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Abstract
Data sets quantifying phenomena of social-scientific interest often use multiple experts to code latent

concepts. While it remains standard practice to report the average score across experts, experts likely vary in

both their expertise and their interpretation of question scales. As a result, the mean may be an inaccurate

statistic. Item-response theory (IRT) models provide an intuitive method for taking these forms of expert

disagreement into account when aggregating ordinal ratings produced by experts, but they have rarely been

applied to cross-national expert-coded panel data. We investigate the utility of IRT models for aggregating

expert-coded data by comparing the performance of various IRTmodels to the standard practice of reporting

averageexpert codes, usingbothdata fromtheV-Demdata set andecologicallymotivatedsimulateddata.We

find that IRT approaches outperform simple averages when experts vary in reliability and exhibit differential

item functioning (DIF). IRT models are also generally robust even in the absence of simulated DIF or varying

expert reliability.Our findings suggest thatproducersof cross-national data sets shouldadopt IRT techniques

to aggregate expert-coded data measuring latent concepts.

Keywords: Bayesian methods, expert opinion, latent variables, IRT models, cross-national data

Expert surveys are a powerful tool for measuring latent political concepts, ranging from the

ideological positions of political parties (Bakker et al. 2012; Konig, Marbach, and Osnabrugge

2013; Maestas, Buttice, and Stone 2014) to bureaucratic organization or preferences (Clinton and

Lewis 2008; Teorell, Dahlström, and Dahlberg 2011), candidate quality and ideology (Buttice and

Stone 2012), election quality (Norris, Frank, andMartínez I Coma 2013), and regime characteristics

(Coppedge et al. 2014). However, assigning values to latent traits is complicated and experts

exhibit varying levels of bias and reliability in their ratings. Asa result, expertsdisagree. Toproduce

accurate estimates of latent concepts, researchers working with expert surveys must endeavor to

model this disagreement.

With the prominent exception of work that uses Aldrich–McKelvey scaling (Aldrich and

McKelvey 1977) to aggregate data from the Chapel Hill Expert Survey (Bakker et al. 2014), most

expert-coded political science data sets report average expert responses (Teorell, Dahlström,

and Dahlberg 2011; Norris, Frank, and Martínez I Coma 2013). Such an approach implicitly

assumes that all experts (1) produce equally reliable reports about the concept being estimated,
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and (2) perceive the question scale equivalently. As the scope of an expert-coded endeavor

increases—both in terms of the number of experts involved and the tasks experts perform—these

assumptions become more problematic: experience, knowledge, and training will vary across

raters. These differences will both influence how experts perceive scales (a phenomenon known

as differential item functioning, or DIF) and generate variation in their rates of random error.

Virtually every domain inwhich social scientists use expert surveys—andother formsofmultirater

judgment—confronts such problems (Aldrich and McKelvey 1977; Bakker et al. 2014; Hare et al.

2015).

Item-response theory (IRT) modeling strategies provide powerful methods for aggregating

expert-coded data by allowing scholars to account for both DIF and randomerrors stemming from

variation in expert reliability (Clinton and Lewis 2008). As a result, IRT models may provide many

potential advantages over simple summary statistics. However,we lack systematic analyses of the

costs and benefits involved.

IRT latent variablemodeling techniques bring added complexity and potentially demandmore

of the data than simpler approaches. This added complexity is a special concern in the cross-

national expert-coding context: because most experts cannot rate every country in the world,

such data often involve multiple experts coding several cases, with disjoint sets of experts rating

differing observations. Such lack of “bridging” can make it difficult for IRT models to estimate

DIF and reliability consistently across raters, and can thus dramatically bias parameter estimates

(Pemstein, Tzelgov, and Wang 2015). As a result, it is unclear if IRT models provide consistent

and robust advantages over simpler methods. This problem may apply to a multitude of expert

survey applications: the primary advantage of experts—that they are highly knowledgeable about

specific cases or domains, and have access to information that most people lack—means that it

may be difficult to find raters qualified to code the full set of cases in any given data set. As a

consequence,whilewe focusour investigationon theapplicationof IRTmethods to cross-national

panel surveys, many of our findings are potentially relevant beyond this domain. For example,

issues of both bridging with sparse data and DIF are also endemic in work on common space

construction, and survey research more generally (Brady 1985; King et al. 2004; Hare et al. 2015;

Ramey 2016).

In this paper, we analyze the utility of six IRT models in the context of expert-coded data.

These IRTmodels range in complexity and thus the demands they place on the data: the simplest

assumes that all experts are equally reliable and perceive scales in the same way, while the most

complex explicitlymodel differences in both expert reliability andDIF. Furthermore, wemodel DIF

in two different ways: (1) with an expert-specific intercept, holding ordinal thresholds constant

across experts; and (2) with expert-specific ordinal thresholds for mapping between latent and

question scales. The first modeling strategy assumes that DIF takes the form of a constant shift on

the latent scale. The secondmakes no such assumption and is thus more general, since intercept

DIF is a specific form of threshold-specific DIF. However, this more general parameterization

demandsmuch of the available data: it is possible that gains in generality are offset by difficulties

in accurately estimating parameters with sparse data.

We use two tactics to analyze the performance of specific IRT models. First, we use these

six models to estimate latent values from expert ratings in the V-Dem v6.2 data set (Coppedge

et al. 2016). V-Dem is a large scale, cross-national and cross-temporal enterprise that attempts to

measure various concepts related to democracy. Experts code a series of Likert-scale questions;

almost all experts code the entire time series (1900–2015) for a single country. Many experts also

code either a complete time series for a second, dissimilar country, or multiple countries in a

single year. Given different backgrounds and domain-specific expertise, V-Dem experts likely vary

in both their reliability and scale perception. Equally importantly, bridging in the data—in the

formof overlapping coders across countries and years—is far fromcomplete. These data therefore
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represent an excellent, and ecologically valid, testing ground for the application of IRT models to

multi-expert-coded data in political science.

The results of analyses of V-Dem data show that IRT models—especially those that include

expert-specific reliability parameters—show improvement over the normalized mean in terms

of both face validity and uncertainty estimation. However, because we have no gold standard

to compare with, these observational data do not provide insight into how aspects of the data

generating process affect measurement quality.

We therefore conduct a series of simulation studies. These studies (1) systematically analyze

different approaches’ relative ability to recover true values and (2) allow us to generalize our

findings to a variety of data generating processes and bridging patterns. To generate ecologically

plausible “true” values, we begin with the raw V-Dem data. We generate simulated data sets that

(1) treat theobservednormalizedexpertmeanof each country–year observationas the true values

for political killing in a country; and (2) maintain the core structure of the V-Dem data, assigning

experts to country–years in the same pattern that we observe in reality, thereby replicating actual

bridging patterns. We then simulate data sets with different patterns of DIF and variation in expert

reliability.

We compare the performance of our IRT specifications to simple averaging and a Bayesian

Aldrich–McKelvey (BAM) model, two main alternative methods for estimating latent values using

expert coding. Under ecologically valid bridging patterns, we find that parameterizing DIF and

variation in expert reliability increases the degree to whichmodel point estimates reflect the true

population values when the simulated data involve DIF and variation in reliability; in simulated

data without DIF or variation in reliability, IRT models perform roughly equivalently to the mean.

