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Abstract

Seeds offer a unique perspective from which to view biology. An individual seed is an autono-
mous biological entity that must rely on its own resources (and resourcefulness) to persist after
dispersal and to time its transition to germination and seedling growth to coincide with envir-
onmental opportunities for survival. At the same time, seed biology in agriculture and ecology
is determined largely by the behaviours of populations of individual seeds. The percentage of
seeds in a population that is in a particular state (e.g. dormant, germinated, dead) at a given
time is a fundamental metric of seed biology. This duality of individual diversity underlying
consistent population-wide behaviour patterns can be described quantitatively using popula-
tion-based threshold (PBT) models. While conceptually simple, these models are highly flex-
ible and can describe the wide diversity of responses of seed populations to temperature, water
potential, hormones, oxygen, light, ageing and combinations of these factors. This seed behav-
iour is linked to respiratory rates of individual seeds, indicating that basic metabolic processes
within seeds vary among individuals in accordance with PBT principles. Looking more
broadly across microbial, plant and animal biology, examples of cellular diversity in hormonal
sensitivity, gene expression, developmental responses and signalling abound. This variation
often is termed ‘noise’, and analysis efforts are focused on extracting mean signals from
this variation to understand regulatory pathways. However, extension of the PBT approach
to the cellular and molecular levels suggests that population sensitivity distributions and
recruitment phenomena may underlie many fundamental biological processes. Thus, concepts
and quantitative approaches developed for the analysis of seed populations can be applied
across biological scales from molecules to ecosystems to interpret inherent biological variation
and provide mechanistic insights into the nature of biological regulatory systems.

Seeds as populations

Seed biology is based on populations. Eric H. Roberts was a key proponent of this concept,
beginning with his seminal demonstration that rice seeds emerged from dormancy over
time during after-ripening in a sigmoid pattern that is well described by a cumulative normal
frequency distribution (Roberts, 1961). He applied probit analysis to these data, which had
been developed for statistical analysis of insect mortality in response to toxins (e.g. nicotine)
(Bliss, 1934). As individual insects varied in their sensitivity to toxins, often over a logarithmic
concentration range, plotting per cent mortality versus a linear scale of toxin concentration
resulted in a right-skewed S-shaped curve. As Bliss noted, ‘variability among individuals of
a population in their susceptibility is considered to be responsible for the S-shaped character
of the curve’. Bliss showed that if the percentage data were plotted instead on a scale of stand-
ard deviation units (assuming a normal distribution of toxin sensitivity among insects in the
population) versus log of toxin concentration, the data were converted to linear relationships.
This allowed simple calculation of the mean and standard deviation of the population sensi-
tivity, which accurately described the inherent susceptibility of different fractions of the insect
population to a given toxin concentration. This origin of probit analysis also includes the con-
cept of quantal or ‘on/off’ responses (which would now be termed ‘digital’), as an insect either
died or survived at a given concentration. Roberts adapted this approach to describe seed ger-
mination, which is also a quantal parameter, as a seed at a given time has either completed
germination (radicle emergence) or it has not. In general, when the percentages of a popula-
tion responding are the relevant data, the probit approach is likely to be appropriate for stat-
istical analysis.

Richard Ellis and Eric Roberts subsequently employed this concept to great advantage in
developing their seed viability equation that described the response of seed longevity to the
temperature and seed moisture content during storage (Ellis and Roberts, 1980, 1981). As
for germination, seed death (or inability to produce a normal seedling) is a quantal parameter
that is generally normally distributed over time in a seed population. Probit analysis concepts
were used explicitly in the viability equation, with its primary output parameter being the
standard deviation of seed deaths over time. Species vary in their inherent potential longevity
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and in their sensitivity to temperature and moisture, but once the
sensitivity parameters had been determined empirically for a
given species, the viability equation could be used to estimate
the time required for the percentage viability to fall below a
given level in a specified storage environment. The Ellis–Roberts
seed viability equation has been widely used for designing seed
storage facilities and predicting their suitability for extending
seed longevity (Ellis, 1988).

