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We investigate numerically the nonlinear interactions between hetons. Hetons are
baroclinic structures consisting of two vortices of opposite sign lying at different
depths. Hetons are long-lived. They most often translate (they can sometimes rotate)
and therefore they can noticeably contribute to the transport of scalar properties in
the oceans. Heton interactions can interrupt this translation and thus this transport,
by inducing a reconfiguration of interacting hetons into more complex baroclinic
multipoles. More specifically, we study here the general case of two hetons, which
collide with an offset between their translation axes. For this purpose, we use
the point vortex theory, the ellipsoidal vortex model and direct simulations in the
three-dimensional quasi-geostrophic contour surgery model. More specifically, this
paper shows that there are in general three regimes for the interaction. For small
horizontal offsets between the hetons, their vortices recombine as same-depth dipoles
which escape at an angle. The angle depends in particular on the horizontal offset. It
is a right angle for no offset, and the angle is shallower for small but finite offsets.
The second limiting regime is for large horizontal offsets where the two hetons
remain the same hetonic structures but are deflected by the weaker mutual interaction.
Finally, the intermediate regime is for moderate offsets. This is the regime where the
formation of a metastable quadrupole is possible. The formation of this quadrupole
greatly restrains transport. Indeed, it constrains the vortices to reside in a closed area.
It is shown that the formation of such structures is enhanced by the quasi-periodic
deformation of the vortices. Indeed, these structures are nearly unobtainable for
singular vortices (point vortices) but may be obtained using deformable, finite-core
vortices.

Key words: baroclinic flows, geophysical and geological flows, quasi-geostrophic flows

1. Introduction
Mesoscale eddies play a key role in the transport of momentum, heat and nutrients

in the oceans. It is currently estimated that about half of the overall transport in the
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oceans may be attributed to mesoscale vortices (see Zhang, Wang & Qiu 2014). The
ubiquity of vortices in the oceans is well documented in the literature (see e.g. Chelton
et al. 2007). A typical survey of the vortex population in the surface layer of the
North Atlantic alone proposed by Ebbesmeyer et al. (1986) estimates that between
1000 and 10 000 structures may be found at any time. Although this estimate is an
extrapolation from sample measurement in a small region of the Atlantic, a plethora
of satellite measurements and imagery confirms the ubiquity of the coherent structures
(Chelton, Schlax & Samelson 2011). An isolated vortex does not induce an overall
advection on itself, but rather spins. Vortices, however, advect as a result of their
interactions. Vortices may interact with coastal boundaries, jets and currents as well as
with bottom topography. More importantly, vortices interact with one another. Vortex
interaction has been extensively studied in the literature, in many different contexts,
over very large parameter spaces – see Carton (2001) for a review.

Within the context of ocean dynamics, flows are strongly affected by the stable
stratification of the waters, and by the Earth’s rotation. The simplest dynamical model
to study fluid flows in this situation is the quasi-geostrophic model. In this paper, we
will focus on the three-dimensional incompressible quasi-geostrophic model. In this
context, vortices are best defined as compact volumes of anomalous potential vorticity.
Previous studies include vortex merger (see von Hardenberg et al. 2000; Dritschel
2002; Reinaud & Dritschel 2002; and subsequent studies) as well as destructive
interactions for dipoles (see Reinaud & Dritschel 2009). This has been done solving
the full quasi-geostrophic equations or using simplified models, such as the ellipsoidal
model (see Reinaud & Dritschel 2005).

Hetons are another kind of vortex structure which are observed in the oceans.
Hetons consist of two opposite-signed vortices lying at different depths. Several
formation mechanisms are possible, such as the presence of local surface cooling
(ice) and brine (see Chao & Shaw 1999), or the baroclinic instability of coastal
jets (Chérubin et al. 1997) and the destabilisation of deep jets (see Flierl, Carton
& Messager 1999); see also Sokolovskiy & Verron (2014) for a discussion. Such
structures were originally described for point vortices or charges by Gryanik (1983a,b)
in a two-layer model and continuous stratification, respectively. Independently, Kizner
(1984) introduced Rossby solitons, which are essentially hetons as well. The term
‘heton’ was however introduced in the seminal paper by Hogg & Stommel (1985).
Again, the authors first focused on singular vortices. It should be noted that similar
problems were also investigated by Young (1985). Finite-core hetons and their stability
have been addressed in a series of papers, both in layered models and in continuous
stratification. Kozlov, Makarov & Sokolovskiy (1986), Helfrich & Send (1988) and
Flierl (1988) studied the stability of two-layer hetons whose vortices are aligned in
the vertical direction, while Sokolovskiy (1997), for example, studied hetons in a
three-layer model. An extensive overview and detailed bibliography for the problem
in a two-layer model may be found in Sokolovskiy & Verron (2014). The existence of
singular (explosive) modes for the two-layer problem was addressed by Carton et al.
(2010a), while the parametric instability for the same problem is addressed in Carton
et al. (2010b). Kizner, Berson & Khvoles (2002, 2003) also studied smooth hetons
(referred to as baroclinic modons) on the β-plane. Their solutions can be adapted
to the f -plane. For continuous stratification, the problem is discussed in Reinaud &
Carton (2009) in the case where the vortices are aligned in the vertical direction and
where the vortices may be separated by a vertical gap. Misaligned vortices, referred
to as ‘tilted’ hetons in the literature, are addressed in Reinaud (2015).
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Interaction between two antisymmetric hetons 411

The overall upshot of all these studies is that hetons may be sensitive to baroclinic
instability. The instability depends on the aspect ratio of the vortices constituting
the hetons. Wider vortices are sensitive to higher azimuthal wavenumber modes of
perturbation. The instability may be suppressed if the vortices are compact and/or
well separated either or both in the vertical direction and in the horizontal direction.
This means that compact-core, well-separated hetons are robust (stable) and may be
efficient candidates to transport flow properties over long time, and subsequently long
distances.

Because hetons move in the flow (provided their vortices are horizontally offset),
they may enter the vicinity of other vortices and in particular other hetons. Indeed, the
interaction between hetons has been observed in the oceans, for example in L’Hegaret
et al. (2014). The motion and the interactions between hetons has been studied in
the literature, mostly within the context of two-layer models. The interaction between
the hetons may redistribute potential vorticity by, for example, breaking and/or
merging vortices. Studies in the two-layer context include Valcke & Verron (1993),
Sokolovskiy & Verron (2000), Gryanik, Sokolovskiy & Verron (2006) and Kizner
(2006), and references therein, to give a non-exhaustive list.

The interaction between two continuously stratified hetons, with possibly a vertical
gap between the vortices, is addressed in Reinaud & Carton (2015a) for the case
where the two colliding hetons are initially translating along the same axis, in
opposite directions. It is shown that the interaction between the hetons may compete
with the intrinsic stability of the hetons to baroclinic modes. These interactions may
produce further multipolar structures and small-scale debris and filaments. Moreover,
at leading order, even for stable hetons, the interaction may result in significant
changes in the hetons’ trajectories. The hetons may recombine and escape at an
angle nearly perpendicular to the initial trajectories. Alternatively, the hetons may
reverse their trajectory and further separate at long time. These interactions depend
on the region of the parameter space identified in Reinaud & Carton (2015a), and
in particular on the set-up of the hetons. Indeed, for two hetons to translate towards
one another, two different set-ups are possible. In the one case, the vortices lying at
the same depth (one vortex from each incoming heton) have the same polarity. This
case is referred to as the symmetric case. The second case corresponds to the case
where the vortices lying at the same depth have different polarities, referred to as the
antisymmetric case. When the two hetons are additionally offset in the horizontal but
still initially translate along parallel axes, a symmetric pair of hetons may recombine
to form a tripolar structure. Such structures are investigated in Reinaud & Carton
(2015b).

The present study addresses the interaction between two antisymmetric hetons
when the hetons are initially horizontally offset from one another. This gives rise
to potential different behaviours from the aligned case studied in Reinaud & Carton
(2015a), as the hetons no longer collide ‘head-on’. In particular, the behaviour
depends on how much the hetons are offset (as a function of the other parameters of
the flow). We show that the behaviour of the interacting antisymmetric hetons may
fall into one of the three generic classes. For small horizontal offsets, the interaction
is qualitatively similar to the one of aligned hetons. In such scenarios, the vortices
of the hetons recombine as same-depth dipoles and escape at an angle. For large
horizontal offsets, the hetons are too distant from one another to strongly interact
together, and the overall result of the weaker interaction results in a deflection of
the initial trajectories. The intermediate regime for moderate horizontal offsets is
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dynamically richer. There is a metastable solution (originated by the existence of
a true equilibrium) where the vortices form a quadrupole, which rotates about the
centre of the system. These structures are referred to as Z-vortices, due to the shape
the vortices exhibit (Sokolovskiy & Carton 2010). This, as a consequence, drastically
alters the transport, as the vortices remain confined in a localised area. Moreover, in
our case, the overall strength of the quadrupoles is zero, as there is as much negative
potential vorticity as positive. This means that the velocity field induced outside the
quadrupole decays very rapidly away from it. As a consequence, the quadrupole
rotates within an overall quiet environment.

