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The unsteady lift of an oscillating airfoil encountering a sinusoidal streamwise gust is
experimentally investigated. The sinusoidal streamwise gust is generated by a multiple-fan
actively controlled wind tunnel. A two-dimensional airfoil with a NACA0015 profile
oscillates in the wind tunnel with a pitch motion frequency of fv = 1 Hz while the
sinusoidal streamwise gust has a different oscillating frequency of fβ = 1.7 Hz. The
non-dimensional unsteady lift coefficients determined from surface pressure show the
same trends as Greenberg’s prediction. Through spectral analysis, the sum frequency
fsum = fβ + fv and the difference frequency fdiff = |fβ − fv|, proposed by Greenberg,
are firstly observed in the experiment. The experimental results are compared with
Greenberg’s theory in the case of a small amplitude of gust velocity variation σ = 0.2.
The results of all cases indicate that the experimental results agree generally well with
Greenberg’s prediction, while there is a small deviation.

Key words: flow–structure interactions

1. Introduction

An airfoil encountering a highly unsteady flow is a classical fluid dynamics issue
because of the time-varying part of flow velocity. This issue involves some significant
problems like flutter, unsteady lift of an airfoil and loading on turbomachines (Barlas &
Van Kuik 2010; van Kuik et al. 2014). Although the relevant problems have been discussed
for many years, it is still difficult to calculate the aerodynamic loads accurately. Such
information is necessary for predicting the aeroelastic behaviour of an airfoil.

As early as 1935, Theodorsen (1935) proposed the fundamental solution for an airfoil
oscillating in a steady free stream. The validity of his theory has been verified by many
experimental investigations (Silverstein & Joyner 1939; Reid 1940; Halfman 1952; Rainey
1957), but the application of Theodorsen’s theory to a helicopter blade is questionable
(Johnson 1980), because of the bidimensionality of the flow and the largely nonlinear
structural or aerodynamic phenomena. Sears (1941) analysed the transient lift development
of an airfoil in a transverse gust by following the earlier work of non-uniform motion
(von Karman & Sears 1938), and then calculated the fluctuations in lift of the rotors
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and stators of axial flow turbomachines (Kemp & Sears 1953, 1955). Isaacs (1945) was
probably the first to calculate the lift force on an airfoil for the need of more accurate
estimations of helicopter blade loads. He provided a complete solution to the lift force
of an airfoil with constant attack angle when the incoming flow has variable magnitude.
But for the case of variable attack angle, which is undeniably of importance for rotary
wing aircraft, relevant calculations were not undertaken. About the same time, Greenberg
(1947) developed a simplified solution for this case using a different method. He assumed
a simple form of wake with a certain degree of approximation by extending the method of
Theodorsen (1935) and obtained the lift on an airfoil not only in a sinusoidal streamwise
gust but also in pitching and plunging motions. Kottapalli (1985) developed a similar
theory for the same problem by assuming small pitching oscillation amplitudes with
respect to the mean flow velocity. van der Wall & Leishman (1994) compared the theories
of Isaacs (1945), Greenberg (1947) and Kottapalli (1985), and concluded that the theory of
Isaacs is the only exact theory without additional simplification and extended the theory
to arbitrary free-stream velocity variations and arbitrary motions. It must be noted that all
these theoretical approaches are based on certain assumptions: incompressible potential
flow, two-dimensional flat-plate airfoil, attached flow, planar and non-deforming wake and
small disturbances.