This finding indicates that IRT models with reliability and DIF parameters are safe in the absence

of DIF or inter-expert reliability variation; when there is great DIF and variation in reliability, these

models are essential. Results regarding the parameterization of DIF are more complicated. In

general, models that include expert-specific thresholds outperform models with expert-specific

intercepts in the presence of relatively lower amounts of variation in DIF and reliability, while

models with expert-specific intercepts fit the data better in cases with extremely—and perhaps

unrealistically—high levels of DIF.

BAM almost universally underperforms IRT models that incorporate DIF and reliability. The

exception to this general rule is simulated data with high levels of DIF and low levels of variation

in reliability. In these cases, the BAM performs similarly to flexible, but data-demanding, models

with threshold DIF; though it underperformsmore restrictive IRT models with intercept DIF.

We generalize these simulations by creating two additional data sets, one with maximal

bridging and one with no bridging. In a context of maximal bridging, different IRT model

specifications perform at least well as simple averaging and BAM across all specifications. As DIF

and variation in reliability increase, both IRT and BAM substantially outperform simple averaging;

IRT model specifications modestly outperform BAM across a variety of specifications. Thus, even

when expert surveys exhibit few bridging problems, latent variable modeling techniques provide

substantial improvements, and no disadvantages, compared to simple averaging. In the context

of nobridging, IRTmodels substantially outperformother approaches,much as in the simulations

withV-Dembridgingpatterns. This effect is particularlynoticeableasDIFandvariation in reliability

increase.

Overall, these results indicate that IRT models are robust to a variety of forms of data and

patterns of expert coding. Given that experts almost certainly vary in their reliability and scale

perception, incorporatingparameters to account for these types of variation is essential. However,

the preferable method for parameterizing DIF depends on the messiness of the data generating

process.
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1 Agreement and reliability in expert surveys

The goal of gathering expert-coded data is to develop accurate measures of concepts that are

difficult or impossible to code directly. For example, while there are a variety of proxies for the

degree to which a country’s elections are free and fair, not one fully encapsulates the concept

which this phrase entails. As a result, a scholar interested in measuring this concept cross-

nationally would do well to elicit the opinions of experts on this topic for given country–years.

However, the lack of a single “true” measure of such concepts means that it is possible that

individual experts may give divergent assessments of the same concept, even if they receive a

cross-nationally compatible scale. As a result, it is important to use codings frommultiple experts

to both triangulate on a reasonable point estimate, and to produce an estimate of confidence

in that score. At the same time, as an expert-coding endeavor expands in scale, it becomes

increasingly possible that some experts may not be as “expert” as others, especially if they are

asked to code countries or concepts beyond their area of expertise. In other words, treating all

experts as exchangeable risks incoherence in developing estimates of a country’s true position in

a cross-national scale.

For these reasons, well-designed expert-coded data sets generally augment point estimates

withmeasures of intercoder agreement and/or reliability, in order to quantify uncertainty around

estimates of latent concepts (Kozlowski and Hattrup 1992; Boyer and Verma 2000; Van Bruggen,

Lilien, and Kacker 2002; LeBreton and Senter 2007; Bakker et al. 2014). Agreement refers to “the

interchangeability among raters; it addresses the extent to which raters make essentially the

same ratings” for each case (Kozlowski and Hattrup 1992), while reliability measures the extent to

which each rater provides consistent ratings—relative to other raters—across cases.1 All surveys

that ask multiple raters to code each case—even if each rater only codes a single case—can

provide measures of agreement. However, only surveys where raters rate multiple cases, and

where there is substantial cross-rater overlap in rated cases, can provide measures of rater

reliability.2 As Lindstädt, Proksch, and Slapin (2016) lament, this means that most expert-coded

data sets in political science provide only average ratings as point estimates and a case-level

measure of agreement (generally the standarddeviationof the raw scores).3 They generally donot

includemeasures of rater reliability, nor do they adjust expert contributions to reflect variation in

reliability.

Ideally, expert-based data sets would use measures of both agreement and reliability to

summarize confidence around estimates of latent traits, and use estimates of rater reliability to

weigh experts’ individual contributions to the point estimates themselves (Clinton and Lewis

2008; Pemstein et al. 2015). Estimating and adjusting for reliability, rather than just agreement,

in expert-coded data sets has clear utility: not all experts are equally reliable in their codings,

and accounting for this variance in reliability potentially leads both to more accurate estimates

of the concepts they code, and better estimates of confidence around those estimates (Johnson

and Albert 1999). Nonetheless, strong assumptions underly our estimation of rater reliability, and

there is no guarantee thatmodeling such reliability improvesmeasure accuracy (Maestas, Buttice,

andStone2014). The results thatwepresenthere thereforedemonstrate theadvantagesofDIFand

1 Raters can both disagree consistently about scores but be equally reliable if they change their scores in the same direction

in the sameperiods. Anotherway to think about reliability is as ameasure of consistency in pattern of (dis)agreement. One

can also conceptualize and evaluate reliability at the aggregate level, by comparingwithin- and cross-unit variance (Jones

and Norrander 1996). Here we are concerned with modeling rater-level reliability in order to improve point estimates.

2 Neither agreement nor reliability establishes validity. Experts who make similar and consistent errors will reliably agree,

but may also provide invalid estimates. This problem is inherently difficult to solve on the back end, although researchers

can use information about rater characteristics to attempt to adjust for such issues (Buttice and Stone 2012). Ideally,

a researcher addresses this issue by selecting experts who are unlikely to be biased, or who exhibit varying biases.

Unfortunately, doing so is both hard-to-do and hard-to-check.

3 The organizational psychology literature provides a variety of improvements on this standard practice (Kozlowski and

Hattrup 1992; Boyer and Verma 2000; Van Bruggen, Lilien, and Kacker 2002; LeBreton and Senter 2007).

Kyle L. Marquardt and Daniel Pemstein � Political Analysis 434

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

28
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.28


rater reliability estimation under a standard assumption about rater error processes; future work

might examine the robustness of our findings to a variety of rater error structures.

2 The Test Case: V-Dem Data

Data from the V-Dem Project provide an excellent opportunity to both illustrate the importance

of accounting for variation in expert coder reliability and agreement, and assess the utility of

different methods of aggregating expert ratings. The V-Dem v6.2 data set includes 165 variables

coded by over 2,500 experts, covering most countries and many colonies from 1900 to present

(Coppedge et al. 2016). The project assigns experts to one or more of 11 surveys, each of which

corresponds to an area of substantive expertise; all experts also have onemain country-of-coding,

and almost all code the entire temporal period for that country. Many experts also code a second

country for the entire temporal span, while others code multiple countries for a single year

(generally 2012). With rare exceptions, every country–year has a minimum of five experts, the

majority being individuals who have lived in the country for which they are coding variables

(Coppedge et al. 2016).