Population-based threshold models

In the examples above, the after-ripening or storage periods are
considered as dosages of time, and seeds either lose dormancy
or die (respectively) after accumulating a specific cumulative
dosage that varies among seeds in the population. This is
described as ‘threshold’ behaviour, in which a factor must exceed
a threshold dose to elicit a response. This concept is widely used
in biology in relation to thermal time or ‘heat units’, in which a
process is extremely slow or does not occur below a minimum
(or base) threshold temperature (Bierhuizen and Wagenvoort,
1974; Garcia-Huidobro et al., 1982; Covell et al., 1986). In addition,
the rate at which the process occurs (e.g. the inverse of the time to
germination after imbibition) increases as the temperature
increases above the base temperature (Tb). This increase in rate
(reduction in time to germination, tg) is proportional to the amount
by which the temperature (T) exceeds Tb, such that their product is
a constant (the thermal time constant, θT) (Eqn 1):

uT g
( ) = T − Tb( )tg . (1)

Note that θT is shown as θT (g), or the thermal time constant for a
specific germination fraction (g) in the population. This is because
all seeds do not germinate simultaneously, and as seeds often (but
not always) have a common Tb, their thermal time thresholds for
germination must vary. In addition, the lower and upper tempera-
ture limits for germination can shift due to after-ripening or strati-
fication until they reach the final base, optimum and maximum
temperatures characteristic of the species, and are a significant
aspect of seed dormancy regulation (Batlla and Benech-Arnold,
2015; Batlla and Agostinelli, 2017).

A further advance was the insight of Gummerson that seed
responses to water potential (Ψ) might be described by a model
in which the thresholds at which germination was prevented by
reduced Ψ varied among seeds in the population (Gummerson,
1986). He proposed the term ‘hydrotime’ for this response, and
its combination with temperature as ‘hydrothermal’ time. This
equation (Eqn 2) has become a fundamental relationship for
understanding seed germination behaviour in response to T and
Ψ, the two most significant factors influencing germination tim-
ing (Bradford, 1995; Bewley et al., 2013):

uHT = C−Cb g
( )( )

T − Tb( )tg . (2)

This equation shows that the hydrothermal time constant (θHT) is
a constant for all seeds in the population across combinations of
Ψ and T. The apparent variation in the thermal time constant in
Eqn 1 is actually attributed to variation among seeds in their base
water potentials [Ψb(g)], i.e. in the Ψ that just prevents comple-
tion of germination for a specific fraction of the population, as
was explicitly demonstrated (Alvarado and Bradford, 2002).
Considerable work has subsequently shown that the hydrotime

and hydrothermal time models can describe a wide range of seed
behaviours in response to T andΨ, including many aspects of dor-
mancy (Dahal and Bradford, 1994; Rowse and Finch-Savage, 2003;
Alvarado and Bradford, 2005; Bair et al., 2006; Finch-Savage and
Leubner-Metzger, 2006; Allen et al., 2007; Hawkins et al., 2017)
and more recently of fungal pathogenesis on seeds (Finch et al.,
2013; Barth et al., 2015).

Additional research has demonstrated that the basic form of
Eqn 2 (with or without the temperature component) also applies
to seed germination responses to abscisic acid (ABA), gibberellin
(GA) and ethylene (Ni and Bradford, 1992, 1993; Bradford and
Somasco, 1994), development (Still and Bradford, 1998), priming
(Bradford and Haigh, 1994), oxygen (Bradford et al., 2007, 2008),
ageing (Bradford et al., 1993), light (Bradford, 2005) and even to
seed respiration rates (Bello and Bradford, 2016). Thus, a general
population-based threshold (PBT) model can be described by:

uX = X − Xb i( )( )ti, (3)

where θX refers to the time constant for responses to factor X; X is
the dosage level of factor X; Xb(i) is the sensitivity threshold distri-
bution of the population for a given phenotype or response; and ti is
the time at which fraction i of the population exhibits the phenotype
or response due to factor level X. The response of GA-deficient
(gib-1 mutant) tomato seeds to increasing concentrations of
GA4+7 illustrates the general relationship of this function across
concentrations (or dosages) (Fig. 1; based on data from Ni and
Bradford, 1993). In the absence of GA, no seeds germinate. As
the concentration of GA is increased, specific fractions of the
seed population are induced to germinate (Fig. 1A), based upon
the distribution of GA thresholds (GAb values) among seeds in
the population (Fig. 1B). The different coloured regions indicate
the additional seeds in the sensitivity distribution that are recruited
to germinate as the concentration increases. Note that at lower con-
centrations, the curves tend to plateau or increase very slowly even
as the time increases up to 30 days of imbibition. This is direct evi-
dence that there is a distribution of minimum GA thresholds
among the seeds in the population, rather than that all seeds will
respond eventually to low concentrations if given sufficient time.
In addition, the inverse relationship between concentration above
the threshold and the time to completion of germination is evident;
seeds having thresholds that required 20 days to germinate at a
given concentration did so in less than 5 days when the concentra-
tion was increased 10-fold (Fig. 1A). For any fraction of the seed
population, both whether and when it completed germination
were determined by its inherent threshold sensitivity in relation
to theGA concentration present. The overall sensitivity distribution
did not change for the duration of the experiment, indicating that a
range of GA sensitivities spanning five orders of magnitude was
present initially in the seed population. Similarly, a sensitivity
range of three orders of magnitude was found for the inhibition
of germination by ABA (Ni and Bradford, 1992).