As summarized above, the relevant theories for this classical issue have been developed
for decades, but most of them have not been fully validated by experiments (Leishman
2002), especially the theory of Greenberg (1947), which has been widely used in
applications for many years. Favier et al. (1988) investigated the unsteady lift of a
pitching airfoil in an unsteady free stream with moderate velocity amplitudes, but the
experimental results were not compared with any theoretical prediction. Granlund et al.
(2014) experimentally investigated the unsteady lift of a fixed NACA0009 airfoil in
time-periodic sinusoidal gusts with a constant attack angle. Their experimental results
agreed well with Greenberg’s theory at small attack angles while there was a marked
deviation at large attack angles. Strangfeld et al. (2016) investigated a two-dimensional
airfoil encountering a harmonic oscillation flow with high amplitude at constant attack
angle using both theoretical calculations and experiments. They concluded that the method
of Isaacs is more accurate compared with Greenberg’s theory. However, most experimental
investigations mentioned above focused on a fixed airfoil with a constant attack angle. But
for an oscillating airfoil subject to a harmonic oscillation incoming flow, which was also
derived by Greenberg (1947), relevant studies are still scarce. One important reason of
this lack is probably due to the fact that such a pure harmonic oscillation flow is difficult
to produce in a conventional wind tunnel. The most common approach for solving this
problem is to modify a conventional wind tunnel (Szumowski & Meier 1996; Harding,
Payne & Bryden 2014). Another approach is using a louvre system (Kerstens et al. 2011;
Granlund et al. 2014; Monnier et al. 2016; Strangfeld et al. 2016). The quality of sinusoidal
gusts for the first approach is limited by the effects of fan stall and large inertia. For the
second approach, the louvre system would produce a pressure gradient that might cause an
extra component of pressure on the airfoil. In that case, a multiple-fan actively controlled
wind tunnel, which is specially designed for the purpose of producing a streamwise
fluctuating flow, is an idea facility.

In this study, the unsteady lift on an oscillating airfoil encountering a sinusoidal
streamwise gust is investigated using a multiple-fan actively controlled wind tunnel. The
quality of the generated fluctuating flow was proved to be excellent (Yang et al. 2017).
The surface pressures of the airfoil are measured using DMS-4000 pressure scanners, and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

87
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.873


Lift of an oscillating airfoil in sinusoidal streamwise flow 908 A22-3

thus the lift force can be obtained by integration along the chord length of the airfoil.
Experimental results of this study are compared with Greenberg’s prediction. Using
spectral analysis, the reasons for the small deviation between the experimental results and
the theoretical results are discussed.

2. Theoretical description

Fundamental solutions for an oscillating airfoil in a steady free stream were given by
Theodorsen (1935). The validity of his theory has been verified by several experiments
(Silverstein & Joyner 1939; Reid 1940; Halfman 1952; Rainey 1957). For an airfoil in
harmonic pitch oscillation, the unsteady lift is

F = πρb2 (
vβ̇ − bāβ̈

) + 2πρvbC(k)
[
vβ + b

(
1
2 − ā

)
β̇
]
, (2.1)

where ρ is the air density, b is the half-chord of the airfoil, v is the streamwise wind
velocity, ā is the non-dimensional position of torsion axis of the airfoil measured from the
centre, β = β0 cos(2πfβ t) is pure pitch motion and C(k) is the well-known Theodorsen
function.

Theodorsen’s theory was based on the following assumptions: incompressible
potential flow, two-dimensional flat-plate airfoil, planar and non-deforming wake, small
disturbances and attached flow. To extend that theory to an unsteady fluctuation stream,
simply replacing the constant wind velocity v by fluctuation velocity v = v0(1 +
σ sin(2πfvt)) is not enough. The effect on both non-circulatory and circulatory forces
should also be considered. On that basis, Greenberg (1947) extended Theodorsen’s theory
to the case of an oscillating airfoil encountering a periodically varying streamwise flow.

For the non-circulatory part, adding the effect of time-varying velocity and integrating
the pressure difference over the entire airfoil gives the total non-circulatory force:

Lnc = πρb2 [
vβ̇ + v̇(α + β) − bāβ̈

]
. (2.2)

While the non-circulatory moment is

Mnc = πρb2 [−v2(α + β) − bāv̇(α + β) + b2 (
1
8 + ā2) β̈

]
. (2.3)

For the circulatory part, Greenberg made an assumption of high frequency to the wake
velocity, which gives the wake a pure periodic form to simplify the derivation. Although
the assumption of high frequency for the wake integrals is questionable, it is concluded to
be equivalent to a small σ approximation for parts of the wake (van der Wall & Leishman
1994). On that basis, the circulatory force can be derived as