The complete problem depends on a large number of parameters covering a huge
parameter space. For finite-core vortices, even when imposing equal volume and
general shape (aspect ratio) and equal potential vorticity (in absolute value) for
the four vortices, the problem still depends on four parameters: the aspect ratio
of the vortices, the vertical offset between the vortices, and two horizontal offsets,
one between the vortices within each heton and one between the two hetons. A
comprehensive study solving the full quasi-geostrophic equations is out of reach. It
is however possible to draw the main, generic, dynamical features of the interaction.
To do this, we propose a methodology for studying the problem using a hierarchy
of models. We shall start by general considerations based on arguments on the
velocities of singularities at an instant frozen in time, as well as the existence of
a configuration in equilibrium. Then, the explicit time integration of the motion of
singularities reveals the possible evolutions for the pair of hetons colliding from a
distance. It is shown however that the practical formation of a Z-vortex necessitates
the ability for the vortices to deform and adapt. At leading order, the influence of
the shape of the vortices may be studied using an asymptotic model: the ellipsoidal
model (see Dritschel, Reinaud & McKiver 2004). Finally, the full dynamics of the
interaction has been studied on a large number of cases to illustrate the outcome.

The paper is organised as follows. Section 2 describes the equations used and the
general set-up of the problem. Section 3 discusses the possible trajectories for the
hetons using singularities and indicates the existence of equilibrium solutions in this
context. Section 4 discusses the intermediate regime where Z-vortices can be obtained.
This section includes discussions on the finite-core effects using the ellipsoidal model.
It also addresses the full dynamics, and in particular the formation of small scales
and debris. Section 5 revisits the non-destructive interaction using the full dynamics,
where the hetons recombine or are deflected. Conclusions are drawn in § 6. The paper
is completed by three appendices addressing technical details, and a summary of the
outcome of a large number of nonlinear simulations from the large parameter space
of the problem.

2. Equations of motion and problem set-up

We investigate the evolution of vortices under the quasi-geostrophic approximation.
This approximation derives from a Rossby-number expansion of the primitive
equations and is strictly valid for Fr2 � Ro � 1. Here, the Froude number
Fr = U/(NH) is the ratio of a scale of horizontal vorticity U/H (where U is a
typical horizontal velocity scale and H a vertical length) to the buoyancy frequency
N in the stably stratified fluid. The Rossby number Ro = U/( fL) is the ratio of
U/L, which scales as the vertical component of the relative vorticity (L is a typical
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FIGURE 1. Geometry of the antisymmetric horizontally offset hetons. The vortices are
labelled as 1 (top left), 2 (bottom left), 3 (bottom right) and 4 (top right). Vortices 1
and 2 constitute the first heton while vortices 3 and 4 form the second one. Vortices 1
and 3 have positive sign (+q) while vortices 2 and 4 are negative (−q). The vertical and
horizontal offsets within each heton are indicated by dz and dy; and the horizontal offset
between the two hetons is indicated by ds. The bold arrows indicate the initial direction
of translation velocity.

horizontal scale), to f , which is the Coriolis frequency. We assume in the study that
both N and f are constant for the sake of simplicity. Stretching the physical vertical
coordinate z∗ by the constant ratio N/f , the governing equations read

1ψ = q, (2.1)

u=−∂ψ
∂y

and v = ∂ψ
∂x
, (2.2a,b)

Dq
Dt
= 0, (2.3)

where D/Dt= ∂/∂t+u ·∇= ∂/∂t+ J(ψ, ·) is the material derivative, q is the potential
vorticity anomaly, hereinafter referred to as PV, and ψ is the streamfunction. In the
first equation, the operator 1 is the three-dimensional Laplacian, where the vertical
coordinate z= z∗N/f , and 1= ∂2/∂x2+ ∂2/∂y2+ ∂2/∂z2. The advection velocity field
u = (u, v) is the geostrophic velocity field, and although the vertical velocity w is
not zero in quasi-geostrophy, it is small enough not to contribute to the advection of
the potential vorticity q. Details on quasi-geostrophic equations originated by Charney
(1947) and their derivation may be found in Vallis (2006), for example.

The general geometry of the configuration is described in figure 1. Each heton
consists of a pair of vortices of equal size and equal and opposite PV lying at different
depths. For the sake of simplicity, the two hetons are similar. The vortices within each
heton are initially aligned along the x-direction and offset in the horizontal in the
y-direction such that each heton (individually) translates along the x-axis. The
horizontal offset, in combination with the polarity of the vortices, is chosen such
that the hetons initially move towards one another. This set-up is the same as the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.171


414 J. N. Reinaud and X. Carton

one used in Reinaud & Carton (2015a) except the two hetons initially do not travel
along the same axis but along parallel axes (the axes are horizontally offset). In this
paper, we focus on the interaction between ‘antisymmetric hetons’, following the
nomenclature in Reinaud & Carton (2015a). This means that the two vortices lying
at the same depth (each belonging to one of the hetons) have opposite polarity. The
horizontal offset puts the two positive vortices (which lie at different depths) closer
horizontally while placing the two negative ones further away from one another.
Because the volume and the absolute value of PV are set to be the same for each of
the four vortices, the first parameters that can be varied are dy, the horizontal offset
between the vortices within each heton, and dz, their vertical offset. Then, ds denotes
the horizontal offset between the two hetons. Finally, we can choose the aspect ratio
of the vortices ρ = r/h, where r is the mean horizontal radius of the vortices, and h
is the total height of the vortices. For the full dynamics, the vortices are initially set
to be cylinders.

3. Point vortices and possible trajectories
3.1. Interactions between two distant incoming hetons

We first discuss the possible trajectories for the interacting antisymmetric hetons. We
illustrate their behaviour modelling the vortices by singularities. This approach allows
us to investigate very rapidly large parameter spaces, as the computational cost is
minimal. Doing so, however, we lose the shape of the vortices and the aspect ratio ρ
of the vortices is no longer a parameter. The three parameters remaining are the three
offsets dy, dz and ds. Without loss of generality, only two non-dimensional length
ratios are independent, for example dz/dy and ds/dy.

In the case ds = 0, when the two hetons are facing each other, the location of
the four vortices may be determined from the location of one of the vortices only,
using symmetry for the other three, as discussed in Reinaud & Carton (2015a). This
allows us to determine the possible trajectories of the vortices without solving the
time-dependent dynamical equations of motion for the singularities, but using instead
the spatial structure of the Hamiltonian function alone (see the discussion in Reinaud
& Carton (2015a)). This is no longer possible in the present case, as we break the
symmetry, which allows us to determine the positions of the three other point vortices
at all times from the knowledge of the position of one alone. The time-dependent
dynamical equations have to be solved for each case (i.e. for each dz/dy and each
ds/dy). This also allows for more, non-trivial trajectories. In particular, there are
small regions of the parameter space where the advection of the singularities is
highly sensitive to the initial conditions.

Despite these complex behaviours, we may distinguish three general regimes,
depending on the ratio ds/dy. As seen in Reinaud & Carton (2015a), in the case
ds= 0, the only generic behaviour observed for singularities is the recombination of
the vortices of the hetons into dipoles formed by the opposite-signed vortices lying
at the same depth. When ds = 0, the dipoles escape nearly at a right angle from
the original trajectories of the incoming hetons. This behaviour does not qualitatively
depend on the aspect ratio dz/dy characterising the incoming hetons. For ds= 0, the
incoming hetons always get close enough to one another such that the same-depth
vortices, which initially belong to different hetons, recombine as dipoles. It is expected
that for small values of the ratio ds/dy, i.e. small horizontal offsets between the two
hetons, the behaviour will be similar, and the vortices will recombine as dipoles
escaping at an angle depending on the initial conditions. In other words, the first
regime we may expect is the recombination of hetons into dipoles for small ds/dy.
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For large relative horizontal offsets ds/dy, the two hetons are well separated in the
horizontal. Keeping in mind that the overall strength associated with each heton is
zero (the positive vortex compensates the negative one), the influence of a heton on
the other one decreases rapidly with their separation distance. As a consequence, the
vortices of one heton will not strongly interact with the vortices of the other heton.
The weak influence of one heton onto the other one will merely result in the deflection
of the trajectories. We may say that the second regime is the deviation or deflection
of the hetons for large ds/dy.