Implications and instances of population-based threshold
behaviour

Once harvested at maturity or shed from the mother plant, an
individual seed is an autonomous biological entity that must inde-
pendently time its transition to germination and seedling growth
to coincide with environmental opportunities for survival. At the
same time, the agricultural and ecological roles of seeds are asso-
ciated with the behaviours of seed populations. The percentages of
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seeds in a population that are in a particular state (e.g. dormant,
germinated, dead) and the timing and uniformity of their transi-
tions to germination and seedling growth have significant conse-
quences for crop yields and plant ecological demographics
(Burghardt et al., 2015; Finch-Savage and Bassel, 2016; Gremer
et al., 2016; Huang et al., 2016; Mitchell et al., 2017). This duality
of individual diversity underlying consistent population-wide
behaviour patterns is described quantitatively using PBT models
(Bradford, 1995; Donohue et al., 2015).

However, seed germination is not the only example of plant
behaviour that conforms to the expectations of the PBT model.
Many hormone-regulated events in plant life exhibit similar char-
acteristics in which both the concentration of a regulator and cell
or tissue sensitivity to that regulator combine to determine the bio-
chemical or developmental outcome (Bradford and Trewavas,
1994). The PBT model is well adapted to describe these situations,
as it is driven by the difference between the prevailing regulator
dosage and the sensitivity of the responding individuals to that
regulator (Eqn 3). In addition, the model utilizes variation in the
threshold sensitivities of the responding individuals as a fundamen-
tal feature of the regulatory mechanism. The position and shape of
the sensitivity distribution in relation to the regulator dosage deter-
mine the response pattern of the population to the regulator. The
incorporation of developmental time into the model describes the
kinetics of these patterns. This is intuitively evident when tempera-
ture is the regulator, as the speeding or slowing of metabolism,
growth and development in response to temperature is widely
appreciated and utilized in thermal time or degree-day models
for poikilothermic organisms (Eqn 1) (Trudgill et al., 2005).
Developmental time scales can be viewed as either expanding or
contracting relative to clock time as the temperature decreases or
increases, and it is possible to normalize this time variation across
temperatures on a common thermal time scale.

It is less widely appreciated, but nonetheless analogous, that bio-
logical time can be considered to be stretched or compressed at low
or high regulator dosages, respectively (Eqn 3). This has been
termed ‘biotime’ (Bradford and Trewavas, 1994), and the rates of
progress towards a developmental transition (e.g. germination)
can be normalized on the appropriate scale (e.g. ‘hydrotime’,

‘hydrothermal time’, ‘GA-time’, ‘ABA-time’, ‘priming-time’,
‘ageing-time’, etc.) (Bradford, 1990; Bradford et al., 1993; Ni and
Bradford, 1993; Bradford and Haigh, 1994; Dahal and Bradford,
1994; Alvarado and Bradford, 2002). Hormonal regulators often
appear to synchronize cellular or developmental events in time
(Trewavas, 2012). This is a consequence of the reduction in time
to response as the regulator dosage increases above the sensitivity
thresholds of individuals in the responding population (arrows
in Fig. 1a). This automatically results in a reduction in variation
(in clock time) among individuals, or synchronization, as dosages
increase. Such results indicate that time itself is flexible in biological
systems in a systematic way that can be described by PBTmodels as
biotime (Bradford and Trewavas, 1994).

Gilroy and Trewavas (2001) documented a number of cases in
plant signalling and transduction in which population variation
and PBT-like responses were evident, and more are described in
Trewavas (2014) across biological scales from ions and molecules
to whole plants and ecology. For example, the well-known
response of cereal grain aleurone cells to GA by synthesis and
secretion of α-amylase was examined in individual isolated aleur-
one protoplasts (Hillmer et al., 1993). As the concentration of GA
applied increased, the proportion of protoplasts secreting
α-amylase increased in parallel. The authors noted, ‘The effect
of GA3 treatment is to increase the proportion of protoplasts in
the population that secrete α-amylase rather than gradually
increasing secretion from all responding protoplasts.’ Thus, indi-
vidual cells (protoplasts) exhibit a quantal or digital (on/off)
behaviour (or maximum response over a small dosage range
above the threshold) similar to the germinated/not germinated
phenotypes of seeds (Bradford and Trewavas, 1994). As the GA
concentration increases, more cells are recruited to secrete
α-amylase and the output of the enzyme increases automatically
without each cell being required to respond quantitatively to the
entire range of GA concentrations, which spanned five orders
of magnitude (Gilroy and Trewavas, 2001).

