much about this problem because we consider the realisability models

as the intended models of our axiomatisation anyway. The reason is that in realisability

models, functions between data types are precisely the algorithmic ones – in the sense of

‘algorithmic’ as given by the underlying partial combinatory algebra.

In our previous draft paper (Reus and Streicher 1993), we coined the term ‘naive

synthetic domain theory’ for the logical approach to SDT in analogy with the term

‘naive synthetic differential geometry’ as introduced by Lavendhomme in his lecture

notes (Lavendhomme 1987). An earlier published account of ‘naive synthetic differential

geometry’ can be found in the first part of the book Kock (1981). There he develops an

impressive part of differential calculus in the informal language of intuitionistic higher

order logic or set theory from a few axioms (inconsistent with classical logic) without any

reference to specific models of the axioms.

† Not to be confused with the category of classical sets usually employed in category theory.
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In this paper, of which an extended abstract has already appeared in Reus and

Streicher (1997), our aim is to give an analogous account of Naive SDT, though we

probably will not achieve the extent of clarity and elegance exemplified by the work of

Kock and Lavendhomme. Due to the fact that SDT is more categorical in nature than

synthetic differential geometry, we will often use the diagrammatic language of category

theory, but we emphasise that all diagrams have to be understood as living in the universe

Set. However, see Reus (1995) and Reus (1998) for a ‘diagram-free’ formulation of a

synthetic theory of Domains à la Scott. This theory has been fully formalised and verified

mechanically in Reus (1996) using (an extension of) the LEGO Proof Checker.

1.3. The key ideas underlying synthetic domain theory

The basic idea underlying synthetic differential geometry is to replace the ‘analytic’ formu-

lation of differential calculus in terms of the ‘ε-δ-language’ by a ‘synthetic’ formulation in

terms of ‘infinitesimals’ whose existence is ensured by appropriate axioms, which, however,

contradict classical logic. Analogously, the basic idea of synthetic domain theory is to

replace the traditional ‘analytic’ formulation of domain theory in terms of sets endowed

with some order-theoretic or topological structure by a new ‘synthetic’ formulation where

domains are simply sets with certain properties from which one may derive (analogues of)

the required order-theoretic or topological structure.

1.3.1. Special synthetic domain theory à la Scott The starting point for achieving such

a ‘synthetic’ formulation is the observation that there is already in classical domain

theory a one-to-one-correspondence between Scott open subsets of a domain D and the

continuous maps from D to Σ – the 2-element lattice also known as Sierpinski space. Thus,

the topological structure of all domains is concentrated into one single domain Σ, since for

an arbitrary domain D, the topology on D is not provided as some additional structure

but is already given by the collection of maps from D to Σ (forming itself a domain ΣD).

In the Kleene realisability model these ‘open sets’ appear as the semi-decidable predicates

constituting the most general form of experiment applicable to a computational object.

Here the elements > and ⊥ of Σ correspond to the propositions expressing termination

and divergence of computations, respectively. In other words, Σ can be considered as the

set of those propositions corresponding to Σ0
1-sentences. As semi-decidable predicates on

a set X are closed under finite conjunctions and disjunctions and existential quantification

over N, they can be considered as a so-called ‘natural topology’ on X. Notice, however,

that the ‘open sets of the natural topology’ on X will, in general, not be closed under

arbitrary unions but only under unions of N-indexed families.

Now, the starting point of synthetic domain theory is to postulate axiomatically a

distinguished set Σ associating with every set X its ‘natural topology’ whose ‘open sets’

are given by the functions from X to Σ†. This situation was axiomatised by Taylor

† This idea goes back to work of Eršhov who developed domain theory in parallel with Dana Scott (Eršhov

1977).
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in Taylor (1991) and has subsequently been developed in Reus and Streicher (1993),

Reus (1995) and Reus (1998).

1.3.2. General synthetic domain theory The assumption that the Σ-predicates on a set X,

that is, the p:X → Σ, form a weak topology on X is an assumption that is typical for

domain theory à la Scott. But already the requirement that Σ-predicates are closed under

finite disjunctions entails the existence of the Σ-predicate

porΣ , λu, v: Σ. u ∨ v,
which cannot be computed sequentially. The requirement of closure under finite disjunctions

would rule out all models where functions between domains are sequential. But Longley

has shown in his Thesis (Longley 1994) that in the realisabilty model over the Böhm tree

model of untyped λ-calculus, the Σ-predicate porΣ does not exist (essentially because all

λ-definable functions are sequential).

Thus there is a need for a more general axiomatic setting that does not rule out

interesting models but is strong enough for developing the relevant part of basic domain

theory that is needed for the verification of functional programs.

A fairly general categorical axiomatisation has been developed by Rosolini and pre-

sented in Rosolini (1995). However, it does not employ the internal language and only

gives a core theory. It is not clear under which additional axioms, for example, the do-

main theoretic induction principles can be derived from his axioms. Universes are not

used either.

A detailed account of domain theory in arbitrary realisability models has been given in

Longley and Simpson (1997). Their exposition is purely model based and refrains from

developing their theory axiomatically. In Simpson (1996) a version of the well-complete S-

spaces in intuitionistic set theory is developed, which is more reminiscent of our approach,

though we use type theory instead of set theory.

Our logical approach to general synthetic domain theory is heavily based on and inspired

by the above mentioned work. One could say that we aim at an axiomatic logical reformu-

lation of the work of Longley and Simpson inspired by the categorical axiomatisation of

Rosolini. Our axiomatisation has been chosen in such a way that, on the one hand, it is

much more restrictive than that in Rosolini (1995) and, on the other hand, is valid in all re-

alisability models as considered in Longley and Simpson (1997) (recently Pω-realisability

models have been advocated in Birkedal et al. (1998)). The main purpose of our logical

approach is to demonstrate that the consequent use of the internal type-theoretic language

facilitates a simpler presentation avoiding both complicated external category-theoretic

arguments as in Rosolini (1995) and complicated explicit constructions in realisability

models as in Longley and Simpson (1997). This is also achieved in Simpson (1996) using

intuitionistic set theory. Our type theoretic formulation – at least in our opinion – still

appears to be simpler and allows for comparison with such other variants as Reus (1995)

and Reus and Streicher (1993).

We now give a brief sketch of the ideas underlying our approach to general synthetic

domain theory based on the above mentioned work.
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First, we assume a set S together with a distinguished element > ∈ S such that for all

u, v ∈ S we have that u = v iff u = > ⇔ v = >. This allows us to consider S as a subobject

of Prop modulo ‘⇔’ via the embedding def: S → Prop defined as def(u) , (u = >).

Furthermore, we assume that there is an object ⊥ ∈ S with ¬def(⊥).

General SDT has to be ‘order-free’ in the sense that one should avoid using the

information ordering – though it can always be defined – as much as possible because in

arbitrary realisability models one cannot expect it to be well behaved for the following

reasons, cf. Longley and Simpson (1997).

(1) The order on function spaces need not be pointwise.

(2) Not all ascending N-indexed chains will have limits.

However, to ensure the existence of a canonical fixpoint for all endomaps f:A → A, we

need some notion of ‘ω-chain’. This notion must be (in general) more restrictive than the

notion of an ascending N-indexed chain but, nevertheless, has to include the so-called

‘Kleene chains’ (fn(⊥))n∈N for all endomaps f:A→ A.

Now the key idea of Rosolini (1995) and Longley and Simpson (1997) was to define

ω-chains in A as maps a:ω → A, where ω is the initial algebra for the lifting functor

L derived from the dominance S . Then the closure of a set A under ‘limits of ω-chains’

is expressed by the requirement that for any a:ω → A there exists a unique extension

a: ω̂ → A of a along the canonical map ι:ω → ω̂ from the initial L-algebra ω to the

terminal L-coalgebra ω̂ (which is required to exist).

Diagrammatically, the situation looks as follows:

ω
ι � ω̂

A

a
g ≺ a

Accordingly, the analogue of Scott continuity, that is, the property that any map

between domains preserves suprema of ascending chains, amounts to the requirement

that for any f:A→ B and a:ω → A we have f ◦ a = f ◦ a.
The intuition underlying this reformulation of completeness and continuity is the follow-

ing. In analogy with the category of posets and monotonic maps, the set ω corresponds

to the ordinal ω, and ω̂ corresponds to the ordered set obtained from ω by adding a

greatest element ∞ (that is, the ordinal ω + 1). The limit of an ω-chain a is then defined

as a(∞). As f ◦ a = f ◦ a, we then get

f ◦ a(∞) = (f ◦ a)(∞) = f(a(∞)),

that is, that f preserves limits of ω-chains.

It has been shown (for example, in Rosolini (1995)) that applying this construction to

the Kleene chain for an endomap f:A→ A gives rise to a canonical fixpoint of f.

Notice that prima facie the Kleene chain for an endomap f is a map cf:N → A and

not an ω-chain af:ω → A. However, one can define af as the unique L-algebra morphism

from the initial L-algebra ω to the L-algebra α ◦ Lf where f:A → A and α:LA → A

is a focal L-algebra structure on A, that is, α ◦ ηA = idA. The focal L-algebra structure

https://doi.org/10.1017/S096012959900273X Published online by Cambridge University Press

https://doi.org/10.1017/S096012959900273X


General synthetic domain theory 183

provides A with the required domain structure. This map af is related to the Kleene chain

cf(n) = fn(⊥) via the canonical map step:N→ ω as af ◦ step = cf .

In our generalised setting, the analogue of the traditional ascending N-indexed chains

are those c:N → A for which there exists an extension along step, that is, for which

there exists a (unique) a:ω → A with a ◦ step = c. It has been shown in Longley and

Simpson (1997) that there are realisability models where there exist ascending N-indexed

chains that cannot be extended along step.

1.4. Survey of contents

In Section 2 we recall the type-theory on which we base our logical approach to general

SDT and postulate some logical axioms that appear natural but are not usually assumed

in constructive type theories.

The notions of L-completeness and S-separable sets, i.e., sets the elements of which

are separable by S-predicates, also called S-spaces, are introduced in Section 3, and their

closure properties are proved.

In Section 4 we give a type-theoretic (re)formulation of the so-called Dominance Axiom

(originally introduced by Rosolini in the context of toposes). From this we derive the

lifting monad L and show the existence of an initial L-algebra φ:Lω → ω and a terminal

L-coalgebra υ: ω̂ → L ω̂. Furthermore, we characterise thoseL for which theL-complete

sets are closed under lifting.

In Section 5 the notion of complete set is introduced to provide a synthetic analogue of

closure under ‘limits of ω-chains’. We go on to study two extremal classes of predomains,

a class of complete S-spaces closed under lifting and containing the set S = L 1, that is,

the well-complete S-spaces of Longley and Simpson, and the replete sets of Hyland and

Taylor.

In Section 6 we introduce domains, i.e., predomains with a ‘focal L-algebra structure’,

which constitute an analogue of complete partial orders with a bottom element. We

introduce two further axioms guaranteeing the uniqueness of focal L-algebra structures

on S-spaces.

In Section 7 we present a synthetic analogue of Kleene’s fixpoint construction to provide

any endomap of a domain with a canonical fixpoint.

Analogues of the common induction principles for these canonical fixpoints are verified

in Section 8. For this purpose, we introduce an appropriate synthetic version of the

classical notion of ‘admissible predicate’. In particular, we verify the principle of Park

Induction, from which it follows that for a map f:A → A on a domain A its canonical

fixpoint is actually the least fixpoint with respect to the information order on A.

In Section 9 we discuss S-separatedness (a generalised variant of Markov’s Principle),

which is equivalent to the requirement that equality on domains is ¬¬-closed and,

therefore, is valid in all realisability models. The advantage of separatedness of S is that

two of our axioms become derivable and, moreover, it supports proof by case analysis.

Finally, in Section 10, we treat the solutions of domain equations. In particular,

following a suggestion of Simpson, we show how one may solve domain equations if
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the type-theoretic universe Set is impredicative, i.e., closed under arbitrary dependent

products.

2. The logic

The logic underlying our formulation of SDT is an extension of the Extended Calculus

of Constructions (ECC) as described in Luo (1994) and implemented within the LEGO

system described, for example, in Luo and Pollack (1992).

We will now describe the basic constructs of our extension of ECC. For a comprehensive

investigation of ECC, see Luo (1994), and for a detailed description of our extension, see

the first author’s Thesis, Reus (1995).

There is an infinite hierarchy of type universes Prop ⊂ Set ⊂ Type0 ⊂ Type1 ⊂ · · · ⊂
Typen ⊂ . . . with Prop ∈ Type0, Set ∈ Type0 and Type0 ∈ Type1 ∈ · · · ∈ Typen ∈ . . . .
Notice that we do not assume that Prop ∈ Set. The elements of Prop will be called

‘propositions’ and the elements of Set will be called ‘sets’. Note that in this paper we

will never use universes higher than Type0, but higher universes are useful for expressing

deliverables.

The universes Set and Typei have predicative dependent products where a universe

U is closed under predicative dependent products iff Πx:A.B(x) ∈ U whenever A ∈ U
and B:A → U. The universe Prop even has impredicative products in the sense that

Πx:A.B(x) ∈ Prop whenever A ∈ Typei for some i and B:A → Prop. We usually write

∀x:A. P (x) instead of Πx:A.B(x) if B:A→ Prop.

Furthermore, we assume that Prop, Set and Typei are closed under strong dependent

sums, where a universe U is closed under strong dependent sums iff Σx:A.B(x) ∈ U
whenever A ∈ U and B:A→ U.