The complex regime is the intermediate one, i.e. for ds/dy ' O(1). In this case,
the respective influences of all singularities are likely to compete with each other.
As mentioned before, the actual trajectory of the singularities can only be obtained
by the explicit time integration of the evolution equations. However, a rapid point
vortex calculation of the velocities at a frozen instant of time allows us to better
understand the competition between the various effects. For this purpose, we consider
the velocity v1 in the y-direction of the inner, upper vortices labelled 1 in figure 1.
This corresponds to one of the vortices being put closer in the horizontal direction
to its counterpart in the other heton. Following the geometry of the configuration, for
v1 < 0 vortex 1 goes towards the vortex of opposite sign lying at the same depth
of the second heton (labelled vortex 4 in figure 1). This indicates the likeliness of
the formation of a same-depth dipole. For v1 > 0, vortex 1 goes away from vortex 4,
indicating the likeliness of the deflection of the heton away from the second heton.
The details of the calculation of v1 for given dy, dz and ds are outlined in § A.1, and
the result reads

v1 > 0, iff
ds
dy
> λc ≡ 1+ (dz/dy)2

2
, (3.1)

and v1 6 0 otherwise. In fact, this corresponds to the competition of the influence of
vortices 3 and 4 over vortex 1. The former case corresponds to the case where vortex
4 is closer to vortex 1 than vortex 3 is. Since vortices 3 and 4 have equal and opposite
strengths, in that case vortex 4 dominates the interaction. The latter case corresponds
to the case where vortex 3 is closer to vortex 1.

It should be noted that this calculation does not fully represent what happens
during the actual time-dependent nonlinear evolution, as the calculation assumes
that the singularities are located following a pattern similar to the initial conditions.
This arrangement is no longer exactly valid at t > 0, as the relative position of the
vortices may change. In particular, the vortices of each heton are no longer aligned
along the y-direction because their velocities u are not equal. However, the model
illustrates the dynamics at the leading order. For 2 ds/dy� 1+ (dz/dy)2, one expects
the hetons to recombine as dipoles; while for 2 ds/dy � 1 + (dz/dy)2, the hetons
are expected to remain hetons that deviate from their initial trajectory. Finally, for
2 ds/dy∼ 1+ (dz/dy)2, vortices 3 and 4 have influences of similar relative importance.
In this case another kind of interaction may occur. The vortices may stop translation
and start rotating in a quasi-periodic way, at least temporarily. This specific regime
is detailed in the following sections.

We now illustrate the trajectories over three examples in figure 2. We take dz= 1
and dy= 1 such that λc= 1. In each case, we start the stimulation with point vortices
distant by dx = 10 in the x-direction. The equation of motions of the singularities
are marched in time with a fourth-order Runge–Kutta algorithm with dt = 0.01. For
reference, the strengths of the singularities are set to ±4π. The same numerical set-
up is used for all point vortex numerical time integrations. Figure 2(a) shows the
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FIGURE 2. (Colour online) Top view of the trajectories of two incoming point vortex
hetons for dz = 1, dy = 1 and ds = 0.5 (a), ds = 1 (b) and ds = 2 (c). At t = 0, the
singularities are located at x=±5.

trajectories for ds/dy= 0.5< λc for which we see that vortex 1 (inner vortex for the
vortex on the left) escapes and recombines with vortex 4 as a dipole. In figure 2(c)
we have ds/dy= 2> λc and initially v1 < 0, and vortex 1 starts to deviate to negative
y and rotates around vortex 3. However, having passed vortex 3, the vortex continues
its rotation and v1 becomes positive again (one can see from the formula in § A.1
that the sign of the dominant term for v1 due to vortex 3 depends on the sign of
x1− x3). Eventually the distance between the hetons increases again and the baroclinic
structures resume a nearly linear trajectory.

Finally, we consider a case at the threshold ds/dy= 1= λc. This case is presented
in figure 2(b). The outcome of the interaction is still the recombination of the two
hetons into a pair of same-depth dipoles, as for ds< λc. This is due to the non-trivial
relative displacement of the singularities. Indeed, the vortices within each heton do not
retain their initial alignment in the y-direction due to the different relative distances
between the vortices. As a consequence, the full trajectory cannot be simply guessed
from a situation frozen in time. We will go back to the intermediate regime between
recombination as dipoles and deflections of the hetons in a subsequent section. Before
doing this, we address the question of the existence of an intermediate solution where
the influences of the different vortices balance in such a way that the couple of hetons
rotate rather than escaping away, either as dipoles (small ds) or hetons (large ds) in
the next section.

3.2. Existence of steadily rotating interacting hetons

Sokolovskiy & Carton (2010) obtained the condition on the location of the vortices
of the hetons for the hetons to steadily rotate within the context of a two-layer
model. This would correspond to the situation where the two-layer configuration
consists of a steady state in a uniformly rotating reference frame. We reproduce
a similar calculation but in the three-dimensional continuously stratified model. As
in Sokolovskiy & Carton (2010), we look for the equilibrium of collinear vortices,
meaning that the four vortices are aligned along a line (say the x-axis). One can
write the equations of motion for the four singularities in a rotating reference frame
with angular velocity Ω . Then, we derive a compatibility condition on ds/dz and
dy/dz such that there exists Ω for which the singularities are steady (in the rotating
frame). Details of the calculation are presented in § A.2, and the compatibility

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.171


Interaction between two antisymmetric hetons 417

1 2 3 4 5
x a

6 7 8 9 10 1 2 3 4 5

dy

6 7 8 9 10

2

3

4

5
y b

6

7

8

9

10

0

0.1

0.5 1.0 1.5 2.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

2

3

4

5

6

7

8

9

10(a) (b)

(c)

FIGURE 3. (Colour online) (a) Compatibility condition for the existence of a collinear
heton pair expressed as the relative horizontal offset between the two hetons ds/dz as a
function of the relative horizontal offset between the vortices within each heton dy/dz.
(b) The same condition as in (a) but expressed in terms of a = (ds − dy)/(2 dz) versus
b= (ds+ dy)/(2 dz), which are the parameters used in Sokolovskiy & Carton (2010). The
lower branch corresponds to a> b, i.e. ds< 0. (c) The rotation rate Ω of the equilibria
versus dy.

condition reads

((
ds
dz

)2

−
(

dy
dz

)2
)

1(
1+

(
dy− ds

dz

)2
)3/2 +

1(
1+

(
dy+ ds

dz

)2
)3/2


= 2

(
1

(ds/dz)
− (dy/dz)2

(1+ (dy/dz)2)3/2

)
. (3.2)

This implicit relation ds/dz versus dy/dz is plotted in figure 3(a). An alternative
representation of the same relation but using a ≡ (ds − dy)/(2 dz) and b ≡
(dy + ds)/(2 dz) as parameters is proposed in figure 3(b). The latter are the
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FIGURE 4. (Colour online) Top view of the trajectories for a collinear, steady rotating
pair of hetons for dz = 1, dy = 1 and ds = 1.361933905. At t = 0, the singularities are
located at x=±0.

parameters equivalent to those used in Sokolovskiy & Carton (2010) for the two-layer
problem. This double representation allows us to clearly see two complementary
asymptotic behaviours. From figure 3(a) representing ds/dz versus dy/dz, we see
that ds/dz ∼ dy/dz for large ds/dz (and dy/dz) at equilibrium. This corresponds to
a= (ds− dy)/(2 dz) small, i.e. the nearly vertical branch in figure 3(b). In this case
the two inner vortices are nearly aligned in the vertical while the outer vortices lie
on each side. The second asymptotic behaviour is better seen in figure 3(b), where
we see b∼ a for large values of a and b at equilibrium. Since b− a= dy/dz, a∼ b
corresponds to the nearly vertical branch seen on the left-hand side of the figure, for
small dy. In this configuration, each heton consists of two vortices nearly aligned in
the vertical.

