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We propose an alternative to the prevailing framework for modelling tear-film
breakup, which posits a layered structure with a mucus layer next to the cornea
and an aqueous layer on top. Experimental evidence shows continuous variation of
mucin concentration throughout the tear film, with no distinct boundary between
the two layers. Thus, we consider a continuous-viscosity model that replaces the
mucus and aqueous layers by a single liquid layer with continuous profiles of mucin
concentration and viscosity, which are governed by advection–diffusion of mucin.
The lipids coating the tear film are treated as insoluble surfactants as previously, and
slip is allowed on the ocular surface. Using the thin-film approximation, we carry
out linear stability analysis and nonlinear numerical simulations of tear-film breakup
driven by van der Waals attraction. Results show that for the same average viscosity,
having more viscous material near the ocular surface stabilizes the film and prolongs
the breakup time. Compared with the layered models, the continuous-viscosity model
predicts film breakup times that are in better agreement with experimental data.
Finally, we also suggest a hydrodynamic explanation for how pathological loss of
membrane-associated mucins may lead to faster breakup.

Key words: interfacial flows (free surface), thin films

1. Introduction
The tear film contains a mixture of various proteins and other biomolecules secreted

by the basal epithelial cells and the surrounding meibomian and lacrimal glands. The
stability of this thin protective film is essential to the health of the eye as it shields
the ocular surface from harmful environmental factors and pathogens (Selinger,
Selinger, & Reed 1979; Mantelli & Argueso 2008; Stevenson, Chauhan & Dana
2012; Yañez-Soto et al. 2014). Traditionally, the tear film is visualized as comprising
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FIGURE 1. (Colour online) Schematic illustration of the composition and structure of the
pre-corneal tear film.

three distinct layers (Braun 2012), as schematically shown in figure 1. The innermost
mucus layer, 0.2–0.5 µm in thickness, is composed of membrane-associated mucins
(MAMs) that form the glycocalyx on the corneal epithelium (Gipson 2004), and
serves as a barrier that protects the cornea from pathogens. The mucins also maintain
hydration and wettability of the ocular surface (Hodges & Dartt 2013). Outside
the mucus layer lies the aqueous layer (2.5–5 µm) that forms the bulk of the tear
film. It consists primarily of aqueous tear fluid produced by the lacrimal glands
with some gel-forming mucins secreted by the conjuctival goblet cells (Inatomi
et al. 1996). Finally, lipids secreted from the meibomian glands form a monolayer
(0.02–0.05 µm) atop the aqueous layer, which helps stabilize the air–tear interface
and reduce evaporation (Craig & Tomlinson 1997; McCulley & Shine 1997; Bron
et al. 2004).

Our understanding of the hydrodynamics of the tear film has been summarized in
a comprehensive review by Braun (2012). A focus of interest is the breakup process,
which may occur through several different mechanisms (King-Smith, Begley & Braun
2018). One is an instability driven by van der Waals attraction (Sharma & Ruckenstein
1985, 1986a,b; De Wit, Gallez & Christov 1994; Craster & Matar 2009). Another is
due to evaporation (Liu et al. 2009; Peng et al. 2014; Siddique & Braun 2015; Braun
et al. 2018). Finally, tear films can also rupture very rapidly owing to non-uniformities
in the lipid layer (Siddique & Braun 2015; Zhong et al. 2018). Our work focuses on
the first mechanism due to van der Waals attraction. As explained in the following,
our primary goal is to reconcile previous van der Waals-based models with a more
realistic description of the tear-film structure.

Most of our understanding of this mode of tear-film rupture has come from
single-layer models (Zhang, Craster & Matar 2003b; Braun & King-Smith 2007;
Heryudono et al. 2007; Winter, Anderson & Braun 2010; Deng, Braun & Driscoll
2014; Siddique & Braun 2015) and two-layer models (TLMs) (Sharma & Ruckenstein
1985, 1986a,b; Zhang, Craster & Matar 2003a, 2004). The former overlook the
structure of the tear film and assign a uniform viscosity throughout its thickness.
The latter posit an interface separating the aqueous and mucus layers, with its own
interfacial tension as well as van der Waals interactions with the other surfaces.
Most of these models assume a flat ocular surface and initially flat fluid interfaces,
given the small thickness of the tear film relative to the radius of curvature (∼1 cm)
of the corneal globe (Braun 2012). In the same vein, the thin-film or lubrication
approximation is always adopted even though the interface may take on sharp
curvatures towards the instant of rupture (Oron, Davis & Bankoff 1997). The
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main findings of these models are that the tear film ruptures as the result of an
instability driven by van der Waals attraction (De Wit et al. 1994; Craster & Matar
2009), and that the instability is resisted to some extent by the interfacial tension as
well as a Marangoni stress that arises from the lipids on the tear film that act as
insoluble surfactants (Berger & Corrsin 1974; Zhang et al. 2003b). Some studies have
considered slip on the ocular surface (Zhang et al. 2003b; Braun & King-Smith 2007;
Heryudono et al. 2007), and found that slip facilitates the instability and promotes
tear-film rupture. This scenario reflects the outcome of an infection in the mucus layer
that may compromise the glycocalyx to induce slip on the substrate. Even though the
human tear is known to be shear-thinning (Tiffany 1991), non-Newtonian rheology
has only been considered in a few studies (Zhang et al. 2003a, 2004; Jossic et al.
2009; Braun et al. 2012).