The universe Prop is used for representing propositions as types, and the universe Set

is where our data types and, in particular, our domains will live. Therefore, we require

the universe Set to be closed under definitions of arbitrary inductive types and families

(in the sense of Dybjer (1994)). Thus, in particular, in Set we have a type of natural

numbers, and Set is closed under binary products and sums. Moreover, as a particular

case of inductive families we have identity types in Set, which, however, we postulate to live

already in the universe Prop, that is, IdA(t, s) ∈ Prop whenever A ∈ Set and t, s ∈ A, which

states that t and s are equal elements of A. Instead of IdA(t, s), we usually write t = s.

The impredicativity of Prop allows one to define predicates by quantification over

predicates. Accordingly, inductively defined predicates can be expressed as usual (in

higher order logic) as least predicates satisfying some closure conditions.

Notice that our extension of ECC is different from the original ECC in that we have

a universe Set, which in many aspects is like the universe Type0 of the original ECC.

The main difference is that Set does not contain Prop as an element. This appears to

be natural as the type Prop of all propositions should not be considered as a data type.

However, we assume Prop ⊂ Set, since proof objects will appear as parts of data objects

when dealing with subsets (which will be explained in more detail below).

In general, Set is not assumed to be impredicative, though it is consistent to assume

https://doi.org/10.1017/S096012959900273X Published online by Cambridge University Press

https://doi.org/10.1017/S096012959900273X


General synthetic domain theory 185

it†. Whenever it appears to be useful to assume impredicativity of Set (as, for example, in

Section 10), we state this assumption explicitly.

For our purposes we assume the following additional axioms, where we write ∃(!) for

(unique) existential quantification definable in terms of ∀ (see, for example, Luo (1994)).

Furthermore, we usually write A⇒ B for A→ B if A and B are propositions. Note that

throughout this paper we will introduce further axioms ‘by need’, but, for convenience, a

quick reference list of all axioms is given in Appendix A. Note also that by postulating

the axioms below, we require that the corresponding type is inhabited and that Axiom 3

is not a proposition but a set because of the use of the Σ-type.

Axiom 1. The universe Prop of propositions is ‘proof-irrelevant’, that is,

∀P : Prop. ∀p, q:P . p = q .

Axiom 2. Functions between sets are extensional, that is,

∀A:Set. ∀B:A→ Set. ∀f, g: Πx:A.B(x). (∀a:A.f(a) = g(a))⇒ f = g .

Axiom 3. Functional relations are required to be tracked by functions, that is, we postulate

the Axiom of Unique Choice (AUC)

ΠA: Set.ΠB:A→ Set.ΠP : Πx:A.B(x)→ Prop.

(∀x:A. ∃! y:B(x). P x y))→ Σf: Πx:A.B(x). ∀a:A. P a f(a) .

We are aware of the fact that these axioms cannot be endowed with computational

meaning in the sense of Martin-Löf type theory. But that is irrelevant for our purposes, as

we do not intend to extract algorithms from (existence) proofs (which would be hopeless

anyway because of Axiom 1). Instead, we employ type-theoretic language, as it appears

to be convenient to have dependent types and proof objects available. In the AUC we

have already benefitted from this by using a strong Σ-type instead of a second-order

defined existential quantifier, which allows us to get the function f by projection on the

first component.

Σ-types are also convenient for expressing subsets in the presence of Axiom 1. If A is a

set and P :A→ Prop, we define the corresponding subset as

{ x ∈ A | P (x) } , Σx:A. P (x),

which is in Set, since Prop ⊂ Set. Moreover, the first projection

π0: {x ∈ A | P (x)} → A

is an injective map from { x ∈ A | P (x) } to A, since, by Axiom 1, P (π0(z)) contains at

most one element.

† It would lead to inconsistency via Girard’s Paradox only if we assumed also that Prop ∈ Set, which we do

not. In realisability models one can always ensure that Set is impredicative by interpreting it as the set of all

pers (partial equivalence relations), where a per is realised by all elements of the partial combinatory algebra

under consideration. In this case the universe Prop will be interpreted as the subtype of those sets that

contain at most one element, i.e., those pers R where xRy if xRx and yRy. See Reus (1995) and Reus (1998)

for a detailed description of these models and the verifications of our axioms.
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Following the practice of topos theory, we will use informal set-theoretic notation

instead of the formal type theoretic language, which makes sense, as we have subset types

and set comprehension available. Thus, by abus de langage we (almost always) omit the

inclusion maps π0: { x ∈ A | P (x) } → A for subset types. Notice that the type theory

described above is closely related to the internal language of toposes, see, for example,

Lambek and Scott (1980) and Phoa (1990). But it is different from the logic of a topos

in the following two aspects. On the one hand, in a topos there need not exist a universe

Set containing the natural numbers object N. On the other hand, our type theory, as

opposed to the logic of a topos, does not support the following ‘extensionality principle

for propositions’

∀P : Prop. (P ⇔ Q)⇒ P = Q,

which claims that equivalent propositions are equal. However, it still is the case that

predicates P and Q on a set A are logically equivalent iff their inclusions into A via first

projection are isomorphic as subobjects of A.

It turns out that in our subsequent development of SDT the extensionality principle

for propositions is never needed. And that is good, as it is not known to be consistent

with the assumption that Set is impredicative or with other subsequent axioms that are

in conflict with classical set theory.

Notice that in the following all diagrams have to be understood as living in Set (or

sometimes in some universe Typei), which appears as a small category from the point

of view of the type theory in use. In Set (considered as a small category) an equaliser

of maps f and g from A to B is constructed as usual, that is, {x ∈ A | f(x) = g(x)}.
Accordingly, we can construct pullbacks in Set as usual. Furthermore, a map f:A → B

in Set can be factorised as a surjection e followed by an injection m in the following way:

let I , { y ∈ B | ∃x:A. y = f(x) }, m , π0: I → B, and e:A→ I be the unique map† with

f = m ◦ e.

3. L-Completeness and S-spaces

3.1. L-Completeness

The ‘order-free’ analogue of closure under suprema of ω-chains will be that for any

ω-chain a:ω → A there is a unique extension a: ω̂ → A of a along ι:ω → ω̂, that is,

a = a ◦ ι.
This and related closure properties can be formulated quite elegantly using the following

notion of orthogonality, which goes back to Freyd and Kelly (1972).

Definition 3.1. Let f:X → Y and g:Z → U. One says that f is orthogonal to g, and

writes f ⊥ g, iff for all h:X → Z and k:Y → U with k ◦ f = g ◦ h there is a unique map

† More explicitly, e(x) = 〈f(x), 〈x, rB (f(x))〉〉 where rB(f(x)) ∈ f(x) = f(x) is the canonical proof object.
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α:Y → Z (called ‘fill-in’) with α ◦ f = h and g ◦ α = k, that is, diagrammatically,

X
f � Y

Z

h
g

g
�≺ α

U

k
g

If U = 1, we write f ⊥ Z for f ⊥ !Z , that is, when any h:X → Z uniquely extends to a

map h:Y → Z along f,

X
f � Y

Z

h
g ≺ h

Using the notion of orthogonality, we define an abstract notion of completeness relative

to a class L of maps in some universe.

Definition 3.2. Let L be a class of maps, that is, a predicate on∑
X,Y :U. (X → Y )

where U is any of the universes Set or Typei. A type A ∈ U is called L-complete iff e⊥A
for all e ∈ L, that is, (X,Y , e) ∈ L where e:X → Y .

This is the general pattern, which will be instantiated later by specific classes L giving

rise to notions of predomain as, for example, well complete or replete objects.

Remark 3.1. Note that for the rest of this paper we will mostly consider the case U = Set

and, accordingly, speak about L-complete sets, well-complete sets, complete sets, and so

on. In principle, however, we could also use any other of the universes Typen.

In any case, the important point is that our type theory allows us to quantify over L, as

L is contained in some universe.

The L-complete sets satisfy many closure properties even without any further assump-

tions about L. First we consider closure under dependent products.

Theorem 3.2. Dependent products preserve L-completeness.

Proof. Let X be a type and B:X → U be a family ofL-complete types in U. In order to

show that Πx:X.B(x) is L-complete, assume that (Y ,Z, e) ∈ L and a:Y → Πx:X.B(x).

We have to show that there exists a unique a:Z → Πx:X.B(x) with a ◦ e = a.

Let πx: Πx:X.B(x)→ B(x) denote the obvious projection, then by completeness of B(x)

for any x ∈ X the map πx ◦ a has a unique extension πx ◦ a along e. Thus, define a by the

conditions πx ◦ a = πx ◦ a for all x ∈ X.

As πx ◦ a ◦ e = πx ◦ a ◦ e = πx ◦ a, by extensionality, we get a ◦ e = a.

For uniqueness assume b:Z → Πx:X.B(x) with b ◦ e = a. Then, πx ◦ b ◦ e = πx ◦ a.
Thus, by uniqueness of πx ◦ a, we get πx ◦ b = πx ◦ a = πx ◦ a. Hence, by extensionality we

conclude that b = a.

Next we characterise the complete subobjects of complete types.
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Lemma 3.3. Let A be L-complete and m:P � A be a subobject of A. Then P is

L-complete iff m is L-closed, that is, e ⊥ m for all e ∈ L.

Proof. ⇒ : Assume that P is L-complete and (X,Y , e) ∈ L. To show that e ⊥ m,

assume that the outer rectangle of the following diagram commutes

X
e � Y

P

g
g
�
m
�≺ g

A

f
g

By L-completeness of P , there exists a unique g:Y → P with g ◦ e = g. Therefore, we

also have

m ◦ g ◦ e = m ◦ g = f ◦ e,
from which it follows that m ◦ g = f, since A is L-complete by assumption. If α:Y → P

with α ◦ e = g and f = m ◦ α, then α = g as m is monic. This proves the uniqueness of g.

⇐ : Assume that m is L-closed. For completeness of P , assume that (X,Y , e) ∈ L and

g:X → P . By L-completeness of A, there exists a unique f:Y → A with f ◦ e = m ◦ g.

By L-closedness of m, we have e ⊥ m and, therefore, there exists a map g:Y → P with

g ◦ e = g. For uniqueness of g, assume that h:Y → P with h ◦ e = g. Then we have

m ◦ h ◦ e = m ◦ g = m ◦ g ◦ e,
which implies m ◦ h = m ◦ g by L-completeness of A and, therefore, h = g as m is monic

by assumption.

Remark 3.4. The previous lemma justifies the following abus de langage: for subobjects

m:P � A of anL-complete set A we often say ‘P is anL-closed subobject (of A)’ instead

of the more explicit phrase ‘m is an L-closed subobject (of A)’ when P is L-complete.

Next we prove that L-complete sets are closed under equalisers.

Theorem 3.5. Let f1, f2:A → B be maps between L-complete types. If m:E � A is an

equaliser of f1 and f2, then E is L-complete.

Proof. Let m:E � A be an equaliser of f1 and f2. Let (X,Y , e) ∈ L and g:X → E.

Then, by L-completeness of A, there is a unique h such that the following diagram

commutes

X
e � Y

E

g
g
�
m
� A

h
g f1�

f2
� B

Therefore, we get

f1 ◦ h ◦ e = f1 ◦ m ◦ g = f2 ◦ m ◦ g = f2 ◦ h ◦ e,
which entails f1 ◦ h = f2 ◦ h by L-completeness of B. Thus, as m is an equaliser, there is
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a map g:Y → E with m ◦ g = h. Now we have

m ◦ g ◦ e = h ◦ e = m ◦ g,
from which it follows that g ◦ e = g, since m is monic.

For uniqueness of g, assume that k ◦ e = g. Then we get

m ◦ k ◦ e = m ◦ g = m ◦ g ◦ e,
entailing m ◦ k = m ◦ g by L-completeness of A, and, therefore, k = g, since m is monic.

Remark 3.6. It follows that L-complete sets are closed under retracts.

3.2. S-spaces

Next we define the notion of S-space as an abstract version of T0-spaces where each point

is determined uniquely by its collection of open neighbourhoods. This notion has been

considered in the specific context of the effective topos for the ‘r.e.- subobject-classifier’ Σ

by Rosolini (Rosolini 1986; Rosolini 1987), and later by Phoa (Phoa 1990).

In this subsection we assume S to be an arbitrary set, that is, S ∈ Set.

Notation. We write S( ) for S ( ) and Sn( ) for the n-times application of the contravariant

functor S( ):U → U, the morphism part of which is given by S(f:A→ B) = λh:S(B). h◦f.

Definition 3.3. For any type X, let the map εX:X → S2(X) be defined as

εX(x) = λp:S(X). p(x).

Remark 3.7. Notice that ε is a natural transformation from the identity functor on U to

S2( ):U → U forming the unit of the so-called ‘continuation monad’, whose multiplication

is given by µX , S(εS(X)).

Lemma 3.8. For any type X

S(εX) ◦ εS(X) = idS(X).

In other words, εS(X) is a split mono.

Proof. Let p ∈ S(X) and x ∈ X. Then,

(S(εX) ◦ εS(X))(p)(x) = S(εX)(εS(X)(p))(x) = εS(X)(p)(εX(x)) = εX(x)(p) = p(x) .

We will call a set X ∈ Set an S-space iff every x ∈ X is determined uniquely by εX(x).

Definition 3.4. An S-space (or S-separable space) is a set X such that εX is monic.

We immediately get plenty of nontrivial examples of S-spaces.

Lemma 3.9. The following propositions hold:

(1) The set S(A) is an S-space for all sets A.

(2) S ∼= S(1) is an S-space.

(3) If Set is impredicative, that is, Set is closed under arbitrary dependent products, then

S(X) is an S-space for every type X.

