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Part 1 described a wide range of analytic tokamak equilibria modelling smooth limiter
surfaces, double- and single-null divertor surfaces, arbitrary aspect ratio, elongation,
triangularity and beta. Part 2 generalizes the analysis to further include edge pedestals and
toroidal flow. Specifically, edge pedestals are allowed in the pressure, pressure gradient
and toroidal current density. Also, an edge-localized contribution to the bootstrap current
is treated. In terms of flow, analytic solutions are obtained for two cases: a γ = 2 adiabatic
and a γ = ∞ incompressible energy conservation relation.
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1. Introduction

In Part 1 of this two-part series, an analytic solution was derived for tokamak equilibria
satisfying the Grad–Shafranov equation. The solutions describe equilibria with arbitrary
β, ε, κ, δ, q∗. Also, a wide variety of plasma surface shapes are allowed including
D-shapes, inverse D-shapes, smooth surfaces, double-null divertor surfaces and single-null
divertor surfaces. The profiles are smooth with the pressure, pressure gradient and current
density vanishing at the plasma edge. The solutions are obtained for a special class
of the two free functions for which the pressure gradient dp(ψ)/dψ and toroidal field
diamagnetic gradient dF2(ψ)/dψ are linear in the flux ψ . Solutions are derived by
separation of variables. Importantly, an underutilized mathematical insight provides us
with a good prescription for choosing the separation constants. It is this insight that makes
the analytic procedure so robust.

In this paper, the analytic solutions obtained in Part 1 are generalized to include the
effects of (i) edge pedestals, (ii) an edge-localized contribution to the bootstrap current
and (iii) toroidal flow. Here, a pedestal is defined as a step function jump in a physical
quantity of interest at the plasma edge. The structure within the pedestal is not resolved in
our analytic model. Such jumps affect the values of certain physical parameters of interest
as well as the shape and shift of the core flux surfaces.

Consider first an edge pedestal in the pressure and an edge-localized contribution to
the bootstrap current. These effects, using our step function pedestal approximation, result
in surface currents. Specifically, these are a perpendicular contribution from the pressure
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jump and a parallel contribution from the bootstrap current. They are characterized by two
additional input parameters, fP representing the fractional height of the pressure pedestal
and fB representing the fraction of the total bootstrap current localized to the edge region.
The analysis shows that these two effects leave the solutions obtained in Part 1 unchanged.
The main results are a determination of the jump conditions describing the toroidal and
poloidal edge magnetic fields. The fields just outside the surface currents are needed for
the post-processing evaluation of several of the plasma parameters of interest, but as stated,
do not affect the interior solutions.

The next topics of interest are edge pedestals in the pressure gradient and toroidal
current density. Mathematically, the inclusion of such pedestals requires a modification
of the free functions p′ and FF′, both initially linear in ψ . A constant in ψ Solov’ev
contribution must be added to each function. The solutions remain analytic, although there
is a modification to the solution procedure which is described in the main text. In principle,
both pedestals are independent. In practice, we focus on the current density pedestal. There
is a corresponding non-zero pressure gradient pedestal, but its value, while turning out to
be realistic, is not allowed to be a free choice. Instead, it is chosen to have a specific value
that greatly simplifies the mathematical analysis allowing for an analytic solution. Also,
we recognize that while actual plasmas often distinguish between density and temperature
pedestals, the magnetohydrodynamic (MHD) model can only include the combined effects
appearing in the pressure. A new parameter fJ is introduced which must be specified as an
input. It represents the fractional height of the edge toroidal current density pedestal.

The last new effect of interest is toroidal flow. The modified Grad–Shafranov equation
including both toroidal and poloidal flow is well known (Zehrfeld & Green 1972; Maschke
& Perrin 1980; Morozov & Solov’ev 1980; Hameiri 1983; Semenzato, Gruber & Zehrfeld
1984; Iacono et al. 1990). We focus on the limit of zero poloidal flow. In this limit one
new free function appears on the right-hand side of the Grad–Shafranov equation: M(ψ),
the toroidal Mach number. By choosing M = const., the effects of flow are still present
and non-trivial. This choice allows analytic solutions for two values of the ratio of specific
heats γ : γ = 2 corresponding to a two-degree-of-freedom adiabatic energy conservation
relation and γ = ∞ corresponding to incompressible flow.

The final result is a generalized analytic solution to the Grad–Shafranov equation. As
in Part 1, the solutions describe smooth symmetric limiter surfaces, double-null divertor
surfaces and single-null divertor surfaces. The aspect ratio is arbitrary. The plasma β and
kink safety factor q∗ both have arbitrary amplitudes. The plasma profiles, however, no
longer need to vanish on the plasma surface. Pedestals in the pressure, pressure gradient
and current density are now allowed to be non-zero. An edge bootstrap current and finite
toroidal flow are also allowed. All of these effects are included simultaneously in our
analytic solutions and represent the main contribution of Part 2.

For context, we can ask how the additional effects included in Part 2 compare with
others already existing in the literature. The effects of surface currents have been treated
in specialized sharp boundary tokamak models (see e.g. Freidberg & Grossmann 1975;
D’Ippolito et al. 1978) but not to our knowledge in smooth profile models such as
considered here. The effects of edge pedestals have been treated by several authors
(Solov’ev 1968; Freidberg 1985; Zheng, Wootton & Solano 1996; Weening 2000; Shi
2005; Cerfon & Freidberg 2010). Our contribution here is a simpler, more robust
procedure for calculating equilibria for general shaped plasma surfaces. Flow has also
been treated previously (Clemente & Farengo 1984; Throumoulopoulos & Pantis 1989;
Del Zanna & Chiuderi 1996; Tsui et al. 2011; Haverkort, de Blank & Koren 2012;
Kuiroukidis & Throumoulopoulos 2014) but only for the simpler Solov’ev profiles for
p′ and FF′. An exception is the more general solution introduced by Kaltsas, Kuiroukidis
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& Throumoulopoulos (2019), which, however, only considers incompressible flows and
regular D-shaped tokamaks (even though one can easily see ways for it to be extended).

In summary, we believe our solutions represent a useful next step towards the goal of
obtaining analytic solutions to the Grad–Shafranov equation including increasingly more
realistic plasma phenomena. As with Part 1, readers wanting a copy of our code should
contact the first author (L.G. at lzg0022@auburn.edu).

2. Current status of the analysis

The normalized Grad–Shafranov equation from which we have derived analytic
solutions is repeated here for convenience:

(1 + ε̂x)
∂2ψ

∂x2
+ 1

1 + ε2

∂2ψ

∂y2
= −α2(1 + ε̂νx)ψ ψ(surf) = 0 ψ(axis) = 1,

ε̂ = 2ε
1 + ε2

< 1,

α2 = 2R2
0a2

Ψ 2
0

(
μ0p0 + B0δB

1 + ε2

)
≥ 0,

ν = μ0p0

μ0p0 + B0δB/(1 + ε2)
≥ 0,

p(Ψ ) = p0

(
Ψ

Ψ0

)2

,

F2(Ψ ) = R2
0B2

0

[
1 + 2δB

B0

(
Ψ

Ψ0

)2
]
,

Ψ = Ψ0ψ,

R = R0r1/2 = R0(1 + ε2 + 2εx)
1/2
,

Z = ay.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Solutions have been obtained by separation of variables:

Up - down symmetric

ψ(x, y) = c1 cos(h1y)C1(x)+
4∑
2

cos(hny)[cnCn(x)+ snSn(x)].