These factors yield a data set which is ideal for analyzing different methods for incorporating

expert reliability and agreement into latent variable estimates. Since it includes codings from

several thousand expertswith different backgrounds and areas of expertise, we expect there to be

clear variation in expert reliability and agreement. Furthermore, while the project has attempted

to facilitate bridging in the form of coders who overlap in countries and years, the degree to

which it has accomplished this objective is limited. This combination of incomplete bridging and

probable variation in expert scale perception and reliabilitymakes V-Demdata a difficult test case

for IRT modeling. However, similar issues likely bedevil most expert-coded data in comparative

politics and international relations.

2.1 The data: Freedom from political killings
We use data from a typical V-Dem variable, “Freedom from political killings,” both as a real-

world test case and as a basis for simulation studies.4 This variable asks experts to code the

degree to which citizens of a state were free from state-sponsored killing in a given country–year.

Experts code this variable using a five-point Likert scalewithpotential responses ranging fromone

(“political killings are practiced systematically and they are typically incited and approved by top

leaders of the government”) to five (“political killings are nonexistent”).5

Figure 1 provides evidence that bothDIF and variation in expert reliability are present in our test

variable, illustrating yearly ratings from 1900–2015 in Canada, Germany, Turkey and Russia. In the

subfigures, the vertical axis represents the year and the horizontal axis the scale of the question,

with a five representing a country–year free from political killings, and a one a society in which

political killingsare systematic.Different lines represent the smoothedcodingpattersof individual

experts.

While there are some country–years in which experts are unanimous in their ratings (e.g.

Germany during the Holocaust), expert disagreement is more common. This disagreement is

especially apparent in the cases of Russia and Turkey, where there is no year with complete

expert agreement. Yet, even in these cases, experts generally appear to follow similar trends. For

example, experts consider Ottoman-era Turkey and Turkey of the 1980s–1990s to have had lower

levels of freedomfrompolitical killing thanotherperiods, though their definitionof “lower” varies.

Similarly, all experts save one consider political killings to have been more systematic during

Stalin’s reign than they were in the Tsarist era or late Communism. This variance in the levels

reported by experts is consistent with DIF. Moreover, there is also evidence of cross-variation in

4 Replication materials available in Marquardt and Pemstein (2018).

5 We present the original question in Appendix A and data about its expert coders in Appendix B.
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Figure 1. Rater-level codings across different countries and time.

rating stability—most dramatically evident in the Canadian case—which in turn is indicative of

variation in expert reliability.

This V-Dem variable is also plagued by data sparsity. Figure 2 provides a series of histograms

displaying various aspects of bridging density, accompanied by means (solid lines) and medians

(dashed lines) for each statistic. Panel (a) shows that around 12 experts each rate at least one

observation in the typical country, and a few of the 174 countries attract evaluations from more

than 20 of the 1171 experts who coded this question.6 Only 27 countries have one or more

observations that are rated by less than the V-Dem goal of five experts.7 Panel (b) displays little

variation in the number of experts who code each observation, with around six experts coding the

typical case. Panel (c) focuseson thenumberof bridgesper country: thenumberof other countries

for which an expert who coded that country coded at least one observation. The typical country

is bridged to 22 other countries, but there is substantial variation in bridging across countries.

Eleven percent of the countries in the data set are bridged to five or fewer countries, and about

four percent have no bridges. Furthermore, while country-level bridging is substantial, much

of this bridging is accomplished by “lateral coding,” in which a country expert codes only one

observation in another state. Panel (d) provides insight into bridging at the observation level. Here

an observation is bridged to n countries, if the experts who coded that observation collectively

code observations in n other states. While a few observations directly bridge to 50 or more

countries, the average observation is bridged to seven countries, and the median to only four.

Eighteen percent of observations have no direct bridges to other countries, and 27 percent only

one. Thus, while V-Dem data exhibit substantially more bridging than the modal cross-national

6 We treat periods of time during which no rater changes (1) her rating for a country or (2) her self-reported confidence in a

rating, as individual observations. This reflects the fact that institutions are largely static, and avoids mistakenly treating

perfectly correlated observations as independent; see Pemstein et al. (2015) for details.

7 These countries are: Belgium, Bangladesh, Congo, Costa Rica, East Germany, Egypt, Israel, Jordan, Lesotho, Nicaragua,

Peru, Papau New Guinea, Palestine (British Mandate), Palestine (Gaza), Saudi Arabia, Solomon Islands, Serbia, Sao Tome

and Principe, Slovakia, Switzerland, Togo, Ukraine, Vietnam, Vanuatu, Yemen, and Zanzibar.
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Figure 2. Freedom from political killings: Expert bridging patterns.

expert survey—which has none—it diverges substantially from traditional applications of latent

variable modeling techniques that use full rank data.

3 IRTmodels of expert-coded data

IRTmodels provide a conceptually straightforwardmethod for converting ordinal data to a latent

scale.8 However, there has yet to be a systematic investigation of the extent to which IRT models

outperform simpler methods. Here we consider six different IRT models which we will assess in

the context of expert-coded data settings.

All our models assume that experts make stochastic mistakes because they lack perfect

information about the latent trait that they are attempting to rate and the scales they are using. In

particular, we assume that each rater first perceives latent values with error, such that:

ỹct r = zct + ect r (1)

where zct is the “true” latent value of the given concept in country c at time t , ỹct r is rater r ’s

perception of zct , and ect r is the error in rater r ’s perception for the country–year observation.

8 For a thorough discussion of Bayesian ordinal IRTmodels, see Johnson and Albert (1999), Treier and Jackman (2008), and

Pemstein et al. (2015).

Kyle L. Marquardt and Daniel Pemstein � Political Analysis 437

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

28
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.28


We call the actual observed vector of ratings y, with individual element yct r . If we assume that

all expert ratings follow identical error distributions, the cumulative distribution function for the

error term takes the form of Equation (2).

ect r ∼ F (ect r /σr ). (2)

Ordinal IRT models assume that raters have “thresholds” on the underlying latent scale ỹ—

which we assume is interval-valued—that they use to translate a continuous latent concept into

ordinal categories, producing the observed values in y. In its simplest formulation, we assume no

DIF: rater r places observation ct into ordinal category k if γk−1 < ỹct r � γk , where each γ is a

threshold representing a cutpoint on the underlying scale that is constant across coders. In other

words, if rater r perceives a latent trait to fall below γ1, she awards the observation a rating of 1,

if the interval latent value appears to her to fall between γ1 and γ2 she codes it a 2, and so forth.

Equation (3) presents the likelihood of this model.

Pr(yct r = k ) = Pr(ỹct r > γk−1 ∧ ỹct r � γk )

= Pr(ect r > γk−1 − zct ∧ ect r � γk − zct )
= F
(
γk − zct

σ

)
− F
(
γk−1 − zct

σ

)

= F (τk − zct β ) − F (τk−1 − zct β ) . (3)

Here τk = γk
σ represents the estimated threshold with error, and β = 1

σ a scalar parameter also

estimated with error.

Our simplest model estimates the latent trait as being a weighted average of the data, with

constant thresholds and discrimination error across coders. More precisely, it has the likelihood

in Equation (4).