Proof. The proof follows immediately from Lemma 3.8.
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3.2.1. A representation theorem for S-spaces We will now prove that a set is an S-space iff

it is a subset of some power of S .

Theorem 3.10. A set A ∈ Set is an S-space iff it is a subobject of S(I) for some I ∈ Set.

Proof. ⇒ : If εA:A→ S2(A) is monic, then A is a subobject of S2(A).

⇐ : Suppose that m:A� S(I) is monic. By naturality of ε, we get that

A
εA� S2(A)

S(I)

m
g

g

�
εS(I)
� S3(I)

S2(m)g

where εS(I) is monic by Lemma 3.8. Thus, εA is monic and A is an S-space.

3.2.2. Closure properties of S-spaces Some important closure properties of S-spaces follow

immediately from the above representation theorem for S-spaces.

Corollary 3.11. S-spaces are closed under subobjects and, therefore, in particular, under

equalisers and retracts.

Next we consider closure of S-spaces under dependent products. For this we first need

the following lemmas.

Lemma 3.12. Let X be a type and B:X → Set with B(x) an S-space for all x ∈ X. Then

Πx:X.B(x) appears as a subobject of S2(Πx:X.B(x)) via εΠx:X.B(x).

Proof. Let Z , Πx:X.B(x). In order to show that εZ is a mono, assume that f, g ∈ Z
and φ(f) = φ(g) for all φ ∈ S(Z). For all x ∈ X and p ∈ S(B(x)) for the map

Px,p:Z → S with Px,p(h) , p(h(x))

we have

p(f(x)) = Px,p(f) = Px,p(g) = p(g(x)).

Thus, f(x) = g(x) as B(x) is an S-space by assumption. By extensionality for dependent

functions, it follows that f = g. Thus, εZ :Z � � S2(Z) is monic.

Now from the lemma it follows that S-spaces are appropriately closed under dependent

products.

Proposition 3.13. If A ∈ Set and B:A → Set with B(x) an S-space for all x ∈ A, then

Πx:A.B(x) is an S-space, too.

Moreover, if Set is an impredicative universe, that is, Set is closed under arbitrary

dependent products, then for all types X and families B:X → Set with B(x) an S-space

for all x ∈ X the dependent product Πx:X.B(x) is an S-space, too.

Proof. The proof follows from Lemma 3.12.

3.2.3. A representation theorem for L-complete S-spaces Next we prove a representation

theorem for L-complete S-spaces under the assumption that S is L-complete.

Theorem 3.14. If S is L-complete, a set is an L-complete S-space iff it is an L-closed

subobject of some power of S by a set.
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Proof. ⇒ : If A is an L-complete S-space, then εA:A � S2(A) is a mono, which

is L-closed by Lemma 3.3, as A is L-complete by assumption. Thus A is an L-closed

subobject of S2(A) via εA.

⇐ : If I ∈ Set and m:A� S(I) is an L-closed subobject of S(I), then A is an S-space

by the representation theorem for S-spaces and it is L-complete by Lemma 3.3, as

S(I) is L-complete, since S is by assumption and Corollary 3.13, and m is L-closed by

assumption.

4. Initial and terminal lift algebra

4.1. The dominance S

In the previous section we made no assumptions about S beyond being a set. Now we will

postulate that S corresponds to a set of propositions providing a notion of ‘well-behaved’

subobject. Following Rosolini, who first introduced this notion in his Thesis (Rosolini

1986) for the particular case of toposes, see also Rosolini (1987), we will call S a dominance.

In contrast with toposes, in our more general type-theoretic setting, equivalent proposi-

tions need not be equal in general. Accordingly, we cannot consider S simply as a subset

of Prop, but we have to require that elements of S are equal iff their associated propo-

sitions are logically equivalent. That means that, morally, we consider S as a subobject

of Prop modulo logical equivalence although this quotient itself will not exist qua type in

general†. Moreover, we have, of course, to make explicit by an inclusion map how we

consider S as embedded into (this fictitious quotient of) Prop. This will be achieved by

associating with every u ∈ S the proposition u = >, where > is a distinguished element

of S (corresponding to the true proposition > = >).

Axiom 4. There is a distinguished set S ∈ Set together with distinguished elements

>,⊥ ∈ S such that

¬(⊥ = >)

and

∀u, v:S. [u = > ⇔ v = >]⇒ u = v,

from which it follows that the map def: S → Prop given by

def(u) , (u = >) ∈ Prop

is an inclusion allowing S to be considered as a subset of Prop that reflects logical

equivalence in Prop to equality in S .

Moreover, S is required to be a dominance, that is, for all u ∈ S and v: Sdef(u) there

exists a (necessarily unique) u \ v ∈ S with

def(u \ v)⇔ ∃p:def(u). def(v(p)),

which provides a ‘dependent conjunction’ on S .

† Typically, in realisability models, i.e., categories of assemblies on a pca, as in Longley and Simpson (1997),

the quotient of Prop by logical equivalence does not exist as the latter is not ¬¬-closed in general.
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Remark 4.1. Notice that \ provides us with an operation ∧S : S × S → S given by

u ∧S v , u \ λp:def(u). v

satisfying

def(u ∧S v)⇔ def(u) ∧ def(v).

Accordingly, we write u ∧ v for u ∧S v.
A mono m:X � Y is called an S-mono or S-subobject of Y iff there exists a (necessarily

unique) map χ:Y → S with χ(y) = > ⇔ ∃x:X.y = m(x) for all y ∈ Y . Such a unique χ

will be called the classifying map for m.

Remark 4.2. Notice that S-monos are closed under composition, since S is required to

be a dominance. If m:Y � X and n:Z � Y are S-monos classified by ϕ:X → S and

ψ:Y → S , respectively, then m ◦ n is classified by

χ(x) , ϕ(x) \ λu:def(ϕ(x)). ψ(y(x, u)),

where y(x, u) is the unique y ∈ Y with x = m(y) that exists by (AUC).

The following lemma will be useful later when we discuss the notion of ‘information

ordering’.

Lemma 4.3. For all u ∈ S we have u = ⊥ iff ¬ (u = >), that is, u = ⊥ iff ¬def(u).

Moreover, we have ¬¬(u = > ∨ u = ⊥) for all u ∈ S .

Proof. By Axiom 4, we have for all u ∈ S that

(⊥ = > ⇔ u = >) ⇔ u = ⊥,
and therefore

¬ (u = >) ⇔ u = ⊥,
as ¬ (⊥ = >) by Axiom 4.

For the second claim, notice that ¬(u = >∨u = ⊥) is equivalent to ¬(u = >)∧¬(u = ⊥),

which in turn is equivalent to (u = ⊥) ∧ ¬(u = ⊥) (by the previous argument). As

(u = ⊥) ∧ ¬(u = ⊥) is evidently contradictory, we get that ¬¬(u = > ∨ u = ⊥).

4.2. Lifting

From the dominance we will now construct a lifting operation that allows one to classify

partial maps whose domain of definition is given by an S-valued predicate. Note that

– just as for the notion of L-completeness – we could consider lifting for types of all

universes, but for the purposes of this paper it suffices to have available a lifting operation

for sets.

Definition 4.1. The lifting functor L: Set→ Set is defined as follows.

For A ∈ Set

LA ,
∑
u:S. Adef(u),

and for f:A→ B in Set

L(f) , λz:LA. 〈π0(z), λp:def(π0(z)). f(π1(z)(p))〉.
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Moreover, let η be the natural transformation from the identity functor on Set to L given

by

ηA , λx:A. 〈>, λp:def(>). x〉
for all A ∈ Set.

Notice that L0 ∼= 1 and L1 ∼= S , where 0 is the empty set and 1 is the singleton set

containing precisely the element ∗.
Convention: Following common practice, in the following we will not distinguish between

a ∈ A ∈ Set and the function 1→ A sending ∗ to a.

Definition 4.2. For A ∈ Set, let ⊥A ∈ LA be defined as

⊥A , 〈⊥, ?A〉,
where ?A is the unique map from def(⊥) ∼= 0 to A, and let

cA , [⊥A, ηA]: 1 + A→ LA

be the map sending ∗ to ⊥A and a ∈ A to ηA(a).

Notice that c is a natural transformation from 1 + to L.

Remark 4.4. For any A ∈ Set, the map ηA:A→ LA classifies partial maps into A whose

domain of definition is given by an S-predicate. More precisely, for any B ∈ Set, p:B → S

and f:B′ , { x ∈ B | def(p(x)) } → A, there is a unique map f:B → LA such that the

following diagram is a pullback

B′ f � A

B
g

g

f
� LA

ηA
g

g

where f is given explicitly as

f(y) = 〈 p(y), λu:def(p(y)). f(〈y, u〉) 〉.
Composition of two partial maps is achieved as usual via a pullback construction using

the fact that S-monos compose (cf. Remark 4.1).

4.3. Initial L-algebra and terminal L-coalgebra

We now show that there exists an initial algebra and a terminal coalgebra for the lifting

functor L, see, for example, Freyd (1991; 1992), where one can find a detailed discussion

of these notions for arbitrary endofunctors on an arbitrary category.

Recall that an L-algebra is a map α:LA→ A. An L-algebra morphism from α:LA→ A

to β:LB → B is a map h:A → B with β ◦ Lh = h ◦ α. As LA =
∑
u:S. Adef(u), a

map α:LA → A gives rise to an S-indexed family αu:A
def(u) → A for u ∈ S , where

αu(f) , α(〈u, f〉). Conversely, any S-indexed family (αu:A
def(u) → A | u ∈ S) gives rise to

a map α:LA → A, where α(〈u, f〉) , αu(f). Under this correspondence, L-algebras are

nothing but algebras in Set for the signature where for any u ∈ S there is a def(u)-ary
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operation. Accordingly, a map h:A → B is an L-algebra morphism from α:LA → A to

β:LB → B iff

h(αu(a)) = βu(h ◦ a)
for all u ∈ S and a ∈ Adef(u).

Dually, an L-coalgebra is a map α:A→ LA and an L-coalgebra morphism from α:A→
LA to β:B → LB is a map h:A→ B such that β◦h = Lh◦α. As LA =

∑
u:S. Adef(u), a map

α:A→ LA gives rise to a map α(1) , π0 ◦ α:A→ S and a family α(2)
a , π1(α(a)):Adef(α(1)(a))

for a ∈ A. Conversely, a map α(1):A → S together with a family (α(2)
a :Adef(α(1)(a)) | a ∈ A)

gives rise to a map α:A → LA with α(a) , 〈α(1)(a), α(2)
a 〉. Accordingly, a map h:A → B is

an L-coalgebra morphism from α:A→ LA to β:B → LB iff the equalities

α(1)(a) = β(1)(h(a)) h ◦ α(2)
a = β

(2)
h(a)

hold for all a ∈ A.

Theorem 4.5. In Set there exist a terminal L-coalgebra υ: ω̂ → Lω̂ and an initial L–algebra

φ:Lω → ω. The latter can be constructed as the least sub-L-algebra of υ−1. Thus, the

unique L–algebra morphism ι:ω� ω̂ is monic.

Proof. Following Jibladze (1997), we first construct the terminal L-coalgebra υ: ω̂ →
L ω̂. We define ω̂ as the subset of SN consisting of all f ∈ SN with def(f(n+1))⇒ def(f(n))

for all n ∈ N. We define υ: ω̂ → L ω̂ as

υ(f) , 〈f(0), λz:def(f(0)). λn:N. f(n+ 1)〉
for every f ∈ ω̂.

Suppose α:A → LA is some L-coalgebra. An L-coalgebra morphism from α to υ is

given by a map h:A→ ω̂ ⊆ SN such that

α(1)(a) = h(a)(0)

h ◦ α(2)
a = λz:def(α(1)(a)). λn:N. h(a)(n+ 1)

for all a ∈ A.

By a twist of arguments such maps are in one-to-one-correspondence with maps

h̃:N→ SA satisfying the primitive recursive equations

h̃(0) = α(1)

h̃(n+ 1) = λa:A. α(1)(a) \ (h̃(n) ◦ α(2)
a ),

as it can be shown by induction over N that for any such h̃ we have λn:N. h̃(n)(a) ∈ ω̂
for all a ∈ A. Thus, there exists exactly one L-coalgebra morphism from α to υ, since h̃ is

uniquely determined by its defining primitive recursive equations.

Thus, υ: ω̂ → Lω̂ is a terminal L-coalgebra. Therefore, the map υ is an isomorphism

as this is the case for all terminal coalgebras, see, for example, Freyd (1991; 1992). More

explicitly, we have

υ−1 (〈u, o〉) (0) = u

υ−1 (〈u, o〉) (n+ 1) = u \ λp:def(u). o(u)(n)

for all u ∈ S , o ∈ ω̂def(u) and n ∈ N.
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We will now construct an initial L-algebra as the least sub-L-algebra of the L-algebra

υ−1:Lω̂ → ω̂. Again, this construction was originally given in Jibladze (1997), though

our version of the proof makes use of our previous observation that L-algebras can be

considered as algebras in the sense of universal algebra.

Let ω be the least subset P of ω̂ closed under all operations υ−1
u , that is, υ−1

u (f) ∈ P
for all u ∈ S and f ∈ P def(u). Thus, υ−1 restricts to a map φ:Lω → ω, which we show to

be an initial L-algebra.

Let α:LA→ A be an L-algebra. As φ is the least sub-L-algebra of υ−1, there is at most

one L-algebra morphism from φ to α. To prove this, suppose h1, h2:ω → A are L-algebra

morphisms from φ to α. As E , {x ∈ ω | h1(x) = h2(x)} gives rise to a sub-L-algebra of

ω̂, and ω is the least such, it follows that ω = E. Thus, h1(x) = h2(x) for all x ∈ ω, that

is, h1 = h2.