Up - down asymmetric

ψ(x, y) = c1 cos(h1y)C1(x)+
4∑
2

cos(hny)[cnCn(x)+ snSn(x)]

+c5 sin(h1y)C5(x)+
3∑
2

sin(hny)[cn+4Cn(x)+ sn+4Sn(x)].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

The functions Cn(x), Sn(x) are cosine-like and sine-like. They are a particularly convenient
power-series expansion of Whittaker functions, which are given in Appendix A of Part 1
and in Appendix B of this paper by setting the as yet undefined Mach number parameter
M0 = 0. The expansion coefficients cn, sn and eigenvalue α are determined by satisfying
a set of constraints which require the analytic solution to match the function, slope and
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4 L. Guazzotto and J. P. Freidberg

Constraint Symmetric smooth Double null Single null

Inboard flux surface: ψ(−1, 0) = 0 � � �
Outboard flux surface: ψ(1, 0) = 0 � � �
Upper flux surface: ψ(xδ, κ) = 0 � � �
Lower flux surface: ψ(xδ,−κ) = 0 �
Inboard slope: ψy(−1, 0) = 0 �
Outboard slope: ψy(1, 0) = 0 �
Upper BZ field: ψx(xδ, κ) = 0 � � �
Lower BZ field: ψx(−xδ, κ) = 0 �
Upper BR field: ψy(xδ, κ) = 0 �
Lower BR field: ψy(−xδ, κ) = 0 �
Inboard curvature: ψyy(−1, 0) = −Λ1ψx(−1, 0) � � �
Outboard curvature: ψyy(1, 0) = Λ2ψx(1, 0) � � �
Upper curvature: ψxx(xδ, κ) = Λ3ψy(xδ, κ) � �

TABLE 1. Constraints determining the expansion coefficients cn, sn.

curvature of a desired model surface at three (for symmetric) and four (for asymmetric)
points. The constraints are summarized in table 1. In this table the values of xδ, κ are to be
evaluated at the smooth maxima or X-point as appropriate. The coefficients Λj depend on
the shape of the desired model surface and are given in Part 1. All quantities will again be
defined in this paper, Part 2, as required.

3. Surface current effects

The analytic solutions obtained in Part 1 assume smooth edge conditions – the pressure,
pressure gradient and toroidal current density all vanish on the plasma surface. However, in
many tokamak experiments there are boundary phenomena that produce highly localized
edge currents. In the context of our analytic solutions, these localized currents can be
approximated by ideal surface currents.

The surface currents have no direct impact on the flux surfaces calculated in Part 1.
The analytic solutions remain unchanged. What do change are the values of some of
the post-processing plasma physics parameters. The reason is that certain parameters are
defined in terms of magnetic fields external to the surface current rather than the internal
fields, which are the ones corresponding to our analytic solutions. The net result is that
many of the previously derived results are still valid but must be renormalized. The goal
in this section is to derive the appropriate jump conditions for the fields across the surface
currents to allow a quantitative determination of the renormalized plasma parameters.

3.1. Sources of surface current
As stated in § 1, there are two sources of surface currents. First, even if the pressure
gradient and toroidal current density vanish smoothly at the plasma edge, there can still
be a finite edge pressure, creating a pressure pedestal. From MHD pressure balance across
the surface, it follows that this pressure jump must be balanced by a perpendicular surface
current; that is, the current direction is perpendicular to both the surface normal and
the average magnetic field across the current sheet. Its magnitude is proportional to the
difference in fields across the current sheet. Mathematically, the pressure pedestal can be
modelled by leaving the free function F2(Ψ/Ψ0) unchanged but modifying p(Ψ/Ψ0) in the
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plasma core as follows:

p(Ψ/Ψ0) = p0

(
Ψ

Ψ0

)2

→ p(Ψ/Ψ0) = p0

[
fP + (1 − fP)

(
Ψ

Ψ0

)2
]
. (3.1)

Note that p(axis) = p(1) = p0 and p(surf) = p(0) = fPp0. We see that fP = p(surf)/p(axis)
is the fractional height of the pressure pedestal, and is an additional input quantity.
A pressure jump leaves the normalized Grad–Shafranov equation unchanged, but with
modified definitions of α and ν:

(1 + ε̂x)
∂2ψ

∂x2
+ 1

1 + ε2

∂2ψ

∂y2
= −α2(1 + ε̂νx)ψ,

α2 = 2R2
0a2

Ψ 2
0

[
μ0p0(1 − fP)+ B0δB

1 + ε2

]
,

ν = μ0p0(1 − fP)

μ0p0(1 − fP)+ B0δB/(1 + ε2)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

The second component of surface current flows perpendicular to the surface but parallel
to the average field across the surface. It is assumed to be generated by the portion of the
total bootstrap current localized near the edge. This can be seen from the large-aspect-ratio
approximation for the flux surface averaged bootstrap current given by (Helander &
Sigmar 2002)

JB(ψ) ≡
〈

J B · B
B

〉
≈ −2.42ε1/2R0p

[
1
n

dn
dψ

+ 0.054
1
T

dT
dψ

]
. (3.3)

Near the edge, the density and temperature pedestals produce a large localized contribution
to the bootstrap current, which corresponds to the parallel component of the surface
current.

A convenient definition of the bootstrap fraction is described below. This definition
focuses on the eφ component of bootstrap current, which is simpler to measure
experimentally as compared to the actual bootstrap current which flows parallel to the
magnetic field. We denote the parallel surface current by K ‖ = K‖φeφ + K‖PeP, where
eP = BP/BP and K‖φ is the component of interest. The corresponding toroidal current
generated by K‖φ is given by

I‖φ =
∮

K‖φ dlP, (3.4)

with dlP the differential poloidal arc length. Next, note that the total toroidal current
flowing in the plasma is Î = I + I‖φ , where I is the contribution from the plasma core
calculated in Part 1. The definition of the edge-localized portion of bootstrap current fB is
taken as

fB ≡ I‖φ
Î

= Î − I

Î
= 1 − I

Î
. (3.5)

The quantity fB is an additional input parameter.
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3.2. Surface current analysis
The surface current analysis can now be carried out as follows. Assume we have obtained
a smooth edge solution based on the analysis in Part 1. Specifically, we assume that just
inside the surface current we know Bφ(θ) and BP(θ). Next, we give values for the two
new surface current fractions fP and fB. Using this information we calculate the fields
just outside the surface current layer B̂φ(θ) and B̂P(θ), leading to a self-consistent surface
current constraint.

To begin, we make use of Ampere’s law and pressure balance across the surface to
derive expressions for B̂φ(θ) and B̂P(θ). Consider first the toroidal magnetic field. The
profiles just inside and outside the surface current are given by

Bφ(θ) = B0
R0

R(θ)
Inside field,

B̂φ(θ) = B̂0
R0

R(θ)
Outside field,

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

where the only new quantity is the as yet undetermined exterior central field amplitude
B̂0. Observe that B̂0 is the actual vacuum toroidal field on axis, although for mathematical
convenience we formulate the analysis in terms of B0, the vacuum field on axis in the
absence of surface currents. The relationship between the outside and inside toroidal fields
thus defines the poloidal surface current:

μ0
KP

B0
= B̂φ

B0
− Bφ

B0
= (ΔB − 1)

R0

R
ΔB = B̂0

B0
. (3.7)

Hereafter, the unknownΔB replaces B̂0 as the constant relating the two toroidal magnetic
field profiles.

The relationship between the inside and outside poloidal magnetic fields is determined
from the pressure balance jump condition:[[

p + B2

2μ0

]]
Surf

= 0 → 2μ0fPp0 + B2
p + B2

φ = B̂2
p + B̂2

φ, (3.8)

which can be rewritten as

μ0
Kφ

B0
= B̂P

B0
− BP

B0
=
[

B2
P

B2
0

+ β0fP − (�2
B − 1)

R2
0

R2

]1/2

− BP

B0
, (3.9)

where again β0 = 2μ0p0/B2
0. If for the moment we assume that ΔB is known, then (3.9)

expresses the outside poloidal field in terms of known quantities.

3.3. Evaluation of the jump conditions
We are now in a position to complete the evaluation of the surface current constraint. The
practical procedure is as follows.

a. Calculate a smooth edge equilibrium as described in Part 1 assuming the geometry
and ν have been specified. Evaluate BP(θ)/B0, β0, I/B0.

b. Specify the additional pressure pedestal and bootstrap fractions fP and fB.
c. ‘Guess’ a value for ΔB.
d. Evaluate B̂P(θ)/B0 from (3.9).
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e. From (3.5) calculate

fB = 1 − I

Î
= 1 −

∮ BP

B0
dlP

∮ B̂P

B0
dlP

. (3.10)

f. Iterate ΔB until fB is equal to the desired input value.
g. Evaluate B̂φ(θ)/B0 from (3.7).