Pr(yct r = k ) =φ (τk − zct ) − φ (τk−1 − zct ) . (4)

Here k represents eachof five ordinal categories andφ is theCDFof thenormal distribution.We

assumea vagueN (0, 1) prior for the distribution of z , identifying the underlying latent scale.9 This
model assumes that all experts perceive the scale in the same fashion. The model also assumes

that all experts are equally reliable, making stochastic errors at the same rate (βr = σr = 1).

We expand upon this simplemodel in twodirections. First, we address DIF bymodeling experts

as having different interpretations of ordinal values. Second, we model reliability by introducing

an expert-specific parameter, known as a discrimination parameter in the IRT literature, to weight

rater contributions to the estimation of the latent values. We also discuss various permutations

of these models, culminating in models that account for both potential sources of expert

disagreement.

3.1 Measuring differences in expert scale interpretation
We pursue two strategies to measure expert disagreement about the scale. In the first strategy,

we assume that experts have different intercepts that are hierarchically clustered about the main

country they code. The V-Dem Project recruits all experts based on their expertise on a specific

country, and it is reasonable to believe that their expertise regarding this country systematically

colors their interpretation of latent concepts. In the case of freedom from political killings, an

individual who is an expert on a country with generally high levels of political killings may

systematically consider the level of political killings to be lower than an expert who codes a

9 See Johnson and Albert (1999) for a discussion of the role of priors in Bayesian IRT models.
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country that has little history of political killings. As a result, shemay consider her country to only

have “occasional” (a score of three) political killings when other experts may consider the rate of

killings to be “frequent” (a score of two).

Hierarchically clustering intercepts about the main country-coded serves two purposes. First,

experts who only code countries with low levels of political killings may never provide a score

of one or two (systematic or frequent political killings, respectively). As a result, there are not

sufficient data to determine their intercept without adding information from similar experts

who have coded the full range of values. Second, hierarchical clustering facilitates bridging

across countries by providing additional information about how similar experts code different

countries (seePemstein, Tzelgov, andWang (2015) for amore thoroughdescriptionof bridging and

cross-national comparability in expert-coded data). The resulting model with hierarchical expert

intercepts takes the form of Equation (5).

Pr(yct r = k ) = φ (τk − κr − zct ) − φ (τk−1 − κr − zct )
κr ∼ N (κcr , 0.5)
κcr ∼ N (0, 0.5).

(5)

This model differs from Equation (4) in the presence of a unique intercept, κ, for each expert r .

In turn, κr is distributed about an average κ for experts who codemain country cr with a standard

deviation of 0.5; κcr is distributed about zero with a standard deviation of 0.5. The choice of a

standard deviation is somewhat arbitrary; we use 0.5 because it allows for a degree of variation

that will be informative, but does not overpower other model parameters.

A model with hierarchical intercepts does not account for the fact that experts may

have idiosyncratic interpretations of the differences between thresholds. That is, instead of

systematically over- or underestimating latent values, experts may diverge in how far apart they

consider different levels. For example, though two experts may largely agree on what constitutes

a society in which there are systematic political killings, they may disagree on what constitutes

a society in which there are “frequent” vs. “occasional” political killings. To account for such

differences, we provide amodel in which experts have unique thresholds, hierarchically clustered

by the main country they code. The rationale for hierarchical clustering is essentially the same

for thresholds as for intercepts. Equation (6) presents the likelihood for a model that includes

hierarchical thresholds.

Pr(yct r = k ) = φ (τr ,k − zct ) − φ (τr ,k−1 − zct )
τr ,k ∼ N (τcrk , 0.25)
τc
k
∼ N (τμ

k
, 0.25)

τ
μ
k
∼ U (−2, 2).

(6)

Here τ
μ
k
represents the overall population threshold μ for category k ;10τc

k
the overall threshold

for experts with a common main country-of-coding c, and τr ,k the expert-r specific threshold. As

with the standard deviations for κ, the standard deviations of 0.25 for τ are somewhat arbitrary,

with 0.25 allowing for substantial variation while preserving cross-national bridging.

10 In models with hierarchical intercepts and no parameterization of DIF, we used the Stan default prior for ordered probit

regression. This default prior is improper, bounded (−∞,∞), and is thus dissimilar from the uniform (−2, 2) prior on the
overall thresholds in the hierarchical threshold models. To ensure comparability of the models, we ran addition analyses

on one simulated data set for models with hierarchical intercepts and no parameterization of DIF, where the prior for the

thresholds is Cauchy (0, 1). The results are essentially indistinguishable from models with the default thresholds. See

Appendix H for a comparison of these results.
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Note that the model with hierarchical thresholds is a more general form of the hierarchical

intercept model, which assumes that the only form of DIF is a general shift on the latent scale.

3.2 Measuring variation in reliability
We also provide models that account for variation in expert reliability. These models weight

downward the contribution of experts who nonsystematically diverge in either the scale or

direction of their codings from those experts who code the same cases. This approach assumes

that the average expert is unbiased, after accounting for DIF. For identification purposes, we also

restrict the reliability (discrimination) parameter to positive values. In practice, this restriction

means that experts who code in the opposite direction of most other experts contribute less to

the estimation procedure (i.e. they have an estimated discrimination parameter close to zero).

The most straightforward method for incorporating reliability into the estimation procedure is to

add a βr ∼ N (1, 1) discrimination parameter for each expert r to the simple IRTmodel presented
in Equation (4):

Pr(yct r = k ) = φ (τk − βr zct ) − φ (τk−1 − βr zct ) . (7)

The model in Equation (7) ignores DIF-driven coder disagreement, assuming that variation

in codings is solely a function of reliability: if an expert consistently provides different scores

than other experts, the model considers her less reliable. This assumption is problematic, since

the model attributes systematic bias to random error. As a result, extensions of this model add

this expert-specific reliability parameter to the previously discussed models with hierarchically

clustered intercepts (Equation (5)) and thresholds (Equation (6)). Equations (8) and (9) illustrate

these extensions.

Pr(yct r = k ) = φ (τk − κr − βr zct ) − φ (τk−1 − κr − βr zct ) (8)

Pr(yct r = k ) = φ (τr ,k − βr zct ) − φ (τr ,k−1 − βr zct ) . (9)

These models include parameters designed to capture both systematic and nonsystematic

contributions to rater disagreement.

4 IRT Models of Freedom from Political Killings

In order to assess the effect of model parameterization on the estimation of latent concepts,

we fit each of the six IRT models to the V-Dem Freedom from Political Killings data. For the

purposes of comparison, we also fit a Bayesian Aldrich–McKelvey model (BAM) and estimate the

normalizedmean.11 We use BayesianMarkov chainMonte Carlo (MCMC) simulationmethods to fit

the models,12 allowing us to simulate samples from the posterior distributions of the parameters

of interest—in this case, z—whichwe canuse to construct point estimates (posteriormedians) and

estimates of uncertainty (95 percent highest posterior density [HPD] intervals).13

11 We use an adapted version of the BAM model presented in Hare et al. (2015) in our analyses. We discuss the model in

Appendix C.