A similar situation has been described for the induction of lat-
eral or branch root formation by auxin, which stimulated root for-
mation 50-fold over a 100-fold concentration range (Blakely et al.,
1972). As an individual cell must be induced to divide and initiate

Fig. 1. Population-based threshold sensitivity distributions of seed germination in response to gibberellin (GA). (a) Germination time courses of GA-deficient tomato
mutant (gib-1) seeds incubated in different concentrations of GA4+7. Differently shaded areas indicate additional seeds germinating at each increment in GA con-
centration. Arrows show the reductions in time to completion of germination for the fractions completing germination after 20 days as GA concentration is
increased. (b) Sensitivity distribution of germination of gib-1 seeds to GA concentration. The shaded regions indicate the fractions of the population that are
recruited to germinate as the concentration increases logarithmically. Note that the distribution spans over five orders of magnitude in GA concentration.
Based on data in Ni and Bradford (1993) using values for Eqn 3 of θGA = 100 log [M] h, GAb(50) = –6 log [M], and σGA = 1 log [M].
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formation of a lateral root (Orman-Ligeza et al., 2013), increasing
numbers of lateral roots with increasing auxin concentration must
be a recruitment phenomenon, as cells that failed to respond at
lower concentrations responded at higher concentrations. In add-
ition, at a saturating dose of auxin, the number of roots formed
increased linearly over time of exposure to the hormone, i.e.
some cells responded more quickly than others to the same dos-
age. Thus, both the threshold sensitivity distribution and the
kinetic response of the PBT model are present. Much is known
about auxin perception and signal transduction, including the
role of IAA/Aux proteins whose degradation is associated with
signalling (Salehin et al., 2015). The rate of IAA/Aux protein
turnover determines both the number of roots initiated and
their rate of formation in response to IAA (Guseman et al.,
2015). As these authors noted, ‘By engineering Aux/IAA variants
with reduced auxin sensitivity, we discovered that timing of organ
initiation was plastic and could be tuned.’ This demonstrates a
potential mechanistic connection underlying the relationship
between sensitivity and response rate embodied in the PBT
model.

Another example in plant biology in which cell populations are
clearly involved is in the responses of stomata to hormones or
environmental conditions (e.g. ABA, light, CO2, humidity).
Laisk et al. (1980) showed that the range of variation in individual
stomatal pore apertures in both a dicotyledonous plant (Vicia
faba) and a cereal (Hordum vulgare) could be described by a nor-
mal distribution. Conditions that promoted stomatal opening
shifted this distribution to larger pore sizes, while conditions
causing closure shifted it to smaller pore sizes. The authors
noted that ‘the conclusion may be drawn that in the process of
stomatal opening or closure deduced from a series of steady states
the shape of the distribution of stomatal apertures remains almost
unchanged, sliding right and left along the x-axis [pore size]’
(Fig. 2). This suggests that there is a threshold distribution
among individual stomata for factors affecting their pore sizes,
with factor dosages shifting the numbers of stomata with a
given pore size. As there is a minimum pore size at closure and
a maximum pore size that can be attained, a sigmoid distribution
of stomatal conductance (related to the total aggregate of pore
sizes) occurs across factor levels (Laisk, 1983; Laisk et al., 1980).

The behaviours of stomata are notably asynchronous or ‘pat-
chy’ over time, with shifting groups of stomata opening or closing
in response to internal or external factors (Downton et al., 1988;
Terashima et al., 1988). Downton et al. (1988) observed that ‘dur-
ing water stress some groups of stomata close while others remain
open. The net effect of this response, in contrast to a uniform
reduction in stomatal aperture, is a reduction in functional leaf
area with proportional decreases in A [assimilation] and stomatal
conductance.’ Terashima et al. (1988) observed similar variation
with respect to stomatal responses to ABA, and among different
possible explanations, concluded that ‘It seems more probable
that individual stomata vary intrinsically in their reaction to
ABA.’ This variation has been described as emergent collective
behaviour (Mott and Buckley, 2000) and analysed by various
models (Buckley, 2017; Mott and Peak, 2007). However, these
models have not incorporated the population-based approaches
suggested by Laisk (1983) along with the possibility that there
could be distinct sensitivity response distributions for different
regulatory factors. These sensitivity distributions can also shift
depending upon growth conditions, plant maturity, nutrition
and other factors (Radin, 1992). If individual stomata vary in
their sensitivity to multiple independent factors according to
definable distributions, this would provide a wide range of pos-
sible responses by stomatal populations to varying environmental
conditions (Fig. 2). Building these threshold distributions for sen-
sitivity to different regulatory factors into stomata would enable
automatic adjustment of leaf conductance by recruitment of
additional stomata as needed for either opening or closing to
achieve functional goals, whether to maximize photosynthesis,
minimize water loss or operate optimally for the prevailing
conditions. Identifying and quantifying the underlying response
distributions to the major stomatal regulatory factors could turn
apparently random or noisy behaviour into quantifiable overlapping
population-based responses.