Assuming this procedure is successfully carried out, we then have the required
expressions for the field jumps across the surface currents. We emphasize that no
modifications have been made to the solution procedure in Part 1 that calculates the core
profiles. The same expansions and constraints still apply. Once the solution for ψ(x, y) is
obtained, we can then make use of the jump conditions to define and evaluate modified
plasma parameters consistent with standard usage in the fusion community. Several
plasma parameters are calculated and compared with the corresponding no-pedestal cases
obtained in Part 1. However, we delay presenting these results until the end of the analysis,
after a pressure gradient pedestal, current density pedestal and toroidal flow are included.

4. Pressure gradient and current density pedestals

The analysis can be further generalized to include additional edge pedestals. In
principle, there are two such pedestals to consider in the MHD model: a pressure gradient
pedestal and a toroidal current density pedestal. In practice, we focus on the current density
pedestal. There is a corresponding non-zero pressure gradient pedestal, but its value, while
turning out to be realistic, is not allowed to be a free choice. Instead, it is chosen to have
a specific value that greatly simplifies the mathematical analysis, allowing for simple
analytic solutions. In the end a single new free parameter fJ is introduced that must be
specified as an input. Its value represents the fractional height of the edge current density
pedestal.

4.1. Mathematical modifications to account for pedestals
Mathematically, the procedure to include pressure gradient and current density pedestals
requires modifications to the two free functions p(ψ) and F2(ψ). Solov’ev-like terms,
linear in ψ , must be added. The modified free functions can be written as

p(Ψ/Ψ0) = p0

{
fP + (1 − fP)

(
Ψ

Ψ0

)2

+ A1

[(
Ψ

Ψ0

)
−
(
Ψ

Ψ0

)2
]}

,

F2(Ψ/Ψ0) = R2
0B2

0

{
1 + 2δB

B0

(
Ψ

Ψ0

)2

+ 2A2

[(
Ψ

Ψ0

)
−
(
Ψ

Ψ0

)2
]}

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.1)

As before Ψ = 0 is the flux on the plasma surface and Ψ = Ψ0 is the flux on the magnetic
axis. Thus, 1 ≥ Ψ/Ψ0 ≥ 0. As in § 3, fP = p(surf)/p(axis) is the fractional height of the
pressure profiles. The ratio F2(axis)/F2(surf) = 1 + 2δB/B0 again represents the toroidal
field paramagnetism/diamagnetism. The remaining two parameters, A1,A2, can for the
moment be considered free. They will ultimately be related to the as yet undefined current
pedestal parameter fJ .
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4.2. Modified Grad–Shafranov equation
The pedestal analysis begins by introducing the same normalized quantities as previously
defined: ψ = Ψ/Ψ0, R = R0r1/2 and Z = ay. The Grad–Shafranov equation can now be
written as

(1 + ε̂x)
∂2ψ

∂x2 + 1
1 + ε2

∂2ψ

∂y2 = −jφ(x, ψ),

jφ(x, ψ) = 2R2
0a2

Ψ 2
0

{[
μ0p0(1 − fP − A1)r + B2

0

(
δB
B0

− A2

)]
ψ +

[
μ0p0

2
A1r + B2

0
2

A2

]}
,

r = 1 + ε2 + 2εx.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

A key step in the analysis is to recognize that by choosing A2/A1 to make the ratio of
the r term to the constant term in the ψ square bracket identical to the same ratio as in
the constant square bracket, the result will lead to a simple particular solution for ψ . This
pedestal constraint can be written as

(1 − fP − A1)

(δB/B0 − A2)
= A1

A2
→ A2 = δB

B0

A1

1 − fP
. (4.3)

The quantity jφ then reduces to

jφ(x, ψ) = R2
0

Ψ 2
0

(
μ0p0r + B0δB

1 − fP

)
[2(1 − fP − A1)ψ + A1]. (4.4)

We are now in a position to introduce the current pedestal parameter fJ . Since the current
density is not a pure flux function, its pedestal height varies around the plasma surface. A
simple but convenient definition that represents an average of this variation is given by

fJ = Jφ(R, surf)
Jφ(R, axis)

= jφ(x, 0)/r1/2

jφ(x, 1)/r1/2
= A1

2(1 − fP − A1)+ A1
→ A1 = 2(1 − fP)fJ

1 + fJ
, (4.5)

which leads to

jφ(x, ψ) = 2R2
0a2

Ψ 2
0 (1 + fJ)

[μ0p0(1 − fP)r + B0δB][(1 − fJ)ψ + fJ]. (4.6)

Observe that the pedestal constraint introduced in (4.3) has led to a form of jφ that implies
that ψ = −fJ/(1 − fJ) = const. is a particular solution to the Grad–Shafranov equation.

The final form of the Grad–Shafranov equation is obtained by substituting (4.6) into
(4.2), defining modified constants α, ν plus a shifted flux function ψJ(x, y):

(1 + ε̂x)
∂2ψJ

∂x2
+ 1

1 + ε2

∂2ψJ

∂y2
= −α2(1 + ε̂νx)ψJ,

α2 = 2R2
0a2

Ψ 2
0

(
1 − fJ

1 + fJ

)[
μ0p0(1 − fP)+ B0δB

1 + ε2

]
,

ν = μ0p0(1 − fP)

μ0p0(1 − fP)+ B0δB/(1 + ε2)
,

ψJ = ψ + fJ

1 − fJ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)
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This equation is formally identical to the no-pedestal equation given by (2.1). The only
difference is in the flux function boundary constraint. We now require

ψ(surf) = 0 → ψJ(surf) = fJ

1 − fJ
. (4.8)

4.3. Boundary constraints
Consider next the boundary constraints at the matching points. Since ψ and ψJ only differ
by a constant, the slope constraints and curvature constraints are the same with or without
an edge current pedestal, assuming that the model surfaces (i.e. the Miller model (Miller
et al. 1998; Todd et al. 1979) or the intersecting ellipse model) also remain unchanged.

However, there is one subtlety with the curvature constraints at the inner and outer
midplane points with a separatrix. Recall that without a pedestal the midplane surface
shapes make use of the fact that at the X-point the two intersecting ellipses must be
perpendicular to each other. With a finite edge current the angle is no longer π/2 and
in fact cannot be determined until the whole problem is solved. If the current pedestal is
not too large, it is not important to modify the midplane curvature constraints from their
no-edge-current values. The only result is that the analytic solution will not match the
intersecting ellipse model very accurately at the X-point because of the differing angles.
Nevertheless, the solution still satisfies the exact Grad–Shafranov equation, and there is
nothing fundamental about the intersecting ellipse shape. Most importantly, the analytic
solution will automatically produce the correct angle at the X-point, while the intersecting
ellipse model will always have the wrong angle if the edge current is non-zero.

4.4. Solution procedure
Since the boundary condition on ψJ(surf) is now inhomogeneous, we might at first think
that solutions can be found for arbitrary values of α2. This is not the case, as there is a
second normalization condition on the flux that is now non-trivial and must be satisfied,
namely that

ψJ(axis) = 1
1 − fJ

. (4.9)

A useful way to understand the system is as follows. Assume that the geometry and a
value of ν are specified. ‘Guess’ a value for α2 and temporarily ignore the normalization
condition on the axis. Because the boundary condition on the surface is inhomogeneous, it
is indeed true that we can always find a non-trivial solution, subject to (4.8), that satisfies
the 7 or 12 constraint relations at the required surface points. For example, for symmetric
plasmas, the constraint relations are now given by

↔
A(α) · u = v,

u = [c1, c2, s2, c3, s3, c4, s4],

v = [ψJ(surf), ψJ(surf), ψJ(surf), 0, 0, 0, 0] ψJ(surf) = fJ

1 − fJ
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.10)

A similar relation holds for the asymmetric case.
However, the normalization condition given by (4.9) will not in general be satisfied.

Furthermore, even though the equation is linear we cannot simply scale the solution to
satisfy (4.9). If we do, then the inhomogeneous boundary condition at the surface will no
longer be satisfied. In other words, one must carefully choose the value of α so that (4.9)
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just happens to be satisfied when the constraint relations are solved subject to (4.8). The
parameter α is an output of the analysis, not an input.