12 We use the statistical programming software Stan (Stan Development Team 2015) to run all analyses, and normalize draws

in postprocessing for purposes of identification. See Appendix D for Stan code. All models ran eight chains for 10,000

iterationswith a thinning interval of 20 and awarm-up of 1,000 iterations.We assess convergence using theGelman–Rubin

diagnostic, considering amodel to have converged if 95 percent of country–year estimates had values at or below 1.1. The

BAMmodel did not converge in this context, but performs better in many simulated contexts.

13 HPD intervals are a Bayesian analog of frequentist confidence intervals. An HPD interval is the smallest interval that

contains a given percentage of the posterior mass.
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Country–year point estimates (the posterior median) from different models have Pearson

correlationcoefficients ranging from0.78 to0.99.14 Wenote severalmain findingshere; a complete

table of Pearson correlations and Kendall rank correlations is available in Appendix Table E.1.

First and unsurprisingly, the normalized mean correlates the most strongly with the IRT model

that does not parameterize DIF or variation in reliability (ρ = 0.99). The normalized mean has

the weakest correlation with BAM output (ρ = 0.83), and the IRT model with which it correlates

most weakly is that with DIF parameterized at the intercept level and expert-specific reliability

parameters (ρ = 0.89). Second, BAM output more generally shows the weakest correlation with

other models. Its highest correlation is with the hierarchical intercept IRTmodel with fixed expert

reliability (ρ = 0.89), and lowest with the IRT model with varying expert reliability and no

parameterization of DIF (ρ = 0.78). Third, IRT models generally show relatively higher levels of

correlationwith each other, ranging from ρ = 0.87 (between the hierarchical interceptmodel with

fixed reliability and the model with varying reliability and no DIF parameterization) to ρ = 0.99

(models with fixed coder reliability and no DIF parameterization and parameterization of DIF

as hierarchical thresholds). In general, IRT models with intercept DIF show weaker correlations

with other models than models with either no DIF parameterization or DIF parameterized as

hierarchical thresholds.

Analyses of rank correlations (Table E.1) reinforce the conclusion that model choice can have

substantive importance, especially with regard to IRT vs. the normalized mean or BAM, as well

as within IRT models regarding the parameterization of DIF. BAM output has Kendall’s rank

correlation of 0.73 and 0.70with IRTmodels that parameterize DIF as a hierarchical intercept (with

reliability not parameterized and parameterized, respectively), and below 0.70 for all other IRT

models; rank correlation is 0.65 with the normalized mean. Rank correlations for the normalized

mean and IRTmodels with expert-specific reliability parameters vary between 0.72 and 0.82; rank

correlations between models with parameterized reliability vary between 0.68 (a model without

DIF and DIF in the form of hierarchical intercepts) and 0.82 (amodel without DIF and amodel with

DIF in the form of hierarchical thresholds).

For better intuition into the causes of the divergence between point estimates, Figure 3

presents output regarding a case with experts who appear to have variation in both their

scale perception and reliability, Russia (equivalent figures for Canada, Germany and Turkey

are available in Appendix E). Points represent median estimates across iterations of the MCMC

algorithm, while vertical lines represent 95 percent HPD intervals about these estimates (in the

case of the normalized mean, they represent standard 95 percent confidence intervals). The first

row represents non-IRT models (the left cell the normalized mean and the right cell the BAM

model output), while the remaining three rows different IRT parameterizations. Rows vary based

on parameterization of DIF, and columns whether reliability (discrimination) is fixed (left column)

or allowed to vary by experts (right column). The horizontal axis represents years, and the vertical

axis the level of political killings, with the scale determined by the minimum and maximum HPD

estimates across all country–years.

All models show similar trends in terms of levels of political killings. The clearest variation is

between IRT parameterizations, the normalized mean and BAM model output. The normalized

mean shows high levels of uncertainty about all estimates, which follows from the evidence of DIF

and variation in expert reliability. In comparison, IRTmodels showhigher levels of certainty about

point estimates, and the BAM model output even higher levels of certainty. While the extreme

levels of uncertainty in the normalized mean present clear challenges for assessing change over

14 There is also evidence that model specification has heterogeneous effects across cases with different numbers of coders.

Appendix Tables E.2 and E.3 present correlations for cases with both more and fewer than five coders, respectively.

Correlations are notably weaker in cases with fewer coders, which indicates that overall patterns of correlation may belie

important differences in some cases.
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Figure 3. Different models of freedom from political killings in Russia.

time, the extreme levels of certainty from the BAMmodel are perhaps equally disconcerting given

the apparent messiness of the data generating process.

Comparing across IRT models, all behave similarly, with the main points of divergence

occurring due to the addition of reliability parameters and models that include hierarchical

intercepts. Assessing the validity of these differentmodels is difficult, given the lack of a reference

point. Nonetheless,wehave evidence thatmodel choicematters in real data, both in termsof rank

ordering and uncertainty estimation.

5 IRT analyses of simulated data

Given the ambiguous results from the analyses of actual data, we use simulations to more

systematically examine how different models perform under varying conditions. We create

simulated data that varies in terms of both degree and form of variance in expert reliability and

DIF, generating 21 data sets that correspond to a variety of different possible situations. This

strategy allows us to investigate the different conditions under which IRTmodels both under- and

outperform traditional aggregations of these data (the mean and BAM), as well as compare the

performance of different IRT models to each other. The simulated data also evince a high level of

ecological validity, as we maintain the bridging structure and distribution of the V-Dem data. To

probe the degree to which our results are contingent upon the bridging structure of the V-Dem

data, we replicate the simulations with varied bridging structures. The first approach assumes

that all experts code all country–years for all the countries they coded, drastically increasing

cross-national bridging as well as the saturation of the data. The second approach similarly
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saturates coding (i.e. all experts code all country–years for the countries they code), but restricts

each expert to one country, eliminating bridging.

5.1 Simulation structure
We first use patterns in V-Dem to generate ecologically plausible data for our simulations. More

precisely, we create true latent values for our simulated data sets by calculating the normalized

confidence-weighted country–year means of the expert-coded political killing variable.15 In the

baseline simulation, we maintain the bridging structure of the data in terms of both the number

of experts for each country–year and the country–years each expert coded. That is, if an expert

coded the entire time period for a country and one country–year for two additional countries, we

assign her the same countries and years in the simulated data, though her simulated ratings are a

function of the algorithmswepresent here.We then simulate observable datawith different levels

of variance in expert reliability and agreement about ordinal scales (DIF).16

5.1.1 Simulated reliability
We simulate variation in expert reliability (expert-specific discrimination parameters) at three

different levels: in the first level, all experts have identical reliability (βr = β = 1); in the second

level, experts vary in their reliability (βr ∼ N (1, 0.5)); in the third level, experts vary greatly in
their reliability (βr ∼ N (1, 1)). Since we occasionally observe experts with apparent negative
directionality in their reliability (e.g. experts who increase their coding values when other experts

decrease their coding values), we do not truncate the reliability parameters to be positive in the

simulated data. Note that the case of high variation in reliability represents a nightmare scenario:

approximately 18 percent of experts have negative directionality in their coding. As a result, the

simulated data with high variation in reliability represent a very strong test of an aggregation

method: if models are able to recover data even in this worst-case scenario, they are of clear

usefulness.