In our case, for dy= 1 and dz= 1, the compatibility condition for the existence of
the equilibrium of collinear vortices gives ds = 1.361933905. The trajectories of the
vortices for this case are again computed by explicit time integration of the equations
of motion, and are presented in figure 4. We indeed recover a uniform rotation for
the vortices. It is important to note that this configuration cannot be obtained from
the initial conditions used for the interacting hetons incoming from further away. A
simple argument is that the point vortices would have to lie on the circular trajectories
at t= 0. This is not consistent with the time evolution of two distant hetons travelling
along parallel axes. However, the existence of a steadily rotating solution indicates the
possibility of quasi-periodic rotation for the hetons provided they are attracted towards
this configuration. This may be the case in the intermediate regime with ds/dy ∼
(1+ (dz/dy)2)/2. In that case, the hetons may reconfigure as a four-vortex compound
structure, already observed in Sokolovskiy & Carton (2010) and named ‘Z-vortex’ due
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to its apparent shape. This is the topic of the next section. In the case presented above,
the quadrupole of point vortices is in a linearly stable equilibrium. The results of the
linear stability analysis for a wide range of values of dy is presented in § A.2. It shows
that there is in fact a region for small dy< 0.895 where the equilibrium is unstable.

4. Formation of Z-vortices
4.1. Existence and effect of deformation

In this section we investigate the possibility of forming a ‘Z-vortex’ from the
interaction of two distant incoming hetons. We will first analyse in detail an example
that is generic of most cases of formation of a ‘Z-vortex’, before considering the
process of formation over a larger parameter space. Again, we start the investigation
with the crudest, yet the fastest, model for the hetons using point vortices to represent
the vortices. This allows us to rapidly investigate the conditions under which the
configuration starts to behave as a ‘Z-vortex’. This is the case when the vortices
start to exhibit circular trajectories rather than being merely deflected. As mentioned
previously, although the exact circular trajectories exist (and are discussed in the
previous section), they are inconsistent with the configuration of hetons incoming from
a distance. However, we expect quasi-periodic motion to exist (at least temporarily)
in this case. To investigate this possible behaviour, we set values for the vertical
and horizontal offsets dz and dy within each heton and vary the parameter ds.
We are searching for trajectories which exhibit the initiation of a global rotation.
As mentioned before, this regime should be an intermediate regime between the
recombination of the vortices as dipoles (for small ds) and the deflection of the
hetons (large ds). In other words, one expects to obtain such a configuration for
ds/dy = O(1) (see both figure 3 for the actual ‘Z-state’, and the argument using
the simple threshold ds/dy ∼ (1 + (dz/dy)2)/2). The two aforementioned criteria
are not mathematically equivalent. Firstly, ds/dy = (1 + (dz/dy)2)/2 does not satisfy
the compatibility criterion (3.2). The two criteria analyse two distinct phases in the
process of formation of a Z-vortex. The criterion defined in (3.1) concerns the phase
when the two hetons are moving closer together in the x-direction. On the other hand,
the second criterion defined in (3.2) analyses the condition for uniform rotation when
the vortices are collinear, i.e. when they have ‘aligned’ in the direction y (constant
x). Arguably, the first criterion allows us to distinguish between two asymptotic
behaviours, ds� dy and ds� dy, but is inconclusive for ds∼ dy. The second criterion
provides some information is this last situation.

We illustrate the trajectories of point vortex hetons in the case dy/dz = 2 and
some values of ds/dz. In each case, the hetons lie at a distance in the x-direction of
dx = 5 at t = 0. Other examples have been investigated and may be found in § A.3.
A single example is sufficient for the purpose of the discussion. The ‘corresponding’
equilibrium collinear configuration is obtained for ds/dz= 2.284083347. As mentioned
before, when starting with two distant incoming hetons whose vortices are initially
aligned in the y-direction (translating in the x-direction), we should not expect the
value of ds/dz = 2.284083347 to correspond to a uniform rotation. This indicates
nevertheless that we should test values of the ratio ds/dz around 2. The numerical
experiment indicates indeed that a temporary global rotation is achieved for ds/dz
near 2. This is illustrated in figure 5. For the value ds/dy= 2.0023, the point vortices
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FIGURE 5. (Colour online) Top views of the trajectories of interacting point vortex hetons
with 1z=1, 1y=2 and 1s=1.9901 (a), 1s=2.0 (b), 1s=2.0023 (c) and 1s=2.01 (d).
At t= 0, dx= 5.

have achieved one full loop, before escaping at an angle as hetons. However, by
comparing the trajectories with the neighbouring case with ds/dz= 2 and ds/dz= 2.01,
we can see that

(i) only one loop is achieved for ds/dz= 2.0023, and
(ii) any very small change in ds/dz has a significant effect on the topology of the

trajectories.

Arguably, finer tuning of ds/dz may lead to several loops before the vortices
escape. But that would still mean that any perturbation, even at infinitesimal level,
is likely to modify the trajectories. To further study the formation of Z-vortices, we
next study the nonlinear evolution of finite-core vortices. Before focusing on the
evolution of finite-core hetons using the full quasi-geostrophic dynamics, we use a
model which may be seen as intermediate between the point vortex approach and
the full dynamics: the ellipsoidal model developed by Dritschel et al. (2004). In this
model, the vortices are modelled by deformable ellipsoids of uniform PV. This is
the first refinement from a singularity located at the centre of vorticity to model
a finite-core vortex. The ellipsoids may deform as a consequence of the shear and
strain induced by the other vortices. These deformations are the dominant ones and
all non-ellipsoidal deformations are filtered out by construction. This approach has
proven to be extremely accurate (see Dritschel et al. 2004) and has been used, for
example, to determine the critical merger distance between two co-rotating vortices
(Reinaud & Dritschel 2005). One caveat of the model is its inability to model the
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FIGURE 6. (Colour online) Top view of the trajectories of interacting ellipsoidal hetons
with dy/dz = 2 and dz/h = 1. (a) The initial vortices are spherical (r/h = 0.5). Here,
ds/dz= 2 and dx/dz= 6 at t= 0. (b) The initial vortices are spheroids of the same height
(keeping dz/h= 1) but twice the horizontal radius (r/h= 1), while ds/dy is reduced to 1.7.

filamentation and/or the breaking up of vortices. In the ellipsoidal model, vortices
remain ellipsoids of constant volume at all time.

We reproduce the previous example replacing the singularities at t = 0 by
finite-volume spheres of aspect ratio r/h = r/dz = 0.5. Here, h represents the full
height of the vortices and r their horizontal radius. This means that the vortices are
adjacent in the vertical (in a layered model, the vortices would be in adjacent layers
i and i + 1). Recall that a sphere of PV produces mathematically exactly the same
external velocity field as a singularity of the same strength located at its centre. The
trajectories are presented for ds/dz= 2 in figure 6(a). We see a significant difference
from the point vortex calculation in which the vortices were escaping as dipoles
(see figure 5b). The vortices have quasi-periodic, quasi-circular trajectories. This
motion persists in time (and continues by the time of the end of the calculation). The
wobbling of the shape of the nearly spherical vortices stabilises the rotation. This may
be due to the fact that the deformation of the vortices induces a small displacement
to their respective centroids, correcting their trajectories. The important outcome is
that the translation of the hetons (or dipoles) associated with transport over long
distances in the oceans is stopped, and the advection remains local, confined within a
small area. Because the overall strength of the quartet is zero, the distant environment
is quiet. The point vortex calculation provides an indication on the location of the
vortex centres to achieve a metastable Z-vortex. Vortices of various size and shape
but located at the same relative distances from one another may lead to the same
behaviour. In practice, this is true within small variations. These variations are the
consequence of slightly different dynamical behaviour prior to the hetons encounter.
Arguably, in the case of very flat vortices (r/h� 1), the hetons may be sensitive to
baroclinic instability. The stability of hetons in continuous stratified fluids is addressed
in Reinaud (2015). Stable hetons may be obtained for moderate aspect ratios and
when the vortices are well separated in the vertical and the horizontal. Recall that the
point vortex model only provides information about the relative separation distances,
since the overall problem can be rescaled in time by κ/d3, where κ is the strength of
the singularities and d a separation distance. For large separation for the finite-core
vortices, the vortices would resemble singularities. And the point vortex calculation
has shown that Z-vortices are extremely difficult to achieve in practice, as the tuning
of the parameters would become close to the machine precision. Hence, one can
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deduce that obtaining stable Z-vortices is easier when the ratio of the size of vortices
to their typical separation distance is not too small. We experiment on this by
replacing the spherical vortices of the previous case by vortices of the same height
but twice the radius (r/h = 1). The result is presented in figure 6(b). In this case
we obtained a metastable Z-vortex for ds/dz= 1.7. This is less than in the previous
case. The reason for this is a different trajectory during the phase in which the
hetons collide. To understand the trend, it should be noted that (1) the corresponding
collinear state has ds/dz∼ 2.28 as seen previously, and (2) ds/dy> λc = 0.625. The
latter point means that the hetons are initially deflected such that ds/dy increases.
This means that, for the hetons to reach the collinear critical separation distance,
they need to be located such that ds/dy < 2.28, which is the case in the two tests
presented. In the case where r/h= 1, the deflection of the vortices is larger. This is
due to the fact that the vortices are more spread in the horizontal than in the former
case with r/h = 0.5 and are deflected to avoid colliding into each other. In other
words, the hetons induce onto one another a stronger deflection.