The value of α can be determined in a manner similar to that for the no pedestal case.
The 7 × 7 or 12 × 12 set of inhomogeneous constraint relations are solved for a given
‘guess’ for α which is then iterated until the error

E(α) =
[
ψJ(axis)− 1/(1 − fJ)

|ψJ(axis)| + |1/(1 − fJ)|
]2

(4.11)

has a minimum value at E(α) = 0.

4.5. Examples
To demonstrate the effects of pedestals we illustrate two examples with geometric
parameters identical to the pedestal-free spherical tokamak equilibrium discussed in Part
1: ε = 0.75, κX = 2.4, δX = 0.8, ν = 1.04. The results are shown in figure 1. The first
example (top profile curves) has a pedestal only in current density (fP = fB = 0, fJ =
0.25). The second example (bottom profile curves) has pedestals in the pressure (fP = 0.2)
and current density (fJ = 0.25). There is also a bootstrap surface current (fB = 0.35). As
stated, the flux surface plots for both examples are the same since they are not affected by
the pressure pedestal or bootstrap current.

In the flux surface plot, the red boundary curve shows the intersecting ellipse model
surface. The thinner black curves are the flux surfaces for the pedestal-free case discussed
in Part 1. They are illustrated just for purposes of comparison. The white flux surfaces
represent the new solutions including the effects of a current density pedestal. The same
colours (black for no-pedestal, no-flow solution, white for the new solution in this paper)
are used in the remainder of the paper.

Observe that this pedestal produces a slight inward shift of the flux surfaces. A current
density with the same q0 = 1 but containing a Jφ pedestal, has a flatter radial profile with
approximately the same Jφ on axis. The total current has increased implying that Jφ is
larger near the outer boundary, which pushes the pressure inwards so the shift is a little
smaller. Also, recall that the slightly larger mismatch at the X-point is due to setting the
X-point angle in the intersecting ellipse model surface to π/2 for convenience, although
this is not the correct, self-consistent value. The analytic shaded boundary edge has the
correct X-point angle which therefore represents an output of the analysis.

Although the flux surfaces are the same, the two examples have different midplane
pressure and current density profiles. This is clearly seen in figure 1. In both plots the edge
pedestal in the current density on the outboard side has a similar height. The pedestal on
both inboard sides is zero as the parameter ν has been chosen to be at its maximum value,
corresponding to zero current density at R = R0 − a. The upper curves show the edge
pressure smoothly going to zero while the lower curves show the finite pressure pedestal.
These pedestals will have an impact on the plasma parameters of interest as shown shortly.

5. Toroidal flow
5.1. The starting equation

The final case of interest adds toroidal flow to the analysis. A general form of the
Grad–Shafranov equation including both toroidal and poloidal flow has been known for
many years (Zehrfeld & Green 1972; Maschke & Perrin 1980; Morozov & Solov’ev
1980; Hameiri 1983; Semenzato et al. 1984; Iacono et al. 1990) and nonlinear numerical
codes have been developed to solve this equation (Semenzato et al. 1984; Belien et al.
2002; Guazzotto et al. 2004). For readers unfamiliar with the generalized Grad–Shafranov
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FIGURE 1. Flux surface and midplane profile plots for a spherical tokamak including pedestals.
Black curves correspond to the pedestal-free solution while the white curves contain pedestals.
In the midplane plots each curve is normalized to unity. The upper plot has only a Jφ pedestal
while the lower plot also has a pressure pedestal and bootstrap current. The labels I and II refer
to Part 1 (no pedestals) and Part 2 (with pedestals).

equation in the limit of purely toroidal flow, we present a derivation in Appendix A that
leads to a form allowing analytic solutions. This somewhat complicated form is given by

�∗Ψ = −FF′ − μ0R2

[
1 + M2

(
R2

R2
0

− 1

)]1/(γ−1) {
p̄′ +

[
M2p̄′ + γ

γ − 1
p̄(M2)′

](
R2

R2
0

− 1

)}
,

Bφ = F(Ψ )
R

,

p
p̄(Ψ )

=
[

1 + M2

(
R2

R2
0

− 1

)]γ /(γ−1)

,

ρ

ρ̄(Ψ )
=
[

1 + M2

(
R2

R2
0

− 1

)]1/(γ−1)

,

�2(Ψ )R2
0 = 2γ

γ − 1
p̄(Ψ )
ρ̄(Ψ )

M2(Ψ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

Observe that three free functions must be specified: the familiar toroidal field and
pressure functions F(Ψ ), p̄(Ψ ) as well as a new function representing the square of the
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effective thermal Mach number M2(Ψ ) = [2γ /(γ − 1)]M2
T with MT(Ψ ) = (ρ̄Ω2R2

0/p̄)
1/2

the standard thermal Mach number. The density function ρ̄(Ψ ) and toroidal angular
velocity function Ω(Ψ )R0 are separate free functions but only the combination ρ̄Ω2R2

0
appears in the Grad–Shafranov equation. Also, note that γ is the ratio of specific heats.

We obtain analytic solutions by special choices of F(Ψ ), p̄(Ψ ),M(Ψ ) that again lead to
a linear partial differential equation in Ψ . The coefficient of the Ψ term can be reduced to
a simple power series in R2 which is convenient for our method of solution. To make this
reduction we must restrict γ to two values: γ = 2 corresponding to adiabatic behaviour
and γ = ∞ corresponding to incompressible flow. Recall that the adiabatic index γ =
(N + 2)/N, where N is the number of degrees of freedom for fluid motion. Thus, γ = 2
corresponds to two degrees of freedom, parallel and perpendicular to the magnet field.
Two other interesting cases,γ = 5/3, γ = 1, do not lead to simple forms amenable to an
analytic solution, similar to the ones presented in this paper. However, different approaches
may in the future also provide analytic solutions.

The analysis proceeds in two steps. First, we treat the case of flow with smooth edge
conditions in which the pressure, pressure gradient and current density all vanish smoothly
at the plasma edge. Second, we add the effects of pedestals and surface currents. The
solution proceeds as follows.

5.2. General reduction leading to a linear equation in Ψ
We can reduce (5.1) to a linear equation in Ψ for smooth plasma edge conditions and
arbitrary γ , by choosing the three free functions as follows:

F2 = R2
0B2

0

[
1 + 2δB

B0

(
Ψ

Ψ0

)2
]
,

p̄ = p0

(
Ψ

Ψ0

)2

,

M2 = M2
0 = const.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

Besides the familiar R0,B0, two new parameters are introduced: p0,M0. These parameters
have the following qualitative interpretations. If we approximate the magnetic axis by
setting R = R0, then a short calculation shows that

p0 ≈ p|axis Pressure on axis,

M2
0 ≈ γ − 1

2γ
ρ̄Ω2R2

0

p̄

∣∣∣∣
axis

Mach number squared on axis.

⎫⎪⎬
⎪⎭ (5.3)

Observe that p0 is defined the same way in terms of the flux function as in Part 1.
Nevertheless, since the actual pressure is not an exact flux function with non-zero flow,
the quantity p0 is only approximately equal to the pressure on axis. The approximations in
(5.3) are accurate for large aspect ratio. They are less accurate but still qualitatively correct
for tight-aspect-ratio configurations such as the spherical tokamak where the shift between
the magnetic and geometric axes can be finite.

We now substitute the free functions into (5.1). A straightforward calculation leads to
the desired form of the Grad–Shafranov equation for arbitrary γ :

Δ∗Ψ = −2R2
0B2

0

Ψ 2
0

[
δB
B0

+ μ0p0

B2
0

R2

R2
0

(
1 − M2

0 + M2
0

R2

R2
0

)γ /(γ−1)
]
Ψ = 0. (5.4)
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Observe that the term in parentheses reduces to a simple polynomial in R2 for γ = 2
(adiabatic) or γ = ∞ (incompressible) or more generally γ = n/(n − 1)with n an integer.

5.3. Normalized equations
As for the case of zero flow, we again introduce normalized variables:

Ψ = Ψ0ψ 1 ≥ ψ ≥ 0,

Z = ay − κ ≤ y ≤ κ,

R = R0r1/2 = R0(1 + ε2 + 2εx)
1/2 − 1 ≤ x ≤ 1.