Lc = 2πρvb
{
v0α + σv0αC(kv)eiωv t + [

iωββ0b
(

1
2 − ā

) + v0β0
]

C(kβ)eiωβ t

+ σv0β0C(kv+β)ei(ωv+ωβ)t
}
, (2.4)

where kv = 2πfvb/v0, kβ = 2πfβb/v0 and kv+β = 2πfv+βb/v0. Using the same method,
the circulatory moment is

Mc = πρvb2 [
v(α + β) + β̇b

(
1
2 − ā

)] − 2πρvb2 (
1
2 + ā

) {
v0α + σv0αC(kv)eiωv t

+ [
b

(
1
2 − ā

)
β̇ + v0β

]
C(kβ) + σv0βC(kv+β)eiωv t

}
. (2.5)
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Adding (2.2) and (2.4) gives the total lift force:

L = πρb2 [
vβ̇ + v̇(α + β) − bāβ̈

] + 2πρvb
{
v0α + σv0αC(kv)eiωv t

+ [
b

(
1
2 − ā

)
β̇ + v0β

]
C(kβ) + σv0βC(kv+β)eiωv t

}
. (2.6)

Adding (2.3) and (2.5) gives the total moment:

M = πρb2 [
vb

(
1
2 − ā

)
β̇ − bāv̇(α + β) + b2 (

1
8 + ā2) β̈

]

− 2πρvb2 (
1
2 + ā

) {
v0α + σv0αC(kv)eiωv t

+ [
b

(
1
2 − ā

)
β̇ + v0β

]
C(kβ) + σv0βC(kv+β)eiωv t

}
. (2.7)

For the case of pure harmonic pitch oscillation without constant attack angles:

Ls = πρb2 [
vβ̇ + v̇β − bāβ̈

]

+ 2πρvb
{[

b
(

1
2 − ā

)
β̇ + v0β

]
C(kβ) + σv0βC(kv+β)eiωv t

}
, (2.8)

M = πρb2 [
vb

(
1
2 − ā

)
β̇ − bāv̇β + b2 (

1
8 + ā2) β̈

]

− 2πρvb2 (
1
2 + ā

) {[
b

(
1
2 − ā

)
β̇ + v0β

]
C(kβ) + σv0βC(kv+β)eiωv t

}
. (2.9)

After normalizing all dynamic effects, the non-dimensional lift coefficient is

CL = Ls

2πρbv0
2β0

, (2.10)

CM = Ls

4πρb2v0
2β0

. (2.11)

It should be noticed that there are three frequencies included in the unsteady lift
development, which are the frequency of harmonic pitch oscillation fβ , the sum frequency
fsum = fβ + fv and the difference frequency fdiff = |fβ − fv| generated by the product of
sin(2πfvt)) and cos(2πfβ t). However, as far as we know, no experimental research has
reported the existence of the sum frequency and difference frequency. A relevant study set
the gust fluctuation frequency the same as the model oscillating frequency in experiments
for consideration of engineering applications (Strangfeld et al. 2015).

3. Experimental set-up

3.1. Sinusoidal streamwise gust
The experiment was conducted in the multiple-fan actively controlled wind tunnel of the
State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University,
Shanghai, China. Unlike conventional wind tunnels, this actively controlled wind tunnel
has 120 individual fans arranged in a 10 × 12 matrix to produce specific forms of flow,
including a sinusoidal streamwise gust. Each fan can work independently and is controlled
by computer. By inputing specific parameters, a sinusoidal streamwise gust v = v0(1 +
σ sin(2πfvt)) can be generated with predetermined oscillation frequency fv, mean flow
velocity v0 and amplitude of velocity variation σ . Figure 1 shows a comparison of the
measured streamwise gust with the targeted streamwise velocity. The oscillation frequency
is fv = 1 Hz. It is clear from figure 1(a) that the two velocity time histories match
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FIGURE 1. (a) Time history of the sinusoidal streamwise gust. (b) The corresponding Fourier
amplitude spectrum of the gust. The grey line is the measured signal while the red dashed
line is the expected velocity. Here v0,measured = 10.6 m s−1, v0,ideal = 10.5 m s−1, σideal = 0.2,
σmeasured = 0.196, fv = 1 Hz.