It should be noted that this experiment can be repeated over very large sections
of the parameter space. Given dy/dz, one can first use the two aforementioned
criteria to estimate the conditions of formation of the Z-vortex, i.e. a possible range
for ds/dy. This explicit time integration of the trajectory of point vortices then
allows us to estimate the deflection of the hetons prior to collision and provides a
better estimate for the initial separation ds/dy. This value of ds/dy has only a weak
dependence on the (arbitrary) choice of the initial horizontal separation dx between
the hetons, as long as dx is not too small. Indeed, at large dx, the hetons (which
have overall zero strength) merely interact, and their trajectory is similar to that
of isolated hetons. Only when the hetons are becoming close to one another does
their deflection take place. Recall that in practice this deflection is likely to be an
increase in their separation ds/dy in the range of parameters considered. Finally, the
calculation using the ellipsoidal model allows us to obtain metastable states. More
examples of metastable states are available in § A.3. Each calculation is very rapid,
and the limitation resides, in fact, in the storage of the amount of data which can be
produced at very low cost.

It is also interesting to further illustrate the interactions on generic examples
solving the full quasi-geostrophic equation. These will allow for deformation of the
vortices beyond the ones consistent with ellipsoidal modes. In particular, it allows
for destructive interaction during which the vortices may break into smaller vortices
and/or shed debris and filaments. These additional dynamical events may be important
for generation of small scales (such as sub-mesoscale vortices), and may also affect
the overall dynamics. This is the focus of the next section.

4.2. Full quasi-geostrophic dynamics
We next focus on the nonlinear evolution of the hetons solving the full quasi-
geostrophic dynamics. In all calculations, the potential vorticity is set to q=±2π. For
reference, it should be noted that a sphere of potential vorticity q has a self-rotation
period of T = 6π/q, while it is T = 4π/q for an infinite column. The nonlinear
simulations are performed using contour dynamics (see Dritschel & Saranavan 1994).
The code derives from contour surgery by Dritschel (1989) in two dimensions. The
domain is discretised by 100 layers ranging from the bottom of the lower vortices
to the top of the upper vortices. Because the method is purely Lagrangian, there is
no fixed computational box attached to the problem, and the boundary conditions are
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(a) (b)

(c) (d)

FIGURE 7. PV for the nonlinear evolution for two interacting hetons with ρ = 0.5,
`z = 0, dy = 4 and ds = 1 such that the point equivalent is dz = 1, dy = 2 and ds = 2.
Times displayed are t = 25 (a), 37.5 (b), 60 (c) and 92.5 (d). The hetons are viewed
orthographically at an angle of 60◦ from the vertical.

imposed at infinity (namely, ψ and u→ 0). This means that the pair of hetons behave
as an isolated system without suffering from the interaction of, for example, periodic
images. In practice this means that all the resolution effort is on the vortices solely,
as the vortices do not need to be confined in a small domain to avoid boundary
effects. This argument is also valid for the point vortex calculations as well as for
the ellipsoidal model calculations.

A large number of cases have been investigated, and a summary of the description
of the outcome is provided in § A.3. Here we shall limit the detailed description
of the interaction to a selection of generic cases. For consistency, we first illustrate
the evolution of the hetons using similar initial conditions as the cases previously
studied. Each heton consists of two identical cylindrical vortices of opposite polarity.
The vortices have uniform PV. Each vortex has a height h and a radius r. Note that the
choice of cylindrical vortices instead of ellipsoidal ones is somewhat arbitrary. This
choice is motivated by previous studies in two-layer models. The two-layer model is
constrained to this geometry by construction. Similar results can be obtained using
ellipsoidal vortices for the initial conditions instead. We do not expect fundamental
dynamical differences from experience (see e.g. Reinaud & Carton 2009).

We start by simulating the interaction between two hetons with dy/dz = 2 and
ds/dz = 2. For the first case, we use again r/h = 0.5 with dz/h = 1. Using
the parametrisation defined in Reinaud & Carton (2015a,b), this corresponds to
dy= dy/r= (dy/dz)(dz/h)(r/h)−1= 4 and ds≡ ds/dy= 1. The parameter `z in Reinaud
& Carton (2015a,b) is the non-dimensional vertical gap between the two vortices,
i.e. a measurement of the thickness of the layer of fluid with no potential vorticity
between the two vortices, `z≡ (dz− h)/h. In this case, since dz/h= 1, `z= 0. Results
are shown in figure 7. Again, similarly to what is obtained using the ellipsoidal model,
the vortices form a metastable quadrupole which rotates locally. In fact, numerical
experiments suggest that quadrupoles are more often obtained when solving the
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FIGURE 8. Time evolution of the angle from the vertical (tilt) θtilt of the largest structure
for ρ = 0.5, `z = 0, dy = 4 and ds = 1.

full dynamics. An additional nonlinear effect can be captured when solving the full
equations, as non-ellipsoidal deformations are then also allowed to occur. Small debris
and filaments may be shed from the main structures. This has potentially a strong
influence on the development of the flow, as shedding filaments away from the main
structures allows for more deformation and motion while preserving some of the flow
invariants such as the energy, the linear and angular impulses.

We next illustrate two effects which can be captured within the context of the
continuous stratification. Similar results would be obtainable using a many-layer
model, but not the classical two-layer model previously used in the literature. We use
the fact that we have many degrees of freedom in the vertical direction available to
focus on some general aspect of the vertical structure of the flow. The first diagnostic
measured is the tilt angle from the vertical of the main structure. Indeed, because of
the nature of the Green’s function, the advecting velocity field is not uniform with
height within the structure, but varies three-dimensionally, despite being constrained
to horizontal components. Hence, the bottom of a vortex does not necessarily move
like the top, and the structure may tilt. It is indeed clear from the PV snapshots
displayed in figure 7 that the vortices are not rigid, up-standing columns. They tilt
and deform in the vertical direction with time. The time evolution of the angle is
presented in figure 8. It exhibits oscillation of nearly ±0.8 rad, so nearly ±45◦.

We next illustrate the formation of debris and filaments. The formation of debris
and filaments is important as it plays a key role in the energy transfers in physical
space, with natural implications on the energy cascade in spectral space. We call
debris and filaments any contiguous volume of potential vorticity whose size is less
than half the initial volume of the original vortices. This choice avoids including the
vortices themselves in the analysis, while allowing the inclusion of smaller fractions
of the vortices such as satellites when they are formed by partial breaking of the
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FIGURE 9. Fraction of the volume Vd/Vt of debris emitted in the lower third (a), middle
third (b) and upper third (c) of the bottom vortices versus time for ρ= 0.5, `z= 0, dy= 4
and ds = 1.

vortices. Again, we see from the flow pictures in figure 7 that the shedding of
filaments, debris and satellites is not uniform in height. Some horizontal levels are
more likely to break and shed debris than others. The picture suggests that most of the
debris is in fact shed near the bottom of the quadrupole and/or (by symmetry) near
the top. To quantify this trend, we decompose the vertical direction into six regions
where filaments may be found. Recall that the lack of vertical advection means that
filaments can only be found at horizontal levels initially occupied by the vortices.
We therefore decompose the vertical direction by splitting the two regions occupied
by the lower and upper vortices into three regions corresponding to the lower third,
middle third and upper third of the vortex. The results are shown in figure 9(a–c)
for the three regions occupied by the lower vortices. By symmetry with respect to
the middle horizontal plane z = 0, the distribution of debris is similar for the upper
vortices, with the top part of the upper vortex being similar to the bottom part of the
lower vortex. For each instant of time, we calculate the volume of debris Vd found in
each region. The total volume of the four vortices is denoted Vt. Although it appears
that the first debris identified is near the top of the lower vortices (respectively, the
bottom of the upper vortices), it is confirmed that most of the debris is in fact
emitted near the bottom (respectively, top) of the flow. The volume decreases with
time mostly because they consist of filaments which are continuously stretched by
the quadrupole. Eventually the filaments become thinner than the surgery scale and
are ‘diffused’ (removed). At this stage, they are dynamically negligible.
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(a) (b)

(c) (d)

FIGURE 10. PV for the nonlinear evolution for two interacting hetons with ρ = 1, `z= 0,
dy = 2 and ds = 1 such that the point equivalent is dz = 1, dy = 2 and ds = 2. Times
displayed are t= 15 (a), 25 (b), 35 (c) and 50 (d). The hetons are viewed orthographically
at an angle of 60◦ from the vertical.