⎫⎪⎬
⎪⎭ (5.5)

The modified Grad–Shafranov equation reduces to

(1 + ε̂x)
∂2ψ

∂x2
+ 1

1 + ε2

∂2ψ

∂y2
= −α2[1 + νG(x)]ψ ψ(surf) = 0,

ε̂ = 2ε
1 + ε2

< 1,

α2 = 2R2
0a2

Ψ 2
0

[
B0δB

1 + ε2
+ μ0p0(1 + M2

0ε
2)
γ/(γ−1)

]
≥ 0,

ν = μ0p0(1 + M2
0ε

2)
γ/(γ−1)

μ0p0(1 + M2
0ε

2)
γ/(γ−1) + B0δB/(1 + ε2)

≥ 0,

G(x) = (1 + ε̂x)
(

1 + 2M2
0ε

1 + M2
0ε

2
x
)γ /(γ−1)

− 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

Observe that for small ε, G(x) ∝ εx. The magnetic axis is defined by the condition
ψ(axis) = 1. Also, the range of ν to prevent current reversal on the inboard midplane is
given by

0 ≤ ν ≤ νmax,

νmax(ε,M2
0) = − 1

G(−1)
= 1

1 − (1 − ε̂)(1 − ε̂ζ )
γ/(γ−1) ,

ζ(ε,M2
0) = M2

0(1 + ε2)

1 + M2
0ε

2
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.7)

5.4. Two special cases of interest
The two special cases of interest that lead to simple analytic solutions correspond to γ =
∞ (incompressible) and γ = 2 (adiabatic). In both cases (5.6) reduces to an equation that
has the form

(1 + ε̂x)
∂2ψ

∂x2
+ 1

1 + ε2

∂2ψ

∂y2
= −α2 [1 + ε̂ν1x + ε̂2ν2x2 + ε̂3ν3x3]ψ ψ(surf) = 0,

γ = ∞ : ν1 = (1 + ζ )ν ν2 = ζν ν3 = 0,

γ = 2 : ν1 = (1 + 2ζ )ν ν2 = ζ(2 + ζ )ν ν3 = ζ 2ν.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.8)
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5.5. The solution
Following the procedure described in Part 1 we again find a solution by separation of
variables:

ψ(x, y) =
∑

Xn(x)Yn( y), (5.9)

where Yn,Xn satisfy

d2Yn

dy2
+ h2

nYn = 0,

(1 + ε̂x)
d2Xn

dx2
+ (k2

n + λ2
1x + λ2

2x2 + λ2
3x3)Xn = 0,

k2
n = α2 − h2

n

1 + ε2
,

λ2
1 = ε̂α2ν1,

λ2
2 = ε̂2α2ν2,

λ2
3 = ε̂3α2ν3,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

and h2
n are the separation constants.

The solutions for Yn are given by

Yn( y) =
{

cos(hny)
sin(hny) .

(5.11)

The equation for Xn is slightly more complicated than in Part 1. Recall that the solutions in
Part 1 could be written in terms of Whittaker functions although this was of no great help.
Instead, a straightforward analytic power series was used to obtain solutions for Xn which
was much faster and equally accurate to numerically evaluate, as compared to standard
Whittaker function packages. Equally important, analytic forms for the first and second
derivatives were derived.

Following the same reasoning as in Part 1, we can again obtain solutions for Xn in
terms of power series. These series have a similar but slightly more complicated recursion
relation for the expansion coefficients. The main difference is that the solutions no longer
have a well-known name (e.g. Whittaker functions) but this is of little consequence. The
solutions for Xn are thus written as

Xn(x) =
{

Cn(x) = ∑
[âmxm cos(knx)+ b̂mxm sin(knx)]

Sn(x) = ∑
[ãmxm cos(knx)+ b̃mxm sin(knx)] .

(5.12)

We calculate the recursion relations for the coefficients âm, b̂m, ãm, b̃m as well as analytic
first and second derivatives in Appendix B. Hereafter, we can assume that Cn, Sn are known
solutions.

The conclusion from this analysis is that the flux function solution procedures described
in Part 1 for smooth, double-null and single-null systems without pedestals apply directly
to systems with toroidal flow. The only difference is the generalized form of the expansion
functions Cn, Sn.
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5.6. Flow with pedestals
Adding edge pedestals to the calculation of flux surfaces with flow is straightforward. The
results are nearly identical and only slightly more complicated than the case without flow.
The starting point is (5.4), the generalized Grad–Shafranov equation including toroidal
flow. To include pedestals we require modified forms of the free functions that contain
Solov’ev-type additions. Specifically, for systems with toroidal flow and pedestals we
choose the same free functions as without flow (see (4.1)). After introducing normalized
coordinates, we see that the Grad–Shafranov equation reduces to

(1 + ε̂x)
∂2ψ

∂x2
+ 1

1 + ε2

∂2ψ

∂y2
= −jφ(ρ, ψ),

jφ(x, ψ) = 2R2
0a2

(1 + ε2)Ψ 2
0

{[
μ0p0(1 − fP − A1)g(x)+ B2

0

(
δB
B0

− A2

)]
ψ

+
[
μ0p0

2
A1g(x)+ B2

0

2
A2

]}
,

g(x) = r
ρ

ρ̄
(1 − M2

0 + M2
0r) = r(1 − M2

0 + M2
0r)

γ/(γ−1)
,

r = 1 + ε2 + 2εx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.13)

We again choose the constants A1,A2 to (i) produce a simple particular solution for ψ and
(ii) introduce the height of the current density pedestal. The required relations are given
by (4.3) and (4.5). These values are substituted into (5.13). The result is the desired form
of the Grad–Shafranov equation with flow and pedestals:

(1 + ε̂x)
∂2ψJ

∂x2
+ 1

1 + ε2

∂2ψJ

∂y2
= −α2(1 + νG)ψJ,

α2 = 2R2
0a2

Ψ 2
0

(
1 − fJ

1 + fJ

)[
μ0p0(1 − fP)(1 + M2

0ε
2)
γ/(γ−1) + B0δB

1 + ε2

]
,

ν = μ0p0(1 − fP)(1 + M2
0ε

2)
γ/(γ−1)

μ0p0(1 − fP)(1 + M2
0ε

2)
γ/(γ−1) + B0δB/(1 + ε2)

,

ψJ(x, y) = ψ + fJ

1 − fJ
ψJ(surf) = fJ

1 − fJ
ψJ(axis) = 1

1 − fJ
,

G(x) = (1 + ε̂x)
(

1 + 2M2
0ε

1 + M2
0ε

2
x
)γ /(γ−1)

− 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.14)

Note that this equation is identical in form to the one with pedestals but no flow. The
only differences in the equation are slightly modified definitions of α, ν and the more
general form for G(x) which corresponds to the generalized Cn(x), Sn(x). The conclusion
is that with these minor modifications we can use the same solution procedure as for the
system without flow.

5.7. Examples
We have run a large number of cases with flow to convince ourselves that the solution
procedure works and is robust. For due diligence wherever possible, we also compared
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FIGURE 2. Flux surface plot and midplane profiles for the adiabatic case (γ = 2). Black curves
correspond to the reference pedestal-free, flow-free solution while the white curves contain both
effects. In the midplane plots each curve is normalized to unity. The blue and red curves represent
the solutions with pedestals and flow while the black curves are the reference case with neither
effect. The labels I and II refer to Part 1 (no pedestals, no flow) and Part 2 (with pedestals and
flow).

FIGURE 3. Flux surface plot and midplane profiles for the incompressible case (γ = ∞). Black
curves correspond to the reference pedestal-free, flow-free solution while the white curves
contain both effects. In the midplane plots each curve is normalized to unity. The blue and red
curves represent the solutions with pedestals and flow while the black curves are the reference
case with neither effect. The labels I and II refer to Part 1 (no pedestals, no flow) and Part 2 (with
pedestals and flow).

our results with the established FLOW code to verify the numerical implementation of
our code. A specific example is presented in Appendix C where it is shown that all tests
proved highly satisfactory. To demonstrate this statement, we present two examples which
simultaneously include all the effects of our generalized analysis in the most complicated
geometry. The configurations include pedestals in pressure and current density, an edge
bootstrap current, substantial flow, in a single-null diverted tokamak. The two cases
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have nearly identical parameters: ε = 0.33, κ = 1.6, δ = 0.4, κX = 2, δX = 0.5, ν =
1, fB = 0.35, fP = 0.2, fJ = 0.25, M0 = 0.6. The difference is that the case in figure 2
is adiabatic (γ = 2) while the one in figure 3 is incompressible (γ = ∞).

