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Abstract

For a given set S ⊆ Zm and n ∈ Zm, let RS(n) denote the number of solutions of the equation n = s + s′ with

ordered pairs (s, s′) ∈ S2. We determine the structure of A, B ⊆ Zm with |(A ∪ B) \ (A ∩ B)| = m − 2 such

that RA(n) = RB(n) for all n ∈ Zm, where m is an even integer.
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1. Introduction

For a fixed integer m ≥ 2, let x be the residue class x modulo m, the set of all integers y

such that y ≡ x (mod m), and let Zm be the set of all residue classes mod m. For a given

set S ⊆ Zm and n ∈ Zm, the representation function RS(n) is defined as the number of

solutions of n = s + s′ with s, s′ ∈ S. For a ∈ Zm and X ⊆ Zm, define

a + X = {a + x : x ∈ X}.

In 2012, Yang and Chen [10] studied the analogue of Sárközy’s problem in Zm. They

determined the structure of the sets A, B ⊆ Zm with |(A ∪ B) \ (A ∩ B)| = m such that

RA(n) = RB(n) for all n ∈ Zm.

THEOREM A ([10], Theorem 2). The equality RA(n) = RZm\A(n) holds for all n ∈ Zm if

and only if m is even and |A| = m/2.

In 2017, Yang and Tang [11] considered the case of |(A ∪ B) \ (A ∩ B)| = m − 1 and

proved the following result.

THEOREM B ([11], Theorem 3.1). Let m ≥ 3 be an odd integer. Then there do not

exist sets A, B ⊆ Zm with |(A ∪ B) \ (A ∩ B)| = m − 1 such that RA(n) = RB(n) for all

n ∈ Zm.
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Related results about partitions of N with the same representation functions can be

found in [1–9].

In this paper we determine the structure of A, B ⊆ Zm with |(A ∪ B) \ (A ∩ B)| =

m − 2 such that RA(n) = RB(n) for all n ∈ Zm. If RA(n) = RB(n) holds for all n ∈ Zm,

then |A| = |B|, and so |(A ∪ B) \ (A ∩ B)| = m − 2 is even. Hence we always assume

that m is an even integer.

If |(A ∪ B) \ (A ∩ B)| = m − 2, then there are three cases to consider:

(1) A ∪ B = Zm, |A ∩ B| = 2;

(2) A ∪ B = Zm \ {r1}, |A ∩ B| = 1;

(3) A ∪ B = Zm \ {r1, r2}, |A ∩ B| = 0.

So we have the following three theorems.

THEOREM 1.1. Let m be an even integer and let A, B be sets with A ∪ B = Zm,

|A ∩ B|= 2. Then RA(n) = RB(n) for all n ∈ Zm if and only if B = A + m/2.

THEOREM 1.2. Let m be an even integer and let A, B be sets with A ∪ B = Zm \ {r1},

|A ∩ B| = 1.

(i) If m ≡ 0 (mod 4), then there do not exist two sets A, B such that RA(n) = RB(n)

for all n ∈ Zm.

(ii) If m ≡ 2 (mod 4), then RA(n) = RB(n) for all n ∈ Zm if and only if there exist two

sets C, D with |C| = |D| = (m/2 − 1)/2, C ∪ D = [0, m/2 − 1] \ {r1, r1 + m/2},

and C ∩ D = ∅ such that

A = C ∪ (C + m/2) ∪ {r1 + m/2}, B = D ∪ (D + m/2) ∪ {r1 + m/2}.

THEOREM 1.3. Let m be an even integer and let A, B be sets with A ∪ B = Zm \ {r1, r2},

|A ∩ B| = 0. Then RA(n) = RB(n) for all n ∈ Zm if and only if B = A + m/2.

Throughout this paper, the characteristic function of the set A ⊆ Zm is denoted by

χA(t) =















0 t < A,

1 t ∈ A.