Next we show the existence of such an L-algebra morphism. Let G be the least subset

R ⊆ ω×A such that for all u ∈ S , o ∈ ωdef(u) and g ∈ Adef(u) it holds that 〈φu(o), αu(g)〉 ∈ R
whenever 〈o(p), g(p)〉 ∈ R for all p ∈ def(u). By definition of G, it is the graph of an L-

algebra morphism from φ to α provided G is the graph of a function from ω to A.

By the Axiom of Unique Choice, it suffices to prove that G is functional, that is, that

for all f ∈ ω there exists a unique a ∈ A with 〈f, a〉 ∈ G. We prove functionality of G by

induction over ω.

Suppose that u ∈ S and o ∈ ωdef(u) such that for all p ∈ def(u) there is a unique ap ∈ A
with 〈o(p), ap〉 ∈ G. We must show that there exists a unique a ∈ A such that 〈φu, a〉 ∈ G.

By the Axiom of Unique Choice, there is a (unique) map g ∈ Adef(u) with g(p) = ap, that

is, we have 〈o(p), g(p)〉 ∈ G for all p ∈ def(u). Now, from the closure property of the

inductively defined set G, it follows that 〈φu(o), αu(g)〉 ∈ G. Thus, there exists an a ∈ A
with 〈φu(o), a〉 ∈ G.

For uniqueness, suppose that a ∈ A with 〈φu(o), a〉 ∈ G. Then, because of the inductive

definition of G, it follows that 〈φu(o), a〉 = 〈φu′ (o′), αu′(g′)〉 for some u′ ∈ S , o′ ∈ ωdef(u′)

and g′ ∈ Adef(u′) with 〈o′(p), g′(p)〉 ∈ G for all p ∈ def(u′). Thus, we have φ 〈u, o〉 = φu(o) =

φu′(o
′) = φ 〈u′, o′〉. As φ is obtained as the restriction of the isomorphism υ−1 to ω and,

therefore, φ is one-to-one, it follows that u = u′ and o = o′. But then, for all p ∈ def(u) we

have 〈o(p), g′(p)〉 ∈ G and, also, 〈o(p), g(p)〉 ∈ G. From the induction hypothesis, it follows

that g(p) = g′(p) for all p ∈ def(u). Thus, we have g = g′ and, therefore, a = αu′(g
′) = αu(g)

also, establishing the uniqueness of αu(g).

From an old observation by Lambek, the structure maps of initial algebras and terminal

coalgebras are isomorphisms. Therefore, the following definition makes sense.

Definition 4.3. The maps

σ , φ ◦ ηω:ω → ω

σ̂ , υ−1 ◦ ηω̂: ω̂ → ω̂

are called successor maps on ω and ω̂, respectively.

From these definitions and naturality of η it is obvious that

σ̂ ◦ ι = ι ◦ σ,
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as

σ̂ ◦ ι = υ−1 ◦ ηω̂ ◦ ι = υ−1 ◦ L ι ◦ ηω = ι ◦ φ ◦ ηω = ι ◦ σ.
Definition 4.4. Whenever α:LA→ A is an L-algebra, let stepα:N→ A be the unique map

satisfying

1 +N
[0, s] � N

1 + A

1 + stepαg
cA
� LA

α
� A

stepαg

where s(n) = n+1. The uniqueness of stepα follows from the fact that [0, s] is, by definition,

the initial algebra for the functor 1 + . We write step for stepφ:N → ω and ŝtep for

stepυ−1 :N→ ω̂. Notice that ŝtep = ι ◦ step.

Next we define an object ∞ ∈ ω̂, intuitively corresponding to the ‘limit’ of the sequence

(ŝtep(n))n∈N in ω̂. This object ∞ ∈ ω̂ will play a key role in the construction of canonical

fixpoints for endofunctions on domains, cf. Crole and Pitts (1992).

Definition 4.5. Let ∞: 1→ ω̂ be the unique map satisfying

1
η1� L1

ω̂

∞
g

υ
� Lω̂

L∞
g

Lemma 4.6. The object ∞ is a fixpoint of σ̂, that is, σ̂ ◦ ∞ = ∞, and, moreover, ∞ is an

equalizer of id ω̂ and σ̂.

Proof. That ∞ is a fixpoint can be seen as follows:

σ̂ ◦ ∞ = υ−1 ◦ ηω̂ ◦ ∞
= υ−1 ◦ L∞ ◦ η1 (by naturality of η)

= υ−1 ◦ υ ◦ ∞
= ∞ .

To show that ∞: 1 → ω̂ is an equalizer of id ω̂ and σ̂, assume that f:B → ω̂ with

σ̂ ◦ f = f. We show that for the unique map !B:B → 1 we have ∞◦ !B = f. For this it

suffices to show that both f and ∞◦ !B are L-coalgebra morphisms from ηB to υ.

The map !B is an L-coalgebra morphism from ηB to η1 by naturality of η, and, by

definition, ∞ is an L-coalgebra morphism from η1 to υ. Thus, ∞◦ !B is an L-coalgebra

morphism from ηB to υ. From f = σ̂◦f = υ−1◦ηω̂ ◦f it follows that υ◦f = ηω̂ ◦f = Lf◦ηB
and, hence, f is an L-coalgebra morphism from ηB to υ.

4.4. Closure under lifting

In this subsection we will characterise those classesL of maps in Set such thatL-complete

sets are closed under lifting. Moreover, we show S-spaces to be closed under lifting.
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4.4.1. Closure under lifting for L-complete sets We first give a necessary condition for a

class L of maps in Set such that L-complete sets are closed under lifting.

Lemma 4.7. If L is a class of maps in Set such that L-complete sets are closed under

lifting, then S is L-complete.

Proof. As 1 isL-complete andL-complete sets are closed under lifting, it follows that

L 1 is L-complete. As S ∼= L 1, we get that S is L-complete, that is, we have e ⊥ S for

all e in L.

Maps e with e ⊥ S were originally introduced by Martin Hyland in Hyland (1991)

and called S-equable maps. We prefer to call them S-isos. As closure under lifting is

sort of a minimal requirement for a class of predomains given as L-complete sets, the

previous lemma says that one may restrict attention to classes L of S-isos. A detailed

explanation of S-isos as ‘generalised limit process’ has been given in Streicher (1998).

Similarly, predomains will be classes of sets closed under a collection of ‘generalised limit

process’ as given by a class L of S-isos.

The notion of S-iso and some other useful notions are collected in the following

definition.

Definition 4.6. A map e:X → Y in Set is called an S-iso iff e ⊥ S . Accordingly, a map e

in Set is called an S-epi iff S(e) is monic, that is, p◦e = q ◦e⇒ p = q for all p, q ∈ Y → S .

The following lemma will be crucial for giving a necessary and sufficient characterisation

of those L for which L-complete sets are closed under lifting.

Notation: In the following, we write f∗g for the pullback of g along f.

Lemma 4.8. If L is a class of S-isos and A ∈ Set, then LA is L-complete iff m∗e ⊥ A for

all e ∈ L and S-subobjects m of the codomain of e.

Proof. ⇒ : Assume that LA is L-complete. Let e:X → Y be an S-iso in L and

m:Z � Y be an S-subobject of Y . Let n:m∗X � X and m∗e:m∗X → Z be a pullback

cone over e and m. Notice that n is also an S-mono, as these are preserved by pullbacks

along arbitrary morphisms.

We have to show that m∗e ⊥ A. To do this, let g:m∗X → A. We have to construct a

unique extension g of g along m∗e.
As L classifies partial maps whose domain of definition is an S-subobject, cf. Remark 4.2,

there is a unique map f:X → LA such that n and g is a pullback cone over f and ηA. By

completeness of LA, there is a unique extension f of f along e. Now let m′:P � Y and

h:P → A be a pullback cone over f and ηA, that is, f classifies the partial map (m′, h)
from Y to A. Notice that m′ is an S-mono, since it arises as the pullback of the S-mono

ηA classified by L(!A).

We next show that m and m′ are isomorphic subobjects of Y . Let χ:Y → S be the

classifying map for m. Then χ◦ e classifies n, since n is the pullback of m along e. The map

L(!A) ◦ f is also a classifier for n, since L(!A) classifies ηA and n arises as the pullback of
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ηA along f. By uniqueness of classifying maps (for n), we get that

χ ◦ e = L(!A) ◦ f = L(!A) ◦ f ◦ e .

As S is L-complete (from the assumption that all maps in L are S-isos), we get that

χ = L(!A) ◦ f. But, as χ classifies m and L(!A) ◦ f classifies m′, we get that m and m′ are

isomorphic subobjects of Y . Thus, without loss of generality, we may assume that m = m′.
We now choose g , h as the desired extension of g along m∗e. That g = g ◦m∗e follows

from the following equational reasoning since ηA is monic

ηA ◦ g = f ◦ n = f ◦ e ◦ n = f ◦ m ◦ m∗e = ηA ◦ g ◦ m∗e .

The situation is visualized in the following diagram, where all squares are pullbacks:

m∗X m∗e � Z

X
e

�

�
n

�
Y

�
m

�

A

g

g ≺

g

L A

f

g ≺

f�
η
A �

We still have to show the uniqueness of g. Suppose h′ ◦ m∗e = g. Let f′:Y → LA

classify the partial map (m, h′). Then f′ ◦ e classifies the partial map (n, g), and, therefore,

by uniqueness of classifying maps, it follows that f = f′ ◦ e. As e is an S-iso and LA

is complete, we get that f′ = f, and, therefore, the partial maps (m, h′) and (m, g) are

isomorphic, from which it follows that g = h′.
⇐ : Assume that m∗e ⊥ A for all e:X → Y in L and S-monos m:Z � Y . We have to

show that LA is L-complete.

Let e:X → Y be map in L and f:X → LA. We are looking for a unique extension

f:Y → LA along e. Let n: f∗A � X and g: f∗A → A be a pullback cone over f and

ηA. Notice that n is an S-mono since it appears as a pullback of the S-mono ηA. Let

χ:X → S be the classifying map for n. As e is an S-iso, there exists a unique extension

χ of χ along e. Let m be the S-mono classified by χ and α: f∗A → Z be the mediating

arrow with m ◦ α = e ◦ n (and !Z ◦ α =!f∗A). Obviously, α appears as pullback of e along

m and, therefore, we write m∗e for α. By assumption, there exists a unique extension g

of g along m∗e. Let f:Y → LA classify the partial map (m, g). Then all squares in the
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following diagram are pullback squares.

f∗A m∗e � Z

X
e

�

�
n

�
Y

�
m

�

A

g

g ≺

g

L A

f

g ≺

f�
η
A �

As both f ◦ e and f classify the partial map (n, g) it follows that f = f ◦ e.
For uniqueness of f, assume that f = h◦e. Let (m′, g′) be the partial map classified by h.

As L(!A)◦f ◦e = L(!A)◦f = L(!A)◦h◦e and e is an S-iso, we get that L(!A)◦f = L(!A)◦h,
and, therefore, classify the same S-mono m. Thus, without loss of generality we may

assume that m = m′ and, therefore, g = g′ ◦ m∗e. But then g = g′, since by assumption

m∗e ⊥ A. Thus, we have f = h as both maps classify the partial map (m, g).

From this it follows immediately that lifting reflects L-completeness provided L
contains only S-isos.

Corollary 4.9. Suppose that L contains only S-isos. If LA is L-complete, then A is

L-complete too.

Proof. If LA is L-complete, then by Lemma 4.8 it follows that m∗e ⊥ A for all

e:X → Y in L and S-subobjects m of Y . As all identity maps are S-monos, it follows

that e ⊥ A for all e in L, that is, that A is L-complete.

From Lemma 4.8 we now obtain the desired characterisation of those L for which

L-complete sets are closed under lifting.

Theorem 4.10. Let L be a class of maps in Set. Then L-complete sets are closed under

lifting iff L contains only S-isos and for all L-complete A, we have that m∗e ⊥ A

whenever e is a map in L and m is an S-subobject of the codomain of e.

Proof. ⇒ : From Lemma 4.7 it follows that all maps in L must be S-isos. The second

condition is a consequence of Lemma 4.8.

⇐ : This follows from Lemma 4.8.

This characterisation gives rise to the following condition, which is sufficient to ensure

that L-complete sets are closed under lifting.

Corollary 4.11. If L contains only S-isos and is closed under pullbacks along S-monos,

then L-complete sets are closed under lifting.

Next we show a lemma that will be essential later for proving that S-replete (and

well-complete) sets are closed under lifting.

Lemma 4.12. S-isos are stable under pullbacks along S-monos.
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Proof. Suppose that e:X → Y is an S-iso and that m:Z � Y is an S-mono. Let

m∗e:P → Z and e∗m:P � X be the pullback cone over m and e. Notice that e∗m is an

S-mono, too. For f:P → S we have to construct a unique extension f of f along m∗e. Let

n:Q� P be the S-mono classified by f and g:X → S be the classifier for the S-mono

e∗m ◦ n. As g ◦ e∗m classifies n and classifying maps are unique, we have f = g ◦ e∗m.