v = v0(1 + σ sin(2πfvt))
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FIGURE 2. Sketch of experimental set-up for an oscillating airfoil encountering a sinusoidal
streamwise gust.

very well. The ideal mean stream velocity is v0,ideal = 10.5 m s−1 while the measured mean
stream velocity is v0,measured = 10.6 m s−1. The expected amplitude of velocity variation is
σideal = 0.2 while the measured one is σmeasured = 0.196, resulting in a difference of 2 %.
Figure 1(b) shows the spectral analysis of the two time histories of velocity. It is obvious
that there is only one marked peak in the spectra, which is consistent with the expected
oscillation frequency fv = 1 Hz. Therefore, the sinusoidal streamwise gust produced by
the multiple-fan actively controlled wind tunnel is of good quality.

3.2. Oscillating airfoil
Figure 2 shows a schematic of the experimental set-up. A two-dimensional NACA0015
airfoil is oscillating in the multiple-fan actively controlled wind tunnel. The NACA0015
airfoil has a chord length of 2b = 0.4 m and a span of s = 1.2 m while the test section of
the wind tunnel is 1.5 m × 1.8 m. A forced-oscillation rig is installed in the test section
to make the airfoil oscillate in the sinusoidal streamwise gust. The forced-oscillation
rig consists of four linear actuators and each actuator can work independently. With
a phase difference of π between the front actuators and rear actuators, the airfoil can
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oscillate in pure pitch motion β = β0 cos(2πfβ t) of amplitude β0 and frequency fβ . To
measure the surface pressure distribution of the airfoil, two chord-wise strips are set on
the airfoil surface, each strip having 48 taps. These two strips are connected to DMS-4000
pressure scanners, which can acquire the dynamic pressure. Integration along the chord
length of the airfoil gives the total lift force F = ∑

PiLi cos θi. Here Pi is the pressure of
point i, Li is the integral length of point i and θi is the angle between the inner normal and
the horizontal plane.

In order to identify the sum frequency fsum = fβ + fv and the difference frequency
fdiff = |fβ − fv|, the pitch motion frequency is set as fβ = 1.4 and 1.7 Hz to differ from
the frequency of the sinusoidal streamwise gust fv = 1 Hz. The pitch angles are β0 = 1◦

and 2◦.

4. Results and discussion

Figure 3 shows a comparison between the measured phase-averaged unsteady lift
coefficient and the theoretical prediction of Greenberg (1947). Because of the difference in
frequency between stream oscillation and pitch motion, there should be three frequencies
included in the lift development. In that case, the unsteady lift is not harmonic and each
pitch motion cycle is different. Figures 3(a) and 3(b) show the results of the first six
cycles of pitch motion for fβ = 1.4 and 1.7 Hz, respectively. It should be noticed that for
pitch motion frequency fβ = 1.7 Hz, the whole period of the lift development has 17 pitch
motion cycles, which also contains 27 cycles of sum frequency and 7 cycles of difference
frequency. Similarly, for pitch motion frequency fβ = 1.4 Hz, the whole period of the
lift development has 7 pitch motion cycles, which contains 12 cycles of sum frequency
and 2 cycles of difference frequency. In general, the experimental results in figure 3 are
in good agreement with the theoretical prediction and all three curves have exactly the
same trend. It is clear that the non-dimensional lift is nearly the same for the two different
pitching amplitudes (β0 = 1◦ and 2◦), but the difference between the experimental results
and the theoretical prediction should not be ignored. For pitching frequency fβ = 1.4 Hz,
the deviation is obvious in the range 90◦ < φ < 270◦, in cycle 1. In cycle 4, the same
deviation can be seen in the same range. For pitching frequency fβ = 1.7 Hz, it can be
seen clearly that the period of motion is different from that of fβ = 1.4 Hz, which means
the component at pitch motion frequency has a significant effect on the lift development.
However, similar deviation can also be seen in the range 90◦ < φ < 270◦ in cycles 1 and 3.
It can be concluded that the difference between the experimental results and the theoretical
prediction shows a kind of periodicity.