5.1.2 Simulated DIF
We model DIF in four distinct ways. The first strategy provides baseline data for additional

analyses, assuming complete expert agreement on themapping of latent perceptions into ordinal

ratings. We estimate universal threshold values as a function of the probability of an expert

providing a given ordinal value in her coding, i.e. we use the quantile function of the normal

distribution to map the probability of being in different ordinal categories in the V-Dem data to

thresholdvalues. Thus,τr ;1,2,3,4 = γ1,2,3,4 = (−0.88,−0.31, 0.14, 0.83),whereτ represents simulated
threshold k for expert r .

The second strategy for modeling DIF assumes that experts only disagree according to

a constant value across thresholds. We estimate the intercept parameter κ for expert r

hierarchically, keeping with our modeling assumption that perceptions of a main country

influence DIF. Specifically, we first simulate κ for main country-coded cr as distributedN (0, 0.5),
with κ for expert r distributed N (κcr , 0.5). This method represents an intermediate level of
additive DIF. As with reliability, we also model a high level of variance in additive DIF. In this

context, both κcr and κr have a standard deviation of one. As in the case of high variation in

expert reliability, this high variation in additive DIF represents a nightmare scenario: given that

the simulated true threshold range is (-0.88, 0.83), a substantial proportion of κr falls outside

of this range. While such a scenario is hopefully unlikely, modeling it allows us to examine

the circumstances under which certain models become less effective at recovering true latent

population values.

15 “Confidence” refers to an expert’s self-reported confidence in her coding at each observation on a zero to one scale, with

one representing perfect confidence.

16 Appendix F contains the simulation algorithm.
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In the third strategy of modeling DIF, we assume that the perception of distance between

thresholds varies randomly by expert, without any cross-threshold trends. As with the additive

DIF, we assume a hierarchical structure to this form of DIF. Namely, we first simulate τ for each

main country-coded c and threshold k as being distributed N (γk , 0.25), where γ represents the
true population value for threshold k . Each expert r has thresholds τr ,k ∼ N (τcrk , 0.25). Again, we
also model this form of DIF with high variation, where we replace the standard deviation of 0.25

with a value of one for both levels of the hierarchical structure.

The fourth strategy perhaps most reflects reality: we model experts as generally perceiving

thresholds to be higher or lower than their true population values, while their perception of

individual thresholds varies aswell. Under this assumption, experts exhibit randomdisagreement

about thresholds but have general “strictness” tendencies. More specifically, this strategy is

similar to the third, but bothexperts andmain country-coded clusters are assignedadichotomous

indicator which determines whether or not their thresholds are truncated positive or negative. As

with other forms of DIF, wemodel variation at both medium (sd = 0.25) and high (sd = 1) levels.

5.1.3 Simulation data sets
We combine the simulated data with each of the three different levels of reliability (identical

reliability, and reliability withmedium and high variance across experts) and seven forms of scale

agreement (perfect agreement, constant difference across thresholds, threshold-specific variance

in disagreement, and threshold-specific variance that is generally higher or lower than the true

values) into different simulation data sets that reflect 21 distinct data generating processes (three

levels of reliability × four forms of DIF, with three forms of DIF evincing two levels of variation
each). Finally, we ordinalize these data using a categorical distribution with probabilities based

on the simulated thresholds and discrimination-weighted true population values. We replicate

the simulations thrice to increase confidence that findings are robust.

5.2 Simulation results and discussion
To analyze the performance of the six different IRT models, we ran each model on each of the 21

distinct data generating processes in the three simulated data sets.17 We report themean squared

error (MSE) of the median posterior country–year estimates with reference to the true values

acrossall simulations. This statistic illustrates thedegree towhichmodelpoint estimatesgenerally

diverge from the actual population values, with smaller values representing models that yield

point estimates closer to the true population values.18

Figure 4 reports MSE statistics across simulated data and different models. The first row

illustrates results fromsimulateddatawithnoDIF, the second rowresults fromsimulateddatawith

intermediate threshold DIF, and the third row simulated data with high threshold DIF. Columns

representdifferent levels of simulatedexpert variation in reliability parameters, ranging from fixed

reliability in the first column to high reliability variance in the third column. Each cell represents

different models for estimating latent country–year values, with the vertical axis representing

different forms of incorporating DIF (i.e. not incorporating DIF, incorporating DIF with hierarchical

17 Note that lack of convergence is endemic among BAMmodel output in the presence of high linear DIF, but only occurs in 6

of the 126 IRTmodels. In particular, IRTmodels with varying reliability and either threshold DIF or no DIF parameterization

encounter problems with convergence in the presence of both high linear DIF and either no or intermediate levels of

simulated variation in expert reliability. More generally, BAM models often show a high number of divergent transitions,

indicating that they are not exploring the fully posterior space.

18 We also estimate three additional statistics of model fit: (1) the proportion of country–year 95 percent HPD intervals that

include the true value, (2) the Pearson correlation coefficient between the median posterior country–year estimates and

the true values and (3) the Kendall correlation coefficient between the median posterior country–year estimates and the

true values.We report themgraphically in AppendixG. In general, the findings from thesedifferent estimates are congruent

with those regarding MSE. The main exception regards the percentage of country–year 95 percent HPD intervals that

include the true value. Especially in the context of high linear variation in DIF, BAM tends to drastically underperformmost

IRT models, which dovetails with the high levels of certainty produced by this model in Figure 3.
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Figure 4.MSE estimates across simulations with either no DIF or threshold DIF, using V-Dem data structure.
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expert-specific intercepts, incorporating DIF with hierarchical expert-specific thresholds, and

BAM). Light gray triangles represents the point estimates from models with expert-varying

reliability parameters, and dark gray points models with fixed reliability parameters. Finally,

vertical lines represent the MSE for the normalized country–year averages of the data across the

three simulated data sets. This final statistic provides a baseline for analyzing the degree to which

IRT andBAMmodels either out- or underperform the traditionalmethod for deriving country–year

estimates. In the case of MSE, if the IRT and BAM estimates fall to the left of the lines, it indicates

better performance.

Figure 4 indicates that IRT models that parameterize expert reliability perform similarly to

models that do not in the presence of no or medium variation in simulated expert reliability,

across levels of DIF. In thepresence of high variation in expert reliability,models that parameterize

reliability greatly outperformmodels thatdonot. This finding indicates thatparameterizingexpert

reliability is a safe practice in the context of low variation in expert reliability, and essential

in a context of high variation in reliability. Comparing across parameterizations of DIF, BAM

underperforms all IRT models with parameterized expert reliability. Results from this set of

simulations thus indicate that, under conditions of nonlinear DIF, BAM is at a disadvantage.

Turning to comparisons between IRT parameterizations of DIF, IRT models that include

interceptparameterizationsofDIFuniversally underperformequivalentmodels that includeDIFat

the threshold level. In contrast, models that do not parameterize threshold DIF perform similarly

to those thatdo in thepresenceof no simulatedDIFofmedium-level thresholdDIF; in thepresence

of high simulated threshold DIF, models that parameterize threshold DIF outperform those that

donot. In these contexts, parameterizing thresholdDIF therefore appears to be the safest strategy.