The importance of individuality

Thewide range of sensitivities of individual seeds to water potential
or hormones with respect to germination (Fig. 1) begs the question
of whether this variation can be detected at the cellular, biochemical

Fig. 2. Distributions of stomatal pore apertures in
response to different factors affecting stomatal opening
[light, high relative humidity (RH), low CO2 concentra-
tion] or closure (ABA, low RH, high CO2). Apertures
range from 0 at full stomatal closure to a maximum
value dependent upon the type of stomata of the spe-
cies. The distributions are drawn into the regions
below 0 and above maximum opening even though all
stomata in those regions will be either fully closed or
maximally open, so that the actual numbers of stomata
at 0 or at maximum pore size will increase dramatically
at these limits. The percentages of stomata under the
curves that are closed (left), partially open (centre) or
maximally open (right) are indicated. These extended
distributions illustrate that when stomata are closed
and an opening stimulus is applied, individual stomata
vary in their response thresholds and open more slowly
or only at higher stimulus levels. Similarly, when the
majority of stomata are open and signals for closing
occur, some will respond more quickly or fully than
others do. The distribution of pore sizes slides left or
right between the two limits, but maintains its shape.
The distribution (defined by its mean and standard
deviation) can differ among regulatory factors.
Adapted from Laisk et al. (1980).
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or molecular level. The aleurone protoplast example above illus-
trates this individuality of cellular response, and Gilroy and
Trewavas (2001) discussed the ‘importance of individuality’ in sig-
nalling systems. This was demonstrated for seeds by single-seed
assays of enzyme activity associated with germination (Still and
Bradford, 1997). Endo-β-mannanase is a key enzyme for degrading
galactomannan polymers stored as carbohydrate reserves in the cell
walls of some seeds, including tomato and lettuce (Halmer et al.,
1978; Groot et al., 1988). Following imbibition, the mannanase
activity of individual tomato seeds varied more than three orders
of magnitude (Still et al., 1997). This variation was associated
with the rate of progress of seeds towards completing germination.
The distribution of enzyme activity increased to higher values as
seeds successively increased expression associated first with weak-
ening of the enclosing endosperm barrier to radicle penetration
and subsequently with the mobilization of galactomannan reserves
(Nonogaki and Morohashi, 1999; Nonogaki et al., 2000). In par-
tially dormant seed lots, mannanase activity increased only in
seeds that would complete germination. This work clearly illu-
strated the problem of using pooled assays of multiple individuals:
‘Because of the logarithmic range in mannanase activity, only three
seeds of 45 with exceptionally high activity accounted for 93% of the
total observed at this sampling point and shifted the mean 80-fold
higher than the median’ (Still and Bradford, 1997). Use of tissue
printing to sample gene expression of individual seeds further sup-
ported the inherent variation in seed populations (Wu et al., 2001;
Wu and Bradford, 2003; Pluskota et al., 2011).

Single-seed assays of oxygen consumption extended this vari-
ation to the metabolic level (Bello and Bradford, 2016).
Respiration rates of individual seeds varied widely and were highly
correlated with their germination timing in relation to tempera-
ture, water potential, ABA, GA, respiratory inhibitors, priming
and ageing. As for germination, the PBT model described the
population distributions of respiration rates among seeds in
their sensitivities to diverse factors extremely well (Fig. 3). Lack
of synchrony among the individuals of a population due to
their differing response thresholds results in wide variation in
their gene expression/biochemical states for a given signal dosage
and can result in values for pooled samples not reflecting the
actual biological status of the population as a whole. As individual
seeds vary intrinsically in their metabolic rates and responses to
regulatory factors, this variation represents an inherent feature
of seed population behaviour, not simply experimental error or
‘noise’. Rather, it is associated with different temporal trajectories
on which individual seeds are progressing. At a given time, seeds
are at different points in their progress from imbibition to com-
pletion of germination. While this results in wide variation
among individuals and misleading pooled or average values at a
given time, it is understandable when viewed from the perspective
of the underlying population distribution. In addition, subpopu-
lations with distinct behaviours can also be identified when
sufficiently dense datasets are available (Fig. 3f).