In order to study the specific reason for the deviation between the experimental results
and the theoretical prediction, spectral analysis is conducted to compare the amplitude
of each part directly. Figure 4 shows the corresponding Fourier amplitude spectrum of
the unsteady lift coefficient. As predicted by the Greenberg theory, the sum frequency
fsum = fβ + fv and the difference frequency fdiff = |fβ − fv| can be seen obviously in the
experimental results. As far as we know, this is the first time for these two frequencies
being observed in experiments. The results show that the amplitude of pitch motion
frequency fβ is very close to the theoretical value, which is mainly affected by the
mean velocity of the incoming flow. For the amplitudes of the sum frequency fsum and
the difference frequency fdiff , which are also affected by the fluctuation intensity of the
incoming flow, results are quite different. The amplitude of the sum frequency fsum is also
very close to the theoretical value while the amplitude of the difference frequency fdiff has
a significant error. In addition, there is another obvious peak in the experimental results,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

87
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.873


Lift of an oscillating airfoil in sinusoidal streamwise flow 908 A22-7

0
–1.50

1.50

–0.75

0.75

0

1.50

1.50

–0.75

0.75

0

90 180 270 360 180

φ (deg.)

C
L 

(–
)

C
L 

(–
)

270 36090 180 270 36090

0
–1.50

1.50

–0.75

0.75

0

1.50

1.50

–0.75

0.75

0

90 180 270 360 180 270 36090 180 270 36090

(a)

(b)

Theory

β0 = 1°

β0 = 2°

(1) (2) (3)

(4) (5) (6)

(1) (2) (3)

(4) (5) (6)

FIGURE 3. Time history of non-dimensional unsteady lift coefficient of the first six cycles. The
airfoil is pitched continuously with amplitude β0 = 1◦ and 2◦. The sinusoidal incoming flow
is v = v0(1 + σ sin(2πfvt)) with v0 = 10.6 m s−1, σ = 0.2 and fv = 1 Hz. (a) Pitch motion
frequency is fβ = 1.4 Hz. (b) Pitch motion frequency is fβ = 1.7 Hz. Experimental results are
compared with Greenberg’s prediction, which is represented by red solid line. Markers (1)–(6)
represent cycles 1–6, respectively.

which has the same frequency as the sinusoidal streamwise gust. The reason for such
a frequency component is probably due to the existence of a small steady attack angle,
which is almost inevitable in such an actively controlled wind tunnel.

Figure 4 indicates that the frequency component of pitching frequency, the sum
frequency and the difference frequency are dominant in the unsteady lift. To discuss
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FIGURE 4. The Fourier amplitude spectrum of the unsteady lift coefficient. Pitch motion
frequency fβ = 1.7 Hz, sinusoidal streamwise gust frequency fv = 1 Hz, sum frequency fsum =
2.7 Hz and difference frequency fdiff = 0.7 Hz. The parameters of the sinusoidal streamwise gust
are: v0 = 10.6 m s−1, σ = 0.2 and fv = 1 Hz. Experimental results for β0 = 2◦, represented by
blue solid line, are compared with Greenberg’s prediction, represented by red solid line.