The findings provide initial evidence that a flexible IRT model that parameterizes both

threshold DIF and expert reliability—a traditional ordinal IRT—should be the work-horse model

for these applications. When the data are well behaved—when they exhibit little DIF or variation

in reliability—this model performs on par with the normalized mean. When the data are poorly

behaved, ordinal IRT generally outperforms its competitors.

Figure 5 presents results regarding MSE from simulated data with truncated threshold DIF,

i.e. data with medium or high variation in threshold variance, truncated so that an individual

expert’s simulated thresholds are consistently higher or lower thanaverage. In the caseofmedium

levels of simulated threshold variance (top row), the results are akin to those from Figure 4: at

low and medium levels of variance in expert reliability, IRT models that parameterize DIF at the

threshold level outperform both BAM and the IRT model that parameterizes DIF at the intercept

level. Models that do not parameterize reliability perform similarly to models that do so when

simulated variation in expert reliability is not high; when simulated variation in expert reliability

is high, parameterizing variation in expert reliability yields estimates that performmuch better in

terms of MSE.

However, at high levels of simulated truncated threshold DIF, models with DIF at the intercept

levels tend to slightly outperformmodels with DIF at the threshold level, and greatly outperform

models that do not parameterize DIF. BAM output continues to show worse model fit than IRT

models that parameterize variation in both expert reliability and DIF.

Finally, in the context of low variance in expert reliability andDIF, IRTmodels that parameterize

expert reliability and either do not parameterize DIF or parameterize it at the threshold level

perform similarly to the normalized mean. As DIF and variation in expert reliability increase, all

IRT models that parameterize reliability outperform the mean.

The findings here reinforce those from the previous set of simulations. The flexible IRT

approach with threshold-level DIF and reliability parameters is a safe approach if DIF is at the

threshold level, regardless of whether or not it also is consistently unidirectional for coders. These
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Figure 5.MSE estimates across simulations with truncated DIF, using V-Dem data structure.
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models only slightly underperform models with intercept DIF in the presence of high simulated

DIF and outperform suchmodels in other contexts.

Figure 6 reports results from data in which DIF is simulated as a shift on the latent scale, i.e.

experts perceive the same interthreshold differences, but universally perceive them to be higher

or lower. In the context of intermediate intercept DIF (first row), IRT models perform similarly

in the presence of low to intermediate levels of variation in expert reliability. At high levels of

variation in simulatedexpert reliability, IRTmodels thatparameterizeexpert reliabilityoutperform

models thatdonot, and themodel thatparameterizesDIFat the threshold level outperformsother

models. All IRTmodels that parameterize expert reliability outperformBAM; they also outperform

the mean in the presence of simulated variation in expert reliability.

In contrast, when simulated intercept DIF is high (second row), models with a hierarchical

intercept parameterization of DIF outperform both those models with no parameterization of DIF

or parameterization in the form of hierarchical intercepts. In this context, BAM generally performs

similarly to IRT models that parameterize expert reliability and do not parameterize DIF at the

intercept level, though IRT models with intercept-level DIF still outperform BAM. These findings

indicate that, when there is strong reason to believe that DIF (1)manifests purely as shifts in expert

strictness, and (2) is substantial; simple IRT specifications with only intercept-based DIF can yield

dividends over other approaches. However, such a scenario is unlikely given that the high levels of

simulated interceptDIF representa scenario inwhichDIFextendsbeyond farbeyond the threshold

range. Except in this nightmare scenario, ordinal IRT remains the safest choice.

5.3 Simulated data with alternative bridging strategies
We replicate these analyses using data with two alternate bridging patterns. In the first, wemodel

experts as having coded all country–years for all the countries they coded, a bridging pattern we

refer to as “all possible bridging.” This substantially increases both bridging and within-country

saturation. Thisbridgingpattern is idealistic in theV-Demcontext given the timeconstraints expert

coders face, but could better approximate other expert survey applications that have drastically

more saturated data. Figure 7 depicts bridging patterns in these saturated simulated data. Note

that we observe the same distribution of raters and bridges per country as in the original V-Dem

data, but see substantial increases in raters andbridges per observation.While someobservations

continue to exhibit few bridges, less than one percent of cases have no bridges and the average

observation is bridged to 24 other countries.

In the second data set, we again use the saturated data, but restrict experts to only coding

one country.19 This data set is more plausible than the “all possible bridging” set, since it only

requires an expert to code the entire time series for a single country. However, simulations

based on this bridging structure represent especially hard cases for our estimation strategies.

Figure 8 displays rating and bridging distributions for these locally saturated, but unbridged,

simulated data. Here per-country and per-observation distributions are virtually identical: the

typical observation/country is rated by around seven experts, and there is no cross-national

bridging.

We incorporate the simulated expert-specific DIF and reliability from theprevious analyses into

these data sets to increase comparability across different models of bridging, and replicate the

previous analyses. Since the absence of DIF and variation in reliability is implausible, we only

19 More specifically, we first randomly assign experts who universally coded one country–year to a country. We then assign

experts to the countries they coded that have the fewest number of coders. Finally, we randomly select a country to which

to assign an expert if she still has multiple countries coded. In the resulting data set the minimum number of experts per

country is two (four countries), and the maximum is 16 (one country).
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Figure 6.MSE estimates across simulations with intercept DIF, using V-Dem data structure.
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Figure 7. Bridging patterns in saturated data with all possible bridging.

report results regarding simulated data with some level of variation in DIF and reliability in the

text; remaining results are available in Appendix G.1.20

5.3.1 Saturated data with all possible bridging
Figure 9 illustrates results from the saturated data set with all possible bridging. In this figure,

levels of DIF are low, with rows representing different forms of DIF and columnsmedium and high

levels of variation in expert reliability. Increasing data saturation increases model fit across all

statistics, relative to the V-Demdata structure previously discussed. Indeed, in the case ofmedium

variation in simulated expert reliability, almost all models—IRT, BAM and mean—show similar

levelsofMSE.However, inacontextof simulatedhighvariation inexpert reliability, IRTmodels that

parameterize reliability evince better model fit relative to the mean, BAM, and fixed reliability IRT

models. The performance of these IRT models is similar, indicating that in a context of saturated

models with relatively low DIF, the parameterization of DIF is of less consequence. However, no

20 In these data sets, BAM has an extremely long run time in the presence of high levels of DIF. As a result, we ran some BAM

analyses with 5,000 iterations, as opposed to the standard 10,0000. BAM did not always converge when applied to these

data, especially in the high variation in DIF, either in the form of truncated thresholds or intercepts. As with data with the

V-Dembridging structure, IRTmodelswith varying expert reliability and either threshold or noDIF also occasionally do not

converge in the presence of high simulated linear DIF and little simulated variation in expert reliability. We present results

from unconverged models for completeness, but urge caution in interpretation. One major takeaway from this exercise is

that BAM is poorly suited to sparse data. Hierarchical A–M specifications (Appendix C) perform better in this regard, but

produce similar parameter estimates to their simpler counterparts.
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Figure 8. Bridging patterns in saturated data with no bridging.

model outperforms that with threshold DIF, indicating that this parameterization again remains

safe.