For any sets A, B ⊆ Zm, RA,B(n) is defined as the number of solutions of the equation

a + b = n with a ∈ A and b ∈ B. For a property P, define θ(P) = 1 if P is true, otherwise

θ(P) = 0. Without loss of generality, for every residue class n ∈ Zm, we may assume

that 0 ≤ n ≤ m − 1.

2. A preliminary lemma

LEMMA 2.1. Let S ⊆ Zm. Then RZm\S(n) = m − 2|S| + RS(n) for all n ∈ Zm.

PROOF. For all n ∈ Zm, it is clear that

RZm\S(n) = |{(s, s′) : s, s′ ∈ Zm \ S, 0 ≤ s, s′ ≤ m − 1, s + s′ = n or s + s′ = n + m}|

=

∑

0≤i≤n

(1 − χS(i)) (1 − χS(n − i)) +
∑

n+1≤i≤m−1

(1 − χS(i)) (1 − χS(n + m − i))
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= m − 2|S| +
∑

0≤i≤n

χS(i)χS(n − i) +
∑

n+1≤i≤m−1

χS(i)χS(n + m − i)

= m − 2|S| + RS(n).

This completes the proof of Lemma 2.1. �

3. Proof of Theorem 1.1

The sufficiency of the condition in Theorem 1.1 is obvious. We prove the necessity.

Assume that

A ∪ B = Zm, A ∩ B = {r1, r2}, RA(n) = RB(n) for all n ∈ Zm.

Since B = (Zm \ A) ∪ {r1, r2}, it follows from Lemma 2.1 that

RB(n) = RZm\A(n) + 2RZm\A,{r1,r2}(n) + 2θ(n = r1 + r2) + θ(n = 2r1) + θ(n = 2r2)

= RZm\A(n) + 2

2
∑

i=1

(1 − χA(n − ri)) + 2θ(n = r1 + r2) + θ(n = 2r1) + θ(n = 2r2)

= m − 2|A| + RA(n) + 2

2
∑

i=1

(1 − χA(n − ri))

+ 2θ(n = r1 + r2) + θ(n = 2r1) + θ(n = 2r2) (3.1)

for all n ∈ Zm. Since RA(n) = RB(n) for all n ∈ Zm, it follows that |A| = |B| = m/2+ 1.

Then by (3.1),

2(χA(n − r1) + χA(n − r2)) = 2 + 2θ(n = r1 + r2) + θ(n = 2r1) + θ(n = 2r2) (3.2)

for all n ∈ Zm.

If 2r1 , 2r2, then 2(χA(r1) + χA(2r1 − r2)) = 3 by taking n = 2r1 in (3.2), a contra-

diction. Hence 2r1 = 2r2, that is, r2 = r1 + m/2. It follows from (3.2) that

χA(n − r1) + χA

(

n −

(

r1 +
m

2

))

= 1 + θ

(

n = 2r1 +
m

2

)

+ θ(n = 2r1) (3.3)

for all n ∈ Zm. Taking n = k + (r1 + m/2) in (3.3),

χA(k) + χA

(

k +
m

2

)

= 1 + θ(k = r1) + θ

(

k = r1 +
m

2

)

for all k ∈ Zm, which implies that B = A + m/2.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Assume that A ∪ B = Zm \ {r1}, A ∩ B = {r2}. Since B = (Zm \ (A ∪ {r1})) ∪ {r2}, it

follows from Lemma 2.1 that

RB(n) = RZm\(A∪{r1})(n) + 2RZm\(A∪{r1}),{r2}(n) + θ(n = 2r2)

= RZm\(A∪{r1})(n) + 2(1 − χA∪{r1}(n − r2)) + θ(n = 2r2)
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= m − 2|A ∪ {r1}| + RA∪{r1}(n) + 2(1 − χA∪{r1}(n − r2)) + θ(n = 2r2)

= m − 2|A ∪ {r1}| + RA(n) + 2χA(n − r1) + θ(n = 2r1)

+ 2 − 2χA(n − r2) − 2θ(n = r1 + r2) + θ(n = 2r2) (4.1)

for all n ∈ Zm. Then RA(n) = RB(n) for all n ∈ Zm if and only if |A| = |B| = m/2 and

2χA(n − r1) + θ(n = 2r1) + θ(n = 2r2) = 2χA(n − r2) + 2θ(n = r1 + r2) (4.2)

for all n ∈ Zm.