Seeds can be treated as individuals, but clearly each seed consists
of many tissues and the tissues consist of cells. Can the concept of
individuality be extended to tissues and cells? As shown by in situ
hybridization and antibody techniques, different parts of seeds can
have different gene and protein expression patterns associated
with germination. A simple example is the expression of different
mannanase gene family members exclusively in the micropylar
and lateral endosperm of tomato seeds (Nonogaki et al., 2000).
More precise methods such as laser micro-dissection and transcript
identification demonstrated the uniqueness of gene expression

patterns in different tissues and at different times during develop-
ment of Arabidopsis embryos (Le et al., 2010). It is now possible
to obtain complete transcriptomes from essentially all of the individ-
ual cells in a tissue or organism (Cao et al., 2017; Karaiskos et al.,
2017). These studies demonstrate the individuality of cells (or groups
of cells) with respect to their gene expression patterns. In assessing
the impact of this insight with respect to Drosophila embryos,
Stadler and Eisen (2017) noted ‘One area where new insights are
needed is noise. Prior to the advent of single-cell sequencing there
was a general sense that regulatory networks in development are pre-
cise and robust. But it is now clear that this opinionwas a by-product
of looking at the average behavior of thousands of cells. When
viewed at single-cell resolution, expression data is remarkably vari-
able (noisy). Some of this can be chalked up to technical issues,
but it is also clear that gene expression at the single-cell level, even
in tightly controlled embryos, is intrinsically noisy (Garcia et al.,
2013). What this means for gene regulation and development is
unclear, but it is something the field needs to grapple with.’

One aspect of grappling with this was recently demonstrated by
Topham et al. (2017). The responsivity of expression of specific
genes to GA and ABA in the mature imbibed Arabidopsis embryo
was localized to relatively few cells in specific and distinct regions of
the radicle tissue. As GA and ABA promote or inhibit germination,
respectively, and also affect the biosynthesis and action of each
other, the interactions of sensitivity and response in these cellular
centers determine the developmental fate of the seed, i.e. whether
it progresses towards germination or not. Those centres, in turn,
are being influenced by other inputs, such as temperature, light,
nutrients, and other factors that collectively determine whether a
seed germinates now or later. Each of those inputs may have spe-
cific sensing centres that are also operating in a threshold sensitivity
manner. Thus, we can envision multiple layers of controls that are
engaged through distinct sensing pathways to influence the balance
of GA and ABA and completion of germination. An initial example
of this illustrated the interaction of ABA and water potential in
regulating germination. Simply summing the outputs of PBTmod-
els separately determined for ABA and water potential accurately
described the resulting germination behaviour across a dosage
matrix of both factors (Ni and Bradford, 1992). We can anticipate
that by separately determining the response patterns of cells to
multiple signalling inputs, complexity may be reduced by account-
ing for predictable variation by subpopulations operating under
relatively simple population-based principles (e.g. Eqn 3).

In investigations of microbial and animal cells, variation in sig-
nalling, transcriptional or translational responses are consistently
termed ‘noise’ and are considered to be an inevitable consequence
of the stochastic nature of chemical reactions (Raser and O’Shea,
2005; Eldar and Elowitz, 2010; Chalancon et al., 2012). However,
it is also possible that these cells are exhibiting PBT-type behav-
iour. This was proposed and modelled by Rodbard (1973), who
asked whether insulin-secreting β-cells in the pancreas all
responded to blood glucose concentration quantitatively in con-
cert or whether different cells with different sensitivities might
individually have a quantal (digital) response and be recruited
sequentially to secrete insulin as the glucose concentration
increased. This recruitment of additional cells having varying sen-
sitivity to secrete more insulin automatically responds to the glu-
cose concentration without requiring each cell to finely monitor
and adjust its insulin output. Pancreatic β-cells are heterogeneous
in their responses to glucose (Salomon and Meda, 1986; Van
Schravendijk et al., 1992), but it appears that the situation may
be more complex, as while different clusters of cells (islets) do
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vary in their characteristics, the cells within a cluster respond in
concert with similar glucose sensitivity (Valdeolmillos et al.,
1996). However, the magnitude of the response (frequency of
electrical oscillations associated with insulin release) to a given
glucose concentration varied among different islets. As blood glu-
cose concentration varies over a relatively small range compared
with the logarithmic range of plant hormone responses, it may
make more sense for cells to have similar threshold sensitivities
but a range of response kinetics once the response threshold is
exceeded. This could be modelled as:

uX i( ) = X − Xb( )ti, (4)

where it is the time constant (frequency of insulin release) that is
the population variable with a relatively fixed response threshold

(Xb) for the signalling factor (e.g. glucose in this case). This is dir-
ectly analogous to the thermal time model (Eqn 1) in the case
where the base temperature is similar in the population but the
speed of response varies. Single-cell transcriptomic and antigenic
studies recently demonstrated that there is heterogeneity among
β-cells for both gene expression and protein complements, with
at least four subpopulations being identified (Avrahami et al.,
2017). Insulin transcript levels varied more than 100-fold
among individual human β-cells. The authors concluded that
‘while we cannot see into the future and predict what we will
find when we study the molecular heterogeneity of the human
endocrine pancreas in ever increasing detail, one thing is certain:
we are entering an exciting new phase of discovery in islet biol-
ogy’. With the experience gained from seed biology, we can sug-
gest that islet biologists refer to the prescient paper by Rodbard