the difference of each part between the experimental results and theoretical values, the
amplitudes and phases of different pitch motion frequency ( fβ = 1.4 and 1.7 Hz), sum
frequency fsum and difference frequency fdiff are given in figures 5 and 6, respectively.
Each plot represents the amplitude of every ‘dominant’ harmonic in the unsteady lift.
Here the reduced frequencies are varying by changing the mean flow speed and keeping
pitch frequencies constant. In each group of plots, the correlation of the theoretical
results with the experimental results is good. The amplitude of non-dimensional lift
coefficient of each frequency has the same variation trend as Greenberg’s theory. To
be specific, the amplitudes of the experimental results agree well with the theoretical
values for the pitching frequency component, as shown in figures 5(a) and 6(a). The
small deviation is probably due to the effect of the thickness of the NACA0015 airfoil
(Glegg & Devenport 2009; Motta, Guardone & Quaranta 2015). Experimental results of
phase angles of unsteady loads with respect to motion are also shown in figures 5(a) and
6(a). It can be seen that the agreement between the theoretical and experimental results
is generally good according to the plots. Moreover, the non-dimensional lift is nearly the
same for the two different pitching amplitudes. This is in accordance with linear theory
with respect to the pitching amplitude for the range of pitching amplitudes considered, and
in good agreement with the findings of Halfman (1952). This also implies that any offset
in the steady angle of attack is likely to have a small effect. Figures 5(b) and 6(b) show a
comparison of amplitudes for the sum frequency component. The agreement between the
experimental results and theoretical predictions for fβ = 1.4 and 1.7 Hz is still reasonably
good. The variation tendencies with the reduced frequencies for the theoretical predictions
and experimental results of both β0 = 1◦ and 2◦ are identical. Moreover, the correlation
of the theoretical results with the experimental results for phase angles is also good.
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FIGURE 5. Normalized lift amplitudes of (a) pitch motion frequency fβ , (b) sum frequency
fsum and (c) difference frequency fdiff with different reduced frequency. Here fβ = 1.4 Hz, kβ =
2πfβb/v0, kβ+v = 2πfsumb/v0, k|β−v| = 2πfdiff b/v0.

Both experimental results and theoretical prediction of phase angles have the same
variation tendency, with the difference being very small for the motion frequency
component and the sum frequency component. However, for the difference frequency
component, as shown in figures 5(c) and 6(c), the difference between the experimental
results and theoretical prediction is relatively marked. It can be seen that the amplitudes
of fdiff have similar values to those of fsum while Greenberg’s theory indicates that the
amplitudes of fsum should be larger than those of fdiff . In addition, deviation of phase
angles between the experimental results and theoretical prediction is also significant
according to the plots. However, the absolute difference between the theoretical and
experimental results of the lift in figures 5(a) and 6(a) is about the same as that in
figures 5(c) and 6(c). Thus, the lift coefficient still agrees well with Greenberg’s theory
in general. It can be concluded that the agreement between theory and experiment is best
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FIGURE 6. Normalized lift amplitudes of (a) pitch motion frequency fβ , (b) sum frequency
fsum and (c) difference frequency fdiff with different reduced frequency. Here fβ = 1.7 Hz, kβ =
2πfβb/v0, kβ+v = 2πfsumb/v0, k|β−v| = 2πfdiff b/v0.

for the frequency component of pitching frequency, and still reasonably good for the sum
frequency component and least good for the difference frequency component, since that is
also the order of the relative magnitudes of the lifts at each of these frequency components.

Figures 7 and 8 show the amplitudes and phase angles of moment coefficient of pitching
frequency fβ = 1.4 and 1.7 Hz with different reduced frequencies, which are varying by
changing the mean flow speed and keeping pitch frequencies constant. In general, the
correlation between the theoretical results and the experimental results is good. Similar
to the plots of lift coefficient in figures 5 and 6, the amplitude of non-dimensional lift
coefficient of each frequency has the same variation trend as Greenberg’s theory. The
experimental results of the pitching frequency component agree well with the theoretical
values, as shown in figures 7(a) and 8(a). Plots of phase angles of unsteady loads
with respect to motion also have a good agreement between experiment and theory.
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FIGURE 7. Normalized moment amplitudes of (a) pitch motion frequency fβ , (b) sum frequency
fsum and (c) difference frequency fdiff with different reduced frequency. Here fβ = 1.4 Hz, kβ =
2πfβb/v0, kβ+v = 2πfsumb/v0, k|β−v| = 2πfdiff b/v0.

Figures 7(b) and 8(b) present the results of the sum frequency component. The amplitudes
obtained by the experiment still agree well with Greenberg’s prediction while a significant
difference is observed for the phase plots. For the difference frequency component shown
in figures 7(c) and 8(c), the differences of amplitudes between the experimental results and
theoretical prediction are relatively marked. However, the experimental results of phase
angles agree well with the theoretical values. It can be concluded that the amplitudes of
moment coefficient of the experimental results agree reasonably well with the theoretical
prediction, which is similar to that for lift coefficients.