We see that the solution procedure works well when flow is included. The most
pronounced effect is the not unexpected large outward shift of the flux surfaces due to
the flow-generated centrifugal force. A comparison of the two examples indicates that the
adiabatic case has a slightly larger shift than the incompressible case.

6. Summary of solution procedure and plasma parameters

We complete the analysis by summarizing the solution procedure for the most general
case which then enables the evaluation of the plasma parameters of interest. Assume the
following parameters are prescribed as inputs: ε, κ or κX, δ or δX, ν, fP, fJ, fB, q0,M0. Solve
the normalized Grad–Shafranov equation given by (5.14) yielding ψJ(x, y) and α2. From
this solution evaluate

β0 ≡ 2μ0p0

B2
0

=

(
1 + fJ

1 − fJ

)
ε2α2ν

(1 − fP)(1 + M2
0ε

2)
γ/(γ−1)

q2
0[r2(ψJ)xx(ψJ)yy]axis

−
(

1 + fJ

1 − fJ

)
(1 + ε2)ε2α2(1 − ν)

,

Ψ 2
0

a2R2
0B2

0
= Ψ 2

a = (1 − fP)(1 + M2
0ε

2)
γ/(γ−1)

(
1 − fJ

1 + fJ

)
β0

α2ν
,

2μ0p(x, y)
B2

0
= P(x, y) = β0

(
1 + M2

0ε
2 + 2M2

0εx
)γ /(γ−1)

[
(1 − fP)

1 − fJ

1 + fJ
ψ2

J + fP − f 2
J

1 − f 2
J

]
,

B2
P(x, y)
B2

0
= b2

P(x, y) = Ψ 2
a

r

[
r
(
∂ψJ

∂x

)2

+
(
∂ψJ

∂y

)2
]
,

μ0aJφ(x, y)
B0

= (1 + ε2)

r1/2
jφ = Ψa(1 + ε2)α2 (1 + νG)

r1/2
ψJ,

μ0I
aB0

= iC = 1
a

∮
bP dlP.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

Note that the first equation determines β0, given a value for q0. It can be easily inverted to
determine q0 for a specified value of β0.

The next step is to take into account the jump conditions due to surface currents. Guess
and then iterate a value for the diamagnetic parameter ΔB using the relations

B̂φ(x, y)
B0

= �B
R0

R
,

B̂2
P(x, y)
B2

0
= B2

P(x, y)
B2

0
+ β0fP + 1 −�2

B.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.2)

https://doi.org/10.1017/S0022377821000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000118


18 L. Guazzotto and J. P. Freidberg

The iteration constraint determining ΔB is given by

fB = 1 − I

Î
= 1 −

∮
BP

B0
dlP∮

B̂P

B0
dlP

, (6.3)

with B̂P/B0 evaluated from (3.9).
With the information just obtained we can now evaluate the plasma parameters of

interest. These can be written as follows.

Plasma β on axis β̂0:

β̂0 = 2μ0p|axis

B̂2
0

= β0

(
B2

0

B̂2
0

)
[(1 + M2

0ε
2 + 2M2

0εx)
γ/(γ−1)]axis. (6.4)

Plasma diamagnetism δB/B0:

2δB
B0

= (1 + ε2)(1 − fP)(1 + M2
0ε

2)γ/(γ−1)

(
1 − ν

ν

)
β0. (6.5)

Magnetic flux on axis Ψ0:

Ψ0 = εB0R2
0

α

(
β0

ν

)1/2[(1 − fJ

1 + fJ

)
(1 − fP)(1 + M2

0ε
2)
γ/(γ−1)

]1/2

. (6.6)

Volume-averaged toroidal beta βT:

βT = 2μ0

B2
0

〈p〉V = B̂2
0

B2
0

∫
P dx dy∫
dx dy

. (6.7)

Volume-averaged poloidal beta βP:

βP = 2μ0〈p〉V

〈B2
P〉V

= 〈P〉V

〈b2
P〉V

=
ν

∫
dx dy

(
1 + G
1 + ε̂x

)[
(1 − fP)ψ

2
J + fP − f 2

J

(1 − fJ)
2

]
∫

dx dy
(

1 + νG
1 + ε̂x

)
(1 − fP)ψ

2
J

. (6.8)

Total toroidal plasma current Î:

Î
I

= I + I‖φ
I

= 1
1 − fB

. (6.9)

Normalized internal inductance per unit length li:

li = 2Li

μ0R0
= 2

μ2
0Î2R0

∫
B2

P dr = 4π
α2

(
I

Î

)2

∫ (
1 + νG
1 + ε̂x

)
ψ2

J dx dy

[∫ (
1 + νε̂x
1 + ε̂x

)
ψJ dx dy

]2 . (6.10)
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Quantity Only a Jφ pedestal p and Jφ pedestals

Adiabatic
flow,

pedestals

Incompressible
flow,

pedestals

Case label A B C D
fP 0 0.2 0.2 0.2
fB 0 0.35 0.35 0.35
fJ 0.25 0.25 0.25 0.25
M0 0 0 0.4 0.4
γ — — 2 ∞
βP 0.873 1.60 1.59 1.60
βP reference 1.05 1.05 1.05 1.05
q∗ 4.00 2.62 3.18 2.89
q∗ reference 5.57 5.57 5.57 5.57

TABLE 2. Effect of pedestals, bootstrap current and flow on βP and q∗. The reference values are
those obtained in Part 1 for the same geometric cases but with zero pedestals and flow.

Kink safety factor q∗ (κ = κ95 for divertor surfaces):

q∗ = 2πa2B̂0

μ0R0Î

(
1 + κ2

2

)
= 2πa2B0

μ0R0I

(
1 + κ2

2

)(
B̂0

B0

)(
I

Î

)
. (6.11)

Local safety factor q(ψ):

q(ψ) = F(ψ)
2π

∮
ψ

dlP

R2BP
= F(ψ)

R0B0

[
α

2πR0

∮
ψ

dlP

rbP

]
. (6.12)

To see the effects of pedestals, bootstrap current and flow on the plasma parameters of
interest we focus on two critical parameters that constrain experimental operation, βP and
q∗. Using the expressions derived above we evaluate these quantities for four cases of
increasing complexity, with the double-null, spherical tokomak configuration described
in Part 1 as the starting reference point for each. Recall that this configuration has ε =
0.75, κX = 2.4, δX = 0.8, ν = 1.04. Case A adds a current density pedestal. Case B adds
current density and pressure pedestals plus a bootstrap current. Cases C and D further add
flow for the adiabatic and incompressible cases, respectively. All cases have q0 = 1. The
results are shown in table 2 including the corresponding reference values from Part 1.

An examination of table 2 leads to several anticipated results. Consider Case A
corresponding to a current density pedestal, but with no flow, no pressure pedestal and
no bootstrap current. A current density pedestal at fixed q0 = 1 tends to flatten the current
density profile keeping the central value fixed, thus adding to the pedestal free total current.
The higher current tends to decrease both q∗ and βP.

In Case B, a pressure pedestal and bootstrap current are added, still keeping zero flow.
The additional increase in total current over that in Case A causes a further decrease in
q∗. Adding an edge pressure pedestal while holding the central pressure approximately
constant raises the average pressure. This effect tends to increase βP which competes with
the βP lowering effects of a current density pedestal and bootstrap current. For the values
of parameters chosen, the pressure pedestal dominates and there is a net increase in βP.