Finally, we illustrate a similar case using the same configuration but replacing the
vortices by vortices twice as wide with ρ= 1. Results are presented in figure 10. Here,
we take again ds=1. The compound structure is formed again in this case from t=17,
and persists until the end of the simulation t = 400, with no indication of breaking
apart. Here, and because `z = 0, i.e. there is no vertical gap between the bottom of
the upper vortices and the top of the lower vortices, the two inner poles lie directly
on the top of one another, and can be seen as a single, contiguous volume of PV. This
means that the main structure can be, in fact, seen as a tripole in this case. But this
is just a direct consequence of `z = 0.

Finally, we summarise the influence of both the aspect ratio of the vortices and the
vertical gap `z between the vortices. The results are summarised in figure 11, where
the outcome of the interaction is indicated by a symbol for two values of the aspect
ratio (ρ = 0.5 and 1) and three values of the vertical gap (`z = 0, 0.5 and 1), while
keeping the relative centroid separation dy/dz the same (in all cases dy/dz= 2). We
then vary ds/dy in the region where the Z-vortex is expected to form (from the results
shown above). The most drastic effect of increasing the vertical gap is to reduce the
range where the formation of a Z-vortex is likely. Note that `z 6= 0 does not prevent
completely the formation of Z-vortices. The formation of Z-vortices is still possible
(see for example for ρ = 0.5, `z = 1 and ds/dy= 0.9, and further examples for wider
vortices in § A.3). However, the regime becomes unlikely for small values of ρ (i.e.
it needs a very fine tuning of the parameter ds; in other words, it only exists for a
very small range of ds). This can be seen as a stronger decoupling in the vertical.
One may observe that, by increasing the gap `z, the vortices may resemble more a
point vortex (in their interaction in the vertical), and we know that the Z-vortex is not
exactly reachable from the interaction of incoming hetons in the point vortex theory,
but is the result of a unique combination of ds/dy for a given dz/dy. On the other
hand, increasing the radius of the vortices while keeping the centroid relative position
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FIGURE 11. (Colour online) Outcome of the nonlinear interactions between two hetons
in the plane (ds/dy, `z), for dy/dz = 2, and (a) ρ = 0.5 and (b) ρ = 1. Symbols:
f, recombination as dipoles;u, formation of a Z-vortex; and +, deviation of the hetons. A
red box indicates that a Z-vortex tends to form but breaks rapidly – indicating the possible
presence of metastable Z-vortex configuration in the vicinity in the parameter space (not
reached in practice).

the same enhances the possibility of the formation of the Z-vortex. This is a direct
consequence of the fact that PV is not more spread in the horizontal and there is a
better horizontal overlap (or horizontal proximity) of the PV at different depths: the
coupling between the various vortices is stronger.

More illustrations of the formation of Z-vortices are presented in § A.3. However,
they follow the same pattern. The Z-vortex is formed when the horizontal offset
between the two incoming hetons ds is slightly less than the corresponding critical
separation distance for the existence of the collinear equilibrium. This is required
since during the initial phase of the approach this distance tends to increase, which
can be justified by the criterion (3.1). Eventually, when in the vicinity of one
another, the vortices may combine to form the quadrupole. This formation and the
persistence of the quadrupole are related both to the deformation and ability to adapt
of the vortices, and to their finite size which distributed the potential vorticity. Note,
however, that even spheres, which are nearly equivalent to point vortices, can still
form a Z quadrupole due to their ability to deform.

5. Finite-core hetons: recombination and deviation
For the sake of completeness, we propose an illustration of the full dynamics for

the two generic regimes where the hetons do not form a quadrupole. In the first one,
we illustrate the interaction between hetons which recombine as same-depth dipoles. In
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(a) (b)

(c) (d)

FIGURE 12. PV for the nonlinear evolution for two interacting hetons with ρ=0.5, `z=0,
dy = 4 and ds = 0.5 such that the point equivalent is dz = 1, dy = 2 and ds = 2. Times
displayed are t= 0 (a), 25 (b), 50 (c) and 75 (d). The hetons are viewed orthographically
at an angle of 60◦ from the vertical.

the second one, the hetons just deviate from their trajectories. Again, these illustrations
are generic of all cases in their respective regimes, at least when the initial hetons
are stable, and do not break baroclinically before interacting. In the case of breaking
hetons, a fraction of the initial hetons may still interact in a similar way, or the
resulting secondary vortices may reconfigure in such a way that there are no longer
pairs of hetons moving towards one another. Illustrations of unstable interacting hetons
were considered in Reinaud & Carton (2015a) for ds=0 and are not further illustrated
for small ds in the present paper. For very large ds, hetons behave in a similar way
to isolated hetons (albeit a small deflection) and their dynamics would be similar to
those of isolated hetons, whose stability properties are known (see Reinaud 2015).

The first case illustrates the recombination of the vortices as same-depth dipoles.
Again, we set dy/dz = 2 and `z = 0, with ρ = 0.5. This corresponds again to dy =
dy/r= 4. We know that the recombination occurs for small ds, hence we take ds/dy=
0.5. Results are presented in figure 12. This is qualitatively similar to cases with
ds= 0, apart from the angle at which the dipoles escape. Such cases are detailed in
Reinaud & Carton (2015a). Again, it should be noted that these cases are generic of
small ds but for cases where the hetons are unstable prior to the interaction.

The next case illustrates the final regime where the hetons are horizontally offset not
enough to strongly interact but enough to deflect their trajectory as a consequence of
the close encounter. This is typically true for offsets large enough compared with the
distance between point vortices in the corresponding equilibrium. Results are presented
in figure 13 for one case, but they are generic of all such cases for large horizontal
offsets.

6. Conclusion
This paper has addressed the complex interaction between two hetons which are

offset horizontally. We have considered the particular situation when the vortices of
the hetons lying at the same depth have opposite polarity, a situation referred to as
‘antisymmetric’ hetons in Reinaud & Carton (2015a). In this context, we have seen
that there are, in general, three main regimes of interaction. The kind of interaction
crucially depends on the horizontal offset between the axis along which the individual
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(a) (b)

(c) (d)

FIGURE 13. PV for the nonlinear evolution for two interacting hetons with ρ=0.5, `z=0,
dy = 4 and ds = 2 such that the point equivalent is dz = 1, dy = 2 and ds = 2. Times
displayed are t= 0 (a), 25 (b), 50 (c) and 57 (d). The hetons are viewed orthographically
at an angle of 60◦ from the vertical.

hetons initially translate. The critical values for which we have the transition from one
regime to another are given by a very complex function of all the parameters of the
flow, such as the aspect ratio for the hetons’ vortices ρ= rh, the vertical gap between
the upper and lower vortices within the hetons `z, and the horizontal offset between
the vortices of the hetons dy. There are, however, simple ways to estimate a range for
the values of the critical offsets separating the different regimes. These ranges can be
determined in fact from a simple point vortex calculation. The rationale behind this
is as follows. We know that, for antisymmetric hetons, the two incoming baroclinic
structures recombine as same-depth dipoles which escape at a right angle when the
offset between the two hetons is zero (head-on collision); see for example Reinaud &
Carton (2015a). As a consequence, hetons which are only slightly offset will exhibit a
similar behaviour and will separate, recombining as dipoles which escape at an angle
depending on the offset.

For large offsets, the interaction between the hetons becomes weak. Indeed, in all
our cases, the net strength of each heton is zero, hence their distant influence is very
weak indeed. As a consequence, the hetons will only deviate in their trajectory. The
deviation becomes smaller as the offset is increased.