Since e is an S-iso, there is a unique map g:Y → S with g ◦ e = g. Choosing f , g ◦ m,

we obviously get an extension of f along m∗e.
The construction of g is illustrated by the following diagram

Q � n � P
m∗e � Z

X
e �

�
e ∗
m �

Y

m
g

g

1

!Q

g
>� S

f

g ≺ g≺
g

To show uniqueness of f, suppose there is an h:Z → S such that h ◦ m∗e = f. Let

m′:Z ′ � Z be classified by h, and k be the classifier of m ◦ m′. Then k ◦ m classifies m′.
Thus h = k ◦m. Then the pullback of m′ along m∗e is n. Thus, the pullback of m◦m′ along

e is n. Then k ◦ e classifies e∗m ◦ n, from which it follows by uniqueness of classifiers that

g = k ◦ e. As e is an S-iso k = g and, therefore, h = k ◦ m = g ◦ m = f.

4.4.2. Closure under lifting for S-spaces

Theorem 4.13. S-spaces are closed under lifting.

Proof. Let A be an S-space. Then LA appears as a retract of

SA , {φ ∈ S2(A) |φ(λx:A.>) = > ⇒ ∃a:A.φ = εA(a) } ⊆ S2(A)

via the maps i:LA→ SA and j: SA → LA defined as

i(〈s, a〉) , λp:S(A). s \ p ◦ a
j(φ) , 〈φ(λx:A.>), get(φ)〉,

where get(φ) is the function such that get(φ)(u) is the unique a ∈ A with φ = εA(a) for

every u ∈ def(φ(λx:A.>)). The existence of such an a is guaranteed by φ ∈ SA, and it is

unique since A is an S-space. By the closure properties of S-spaces, LA is an S-space.

Note that for the construction of get, one needs the Axiom of Unique Choice (AUC).

5. Predomains

In classical domain theory, in order to explain the meaning of recursively defined elements

of data types, one uses complete partial orders, that is, partially ordered sets where every

ascending chain has a limit (that is, a supremum). In this section we will give an ‘order-

free’ analogue of this completeness requirement that makes sense for arbitrary sets (and

types).
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We also investigate some stronger notions of completeness guaranteeing closure under

lifting. The least restrictive notion of that kind is the notion of well-completeness intro-

duced by Longley and Simpson (1997), whereas the most restrictive notion of that kind

is S-repleteness as introduced by Hyland and Taylor in Hyland (1991) and Taylor (1991).

It will turn out that all S-replete sets will be S-spaces.

In the following, we will use the term predomains to mean well-complete S-spaces, since

they form the widest class of complete S-spaces that is closed under lifting.

5.1. Complete sets

Now we introduce an ‘order-free’ analogue of the requirement that all ascending chains

have limits. But, in the vein of staying ‘order-free’, we consider so-called ω-chains instead

of N-indexed ascending chains where an ω-chain in a set A is a map a:ω → A.

Although any ω-chain a:ω → A induces an ascending chain a ◦ step:N→ A, it is not

the case that for arbitrary realisability models every ascending chain c:N → A can be

obtained as a ◦ step for some ω-chain a:ω → A – see Longley and Simpson (1997) for

examples of S-spaces where all ω-chains have limits but some ascending N-chains do not.

In the following we restrict attention to completeness for sets simply because that is

sufficient for our purposes, though completeness could be defined for all types.

Definition 5.1. A set A is called complete iff ι ⊥ A, that is, for all ω-chains a:ω → A there

is a unique map a: ω̂ → A with a ◦ ι = a

ω
ι � ω̂

A

a
g ≺ a

Thus, the complete sets are the L-complete sets for L = {ι}.
The following axiom states that S is complete.

Axiom 5. The map ι:ω → ω̂ is an S-iso, that is, S(ι) is an isomorphism.

Remark 5.1. Notice that our definition of ‘completeness’ is an internal version of the

external notion of completeness introduced in Longley and Simpson (1997) for realisability

models.

Notice also that the above definition of ‘completeness’ is nothing but a weakening

of Hyland and Taylor’s notion of ‘replete object’ (Hyland 1991; Taylor 1991) (cf. also

Section 5.3, Definition 5.3). Hyland (1991) showed that the S-replete sets are the least class

of sets containing S and being closed under arbitrary dependent products and equalisers.

5.1.1. Closure properties of complete sets First we consider closure under dependent prod-

ucts.

Theorem 5.2. If A ∈ Set and B:A→ Set is a family of complete sets, then Πx:A.B(x) is

a complete set, too. Moreover, if Set is an impredicative universe, then complete S-spaces

are closed under arbitrary dependent products.
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Proof. The proof follows immediately from Theorem 3.2 and Corollary 3.13 by choosing

L , {ι}.
Similarly, it follows that complete sets are closed under equalisers.

Theorem 5.3. Let f1, f2:A → B be maps between complete sets. Then the equaliser

m:E � A of f1 and f2 is complete, too.

Proof. The proof follows immediately from Theorem 3.5 and Axiom 5 by choosing

L , {ι}.

5.1.2. A representation theorem for complete S-spaces

Theorem 5.4. A set is a complete S-space iff it is a complete subobject of some power of

S by a set.

Proof. The proof follows immediately from Theorem 3.14 by putting L , {ι}.

5.2. Well-complete sets

The main problem with complete S-spaces is that they are not (known to be) closed under

lifting. For this reason one has to look for a more restrictive notion, which nevertheless

satisfies all the closure properties of complete sets. Again, we just consider well-complete

sets, though the notion would make sense for arbitrary types, too.

Definition 5.2. A set A is called well-complete iff its lifting LA is orthogonal to ι, that is,

iff LA is complete.

The following lemma identifies well-completeness as an instance of L-completeness.

Lemma 5.5. A set A is well-complete iff m∗ι ⊥ A for all S-subobjects m of ω̂. Thus, a set

is well-complete iff it is L-complete for L , {m∗ι | m S-subobject of ω̂ }.
Proof. The proof follows straightforwardly from Lemma 4.8 and Axiom 5.

From this it follows that complete subsumes well-complete.

Corollary 5.6. Any well-complete set is complete.

Proof. The proof follows from Corollary 4.9 and Axiom 5.

Theorem 5.7. Well-complete sets are closed under equalisers, lifting and dependent prod-

ucts of families indexed by a set. Moreover, if Set is impredicative, well-complete sets are

closed even under arbitrary dependent products.

Proof. By Lemma 5.5, the well-complete sets are the L-complete sets for L ,
{m∗ι | m S-subobject of ω̂ }. Then, from Theorems 3.2 and 3.5 one gets closure under

dependent products and equalisers, respectively. Closure under lifting is a consequence of

Corollary 4.11 and Lemma 4.12.

Corollary 5.8. The well-complete sets form the largest collection of complete sets closed

under lifting.

Proof. Suppose that C is a collection of complete sets that is closed under lifting. If

A ∈ C, then LA ∈ C. Thus, LA is complete and, therefore, A is well-complete.
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Corollary 5.9. Well-complete S-spaces are closed under equalisers, lifting and dependent

products of families indexed by sets. If Set is impredicative, well-complete S-spaces are

closed even under arbitrary dependent products.

Proof. The proof follows immediately from Theorem 5.7 and the closure properties of

S-spaces (Corollaries 3.11 and 3.13).

Lemma 5.10. S is well-complete, that is, ι ⊥ LS .

Proof. The set S ∼= L 1 is complete by Axiom 5, thus 1 is well- complete. Therefore,

S ∼= L 1 is well-complete by closure under lifting (cf. Theorem 5.7).

Remark 5.11. Axiom 5 is equivalent to S being well-complete because S ∼= L 1 is a retract

of LS (cf. Remark 3.6). Notice that the proof of Lemma 5.10 uses Axiom 5 and thus

cannot be employed to prove the equivalence.

5.2.1. A representation theorem for well-complete S-spaces

Theorem 5.12. A set is a well-complete S-space iff it is a well-complete subobject of some

power of S by a set.

Proof. The proof follows immediately from Theorem 3.14 by taking forL the collection

of all pullbacks of ι along S-subobjects of ω̂.

5.3. S-replete sets

The notion of S-replete object or set was originally introduced in Hyland (1991) and

Taylor (1991) in the context of a more restrictive axiomatic setting tailored towards a

domain theory à la Scott. But their definition makes sense in our more general setting

too.

In the previous subsection we have defined a set A to be ‘complete’ iff ι ⊥ A, that is, iff

A is closed under limits of ω-chains, whereas we will now call a set A to be S-replete or

simply replete iff e ⊥ A for all S-isos e. Streicher (1998) explained the sense in which S-isos

can be considered as ‘generalised limit processes’ and that, accordingly, S-repleteness of a

set may be understood as being ‘closed under all generalised limit processes’ (as given by

S-isos).

Definition 5.3. A set A is called S-replete iff e ⊥ A for all S-isos e.

Remark 5.13. Obviously, this is again an instance of L-completeness by taking for L the

collection of all S-isos. This observation is crucial for obtaining the subsequent closure

properties. Note also that S is S-replete by definition.

Lemma 5.14. Dependent products and equalisers preserve S-repleteness. If Set is impred-

icative, S-replete sets are closed under arbitrary dependent products.

Proof. The proof follows from Theorem 3.2 and Theorem 3.5.

Lemma 5.15. The S-replete sets are closed under lifting.

Proof. The proof follows from Corollary 4.11 and Lemma 4.12.
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Next we show that S-replete sets are already S-spaces. However, we need an auxiliary

lemma (due to P. Taylor) characterising S-isos first.

Lemma 5.16. A map e:X → Y is an S-iso iff e is an S-epi and g ◦ e = εX for some

g:Y → S2(X).

Proof.⇒ : If e is an S-iso (that is, S(e) is an iso), then S(e) is monic, that is, e is an S-epi.

A (unique) g:Y → S2(X) with εX = g ◦ e exists, as S2(X) is S-replete by Remark 5.13 and

Lemma 5.14.

⇐ : Suppose that S(e) is monic and εX = g ◦ e for some g:Y → S2(X). Let p:X → S .

We have to show that p can be extended uniquely to a map p:Y → S with p ◦ e = p.

Uniqueness follows from the assumption that e is an S-epi. For existence, we define

p:Y → S as p(y) , (g y) p, for which we have

p(e(x)) = g(e(x))(p) = (g ◦ e)(x)(p) = (εX(x)) p = p(x),

as desired.

Next we show that S-replete sets are automatically S-spaces.

Theorem 5.17. All S-replete sets are S-spaces.

Proof. Let A be S-replete. Let εA = mA ◦ eA be an epi-mono-factorisation of εA, that is,

eA:A→ R(A) is epic and mA:R(A)� S2(A) is monic, as exhibited in the diagram

A
eA �� R(A)

S2(A)

mAg
g

ε
A �

As eA is epic, it is also an S-epi and, therefore, by Lemma 5.16 it follows that eA is an

S-iso. Thus, there is a unique map iA:R(A) → A with idA = iA ◦ eA, as, by assumption,

A is S-replete. So eA is a split mono. As eA is also epic, it follows that eA is actually an

isomorphism.

Thus, the map εA is monic and, therefore, A appears as a subobject of S2(A), from

which it follows by the Representation Theorem that A is an S-space.

This gives rise to the following observation.

Corollary 5.18. Any S-replete set is a well-complete (and thus complete) S-space.

Proof. By Theorem 5.17, A is an S-space. It is also well-complete by Theorem 4.10,

since the S-isos are closed under pullbacks along S- subobjects (by Lemma 4.12).

6. Domains

The well-complete and S-replete S-spaces studied so far are ‘synthetic’ analogues of

‘classical’ predomains, that is, partial orders where every ascending chain has a supremum.

As we know from classical domain theory, for the purposes of fixpoint theory we have to

consider domains, that is, predomains admitting a least element.

For S-spaces the synthetic analogue of the existence of a least element will be the

existence of a so-called focal L-algebra structure. For arbitrary sets A there may be
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several different focal L-algebra structures on A. When we add two further axioms,

namely Axioms 6 and 7 below, it turns out that for S-spaces, focal L-algebra structures

are unique provided they exist. Such S-spaces will be called pointed S-spaces.

Accordingly, domains will be pointed S-spaces that are well-complete.

6.1. Focal L-algebras and pointed S-spaces

Definition 6.1. An L-algebra α:LA→ A is called focal iff α ◦ ηA = idA. The element α(⊥A)

will be sometimes referred to as ⊥α.
If α:LA → A and β:LB → B are focal L-algebras then a homomorphism from α to β

is a map h:A→ B with

h ◦ α = β ◦ Lh.
Notice that in general the focal L-algebra structure on a set A need not be unique.

We now formulate the final two axioms that guarantee the uniqueness of focal L-algebra

structures for S-spaces and, moreover, are sufficient for proving all further results of this

paper.

Axiom 6. For any set A, the map cA = [⊥A, ηA]: 1 + A→ LA is an S-epi, that is,

p = q ⇔ p ◦ cA = q ◦ cA
for all p, q:LA→ S .

Axiom 6 means that S-predicates p, q:LA→ S are equal if and only if p ◦ ηA = q ◦ ηA
and p(⊥A) = q(⊥A), that is, when p and q have the same behaviour on ⊥A and elements

of the form ηA(a).

Axiom 7. For all u ∈ S and f: S → S if f(u) = >, then f(>) = >.

In other words, for all endo-maps f of S we have f(>) = > if f(u) = > for some u ∈ S .

From Axiom 6, we immediately get that any cA is epic with respect to S-spaces.

Lemma 6.1. Let A be a set and B be an S-space. If f1, f2:LA→ B with f1 ◦ cA = f2 ◦ cA,

then f1 = f2.

Proof. As B is an S-space, it suffices to prove that for all p ∈ S(B) we have p◦f1 = p◦f2.

Thus, by Axiom 6 it suffices to show that p◦f1◦cA = p◦f2◦cA. But this follows immediately

from the assumption that f1 ◦ cA = f2 ◦ cA.