Case C is the same as Case B except that an adiabatic flow is now added. Since
we have kept ν = 1.04 at the same value as for the reference case, the implication is
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that βP, as defined in (6.8), will also remain approximately unchanged. Consequently both
p and I must either increase or decrease. Qualitatively, at fixed βP, an increased pressure
gradient near the outer midplane requires additional current for confinement than would
be required to balance a weakly varying additional centrifugal force holding the pressure
constant. In other words, the current must work harder to confine pressure than rotation.
The implication is that holding ν (and correspondingly βP) constant while increasing the
flow results in an equilibrium with less pressure, less current and an increase in q∗. This
explains the trends in βP and q∗ in table 2 when flow is added. Observe also that there
is very little change in the parameters between the adiabatic (C) and incompressible (D)
cases if M0 is held fixed.

Lastly, note that in general, the values of q∗ with an added current gradient pedestal
and bootstrap current are substantially lowered. Depending on parameters, this could put
the plasma at risk of a major disruption. To increase q∗ to a safer value would require
decreasing the total current implying that q0 would likely have to be raised above its
standard value of unity.

7. Conclusions

The analysis in Part 1 provides analytic solutions to the Grad–Shafranov equation
applicable to a wide range of configurations: smooth surface limiter, double-null divertor,
single-null divertor, arbitrary ε, κ, δ, βT, βP, q0. These solutions are all characterized by
smooth edge behaviour; that is, the pressure, pressure gradient and toroidal current density
all smoothly approach zero at the plasma boundary. Part 2 generalizes the results. Pedestals
in pressure, pressure gradient and current density gradient are now included in the analysis.
An edge-localized fraction of the bootstrap current is also allowed. Lastly, toroidal flow
corresponding to either a γ = 2 adiabatic energy conservation relation or a γ = ∞
incompressible plasma further extends the Part 1 results.

A corresponding set of generalized plasma parameters has also been derived. The new
features in Part 2 provide analytic solutions that more closely model actual tokamak
plasma behaviour, and this is an important contribution of our analysis. Similar to what we
found in Part 1, most of the computational effort is in the post-processing calculation. The
solution of the equilibrium problem itself is not computationally intense. Computational
times are similar to the ones for the no-pedestal, no-flow case. A Grad–Shafranov solution,
flux surface plot and plasma parameter evaluation again require of the order of 2–3 s per
tokamak equilibrium.
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Appendix A. The generalized Grad–Shafranov equation with toroidal flow

The usual derivation of the Grad–Shafranov equation is generalized to include a toroidal
flow velocity. We obtain the modified Grad–Shafranov equation by including poloidal flow
and taking the limit as this flow approaches zero. If we set the poloidal flow velocity to
zero at the outset, we lose information from several of the key equations. In the end,
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we obtain a two-dimensional partial differential equation for the poloidal flux with three
free functions. The derivation proceeds as follows.
• The ∇ · B = 0 equation

As in the static case, axisymmetry allows us to introduce a flux function Ψ that
automatically guarantees that the ∇ · B = 0 equation is satisfied. This leads to the
following representation for the magnetic field:

B = 1
R

∇Ψ × eφ + Bφeφ. (A 1)

The three components of the magnetic field are now expressed in terms of the two
quantities Ψ (R,Z) and Bφ(R,Z). The basic unknown in the generalized Grad–Shafranov
equation isΨ (R,Z). As expected,Ψ (R,Z) satisfies the basic definition of a ‘flux function’:

B · ∇Ψ = 0. (A 2)

All quantities are eventually expressed in terms of Ψ (R,Z).
• Ampere’s law

Ampere’s law leads to an expression for the current density in terms of Ψ and Bφ . A
simple calculation leads to

μ0J = ∇ × B = 1
R

∇(RBφ)× eφ − eφR∇ ·
(∇Ψ

R2

)
. (A 3)

So far, the analysis is identical to the static case.
• Faraday’s law

Faraday’s law leads to a well-known, simple representation for the electric field. In
steady state ∂/∂t = 0 implying that

∇ × E = 0 → E = −∇Φ. (A 4)

The electric field is purely electrostatic.
• The parallel Ohm’s law

The parallel component of the ideal MHD Ohm’s law reduces to E · B = 0 which can
be written in terms of �(R,Z) as

B · ∇Φ = 1
R
(∇Ψ × eφ) · ∇Φ = 0. (A 5)

The general solution to this equation is

Φ(R,Z) = Φ(Ψ ). (A 6)

The two-dimensional electric potential is actually a function only of the single variable
Ψ . The functional dependence of Φ(Ψ ) is a free choice that cannot be determined by the
ideal MHD model.
• The velocity v from the full Ohm’s law

The full Ohm’s law, E + v × B = 0, can be easily inverted yielding an expression for
the velocity:

v = E × B
B2

+ V‖
B

B = −dΦ
dΨ

∇Ψ × B
B2

+ V‖
B

B = Ω
∇Ψ × B

B2
+ V‖

B
B. (A 7)

Here the perpendicular rotational velocity Ω(Ψ ) = −dΦ/dΨ has been introduced for
convenience and replaces Φ(Ψ ) as a free function. Observe that v is a function of the two
quantities Ω(Ψ ) and V‖(R,Z) with V‖(R,Z) a new, and as yet undetermined unknown.
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One immediate consequence of (A 7) is that

v · ∇Ψ = 0. (A 8)

There is no flow normal to the flux surfaces.
Since v · ∇Ψ = 0 it becomes convenient in the analysis to introduce the poloidal

and toroidal components of the velocity, Vp and Vφ , as alternatives to the perpendicular
and parallel components ΩR and V‖. Thus, writing v = Vp(Bp/Bp)+ Vφeφ with Bp =
[(∇Ψ )2/R2]1/2, equating this expression to (A 7) and taking the limit Vp → 0 leads to

V‖ = Bφ
B

Vφ + Bp

B
Vp → Bφ

B
Vφ, Vφ = Bφ

B
V‖ − B2

p

B2
ΩR,

ΩR = −Vφ + Bφ
Bp

Vp → −Vφ, Vp = Bp

B

(
V‖ + Bφ

B
ΩR

)
→ 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 9)

These relations allow us to use either set of velocities interchangeably.
• Conservation of mass

The conservation of mass equation simplifies to

∇ · (ρv) = ∇ ·
(
ρVp

Bp
Bp

)
= Bp · ∇

(
ρVp

Bp

)
= 0. (A 10)

The general solution to this equation is

ρVp

Bp
= Γ (Ψ ) → 0, (A 11)

where Γ (Ψ ) is a new free function proportional to the poloidal momentum. The case of
current interest is pure toroidal flow, corresponding to the limit Γ (Ψ ) → 0.
• Conservation of energy

The conservation of energy equation simplifies in a similar way:

v · ∇
(

p
ργ

)
= Vp

Bp
Bp · ∇

(
p
ργ

)
= 0. (A 12)

The general solution is

p
ργ

= S(Ψ ) ≡ p̄(Ψ )
ρ̄(Ψ )γ

, (A 13)

with S(Ψ ) another free function equivalent to the entropy. It is convenient to replace
S(Ψ ) with the ratio of two flux functions p̄(Ψ )/ρ̄(Ψ )γ . This will make it easy to take
the incompressible limit. Although p̄(Ψ ) and ρ̄(Ψ )γ should be viewed as two independent
free functions, only their ratio is needed at this point in the analysis, corresponding to the
single function S(Ψ ).
• The eφ component of the momentum equation

The last equation to analyse is the momentum equation which is decomposed into three
independent components along the directions eφ,B and ∇Ψ . A set of short calculations
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shows that the terms appearing in the eφ component reduce to

eφ · ∇p = 0,

eφ · J × B = 1
μ0R

Bp · ∇(RBφ),

eφ · (ρv · ∇v) = 1
R

Bp · ∇(Γ RVφ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 14)

Combining terms leads to

1
R

Bp · ∇(μ0Γ RVφ − RBφ) → − 1
R

Bp · ∇(RBφ) = 0, (A 15)

which has as its general solution

RBφ = F(Ψ ). (A 16)

Here, F(Ψ ) is another free function of flux related to the toroidal field.
A summary of the expressions for the φ components of velocity and magnetic field is

given by

Vφ = −ΩR,

Bφ = F
R
.