Figure 9 shows the lift amplitudes and phase angles of flow frequency component
with different reduced frequencies. To compare the magnitude between different β0, the
lift amplitudes are normalized by 2πρbv0

2, and thus the effect of pitching amplitude
β0 is considered. In each group of plots, it is clear that the amplitudes decrease slowly
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FIGURE 8. Normalized moment amplitudes of (a) pitch motion frequency fβ , (b) sum
frequency fsum and (c) difference frequency fdiff with different reduced frequency. Here fβ =
1.7 Hz, kβ = 2πfβb/v0, kβ+v = 2πfsumb/v0, k|β−v| = 2πfdiff b/v0.

with the increase of reduced frequency while the phase angles remain almost unchanged.
The amplitudes for β0 = 1◦ are nearly equal to those for 2◦. This implies that the pitching
amplitude β0 has almost no effect on this frequency component. Moreover, the amplitudes
for fβ = 1.4 Hz in figure 9(a) are identical to those for fβ = 1.7 Hz in figure 9(b), which
implies that the pitch frequency fβ also has no effect on this frequency component. It
seems that the flow frequency component is only affected by the incoming flow. As we
discussed before, the reason causing this frequency component is probably due to the
existence of a small steady attack angle, which is almost inevitable in such an actively
controlled wind tunnel. Greenberg (1947) discussed the lift force caused by a steady attack
angle. According to his theory, this component should not be affected by the forms of
motion but by the incoming flow and the steady attack angle. This is in accordance with
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FIGURE 9. Normalized lift amplitudes and phase angles of gust frequency with different
reduced frequencies: (a) fβ = 1.4 Hz; (b) fβ = 1.7 Hz. Here fv = 1 Hz, kv = 2πfvb/v0.

the experimental results. The validity of Greenberg’s theory for a steady attack angle has
been discussed by van der Wall & Leishman (1994) and Strangfeld et al. (2016).

5. Conclusion

A sinusoidal streamwise gust of high quality was generated by the multiple-fan actively
controlled wind tunnel. Using the forced-oscillation rig, a NACA0015 airfoil oscillated
in the wind tunnel test. In the case of an oscillating airfoil ( fβ = 1.4 and 1.7 Hz,
β0 = 1◦ and 2◦) encountering the sinusoidal streamwise gust with different oscillating
frequencies ( fv = 1Hz, σ = 0.2), the unsteady lift force was measured by DMS-4000
pressure scanners, and compared with Greenberg’s theoretical prediction. It was found that
the experimental results agree generally well with the theoretical values. Through spectral
analysis, it can be concluded that there are two main reasons for the small deviation
between the experimental and theoretical values. First, the component of gust frequency
caused by the small steady attack angle, which is almost inevitable in such an actively
controlled wind tunnel, is likely to have a small effect. This could be the reason for the
poorer agreement for the component of difference frequency. Second, the thickness of
the NACA0015 airfoil may have a small effect on the lift and moment, which has been
discussed by many researchers.

In conclusion, the sum frequency fsum = fβ + fv and the difference frequency fdiff =
|fβ − fv| discussed by Greenberg (1947) are confirmed to exist as determined through
spectral analysis. This is probably the first time for these two frequencies being observed in
experiments. It can be concluded that the agreement between theory and experiment is best
for the frequency component of pitching frequency, and still reasonably good for the sum
frequency component and least good for the difference frequency component, since that is
also the order of the relative magnitudes of the lifts at each of these frequency components.
In general, the experimental results for unsteady lift force of the oscillating airfoil in the
sinusoidal streamwise gust with a small amplitude (σ = 0.2) agree well with Greenberg’s
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prediction, while there is a small difference. The main reasons for the deviation may be
the thickness of the airfoil and the steady attack angle. In further works, experiments of an
oscillating airfoil with an attack angle will be carried out to study the effect of the attack
angle. For an oscillating airfoil encountering a sinusoidal streamwise gust of arbitrary
oscillating frequency, Greenberg’s theory appears to be an appropriate approach.
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