Fig. 3. Population oxygen depletion time courses of seeds in response to different factors affecting germination. In each case, germination rates were linearly
correlated with oxygen consumption rates. Symbols represent the times when individual seeds depleted half of the oxygen available. Adapted from Bello and
Bradford, 2016.
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(1973) and consider analysing the behaviour of β-cells as popula-
tions exhibiting PBT-type behaviour rather than as simply being
stochastically noisy.

Research on microbial and animal cells has also demonstrated
that ‘themean of a population is often a poor descriptor of any indi-
vidual cell, particularly when cells exist in two or more distinct
groups with different properties’ (Sparta et al., 2015).
Nonetheless, analyses of such populations tend to focus on extract-
ing a ‘separable static response’ signal from the ‘noise’ resulting
from cellular variability (Selimkhanov et al., 2014). In fact, the
population behaviour shown for extracellular signal-regulated
kinase (ERK) activity in response to epidermal growth factor
(EGF) in human mammary epithelial cells conforms well to the
expectations of the PBT model, as increasing dosages of EGF result
in recruitment of more responding cells and more rapid responses
in those cells that do respond (Selimkhanov et al., 2014; Sparta
et al., 2015; Gillies et al., 2017). As was demonstrated by the single-
seed assays and pancreatic β-cell studies discussed above, it is likely
that efforts to extract the mean behaviour of cells from this vari-
ation will obscure rather than reveal the relevant patterns. As was
discussed by Trewavas (2012), biological and hormonal signalling
often synchronizes cell behaviour. One interpretation of this is
that it reduces noise, but it is also a direct consequence of the
PBT model, as at higher concentrations of an effector, the majority
of cells are recruited to respond and their time to response is sim-
ultaneously reduced (Fig. 1). This has the automatic consequence
of synchronizing cell behaviour. However, most of the time
biology does not operate at saturating dosages of effectors, and
the resulting low level of synchrony does not mean that all is
noise or that extracting the mean, rather than the population
sensitivity distribution, will identify the ‘true’ signal.

Identifying signals and responding to them has a long evolu-
tionary history in biology. Individual bacteria have the ability to
sense and swim up or down concentration gradients of specific
chemicals (Blair, 1995). It has long been known that individual
bacteria vary in their sensitivity in essentially a normal distribu-
tion and that they can change their sensitivity thresholds as
needed when moving in a chemical gradient (Mesibov et al.,
1973). It has been argued that the diversity and interactions of
multiple such sensory systems could constitute a ‘bacterial intelli-
gence’ (Hellingwerf, 2005), and such systems enable population-
level behaviour such as quorum sensing even in single-celled
microbes (Bandara et al., 2012). Mammalian cellular signalling
systems contain conserved components of these earlier ones
(Sparta et al., 2015). Thus, higher organisms had a wealth of sens-
ing and threshold mechanisms to adapt to their uses during evo-
lution. Consider the mouse olfactory system, in which ‘there are
∼1500 odorant receptor genes comprising the largest multigene
family in the mouse genome’ (Serizawa et al., 2004). Each olfac-
tory sensory neuron expresses only one of these genes, making
it receptive to only a single odorant stimulus. The population of
such neurons, each specialized for high sensitivity to a unique
chemical signal, constitutes the olfactory spectrum that can be
sensed by the mouse. In addition, neuronal systems are also char-
acterized by the ‘all-or-none’ behaviour once a threshold stimulus
has been exceeded (Dehaene et al., 2017). Biology clearly has the
potential to create sensitivity distributions of diverse types at the
cellular level. Biology seldom abandons a useful functional mech-
anism, preferring to adapt and build on a working model rather
than invent a new one. Thus, we can expect that sensitivity distri-
butions among cells will be widely utilized in biology, should we
choose to look for them.