⎫⎬
⎭ (A 17)

• The B component of the momentum equation
The next step in the analysis is to multiply the momentum equation by 1/ρ and then

take its B component. A set of short calculations shows that the resulting terms can be
written as

1
ρ

B · (J × B) = 0,

1
ρ

B · ∇p = Bp · ∇
(

γ

γ − 1
p
ρ

)
,

B · (v · ∇v) = −1
2

Bp · ∇(Ω2R2).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A 18)

We now combine terms yielding

Bp · ∇
(

γ

γ − 1
p
ρ

− 1
2
Ω2R2

)
= 0. (A 19)

The general solution is given by

γ

γ − 1
p
ρ

− 1
2
Ω2R2 = U(Ψ ) ≡ γ

γ − 1
p̄(Ψ )
ρ̄(Ψ )

− 1
2
Ω2(Ψ )R2

0, (A 20)

where U(Ψ ) is another free function. Since U(Ψ ) has a different ratio of p̄(Ψ )/ρ̄(Ψ ) from
S(Ψ ), then p̄, ρ̄ can be considered to be two free functions of Ψ replacing S,U.
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Note that (A 13) and (A 20) can be viewed as two simultaneous equations for p(R,Z)
and ρ(R,Z). Solving yields

ρ

ρ̄
= (1 + M2�R)

1/(γ−1)
,

p
p̄

=
(
ρ

ρ̄

)γ
= (1 + M2�R)

γ/(γ−1)
,

M2(Ψ ) = γ − 1
2γ

ρ̄Ω2R2
0

p̄
,

�R(R) = R2

R2
0

− 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 21)

Here, M2(Ψ ) is the square of the effective thermal Mach number. Hereafter, we consider
p̄,M2 rather than p̄, ρ̄ as two free functions.
• The ∇Ψ component of the momentum equation

The last relation of interest is obtained by again multiplying the momentum equation by
1/ρ and then evaluating its ∇Ψ component. Some algebra is required. The basic equation
can be written as

∇Ψ ·
(

−v · ∇v + 1
ρ

J × B − 1
ρ

∇p
)

= 0. (A 22)

The various terms are given by

∇Ψ · (v · ∇v) = −1
2
Ω2∇Ψ · ∇R2,

1
ρ

∇Ψ · (J × B) = −(∇Ψ )
2

μ0ρR2
(Δ∗Ψ + FF′),

1
ρ

∇Ψ · ∇p = 1
ρ

∇Ψ · ∇[p̄(1 + M2�R)
γ/(γ−1)]

= 1
ρ
(1 + M2�R)

1/(γ−1)

{
(∇Ψ )2

[
p̄′(1 + M2�R)+ γ

γ − 1
p̄(M2)′�R

]}
+ 1
ρ
(1 + M2�R)

1/(γ−1)(∇Ψ · ∇�R)
γ

γ − 1
p̄M2

= (∇Ψ )2
ρ̄

[
p̄′(1 + M2�R)+ γ

γ − 1
p̄(M2)′�R

]
+ 1

2
Ω2∇Ψ · ∇R2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 23)

Combining terms leads to an expression of the form (∇Ψ )2[· · · ] = 0. Thus, setting
[· · · ] = 0 leads to the desired form of the modified Grad–Shafranov equation including
toroidal flow:

Δ∗Ψ = −FF′ − μ0R2

(
ρ

ρ̄

){
p̄′ +

[
M2p̄′ + γ

γ − 1
p̄(M2)′

](
R2

R2
0

− 1
)}

,

ρ

ρ̄
=
[

1 + M2

(
R2

R2
0

− 1
)]1/(γ−1)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 24)
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Observe that, as expected, if Ω = 0 corresponding to zero flow, then ρ = ρ̄ and (A 24)
reduces to the standard Grad–Shafranov equation. Also, note that for arbitrary γ , three
free functions need to be specified: F, p̄,M2.

Appendix B. Solution of the Xn equation with flow

The task here is to generalize the power-series solution for Xn taking into account
the modifications to the basic equation due to flow. The analysis is quite similar to that
in Appendix A of Part 1 and ultimately requires only simple additions to the recursion
relation. The starting point is the equation for Xn repeated here for convenience:

d2Yn

dy2
+ h2

nYn = 0,

(1 + ε̂x)
d2Xn

dx2
+ (k2

n + λ2
1x + λ2

2x2 + λ2
3x3)Xn = 0,

k2
n = α2 − h2

n

1 + ε2
,

λ2
1 = ε̂α2ν1,

λ2
2 = ε̂2α2ν2,

λ2
3 = ε̂3α2ν3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 1)

We again expand the two solutions for Xn (Cn and Sn) as cosine-like and sine-like series:

Cn(x) =
∞∑

m=0

[âmxm cos(knx)+ b̂mxm sin(knx)]

â0 = 1 b̂0 = 0

Cosine - like expansion,

Sn(x) =
∞∑

m=0

[ãmxm cos(knx)+ b̃mxm sin(knx)]

ã0 = 0 b̃0 = 1

Sine - like expansion.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 2)

Each expansion is substituted into (B 1). The result contains two types of terms for both
the cosine-like and sine-like expansions, one proportional to cos(knx), the other to sin(knx).
Each coefficient is set to zero which yields a pair of coupled recursion relations, which are
identical for both expansions. Only the non-zero starting coefficients are different. The
results are summarized below:

am = − 1
m(m − 1)

[ε̂(m − 1)(m − 2)am−1 + (λ2
1 − ε̂k2

n)am−3 + λ2
2am−4

+ λ2
3am−5 + 2(m − 1)knbm−1 + 2ε̂(m − 2)knbm−2],

bm = − 1
m(m − 1)

[ε̂(m − 1)(m − 2)bm−1 + (λ2
1 − ε̂k2

n)bm−3 + λ2
2bm−4

+ λ2
3bm−5 − 2(m − 1)knam−1 − 2ε̂(m − 2)knam−2].

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B 3)

As usual, when using these relations we set am = bm = 0 for all m ≤ −1. The analysis also
requires the first and second derivatives of Cn, Sn. These are easily evaluated and can be
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(b)

(a)

FIGURE 4. (a) The Ψ (left) and p (right) contours for the benchmark case. The FLOW results
are in green and analytic results in black although they are so close that they appear to overlap.
(b) One-dimensional plots of the same quantities in red and blue which appear as a single red
curve because of the close overlap. A zero flow curve in black is added for comparison.

written as

C′
n(x) =

∞∑
m=0

[(−knâmxm + mb̂mxm−1) sin(knx)+ (knb̂mxm + mâmxm−1) cos(knx)],

S′
n(x) =

∞∑
m=0

[(−knãmxm + mb̃mxm−1) sin(knx)+ (knb̃mxm + mãmxm−1) cos(knx)],

C′′
n(x) = − k2

n + λ2
1x + λ2

2x2 + λ2
3x3

1 + ε̂x
Cn(x),

S′′
n(x) = − k2

n + λ2
1x + λ2

2x2 + λ2
3x3

1 + ε̂x
Sn(x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 4)
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Appendix C. Comparison between the analytic solution and FLOW

As explained in the main part of the text, we have benchmarked the analytic code
for the solution of the modified Grad–Shafranov equation against the numerical code
FLOW (Guazzotto et al. 2004), with highly satisfactory results. We demonstrate this good
agreement by presenting one typical example. For our benchmark, we use the standard
tokamak equilibrium presented in Part 1, with a rotation of M0 = 0.5. The other input
parameters are: ε = 1/3, δ = 0.6, κ = 1.8, ν = 0.3, q0 = 1 and γ = 2. Since FLOW is
not designed to allow edge pedestals, we set fB = fP = fJ = 0 in this calculation. Thus, we
are specifically testing the implementation of the flow part of the core analytic solution.
We used 1025 points in each direction for the FLOW grid.

The analytic equilibrium and the one calculated with FLOW are compared in figure 4.
In figure 4(a), we show constant Ψ (left) and constant p (right) surfaces. FLOW results
are in green and analytic results in black. A one-dimensional plot of the same quantities
along the midplane is shown in figure 4(b). There, FLOW results are in blue and analytic
results are in red. A reference black curve is also added, showing the result for a static
equilibrium with the same input free functions F(Ψ ) and p(Ψ ), but zero flow. For both Ψ
and p the FLOW and analytic results are in excellent agreement. The overlap is so close
that it is a difficult to see that there are actually two sets of curves. The solutions with flow
differ substantially from the static result.
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