These two different behaviours compete in an intermediate range for the horizontal
offsets between the incoming hetons. There, the incoming hetons may start to rotate
around one another, creating a compound quadrupolar structure. Owing to its apparent
shape, the structure is referred to as a Z-vortex. The formation of such a structure
is triggered by the existence of an exact equilibrium for a set of four point vortices.
In these equilibria, the four point vortices are aligned horizontally (albeit they do
not all lie at the same depth) and they rotate uniformly with respect to a vertical
axis (which coincides with an axis of horizontal symmetry for the configuration). The
exact relative position of the vortices can be obtained, and provides an indication
of the conditions of formation of the Z-vortex. For point vortices, the configuration
cannot be reached from two incoming singular hetons from afar. This is naturally
due to the fact that the point vortices need to lie on the circular trajectories at all
times to be in equilibrium (they cannot reach an equilibrium configuration from a
non-equilibrium situation without external action). However, it has been shown that
finite-volume vortices are capable of forming Z-vortices due to their ability to deform
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and adapt to the then time-dependent straining field the vortices induce on one another.
It has been shown that flatter vortices are more capable of adapting, arguably due to
the larger horizontal overlap for vortices offset in the vertical. The vertical separation
between the vortices of the hetons acts as a deterrent for the formation of the Z-vortex
while not preventing it (examples of Z-vortices for offset vortices may be found). The
present paper has focused on a limited selection of cases, due to the very large size of
the overall parameter space (whose comprehensive investigation is out of reach). The
cases presented are in fact generic of the interaction over a large range of parameters.
To complement this, the summary outcome of a larger number of cases run over the
course of this study is available in § A.3. Further illustrations of the interactions are
also available in § A.3.

This paper has addressed a complex problem over a wide parameter space, even
after having restricted our interest to some idealised situations in which the hetons are
similar (all the vortices have same volume and the same potential vorticity in absolute
value).

There is a natural extension of the problem to more practical issues in the oceans.
One may be interested in studying the interaction between hetons associated with
higher Rossby numbers, which may be relevant to smaller-scale (sub-mesoscale)
structures. This could be done using the closely related numerical method known
as the non-hydrostatic contour semi-Lagrangian method, developed by Dritschel &
Vìudez (see Vìudez & Dritschel 2002; Dritschel & Vìudez 2003).

Appendix A
A.1. Velocities in a regular quadrupole

This is a crude approach in an attempt to separate the two regimes (deflect as hetons
or recombine as dipoles). The intermediate regime, when effects compete, is when
Z-vortices can form. The idea is to focus on the velocity v of one vortex in the inside
corner (here vortex 1) and try to see if it will go towards or away from the outside
corner, the same depth of the second heton (here vortex 4). Of course, this does not
consider relative displacement at this stage, nor the fact that all distances are time-
dependent. For the sake of simplicity, the strength of the point vortices is implicitly
scaled by 4π to avoid rewriting the factor 1/4π arising from the Green’s function.

A.1.1. Velocity v of point 1

This is given by

v1 = κ3
(−dx)
(r1,3)3

+ κ4
(−dx)
(r1,4)3

, (A 1)

where ri,j is the distance between vortices i and j; thus

v1 =−dx
(

1
(dx2 + (ds− dy)2 + dz2)3/2

− 1
(dx2 + ds2)3/2

)
. (A 2)

The sign of v1 is that of

−(dx2 + ds2)3/2 + (dx2 + (ds− dy)2 + dz2)3/2, (A 3)

which depends only on (to be positive)

dx2 + ds2 < dx2 + (ds− dy)2 + dz2, (A 4)
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that is

ds2 < ds2 − 2 ds dy+ dy2 + dz2, (A 5)

2 ds dy< dy2 + dz2. (A 6)

Thus
ds
dy
<

1+ (dz/dy)2

2
. (A 7)

For ds/dy � (1+ (dz/dy)2)/2, v1 > 0, and one expects an escape as dipoles, as
vortex 1 tends to move towards vortex 4 (which will be the second vortex in the pair).
Recall that, for ds = 0, v1 is always negative. For ds/dy� (1+ (dz/dy)2)/2, v1 < 0,
the heton is deflected to the right. For ds/dy∼ (1+ (dz/dy)2)/2, effects compete in a
complex time-dependent way.

A.1.2. Velocity u of point 1
This is given by

u1 ∝−κ2
dy

(r1,2)3
− κ3

dy− ds
(r1,3)3

− κ4
(−ds)
(r1,4)3

, (A 8)

u1 ∝ dy
(dy2 + dz2)3/2

− dy− ds
(dx2 + (dy− ds)2 + dz2)3/2

+ −ds
(dx2 + ds2)3/2

, (A 9)

u1 ∝ dy
[

1
(dy2 + dz2)3/2

− 1
(dx2 + (dy− ds)2 + dz2)3/2

]
+ ds

[
1

(dx2 + (ds− dy)2 + dz2)3/2
− 1
(dx2 + ds2)3/2

]
. (A 10)

We have the following three limiting cases.

(i) ds= 0 (known), for which

u1 ∝ dy
[

1
(dy2 + dz2)3/2

− 1
(dx2 + (dy− ds)2 + dz2)3/2

]
. (A 11)

This is always positive (the hetons go towards each other). The velocity goes to
0 as 1x goes to 0, i.e. as the hetons get closer.

(ii) dy very small, for which

u1 ∼ ds
[

1
(dx2 + ds2 + dz2)3/2

− 1
(dx2 + ds2)3/2

]
. (A 12)

Again, this is 0 when dx→ 0. Otherwise this would be negative and would be
the dominant term corresponding to the negative (clockwise) rotation of vortices
1 and 4. This regime is not of interest in this study.
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y

4 1

23

dz
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z

FIGURE 14. Description of the geometry for the collinear Z-vortex. The black discs
indicate the two positive vortices.

(iii) ds= dy, for which

u1 ∝ dy
[

1
(dy2 + dz2)3/2

− 1
(dy2 + dx2)3/2

]
. (A 13)

Initially, for large dx, u1 is positive and decreases as dx decreases to dz.

A.2. Z-vortex equilibria for point vortices

Consider two collinear hetons, as shown in the geometry in figure 14. The four
singularities are aligned in the y–z plane. We write down the velocity u, perpendicular
to this plane, for the singularity, assuming that we are placed in a uniform rotation
Ω about the z-axis. We are looking for solutions where we can find u = 0 for all
singularities, i.e. the flow is steady. By construction v = 0. By symmetry, it is easy
to show that u3=−u1 and u2=−u4. Therefore we only need to focus on u1= 0 and
u2 = 0. Each of these equations will give a condition on Ω which will depend on
both parameters dy/dz and ds/dz. For the equilibrium to exist, the condition needs to
be unique, hence imposing a constraint f (dy/dz, ds · dz) = 0. The geometry and the
parameters are defined in figure 14.

The equations read

u1 =−κ2
(y1 − y2)

(r1,2)3
− κ3

(y1 − y3)

(r1,3)3
− κ4

(y1 − y4)

(r1,4)3
+Ωy1, (A 14)

u2 =−κ1
(y2 − y1)

(r1,2)3
− κ3

(y2 − y3)

(r2,3)3
− κ4

(y2 − y4)

(r2,4)3
+Ωy2, (A 15)

u1 =− dy
(dy2 + dz2)3/2

− (ds− dy)
((ds− dy)2 + dz2)3/2

+ 1
ds2
+Ω ds− dy

2
, (A 16)

u2 =− (dy)
(dy2 + dz2)3/2

− 1
ds2
+ (ds+ dy)
((ds+ dy)2 + dz2)3/2

+Ω ds+ dy
2
= 0. (A 17)
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FIGURE 15. (Colour online) Growth rate σr of the most unstable mode (red) versus dy
at equilibrium for dz= 1 (the corresponding value of ds can be obtained from figure 3),
and frequencies σi (black) of neutrally stable modes.

Adding the two equations and subtracting them gives

Ωds− 2
dy

(dy2 + dz2)3/2
− (ds− dy)
((ds− dy)2 + dz2)3/2

+ (ds+ dy)
((ds+ dy)2 + dz2)3/2

= 0, (A 18)

Ωdy+ (ds+ dy)
((ds+ dy)2 + dz2)3/2

+ (ds− dy)
((ds− dy)2 + dz2)3/2

− 2
ds2
= 0. (A 19)

Multiplying the former equation by dy and subtracting the latter multiplied by ds
allows us to eliminate Ω and we finally obtain

((
ds
dz

)2

−
(

dy
dz

)2
)

1(
1+

(
dy− ds

dz

)2
)3/2 +

1(
1+

(
dy+ ds

dz

)2
)3/2


= 2

(
1

(ds/dz)
− (dy/dz)2

(1+ (dy/dz)2)3/2

)
(A 20)

after term cancellations.
Linearising the full equations of motion of the four singularities about the

equilibrium (in the reference frame rotating with the equilibrium), we study the
linear stability of infinitesimal perturbations (x′i, y′i), i= 1, 2, 3, 4. This provides eight
eigenmodes σ = σr+ iσr (one for each perturbed variable) where the time dependence
of the perturbation is proportional to eσ t. The real part σr of σ is the growth rate
of the perturbation, while its imaginary part is a frequency. Results are shown in
figure 15.
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FIGURE 16. (Colour online) Trajectories of the unstable point vortex quadrupole equilibria
for dy= 0.7.