Lemma 6.2. Let α be a focal L-algebra and p ∈ S(A). Then for all a ∈ A we have p(a) = >
whenever p(α(⊥A)) = >.

Proof. Let a ∈ A and ha: S → LA be the map defined as ha(u) , 〈u, λp: def(u). a〉. Then

ha(⊥) = ⊥A and ha(>) = ηA(a). Thus, we have

(p ◦ α ◦ ha)(⊥) = p(α(⊥A)) = >
(p ◦ α ◦ ha)(>) = p(α(ηA(a))) = p(a),

from which it follows by Axiom 7 that p(a) = >.

Theorem 6.3. An S-space A admits at most one focal L-algebra structure.
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Proof. Suppose that α1:LA→ A and α2:LA→ A are focal L-algebra structures on an

S-space A.

By Lemma 6.1, for α1 to equal α2 it is sufficient to show that α1 ◦ cA = α2 ◦ cA, that is, it

suffices to show that α1 ◦ ηA = α2 ◦ ηA and α1(⊥A) = α2(⊥A). As α1 and α2 are focal L-

algebras, we have α1 ◦ ηA = idA = α2 ◦ ηA. Thus, it remains to check that α1(⊥A) = α2(⊥A).

As A is an S-space, it suffices to show that p(α1(⊥A)) = > iff p(α2(⊥A)) = >. However,

this follows immediately from Lemma 6.2 above.

Lemma 6.4. Let A and B be S-spaces admitting (unique) focal L-algebra structures

α:LA → A and β:LB → B, respectively. Then, for maps f:A → B, the following two

conditions are equivalent:

(1) f is an L-algebra morphism from α to β

(2) f is strict, that is, f(⊥α) = ⊥β .

Proof. The map f:A→ B is an L-algebra morphism iff f ◦ α = β ◦ Lf. By Lemma 6.1

this is equivalent to the following two requirements:

f ◦ α ◦ ηA = β ◦ Lf ◦ ηA
f(α(⊥A)) = β(Lf(⊥A))

The first requirement is valid anyway, as we have

f ◦ α ◦ ηA = f = β ◦ ηB ◦ f = β ◦ Lf ◦ ηA,
and the second requirement is equivalent to f(α(⊥A)) = β(⊥B) as Lf(⊥A) = ⊥B .

Definition 6.2. A pointed S-space is an S-space A admitting a focal L-algebra structure

denoted by αA (as it is unique by Theorem 6.3 provided it exists). Furthermore, for a

pointed S-space A, we write ⊥A for αA(⊥A) and call it ‘the bottom element of A’.

A function f:A → B between pointed S-spaces A and B will be called strict iff f

preserves bottom elements, that is, f(⊥A) = ⊥B .

6.2. Closure properties of focal L-algebras and pointed S-spaces

Theorem 6.5. Focal L-algebras are closed under dependent products. Moreover, these are

also products in the category of focal L-algebras and strict maps.

Proof. Let (αi:LAi → Ai | i ∈ I ) be a family of focal L-algebras. Let P , Πi:I. Ai be

the (dependent) product of the underlying sets. Let ϕ:LP → P be the unique map with

πi ◦ ϕ , αi ◦ L(πi)

for all i ∈ I . We have ϕ ◦ ηP = idP , since for all i ∈ I we have

αi ◦ L(πi) ◦ ηP = αi ◦ ηAi ◦ πi = πi.

Thus ϕ endows P with the structure of a focal L-algebra.

We still need to show that for any focal L-algebra β:LB → B and any family

(hi: β → αi | i ∈ I ) of homomorphisms the unique map h:B → P with hi = πi ◦ h for all

i ∈ I is actually a homomorphism, that is, that ϕ ◦ Lh = h ◦ β. But this is the case, since

https://doi.org/10.1017/S096012959900273X Published online by Cambridge University Press

https://doi.org/10.1017/S096012959900273X


General synthetic domain theory 207

we have

πi ◦ ϕ ◦ Lh = αi ◦ L(πi) ◦ Lh = αi ◦ L(πi ◦ h) = αi ◦ Lhi = hi ◦ β = πi ◦ h ◦ β
for all i ∈ I .
Corollary 6.6. Pointed S-spaces are closed under dependent products of families indexed

by a set. Moreover, if Set is impredicative, then pointed S-spaces are closed under all

dependent products.

Proof. The proof follows immediately from the previous theorem and the closure

properties of S-spaces.

Theorem 6.7. Focal L-algebras are closed under equalisers of L-algebra morphisms.

Moreover, these are also equalisers in the category of focal L-algebras and L-algebra

morphisms. Thus, pointed S-spaces are closed under equalisers of strict maps.

Proof. Let α:LA→ A and β:LB → B be focal L-algebras, and f, g:A→ B L-algebra-

morphisms. Assume that e:E � A is an equaliser of f and g. First, notice that

f ◦ α ◦ L e = β ◦ Lf ◦ L e = β ◦ L (f ◦ e) = β ◦ L (g ◦ e) = β ◦ Lg ◦ L e = g ◦ α ◦ L e.
Thus, there is a unique map h:LE → E with e ◦ h = α ◦ L e endowing E with a focal

L-algebra structure since we have

e ◦ h ◦ ηE = α ◦ L e ◦ ηE = α ◦ ηA ◦ e = e,

and since e is monic, this entails h ◦ ηE = idE . As e ◦ h = α ◦L e, we also get that e: h→ α,

that is, h is an L-algebra-morphism.

It remains to show that h has the universal property. Let γ:LC → C be a focal

L-algebra and k: γ → α be a homomorphism with f ◦ k = g ◦ k. Then there exists a unique

k′:C → E with k = e ◦ k′. We have

e ◦ k′ ◦ γ = k ◦ γ = α ◦ Lk = α ◦ L(e ◦ k′) = α ◦ L e ◦ Lk′ = e ◦ h ◦ Lk′,
and as e is monic, k′ ◦ γ = h ◦ Lk′, that is, k′: γ → h.

The closure of focal S-spaces under equalisers of strict maps follows from the previous

considerations and Lemma 6.4.

Next we show that there are enough L-algebras.

Lemma 6.8. Let A be a set and let µA:LLA → LA be the classifier of the partial map

(ηLA ◦ ηA, idA)

A
idA� A

L2A

ηLA ◦ ηAg
g

µA
� LA

ηA
g

then µA is a focal L-algebra on LA.

Proof. As both µA ◦ ηLA and idLA classify the partial map (ηA, idA), it follows by

uniqueness of classifying maps that µA ◦ ηLA = idLA.
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Remark 6.9. Both η and µ are components of natural transformations endowing L with

a monad structure. Therefore, L is often called the lifting monad.

Using Axiom 6 it can be shown that any focal L-algebra is an Eilenberg–Moore

algebra for the lifting monad. Hence, the category of pointed S-spaces with strict maps

is isomorphic to the category of Eilenberg–Moore algebras for the lifting monad on

S-spaces.

Corollary 6.10. If A is an S-space, then LA is a pointed S-space.

Proof. The proof follows immediately from the previous Lemma 6.8 and closure of

S-spaces under lifting (Theorem 4.13).

7. Fixpoints

We will next show that for any focal L-algebra structure α:LA → A on a complete set

A, any map f:A → A admits a canonical fixpoint, which can be constructed à la Kleene

as in classical domain theory. Since well-complete and S-replete sets are all complete, the

results of this section are valid for all notions of predomains considered in this paper.

The exposition is essentially based on Rosolini (1995).

Definition 7.1. Let α:LA → A be a focal L-algebra. Let fα , α ◦ L(f):LA → A and let

klα,f:ω → A, – the Kleene chain of f (with respect to α) – be the unique map making the

following diagram commute

Lω
φ � ω

LA

L(klα,f)
g

fα
� A

klα,f
g

Lemma 7.1. Let α:LA→ A be a focal L-algebra and f:A→ A. Then

klα,f(step(n)) = fn(⊥α)
for all n ∈ N.

Proof. The commuting diagram

1 +N
[0, s]

' � N

1 + ω

1 + step
g cω � Lω

φ � ω

step
g

LA

L(klα,f)
g

fα
� A

klα,f
g

gives rise to the equations

klα,f(step(0)) = ⊥α,
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as klα,f(step(0)) = fα(⊥A) = (α ◦ Lf)(⊥A) = α(⊥A) = ⊥α, and

klα,f(step(n+ 1)) = f(klα,f(step(n))),

as

klα,f(step(n+ 1)) = (fα ◦ L(klα,f) ◦ ηω)(step(n))

= (α ◦ Lf ◦ L(klα,f) ◦ ηω)(step(n))

= (α ◦ ηA ◦ f ◦ klα,f)(step(n))

= (f ◦ klα,f)(step(n))

= f(klα,f(step(n))).

From these two equations it follows that klα,f(step(n)) = fn(⊥α) by induction on n.

Corollary 7.2. Let A be a complete set and α:LA → A be a focal L-algebra. For any

f:A → A let klα,f be the unique extension of the Kleene-chain klα,f along ι, that is,

klα,f = klα,f ◦ ι. Then

klα,f(ŝtep(n)) = fn(⊥α)
for all n ∈ N.

Proof. The proof follows immediately by the previous lemma, since klα,f ◦ ŝtep =

klα,f ◦ ι ◦ step = klα,f ◦ step.

The proof of the following theorem follows Rosolini (1995).

Theorem 7.3. Let A be a complete set and α:LA → A be a focal L-algebra structure on

A. Then for any endomap f:A→ A, the element

fixα(f) , klα,f(∞) ∈ A
is a fixpoint of f, that is,

f(fixα(f)) = fixα(f)

Proof. Recall that σ̂: ω̂ → ω̂ has been defined as υ−1 ◦ ηω̂: ω̂ → ω̂ and that σ̂(∞) = ∞
by Lemma 4.6.

Thus, in order to prove that f(fixα(f)) = fixα(f), we shall show that

klα,f ◦ σ̂ = f ◦ klα,f ,

since this entails

f(fixα(f)) = f(klα,f(∞)) = klα,f(σ̂(∞)) = klα,f(∞)) = fixα(f) .

As A is complete, it is sufficient to show

klα,f ◦ σ̂ ◦ ι = f ◦ klα,f ◦ ι,
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which follows from the following commuting diagram

LA

ω
ηω� Lω

φ
�
L(klα,f

) �

ω

ω̂

ι
g

ηω̂
� L ω̂

L ι
g

υ−1
� ω̂

ι
g

klα,f
� A

fα

g

klα,f
�

σ̂
�

as

klα,f ◦ σ̂ ◦ ι = fα ◦ L(klα,f) ◦ ηω =

α ◦ Lf ◦ L(klα,f) ◦ ηω = α ◦ L (f ◦ klα,f) ◦ ηω =

α ◦ ηA ◦ (f ◦ klα,f) = f ◦ klα,f = f ◦ klα,f ◦ ι
by definition of fα, naturality of η and focality of α.

8. Domain-theoretic induction principles

In the previous section we have explained the meaning of recursive definitions of elements

(typically recursively defined functions) by means of a canonical fixpoint construction

for endofunctions on focal L-algebras. For the purposes of program verification, one also

needs proof principles for these canonical fixpoints.

For example, if one considers the identity map idA on a focal L-algebra α:LA → A,

then all elements of A appear as fixpoints of idA, but the canonical fixpoint construction

à la Kleene picks out precisely one element of A. Of course, the Kleene chain klα,idA
is constant with value ⊥α = α(⊥A) and so is klα,idA , from which we may conclude that

fixα(idA) = ⊥α. However, the Kleene chain will not usually be constant, so for arbitrary

f:A→ A it is more difficult to predict the behaviour of klα,f at ∞.

The traditional methods for verifying properties of recursively defined objects were

called ‘induction principles’ because some of them formally resemble the scheme of

induction over N. Synthetic analogues of the induction principles that are known from

classical domain theory (Fixpoint Induction, Computational Induction and Park Induction)

will be proved in the following subsections. This is a somewhat delicate question since we

deliberately want to avoid reference to order-theoretic notions and, accordingly, cannot

employ the ‘classical’ characterisations of canonical fixpoints as least fixpoints or order-

theoretic suprema of the Kleene chain.

8.1. Fixpoint induction

It is well known from classical domain theory that most of the induction principles are

admitted only for predicates that are well-behaved with respect to limits, the so-called

admissible predicates.
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Classically, a predicate P on a cpo A is admissible iff P is closed under order-theoretic

suprema of ascending chains, that is, P (
⊔
a) whenever a:N → A is an ascending chain

that is contained in P , that is, P (a n) for all n ∈ N. The straightforward ‘synthetic’

analogue of the ‘classical’ notion of admissibility would be the requirement that P is

complete, that is, orthogonal to ι, because the key idea of the synthetic approach is to

replace ascending N-indexed chains by ω-chains.

Theorem 8.1. (‘Synthetic’ Fixpoint Induction) Let A be a complete set, f:A → A, and

α:LA→ A be a focal L-algebra. If m:P � A is complete and a subalgebra of fα, that is,

fα ◦ L(m) factors through m via some π:LP → P as shown in the following diagram

LP
π � P

LA

Lm
g

fα
� A

m
g

g

then klα,f factors through m, and, therefore, fixα(f) ∈ P .

Proof. By initiality of φ:Lω → ω, there exists a unique map h:ω → P with h◦φ = π◦Lh.
Again by initiality of φ, we get that klα,f = m ◦ h, pictorially

Lω
φ� ω

LP

Lh
g π � P

h
g

LA

Lm
g

fα
� A

m
g

g

As, by assumption, P is complete, there is a unique h: ω̂ → P with h = h ◦ ι. So, finally,

by completeness of A, klα,f = m ◦ h = m ◦ h, which entails

fixα(f) = klα,f(∞) = m(h(∞)),

from which it follows that P (fixα(f)).