If 2r1 , 2r2, then 2χA(2r2 − r1) + 1 = 2 by taking n = 2r2 in (4.2), a contradiction.

Hence 2r1 = 2r2, that is, r2 = r1 + m/2. Then (4.2) is equivalent to r2 = r1 + m/2 and

χA(n − r1) + θ(n = 2r1) = χA

(

n −

(

r1 +
m

2

))

+ θ

(

n = 2r1 +
m

2

)

(4.3)

for all n ∈ Zm. Taking n = k + (r1 + m/2) in (4.3),

χA

(

k +
m

2

)

+ θ

(

k = r1 +
m

2

)

= χA(k) + θ(k = r1) (4.4)

for all k ∈ Zm.

(i) If m ≡ 0 (mod 4) and RA(n) = RB(n) for all n ∈ Zm, then |A| = m/2 is even and

(4.4) holds for all k ∈ Zm. However, for any k , r1, r1 + m/2 with k ∈ A, it follows

from (4.4) that k, k + m/2 ∈ A, which implies that |A| is odd, a contradiction.

(ii) If m ≡ 2 (mod 4), then |A| = |B| = m/2, r2 = r1 + m/2 and (4.4) holds for all

k ∈ Zm if and only if there exist two sets C, D satisfying |C| = |D| = (m/2 − 1)/2,

C ∪ D = [0, m/2 − 1] \ {r1, r1 + m/2} and C ∩ D = ∅ such that

A = C ∪ (C + m/2) ∪ {r1 + m/2}, B = D ∪ (D + m/2) ∪ {r1 + m/2},

which implies Theorem 1.2.

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

The sufficiency of the condition in Theorem 1.3 is obvious. We prove the necessity.

Assume that

A ∪ B = Zm \ {r1, r2}, A ∩ B = ∅, RA(n) = RB(n) for all n ∈ Zm.

Since B = Zm \ (A ∪ {r1, r2}), it follows from Lemma 2.1 that
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RB(n) = RZm\(A∪{r1,r2})(n)

= m − 2|A ∪ {r1, r2}| + RA∪{r1,r2}(n)

= m − 2|A ∪ {r1, r2}| + RA(n) + 2

2
∑

i=1

χA(n − ri)

+ 2θ(n = r1 + r2) + θ(n = 2r1) + θ(n = 2r2) (5.1)

for all n ∈ Zm. Since RA(n) = RB(n) for all n ∈ Zm, it follows that |A| = |B| = m/2− 1.

Then by (5.1),

2χA(n − r1) + 2χA(n − r2) + 2θ(n = r1 + r2) + θ(n = 2r1) + θ(n = 2r2) = 2 (5.2)

for all n ∈ Zm.

If 2r1 , 2r2, then 2χA(2r2 − r1) + 1 = 2 by taking n = 2r2 in (5.2), a contradiction.

Hence 2r1 = 2r2, that is, r2 = r1 + m/2. It follows from (5.2) that

χA(n − r1) + χA

(

n −

(

r1 +
m

2

))

+ θ

(

n = 2r1 +
m

2

)

+ θ(n = 2r1) = 1 (5.3)

for all n ∈ Zm. Taking n = k + (r1 + m/2) in (5.3),

χA(k) + χA

(

k +
m

2

)

+ θ(k = r1) + θ

(

k = r1 +
m

2

)

= 1

for all k ∈ Zm, which implies that B = A + m/2.

This completes the proof of Theorem 1.3.
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