It is shown that there is an unstable mode vanishing at dy∼ 0, and at dy' 0.895. At
dy' 0.895, we find a classical pattern of exchange of instability where a mode σ = iσi

with a non-zero frequency decreases rapidly as dy is decreased. It eventually collapses
to zero and the mode becomes unstable. It should be noted that in fact all modes go in
pairs. That is, if σ is an eigenvalue, so is −σ . This means that to all unstable modes
σr>0, there is an associated stable mode σr<0. The negative values of the modes are
not represented in figure 15. The example for dy= 1 presented in figure 16 is indeed
linearly stable. An example of the trajectories for an unstable case with dy = 0.7 is
illustrated below. For clarity, the trajectories are given in the reference frame rotating
at the rotation rate of the equilibrium (if the state was stable, the trajectories would
just be four motionless points).

A.3. Outcome of the full nonlinear simulations

Here we propose tables summarising the outcome of a large series of numerical
experiments realised during this research.

We next provide some complementary material to the results presented in the main
part of the paper.

A.4. First case, wide vortices: ρ = 3.5, `z = 1.5, dy = 2 and ds = 1

Table 1 in § A.3 indicates that the case with ρ = 3.5, `z = 1.5, dy = 2 and ds = 1
exhibits the formation of a Z-vortex in the full quasi-geostrophic numerical simulation
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ρ `z dy d

3 1 1.5 1 Escape as dipoles
1.5 Escape as hetons

2 1.5 1 Escape as dipoles
3 1.5 1 Escape as dipoles

2 0.5 Escape as dipoles
5 1.5 1.5 Escape as dipoles

5 1 2 0.75 Positive vortices break into two parts. They move
with negative vortex as combined dipoles/hetons

3 1.5 1 Escape as dipoles
1.5 Escape as hetons

2 0.5 Escape as dipoles
2 0.75 Escape as dipoles

5 1.5 1 Escape as dipoles
1.5 Escape as dipoles

7 1.5 1 Escape as dipoles
1.5 Escape as dipoles

7 3 1 0.5 Escape as dipoles (positive vortices partially sheared)
1.5 1 Positive vortices break into two parts. They move

with negative vortex as combined dipoles/hetons
2 0.5 Escape as dipoles
2 0.75 Escape as dipoles
2 1 Z-vortex
2 1.125 Z-vortex

5 1.5 1 Escape as dipoles
1.5 1.5 Escape as hetons
2 0.5 Escape as dipoles

1 Escape as dipoles after temporary alignment
7 1.5 1 Escape as dipoles

1.5 Escape as dipoles
2 1 Escape as dipoles

9 1.5 1 Escape as dipoles
1.5 Escape as dipoles

9 1 1.5 1.5 Baroclinic instability. Partial alignment (Z-vortex)
3 2 0.5 Escape as dipoles
3 2 0.75 Z-vortex worth two positive satellites
5 2 0.5 Escape as dipoles

2 0.75 Escape as hetons
1 Z-vortex

7 1.5 1 Escape as dipoles
1.5 1.5 Escape as hetons
2 0.5 Escape as dipoles

9 1.5 1 Escape as dipoles
1.5 Escape as dipoles

2 1 Escape as dipoles
11 1.5 1 Escape as dipoles

1.5 Escape as dipoles

TABLE 1. Continued on next page.
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ρ `z dy d

11 3 2 0.5 Escape as dipoles
0.75 Z-vortex with satellites

5 2 0.5 Escape as dipoles
0.75 Escape as dipoles

7 2 0.5 Escape as dipoles
0.75 Escape as dipoles

8 1 1 Escape as dipoles
1.5 Partial alignment at centre, dipoles escape

1.5 1 Escape as dipoles
2 0.75 Escape as dipoles

9 1.5 1.5 Escape as hetons
11 1 0.5 Escape as dipoles

1.5 1 Escape as dipoles
1.5 Escape as dipoles

TABLE 1 (cntd). Summary of the behaviour of a pair of interacting antisymmetric hetons.

using contour surgery. This case has parameters rather different from the ones
illustrated in the main paper and therefore are worth showing. Indeed, here the
vortices are much flatter than in the illustrative case shown in the paper (ρ = 3.5
instead of 0.5 or 2). This allowed us to find a Z-vortex for a moderate vertical offset.
This illustrates further that the formation of a Z-vortex, albeit being made more
difficult for increasing vertical separation, is not prohibited by it.

The set-up means that the centre separation of the vortices is as follows: dy/dz=2.8.
The equivalent point vortex collinear equilibria would correspond to ds/dz= 2.82 (i.e.
ds/dy= 0.993' 1).

We first illustrate the trajectory of the vortex centres, comparing again the three
models available to us, namely point vortex dynamics, the ellipsoidal vortex model and
the full quasi-geostrophic dynamics (with contour dynamics). Results are presented in
figure 17.

The full quasi-geostrophic evolution is illustrated for this case in figure 18. Its
equivalent using the simplified ellipsoidal model is given in figure 19. Both show the
formation of the Z quadrupole.

Again, this shows that the deformation of the vortices stabilised the quasi-periodic
trajectory. In figure 20, we examine in more detail the trajectory of singular vortices,
to illustrate the extreme sensitivity of the singularities’ trajectories to the set-up.

Going back to the finite-core vortices, and for such a configuration with wide poles,
the Z-quadrupolar configuration can even be achieved for larger ds= ds/dy, as shown
in figure 21 with ds = 2 (instead of 1).

A.5. Second case: large horizontal offset dy, with ρ = 0.5, `z = 0, dy = 5 and ds = 1

In the second case, we go back to the case of hetons with vortices ρ = 0.5 illustrated
in the main text of the paper (figure 7) but with a slightly higher offset between
the poles within the hetons. It is shown that the evolution is qualitatively similar,
indicating that the case shown in figure 7 is indeed generic. The results are shown
in figure 22.
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FIGURE 17. (Colour online) Trajectories of the centres of the vortices (four largest
vortices in the contour surgery case) for ρ= 3.5, `z= 1.5, dy= 2 and ds= 1. Point vortices
(a), ellipsoidal model (b), and contour surgery (c).

(a) (b)

(c) (d)

FIGURE 18. Case 1 (ρ=3.5, `z=1.5, dy=2 and ds=1): snapshots of the evolution of the
hetons from the full quasi-geostrophic dynamics with contour dynamics at time t= 0 (a),
50 (b), 60 (c) and 172 (d).
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

FIGURE 19. Case 1 (ρ = 3.5, `z = 1.5, dy = 2 and ds = 1): ellipsoidal model equivalent.

A.6. Dipole/heton

We next illustrate the case where the Z-vortex initially forms, but where the strain
induced by the vortices onto one another is large enough to destabilise two of the
vortices. These vortices break into two pieces, which recombine to produce two
structures with an L shape. Each structure consists of three vortices, and is the
combination of a heton (two vortices of opposite sign at different depth) and a
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FIGURE 20. (Colour online) Case 1: point vortex. Examination of trajectories near the
formation of the Z-vortex case 1, dy/dz = 2.8, ds/dy = 12.9/14 (a), 12.94/14 (b),
12.95/14 (c), 12.96/14 (d), 13/14 (e), and 13.4/14 ( f ).

dipole (two vortices of opposite sign at the same depth). This may happen when the
vortices are wide enough to break baroclinically. Such a situation is illustrated in
figure 23. This example shows that the flow evolution also depends on the stability
properties of the structures that form as a result of the interactions. The fate of
interacting, wide, hetons in the case ds = 0 (head-on collision) is detailed in Reinaud
& Carton (2015a). This indicates that more complex dynamics may be observed
if the structures themselves are sensitive to shear- or strain-induced instabilities.
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(a) (b)

(c) (d)

FIGURE 21. Case similar to case 1 but for a larger horizontal offset ds. Here ρ = 3.5,
`z = 1.5, dy = 2 and ds = 2. Snapshots displayed at t= 7 (a), 32 (b), 52 (c) and 63 (d).

(a) (b)

(c) (d)

FIGURE 22. Case 2: contour surgery with ρ = 0.5, `z = 0, dy = 5 and ds = 1.

The systematic and detailed investigation of these behaviours (done for ds = 0 in
Reinaud & Carton (2015a)) is beyond the scope of the present contribution due to
the size of the parameter space with the added degree of freedom ds.
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(a) (b)

(c) (d)

FIGURE 23. Dipole/heton: ρ = 0.5, `z = 1.5, dy = 1.5 and ds = 1. Times displayed are
t= 25 (a), 40 (b), 55 (c) and 65 (d).
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