Figure 10 presents results from models that have higher levels of DIF in different forms, again

using data with all possible bridging. In all of the contexts presented, IRTmodels that incorporate

expert-specific reliability perform similarly or better than their corollaries without reliability

parameters. However, as in simulations using V-Dem bridging, the optimal parameterization

of DIF is context-dependent. In the case of high levels of threshold DIF, the manner of DIF

parameterization becomes much more important: models that incorporate DIF at the threshold

level tend to outperform other IRT models and BAM in contexts of nonlinear DIF; when DIF

takes the form of truncated thresholds, BAM and IRT models with DIF parameterizations tend

to perform similarly. Finally, in the context of simulated intercept DIF, the IRT model that

incorporates intercept DIF outperforms other models, with BAM performing similarly in a context

with medium-level variation in expert reliability and worse with high variation in reliability.

The better performance of BAM in this bridging context indicates that BAM requires more

saturated data than are present in the V-Dem data set to function effectively.21 However, the

fact that BAM still tends to perform worse than IRT models with DIF and reliability parameters

21 Again, Appendix C provides evidence that this difference is not driven by hierarchical pooling in the IRT models.
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Figure 9. MSE estimates across simulations with low levels of DIF, using saturated data with all possible

bridging.

likely reflects the ability of ordinal IRT models with threshold DIF parameters to better match the

nonlinear functional forms of the simulated DIF.22

5.3.2 Saturated data with no bridging
In general, the results from analyses of saturated data without bridging are similar to those from

thedatawith the ecologically valid V-Dembridging structure.We therefore graphically present the

results in Appendix G.1.2. The one exception to this general rule is BAM,which performs drastically

worse in this bridging context, regardless of the form of DIF or variation in expert reliability. This

result may due to the lower variation in coder scores necessary for BAM: although these data are

more saturated, within-country variation may be less than between-country variation.

6 Conclusion

We use actual V-Dem data on political killings and simulations to examine the applicability of IRT

methods to cross-national panel surveys of expert coders. In particular, we compare six different

IRT parameterizations to the standard approaches of (1) summarizing expert ratings using simple

means and standard deviations and (2) Bayesian Aldrich–McKelvey scaling (BAM). Analyses of

these models in the context of real-world V-Dem data regarding political killings indicate that

model specification can have substantial implications. The correlation of IRT output with the

22 Increasing variation in expert reliability actually tends to increase the performance of IRT models that parameterize both

DIF and reliability, potentially because this increases variation in the codings of experts who might otherwise code only

one value due to their threshold structure.
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Figure 10. MSE estimates across simulations with high levels of DIF, using saturated data with all possible

bridging.

normalizedmean ranges from0.99 to0.89,while rank correlations range from0.97 to0.72. Equally

importantly, IRT methods produce tighter estimates of uncertainty than the normalized mean,

which has 95 percent confidence intervals that often span the rating space. BAM produces results

with even tighter uncertainty estimates, and diverges even further from the normalized mean

(ρ = 0.83). In combinationwith the theoretical reasons tobelieve thatexperts vary in reliabilityand

scale perception, these results provide initial evidence that latent variable modeling techniques

outperform traditional approaches to summarizing expert survey responses.

Simulation results provide greater insight into the performance of differentmodels in contexts

with varying forms of DIF, expert reliability and bridging. The results confirm themain conclusions

from analyses of actual data, demonstrating that IRT methods often significantly outperform

simple averages and BAM in the extent to which they recover true values. These results are largely

consistent across bridging patterns, though highly saturated data with maximal bridging reduces

the importance of model choice in many contexts.

With regard to differences between IRT models, reliability parameters drastically improve fit

when expert reliability varies. The simulation results also indicate that parameterizing DIF in the

formof hierarchical thresholds is a generally safe strategy, especially when simulated DIF is low or

nonlinear. The exception to this rule is contexts in which DIF is extremely high and experts exhibit

uniform shifts in strictness across ordinal levels models. In these cases, models with hierarchical

intercepts outperform those with hierarchical thresholds. Though the preferable IRT strategy is

thus a function of the data generating process, it is worth noting that the context of extremely

high linear DIF is unlikely in most applications.
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Broadly, our results suggest that scholars constructing cross-national expert surveys—or other

surveys that include high levels of data sparsity and variation in coder reliability or DIF—should

adopt latent variablemodeling tools to adjust for varying reliability and DIF in their coders, rather

than simply averaging expert scores. IRTmethods also outperformBAM, especially when data are

sparse or DIF is nonlinear.

Our results bear several caveats. First, our focus here is on IRT, and therefore emphasizes

flexible data generating processes that allow for nonlinear DIF. Future work might examine

whether or not BAM substantially outperforms IRT when data are generated from BAM’s linear

DIF model, just as intercept-only specifications outperform more general IRT models when DIF

manifests as constant scale shifts. Scholars would also do well to ask which set of assumptions

best fits how experts behave, something that is likely to be domain-dependent.

Second, scholars would ideally design expert surveys with latent variablemodeling inmind. In

particular, our results show that all methods perform better when surveys are more thoroughly

bridged. Researchers can achieve bridging in multiple ways. In our context, raters bridge across

actual cases. Alternatively, anchoring vignettes can provide a tool for bridging observations (King

and Wand 2007; Bakker et al. 2014). In principle, vignettes and real bridges are equally useful

for modeling and adjusting for DIF. Indeed, one can seamlessly integrate vignettes into BAM or

IRT frameworks, by treating them like any other observation (Bakker et al. 2014; Pemstein, Seim,

and Lindberg 2016). Nonetheless, vignetting is expensive, was not conducted for numerous extant

surveys that could be analyzed with the techniques described here, and relies on assumptions of

cross-respondent invariance in vignette understanding that may not hold in practice (von Davier

et al. 2017). IRT methods provide a reasoned way to adjust for DIF, with or without anchoring

vignettes. Even in the complete absence of bridge observations, hierarchical prior specifications

allow for IRT estimation that outperforms traditionalmethods, althougherror remains substantial

when DIF is large.

Third, we intend the analyses presented to provide a framework upon which future research

can expand. For example, both themodels and simulateddatawepresent assume that an expert’s

reliability is constant across cases. This assumption is problematic: if an expert codes multiple

countries and years, her reliability likely varies basedonher relative knowledgeof these individual

observations. Asa result, parameterizingcase-level variation inexpert reliability IRTmodelswould

be a potentially fruitful avenue of research. Measures of self-reported case-level confidence—as

are present in the V-Dem data—provide a particularly promising source of data in this regard.

Similarly, the analyses we present assume that reliability is randomly distributed across cases.

However, it is plausible that some cases are harder to code than others, resulting in both fewer

coders for the cases and higher rates of stochastic error variance for those coders recruited.

Analyzing the relationshipbetween cases and reliability could thusbeof great importance. Finally,

to correct for some of these concerns, scholars could incorporate outside information into their

estimationof expert reliability: especially in the context of sparsedata, such informationmayyield

more precise estimates of reliability and thus more accurate estimates of latent concepts.

Supplementarymaterial

For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2018.28.
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