We can do better, however. The above theorem can be specialized, since, when we

consider focal S-spaces, it gives rise to fixpoint induction, as was pointed out by one of

the referees.

Theorem 8.2. Let A be a complete focal S-space and f:A → A. If P is a complete and

focal set such that m:P � A is strict, then fix(f) ∈ P if f ◦ m factors through m.

Proof. Let α:LA → A and πP :LP → P be the unique focal L-algebra structures on

the complete focal S-spaces A and P , respectively. Note that P is an S-space, as it is a

subobject of A (cf. Corollary 3.11). Let f̃:P → P be the unique map with f ◦ m = m ◦ f̃,

which exists because f ◦ m factors through m.

The theorem follows from the Synthetic Fixpoint Theorem above by setting π , πP ◦L f̃.
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It simply remains to show that

LP
πP ◦ Lf̃� P

LA

Lm
g

fα
� A

m
g

g

commutes. But, since m, being strict, is an L-homomorphism from Lemma 6.4, the diagram

commutes.

Note that the well-known premisses of fixpoint-induction on A, that is,

P (⊥A) and ∀a:A.P (a)⇒ P (f(a))

are expressed above by the requirement that m:P � A is strict and m ◦ f factors through

m. As complete S-spaces enjoy good closure conditions, complete focal predicates on

S-spaces appear as a good class of predicates for the purposes of program verification.

For computational induction, however, a more restrictive class of predicates is needed,

namely admissible predicates.

8.2. Admissible predicates

If in the classical definition of admissible predicate we replace ‘ascending chain’ by ‘ω-

chain’, ‘a(n)’ by ‘a(step(n))’ and ‘
⊔
A is in P ’ by ‘a factors through P ’, we obtain the

following notion of ‘admissibility’.

Definition 8.1. Let A be a complete set. Then a subobject mP :P � A is called admissible

iff ŝtep ⊥ mP .

Thus mP :P � A is admissible iff for all a:ω → A the unique extension a: ω̂ → A

factors through mP , provided a ◦ step = a ◦ ŝtep factors through mP , that is, there exists

a (necessarily unique) map p: ω̂ → P such that

N
step� ω � ι � ω̂

P

p
g
�

mP
�≺ p

A

a
g

commutes. This is more akin to the ‘classical’ definition of ‘admissible predicate’, as it

says that for an ω-chain a:ω → A the image of a: ω̂ → A is contained in P iff the image

of a ◦ step = a ◦ ŝtep is contained in P , that is, iff all ‘finite approximations’ a(step(n))

satisfy predicate P .

Next we show that admissible predicates on complete sets are always complete.

Lemma 8.3. Let A be a complete set and mP :P � A be an admissible subobject of A

then P is complete, that is, ι ⊥ mP .
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Proof. Let p:ω → P and a , mP ◦ p. As A is complete, there exists a unique a: ω̂ → A

with a ◦ ι = a. It is obvious that a ◦ ŝtep = mP ◦ p ◦ step.

N
step� ω � ι � ω̂

P

p ◦ step
g

======= P

p
g
�
mP

� A

mP ◦ p =: a
g

Thus, by admissibility of P , there exists a (necessarily unique) map p: ω̂ → P such that

p ◦ ŝtep = p ◦ step and mP ◦ p = a. Therefore, we get

mP ◦ p ◦ ι = a ◦ ι = a = mP ◦ p,
which entails p ◦ ι = p as mP is monic.

For uniqueness of p, assume that p̃: ω̂ → P is a map with p̃ ◦ ι = p. Then

mP ◦ p̃ ◦ ι = mP ◦ p = a = a ◦ ι,
which, by completeness of A, entails mP ◦ p̃ = a. Thus, we get p̃ = p, as mP is monic and

mP ◦ p = a.

Furthermore, we can characterise admissible predicates on a complete set as the com-

plete predicates that are orthogonal to step.

Lemma 8.4. A subobject mP :P � A of a complete set A is admissible iff P is complete

and step ⊥ mP .

Proof. Let mP :P � A be a subobject of a complete set A.

⇐: If mP is orthogonal to both ι and step, then mP is also orthogonal to ŝtep = ι ◦ step

(by a well-known straightforward argument).

⇒: On the other hand, if mP is admissible, then ι ⊥ mP by Lemma 8.3. For step ⊥ mP ,

assume that a:ω → A and a ◦ step factors through mP by some (necessarily unique)

h:N → P . As A is complete, there exists a (necessarily unique) extension a: ω̂ → A with

a ◦ ι = a. Thus, we have a ◦ ŝtep = mP ◦ h, and, therefore, by admissibility of mP , there

exists a (necessarily unique) map h: ω̂ → P making the diagram below commute.

N
step � ω � ι � ω̂

P

h
g
�
mP

�≺
h

A

a
g ≺ a

Putting k , h ◦ ι, we then get the existence of the desired mediating arrow k. This k is

unique, since mP is monic.

For admissibility of equality predicates on complete S-spaces we need ŝtep to be an

S-epi. As a preparation for this, we prove the following auxiliary lemma.

Lemma 8.5. S-epis are preserved by the lifting functor L.

Proof. Let e:X → Y be an S-epi. By definition of c and naturality of η, it can be

readily shown that L e ◦ cX = cY ◦ (1 + e).
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Next, observe that 1+e is S-epic. To see this, assume that [g1, g2]◦(1+e) = [h1, h2]◦(1+e)

where g1, h1: 1→ S , and g2, h2:Y → S . Since

g1 = [g1, g2] ◦ (1 + e) ◦ inl = [h1, h2] ◦ (1 + e) ◦ inl = h1

g2 ◦ e = [g1, g2] ◦ (1 + e) ◦ inr = [h1, h2] ◦ (1 + e) ◦ inr = h2 ◦ e,
it follows that g2 = h2 since e is an S-epi, and, therefore, [g1, g2] = [h1, h2].

Thus, as 1+e is S-epic and cY is S-epic (by Axiom 6), it follows that L e◦cX = cY ◦(1+e)

is S-epic. Thus, as cX is S-epic too (by Axiom 6), we have that L e is S-epic.

The idea behind the proof of the next theorem is due to Simpson, cf. Simpson (1996),

where, however, it was used for quite a different purpose.

Theorem 8.6. The maps step:N→ ω and ŝtep:N→ ω̂ are S-epic.

Proof. As ι is an S-iso and ŝtep = ι ◦ step, it suffices to show that step is an S-epi. To

do this, let m:P � ω be the greatest subobject of ω through which step factors by an

S-epi. Let e:N → P be the unique map with step = m ◦ e, which, of course, is an S-epi.

Notice that

φ ◦ L(step) ◦ cN = φ ◦ cω ◦ (1 + step) = step ◦ [0, s],

as L(step) ◦ cN = cω ◦ (1 + step) and φ ◦ cω ◦ (1 + step) = step ◦ [0, s] by definition of step

(cf. Definition 4.4).

Now consider the following diagram:

L(N)
L(step) � L(ω)

1 +N
cN� L(N)

wwwww
L(e) � L(P ) � L(m)� L(ω)

wwwww

N

[0, s]−1
f

e′
� φ(L(P ))

gg
�
m′
� ω

φ
g

N

wwwww
step

� ω

wwwwww
where m′ is the image of φ ◦ L(m) and e′ is the unique map with step = m′ ◦ e′.

As both cN and L(e) are S-epis (by Axiom 6 and Lemma 8.5), the map e′ is an S-epi,

too, as it arises as a composition of S-epis. Therefore, m′ is contained in m, from which it

follows that P is a sub-L-algebra of φ via m. As φ is an initial L-algebra, the L-algebra

morphism m is an isomorphism and, therefore, step is an S-epi.

Now we are ready to establish the usual closure properties for admissible predicates.

Theorem 8.7. Equality on complete S-spaces is admissible.

Proof. Let A be a complete S-space. We have to show that the equality predicate on A

given by the subobject δA , 〈idA, idA〉 is orthogonal to ŝtep.

To do this, let f = 〈f1, f2〉: ω̂ → A× A and g:N→ A be maps such that the following
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diagram

N
ŝtep � ω̂

A

g
g
�

δA
� A× A

f = 〈f1, f2〉
g

commutes. Then f1 ◦ ŝtep = g = f2 ◦ ŝtep, which entails f1 = f2, as A is an S-space and

ŝtep is an S-epi by Theorem 8.6.

The following lemmas are direct consequences of orthogonality, as seen in the work of

Freyd and Kelly.

Lemma 8.8. Admissible predicates on complete sets are closed under arbitrary intersec-

tions, and, therefore, in particular, under conjunction and universal quantification.

Proof. Let (Pi)i∈I be a family of admissible predicates on a complete set A. Let a: ω̂ → A

be a map such that ∀n:N. ∀i:I. Pi(a(ŝtep(n))), that is, ∀i:I. ∀n:N. Pi(a(ŝtep(n)). As all Pi
are admissible, it follows that ∀i:I. ∀u:ω̂. Pi(a(u)), that is, ∀u:ω̂. ∀i:I. Pi(a(u)). Thus, the

predicate λx:A. ∀i:I. Pi(x) is admissible.

As implication in type theory is a special case of universal quantification, we have the

following corollary.

Corollary 8.9. Let P be an admissible predicate on a complete set A, and Q be an arbitrary

proposition, then λx:A.Q⇒ P (x) is an admissible predicate on A.

Proof. The proof follows immediately from Lemma 8.8 by the observation that

(Q⇒ P (x)) ⇐⇒ (∀q:Q. P (x))

for all x ∈ A.

Moreover, admissible predicates on complete sets are stable under substitution.

Lemma 8.10. Let f:B → A be a map between complete sets, and P be an admissible

predicate on A. Then P ◦ f is an admissible predicate on B.

Proof. Let b: ω̂ → B with (P ◦ f)(b(ŝtep(n))) for all n ∈ N. Then for a , f ◦ b, we have

P (a(ŝtep(n))) for all n ∈ N. By admissibility of P , it follows that P (a(u)) for all u ∈ ω̂,

that is, (P ◦ f)(b(u)) for all u ∈ ω̂.

An important special case is the following.

Corollary 8.11. The binary predicate on S given by (u ∧ v) = u is admissible.

Proof. The predicate on S given by (x ∧ y) = x can be written more formally as

λz: S ×S. (π0(z)∧π1(z)) = π0(z), which, by the previous Lemma 8.10, is admissible as it is

obtained by substitution along λz: S × S. 〈π0(z) ∧ π1(z), π0(z)〉 from the equality predicate

on S , which is admissible by Theorem 8.7.

Definition 8.2. For any set A, the information (pre)order is the binary predicate on A

given by

x vA y 4⇐⇒ ∀p:S(A). (p(x) = >)⇒ (p(y) = >) .
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Remark 8.12. Notice that in the light of the definition above, Axiom 7 ensures that >
is the greatest element with respect to the partial preorder vS on S , where u vS v iff

f(u) = > implies f(v) = > for all f: S → S .

Finally, the ‘information (pre)order’ is an admissible predicate on complete sets.

Theorem 8.13. Let A be a complete set. Then the information preorder vA is admissible.

Proof. First notice that for all u, v ∈ S we have that u = > ⇒ v = > is equivalent to

((u = >) ∧ (v = >)) ⇔ u = >, which in turn is equivalent to (u ∧ v) = > ⇔ u = > since

(u∧v = >)⇔ ((u = >)∧ (v = >)). Because, by Axiom 4, (u∧v = >)⇔ u = > is equivalent

to u ∧ v = u and the latter is an admissible binary predicate on S by Corollary 8.11, we

get that the binary predicate on S given by

(u = >)⇒ (v = >)

is admissible.

Because admissible predicates are closed under substitution (by Lemma 8.10) and

universal quantification (by Lemma 8.8), we get that the binary predicate vA on A is

admissible.

8.3. Computational induction

We now prove the validity of computational induction for admissible predicates on

complete sets.

Theorem 8.14. (Computational Induction) Let α:LA → A be a focal L-algebra structure

on a complete set A. Then, for any map f:A → A and admissible predicate P on A, we

have P (fixα(f)) if P (fn(⊥α)) for all n ∈ N.

Proof. By Lemma 7.1, we know that klα,f(step(n)) = fn(⊥α). The assumption that

P (fn(⊥α)) for all n ∈ N expresses the fact that klα,f ◦ step = klα,f ◦ ŝtep factors through

mP :P � A (cf. Corollary 7.2). Thus, by admissibility of P , the map klα,f factors through

mP , and, therefore, fixα(f) = klα,f(∞) ∈ P .

As usual, we can also derive Fixpoint Induction from Computational Induction for

admissible predicates.

Corollary 8.15. (Fixpoint Induction for Admissible Predicates) Let α:LA → A be a focal

L-algebra structure on a complete set A. Then for any map f:A → A and admissible

predicate P on A, we have P (fixα(f)) provided P (⊥α) and ∀x:A. P (x)⇒ P (f(x)).

Remark 8.16. Since admissible predicates are also complete, this theorem is superseded

by Theorem 8.2, but it is slightly more general. It does not require A to be an S-space,

but on the other hand only for S-spaces is equality admissible. Besides completeness and

orthogonality to ŝtep, there is a third, even stronger, notion of ‘admissibility’ with good

closure properties, namely the so-called ‘extremal monos ’ of Taylor (1991), which are those

monos orthogonal to all S-epis.
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8.4. Park induction

‘Park induction’ in classical domain theory states that the least fixpoint of a (continuous)

endofunction f:A→ A on a domain A is also the least prefixpoint of f. Of course, ‘least’

and ‘prefixpoint’ refer to the information ordering vA on A (or simply v when A is clear

from the context).