As final comments on individuality, we can ask whether cells
are the lowest level of organization to which population-based
regulation might apply. This is evidently not the case, as in
some examples cited above, it is not actually whole cells but repor-
ters of individual enzymes/pathways that are being observed
(Selimkhanov et al., 2014; Sparta et al., 2015). In fact, transcrip-
tion itself is a quantal or digital process, as for a given gene at a
given time, it either is or is not being transcribed. The digital
nature of gene regulation has been demonstrated in the case of
the epigenetic regulation of the flowering suppressor FLC in
response to cold temperature (vernalization) (Angel et al., 2011,
2015). The FLC alleles on different chromosomes in the same
cell are even switched off independently in response to cold
exposure. If a gene is not epigenetically switched off and is poten-
tially available for expression, then the rate of expression (number
of transcripts per unit time) is based on the frequency of initiation
of RNA polymerase complexes. Sensitivity of a promoter region
with respect to transcription is based on the presence of the
appropriate binding motifs in concert with the binding capacities
of specific transcription factor (TF) complexes for those motifs.
We can therefore think of all promoters in the genome as one
population and all available TFs as another. Each of these will
be partitioned into subpopulations based on the specific motifs
present in the promoters and the abilities of TFs to recognize
and bind to those motifs. In the nucleus, the populations of avail-
able promoter motifs and corresponding TFs constitute sensitivity
distributions and effector dosages that may follow PBT logic. That
is, when the sensitivity is high (i.e. a particular motif has a high
affinity for a particular TF), the TF will occupy the promoter
more frequently and enable more polymerases to transcribe the
adjacent gene. This automatically results in the quantitative or
kinetic component of the PBT model. The same effect can be
achieved by increasing the concentration of TFs, or be countered
by DNA methylation or repressive epigenetic marks on the
chromosome. When we consider that TF complexes themselves
are composed of multiple proteins, each of which may bind to
multiple partners with different affinities and be responsive to dif-
ferent upstream signals, the potential complexity that can be cre-
ated based on population threshold distributions is evident.
Despite this complexity, the PBT approach provides a path to
understand and quantify the subpopulation behaviour and
thereby account for some of the variance that is currently attrib-
uted to noise.

Pushing even further, we can speculate whether a similar
approach could be applied to enzymology as well. The interaction
of an enzyme and its substrate(s) to produce a product is also a
quantal event, in that a given interaction proceeds to a given prod-
uct, in one direction or the other. Even though it is well known
that the activity of an enzyme can be altered by allosteric effectors,
phosphorylation and other chemical modifications, we seldom
consider a cell’s complement of a particular enzyme as a popula-
tion of molecules that vary with respect to affinity for a substrate.
That is, a population of enzyme molecules may exhibit a sensitiv-
ity distribution with respect to their substrate(s). In analogy to the
pancreatic islet cells, a population of enzyme proteins having dif-
ferent affinities for a substrate might be recruited (activated) or
silenced (inactivated) by small shifts in substrate or effector con-
centrations in order to regulate metabolic pathways. Enzyme
activities often are measured and compared according to
Michaelis–Menton kinetics, which are determined from initial
reaction rates across a range of substrate concentrations (dosages).
In our mind’s eye, we envision all of the enzyme molecules in the
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test tube being identical and in the same activation state and
changes in substrate concentrations to increase or decrease reac-
tion rates by mass action. In vivo, conditions are unlikely to be
this simple. A recruitment mechanism based on shifting subpo-
pulations of individual enzyme molecules into or out of activated
states constitutes an automatic mechanism for adjusting enzyme
kinetics and capacity to current needs. This would be a biochem-
ical analogy to shifting populations of stomata from open to
closed to adjust leaf water or carbon balances (Fig. 2).

A population-centric vision of biology

By their very nature, seeds have forced biologists to consider them as
populations of individuals. Whether it was Darwin pondering the
enormous numbers of seeds that perish compared with the few indi-
viduals who survive, or a farmer waiting to see whether the crop
seeds she planted will emerge uniformly from the ground, we view
seeds simultaneously as individuals and as populations. As Eric
Roberts (1973) noted, ‘It has been suggested that seeds are unpredict-
able things and consequently it would be awaste of time to try to per-
ceive laws of behavior among such erratic individuals.… But other
disciplines have shown us quite clearly that, although the behavior of
any individual in a population may be quite unpredictable, the
behavior of populations of individuals can often be defined very
accurately.’ The intent of this paper has been to bring this insight
to the forefront and argue that PBTmodels based on itmay be useful
not only for seeds, but also for understanding the inner workings of
biology itself, from biochemistry to ecology (Fig. 4). While no doubt
there is noise and stochasticity in biology, there is also an underlying
consistency in pattern and population behaviour that operates
within and across levels of biological complexity. The key is to
train our eyes and minds to see the underlying population patterns
and to interpret the apparent complexity in light of them. If we are
to understand biological systems, our concepts and models must
be as complex as the reality they seek to describe. The tools are avail-
able to study biology at the individual level, whether of organisms,
cells, or molecules. Rather than trying to wrestle means and norms
from the rambunctious variation that is biology, we should embrace
the importance of individuality and adopt new ways to interpret
what these complex systems are telling us.
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