Notice that Park induction is needed in order to prove that a recursively defined

function f , fix(Φ):A → B diverges for some argument a ∈ A. Usually, this is achieved

by exhibiting a function g ∈ BA with Φ(g) v g and g(a) = ⊥B .

But before we can prove the validity of Park induction, we need the following observa-

tion.

Remark 8.17. Let α:LA→ A be a focal algebra structure on a set A. Then by Lemma 6.2,

⊥α v a for all a ∈ A. Thus, ⊥α is a least element of A, which is unique if A is an S-space.

Theorem 8.18. (Park Induction) Let A be a complete set and α:LA → A be a focal

L-algebra. Then for all f:A→ A and a ∈ A with f(a) vA a, we have fixα(f) vA a.
Proof. Suppose f(a) vA a. As the information ordering vA is admissible by Theo-

rem 8.13, the predicate λx:A. x vA a is admissible, and, therefore, we may use fixpoint

induction to prove fixα(f) vA a. By Remark 8.17, we have ⊥α v a.
If x vA a, then f(x) vA f(a) since every map preserves the information ordering. From

the assumption f(a) vA a, it follows that f(x) vA a.
Thus, for a complete set A, we have that the canonical fixpoint fixα(f) is actually a least

fixpoint (as it is even a least prefixpoint). Moreover, if A is an S-space, then fixα(f) is the

least fixpoint of f that does not depend on the choice of α, since this is unique for an

S-space provided it exists.

9. Separatedness of S and its consequences

In the intended models of our theory, namely the realisability models, a further principle

is valid that we have not exploited yet, namely that equality on all types is ¬¬-closed,

that is,

∀x, y:X. ¬¬ x = y ⇒ x = y

for all types X.

We will show that equality on S-spaces is already ¬¬-closed if equality on S is ¬¬-

closed. But, first consider the following reformulation of the latter requirement.

Lemma 9.1. Equality on S is ¬¬-closed iff def is ¬¬-closed.

Proof. From Axiom 4, for all u, v ∈ S we have u = v iff def(u) ⇔ def(v). Therefore,

equality on S is ¬¬-closed if def is ¬¬-closed because ¬¬-closure is stable under

implication.

If equality on S is ¬¬-closed, then def(u) = (u = >) is ¬¬-closed also.

Thus, equality on S is ¬¬-closed iff def embeds S into the ¬¬-closed propositions of

Prop, which is known as Markov’s Principle for the case when S is identified with the

collection of all Σ0
1-propositions asserting termination of computations.
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As in our more general setting S corresponds to the class of propositions asserting

termination of computations†, it makes sense to refer to ¬¬-closedness of def not as

(generalised) Markov’s Principle but as (¬¬)-separatedness of S , or S-separatedness.

Theorem 9.2. The S-space S is ¬¬-separated iff the equality on any S-space is ¬¬-closed.

Proof. For an S-space A, we have x =A y iff ∀p:S(A). p(x) = p(y). But the latter

proposition is ¬¬-closed, since equality on S is ¬¬-closed and ¬¬-closed propositions

are closed under universal quantification.

The other direction holds because S is an S-space.

Thus, in the presence of S-separatedness, many interesting predicates on domains are

¬¬-closed. This turns out to be useful, since for ¬¬-closed predicates some forms of

case analysis are valid, even constructively. These proof principles are needed in order to

develop a more special synthetic domain theory à la Scott, as can be found in the first

author’s Thesis (Reus 1995; Reus 1998).

Lemma 9.3. If S is ¬¬-separated, then for all ¬¬-closed predicates P on S we have that

∀u:S. P (u) iff (P (>) and P (⊥)).

Proof. Let P be a ¬¬-closed predicate on S and u ∈ S . If P (>) and P (⊥), then

(u = > ∨ u = ⊥) ⇒ P (u). By applying contraposition twice, we get that

¬¬(u = > ∨ u = ⊥) ⇒ ¬¬P (u) ,

that is, ¬¬(u = > ∨ u = ⊥) ⇒ P (u) by ¬¬-closedness of P . But by Lemma 4.3, the

premiss is true, and, thus, we may conclude P (u).

A similar result follows for lifted types.

Lemma 9.4. If S is ¬¬-separated, then for any type X and ¬¬-closed predicate P on LX

we have that ∀z:LX. P (z) iff P (⊥X) and ∀x:X. P (ηX(x)).

Proof. Let P be a ¬¬-closed predicate on LX. We define a predicate Q on S by

Q(u)
4⇐⇒ ∀f:Xdef(u). P (〈u, f〉),

which is ¬¬-closed as ¬¬-closed predicates are closed under substitution and universal

quantification.

By definition of lifting, ∀z:LX. P (z) is equivalent to

∀u:S. ∀f:Xdef(u). P (〈u, f〉),
that is, iff ∀u:S. Q(u). By Lemma 9.3, it suffices to prove Q(⊥) and Q(>). The first condition,

Q(⊥), follows from the assumption P (⊥A) because there is only one map from def(⊥) to

X (as def(⊥) is empty). The second condition, Q(>), follows from the assumption that

P (ηX(x)) for all x ∈ X, since all maps from def(>) to X are constant (as def(>) contains

precisely one element due to Axiom 1).

From this lemma, Axiom 6 follows as an immediate corollary.

† But notice that in general S will not be closed under disjunction and existential quantification over N. So in

general not all Σ0
1-propositions need to be equivalent to some def(u).
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Corollary 9.5. If S is ¬¬-separated, then for all types X and maps p, q:LX → S we have

p = q iff p ◦ ηX = q ◦ ηX and p(⊥X) = q(⊥X), that is, cX is an S-epi.

Proof. The proof follows immediately from Lemma 9.4 applied to the ¬¬-closed

predicate λz:LX. p(x) = q(x).

Also, Axiom 7 becomes derivable in the presence of Markov’s Principle.

Lemma 9.6. Let f: S → S . If S is ¬¬-separated, then f(u) = > implies f(>) = > for all

u ∈ S .

Proof. By Lemma 9.3, it suffices to consider the two cases u = > and u = ⊥.

The first case is trivial. For the second, suppose f(⊥) = >. Employing the fixpoint

theorem, there exists a fixpoint fix(f) such that f(fix(f)) = fix(f), since S is a pointed

complete space. From this it follows that ¬(fix(f) = ⊥), since ¬(⊥ = >). Thus, by

Lemma 4.3, ¬¬(fix(f) = >). Finally, by S-separatedness, we obtain fix(f) = >, and,

therefore, f(>) = f(fix(f)) = fix(f) = >.

Remark 9.7. This nicely illustrates the power of separation for S , as in its presence it

suffices to require just completeness of S beyond the purely logical Axioms 1–3 and a

dominance structure in order to develop basic synthetic domain theory.

10. Domain equations

So far we have shown that well-complete (or replete) pointed S-spaces provide a suitable

notion of domain as far as recursive definitions of objects and induction principles

for them are concerned. However, in functional programming one is also interested in

recursively defined types.

Recursive types are given by domain equations D ∼= F(D,D) where F is an internal

mixed-variance bifunctor, that is, F:Cop×C → C, where C is the category of well-complete

(or replete) pointed S-spaces and strict maps.

Following a suggestion of Longley and Simpson (1997) – under the assumption that

the universe Set is impredicative – one may show the existence of solutions of domain

equations as follows.

First one shows that C is algebraically compact, which means that for any internal

functor F:C → C there exists an initial/terminal F-algebra, that is, an isomorphism

α:FA → A such that α is an initial F-algebra and α−1:A → FA is a terminal F-

coalgebra. Since, by Freyd (1992), algebraically compact categories are closed under

( )op and ×, the category Cop × C is algebraically compact, too. Therefore, any internal

mixed-variant functor F:Cop × C → C admits a canonical solution for D ∼= F(D,D)

as given by the initial/terminal algebra for the functor F§:Cop × C → Cop × C where

F §( 1, 2) = 〈F( 2, 1), F( 1, 2)〉.
Theorem 10.1. Let Set be impredicative, then the category C of well-complete (or replete)

pointed S-spaces (that is, domains) with strict maps is algebraically compact.

Proof. Let F:C → C be an internal functor. By Theorems 6.5 and 6.7, the category C
is small complete. Accordingly, the category of F-algebras is small complete, too.
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The initial F-algebra α:FA→ A is constructed as the least sub-F-algebra of the weakly

initial F-algebra φ:FP → P , where P , Πα:FA→AA and

πα ◦ φ = α ◦ F(πα)

for every F-algebra α:FA→ A.

Next, we show that the initial F-algebra is the terminal F-coalgebra. Let β:B → FB be

some F-coalgebra. Then let h:B → A be the canonical solution of the fixpoint equation

h = α ◦ Fh ◦ β,
which exists†, since the set [B →st A] of strict maps from B to A is a pointed well-complete

S-space (see their closure properties). It remains to show that this h: β → α−1 is unique.

Suppose that k: β → α−1. Let e:A → A be the canonical solution of e = α ◦ Fe ◦ α−1.

By initiality of α, any of its endomorphisms is equal to idA, and, therefore, e = idA. As

⊥B,A = ⊥A,A ◦ k and f = g ◦ k implies α ◦ Ff ◦ β = α ◦ Fg ◦ Fk ◦ β = α ◦ Fg ◦ α−1 ◦ k, it

follows by fixpoint induction that h = e ◦ k. Thus, we have h = k as e = idA.

The above construction of an initial F-algebra uses impredicativity of the universe Set

in an essential way, since the initial F-algebra is identified as the least sub-F-algebra of

φ:FP → P , where P is the product of all carrier sets of F-algebras including φ itself.

This sort of ‘cheating’ is impossible in classical domain theory due to the absence of a

non-trivial impredicative universe Set. Instead, canonical solutions of domain equations

are constructed explicitly as inverse limits. This method was originally used by D. Scott to

obtain models of the untyped λ-calculus and was later made more systematic by Plotkin

and Smyth (Smyth and Plotkin 1982). This classical construction can be shown to work in

a particular version of SDT suitable for Domain Theory à la Scott, and is essentially based

on the axioms of Hyland (1991) and Taylor (1991). See Reus (1995) for a type-theoretic

formalisation, which has been machine-checked in an extension of the LEGO system.

In general SDT, however, there arises the following problem with the usual inverse limit

construction. Let in:Dn → D, qn:D → Dn be the embeddings and projections for the n-th

approximation Dn to the inverse limit D. Then λn:N. in ◦ qn is an ascending N-indexed

chain in D → D but its limit is not guaranteed to exist as it is not clear how to extend

this chain to an ω̂-chain (along ŝtep).

In Simpson (1996), however, Simpson has suggested how we can avoid this problem by

considering inverse limits of ω-diagrams instead of N-diagrams. The underlying logic of

his approach is some version of Intuitionistic Set Theory (IST) in which he can endow

the class of all domains with an L-algebra structure, which allows him to construct the

ω-diagram whose inverse limit provides a solution for D ∼= F(D,D). It remains to be

checked whether his set-theoretic construction together with its verification can also be

expressed in type theory, but it seems as if there should be no severe problems.

† An alternative proof, suggested by one of the anonymous referees, is to apply the result of Hyland (1988),

which states that any endofunctor on a small complete category has an initial algebra α as well as a terminal

coalgebra β. Then it just remains to construct the homomorphism β → α−1 by this fixpoint equation and the

following uniqueness proof is obsolete.
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11. Conclusion

We have presented a logical approach to general SDT avoiding any reference to external

notions. Any realisability structure, as considered in Longley and Simpson (1997), provides

a model of the logic and axioms employed in this paper. It is, however, not clear how the

sheaf models of Fiore and Rosolini (Fiore and Rosolini 1997) can be extended to models

of SDT in our sense. The main obstacle is to identify an appropriate type-theoretic

universe Set in their sheaf models. (It is only known that such a universe cannot be

impredicative.)

In Reus (1995), extensional S-spaces have been studied as an axiomatic analogue of the

extensional pers of Freyd et. al. (Freyd et al. 1992) but under the stronger assumptions

of Hyland (1991) and Taylor (1991), and Markov’s Principle. We plan to investigate in

a subsequent paper what the theory of extensional S-spaces looks like under the weaker

assumptions of general SDT.

Furthermore, there is a need for a more detailed account of domain equations.

Finally, the extent to which our logical approach to general SDT may have an impact

on methods for the verification of functional programs should be investigated.

Appendix A. Complete list of axioms

1 Proof irrelevance, that is, ∀P : Prop. ∀p, q:P . p = q.

2 Extensionality.

3 Axiom of Unique Choice, that is,

ΠA: Set.ΠB:A→ Set.ΠP : Πx:A.B(x)→ Prop.

(∀x:A. ∃! y:B(x). P x y)→ Σf: Πx:A.B(x). ∀a:A. P a f(a) .

4 S ∈ Set with > a dominance, and where S ⊆ Prop. Global elements in S are > and

⊥. Equality on S is logical equivalence.

5 S(ι) is an isomorphism, where ι is the unique map from the initial to the terminal

lift-algebra, or, equivalently, S is complete.

6 For any set A the map cA = [⊥A, ηA]: 1 + A→ LA is an S-epi.

7 For all u ∈ S and f: S → S if f(u) = >, then f(>) = >.

Note that the last two axioms can be derived if one assumes separatedness of S , that

is, that equality on S is ¬¬-closed.
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