As noted by Braun (2012), more recent experiments have challenged the picture of
the layered tear film. Mucin is found throughout the tear film (Prydal & Campbell
1992; Chen et al. 1997; Bron et al. 2004; Gipson 2004; Govindarajan & Gipson
2010). In the absence of a distinct boundary between the aqueous and the mucus
layers, the mucin concentration forms a continuous profile within the entire tear film.
To better reflect the structure of the tear film, we propose a continuous-viscosity model
(CVM) as an alternative to the prevailing uniform single-layer models and TLMs.
Drawing from analysis of miscible two-fluid flows in a different context (Ern, Charru
& Luchini 2003; Usha, Tammisola & Govindarajan 2013; Ghosh, Usha & Sahu 2014),
we introduce advection–diffusion for the mucin throughout a single, continuous tear
film, which modifies the viscosity profile and in turn the hydrodynamics of the
breakup.

Compared with existing models, the CVM enjoys several advantages. First, it
avoids the difficulty of determining the properties of the putative mucus–aqueous
interface, including the interfacial tension and van der Waals interactions (Sharma &
Ruckenstein 1986a; Zhang et al. 2003a). Moreover, by varying the mucin diffusivity,
one can model healthy tear films in which an immobile membrane-tethered mucin
population maintains a permanent mucin gradient, as well as pathological conditions
where mucin detachment and diffusion modify the viscosity profile and, in turn,
the breakup process. Thus, the model can provide a potential linkage between the
hydrodynamic features of the breakup and the onset and progression of eye infection.
Finally, the model can be generalized to account for additional mechanisms in
tear-film dynamics. For example, one can explicitly model the growth and proliferation
of bacterial colonies in a similar fashion to mucin. Although at present we only
consider viscosity as a function of the mucin concentration, viscoelasticity of the
polymers can be introduced straightforwardly.

The rest of this paper is organized as follows. In § 2, we present the CVM for
the tear film, with details of non-dimensionalization and parameter values. Then we
present the linear stability analysis in § 3 and the nonlinear simulations in § 4. In § 5,
we compare our model predictions with those of the TLM and with experimental data.
Conclusions are drawn in § 6.

2. Mathematical formulation
2.1. Problem description

We model the entire tear film as a mucin solution in a Newtonian solvent, with an
initial mucin concentration profile C0(y). The lipids on the free surface are treated as
insoluble surfactants that advect and diffuse on the interface, with a surface tension σ
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FIGURE 2. Schematic representation of the computational domain of a tear film with the
CVM.

that depends on the local surfactant concentration Γ . We assume isothermal conditions
and neglect evaporation from the free surface and loss of fluid or mucins due to
osmosis from the ocular surface (Siddique & Braun 2015). The tear film rests on top
of a rough impermeable substrate, the corneal epithelium, on which we impose the
Navier slip condition with slip length β. Starting from the initial profile C0(y), the
mucin concentration C(x, y, t) evolves according to an advection–diffusion equation.
The viscosity µ(x, y, t) is an algebraic function of C(x, y, t), and thus its profile
evolves accordingly. The tear film has constant density ρ.

On the two-dimensional domain of figure 2 we pose the incompressible Navier–
Stokes equations governing the flow dynamics together with an advection–diffusion
equation describing the mucin redistribution:

∇ · u= 0, (2.1)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇(p+ φ)+∇ · τ , (2.2)

∂C
∂t
+ u · ∇C=Db∇

2C, (2.3)

where u = (u, v) is the velocity vector and Db is the bulk diffusivity for the mucin
transport. Here p is pressure and φ=−A/(6πh3) is the disjoining pressure due to van
der Waals attraction, with A being the unretarded Hamaker constant (Ruckenstein &
Jain 1974; William & Davis 1982). The deviatoric stress tensor is given by

τ =µ(y)

 2
∂u
∂x

∂u
∂y
+
∂v

∂x
∂u
∂y
+
∂v

∂x
2
∂v

∂y

 . (2.4)

The surface of the tear film y= h(x, t) evolves according to the kinematic condition
(Oron et al. 1997):

∂h
∂t
+
∂

∂x

(∫ h(x,t)

0
u dy

)
= 0. (2.5)

On the surface, the lipid concentration Γ (x, t) is governed by the following surfactant
transport equation (Zhang et al. 2003a):

∂Γ

∂t
+∇s · (Γ us)+ Γ (∇s · n)(u · n)=Ds∇

2
sΓ , (2.6)
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Parameter Description Value and source

L Characteristic length 5× 10−4 m (Braun et al. 2018)
H Characteristic thickness 3.5× 10−6 m (Braun et al. 2018)
β Slip coefficient 3.5× 10−7 m (Zhang et al. 2003b)
ρ Density of tear film 1.3× 103 kg m−3 (Deng et al. 2014)
µc Characteristic viscosity of tear film 1.3× 10−3 Pa s (Tiffany 1991)
σm Maximal interfacial tension 4.5× 10−2 N m−1

(Nagyová & Tiffany 1999)
S Maximal spreading pressure 7.5× 10−8 N m−1 (Zhang et al. 2003a)
Γm Maximal surfactant concentration 4× 10−7 mol m−2 (Bruna & Breward 2014)
A Unretarded Hamaker constant 3.5× 10−19 Pa m3 (Winter et al. 2010)
Ds Surface diffusivity 3× 10−8 m2 s−1 (Bruna & Breward 2014)
Db Bulk diffusivity 4.5× 10−12 m2 s−1

(Gribbon & Hardingham 1998)

TABLE 1. Parameters in the model, along with the references used for estimating their
values.

where n is the normal vector on the surface, ∇s = (I − nn) · ∇ is the surface
divergence operator, us = u − nn · u is the tangential velocity vector and Ds is the
surface diffusivity for the insoluble surfactant. Following Zhang et al. (2003a), we
assume that Γ is dilute and the interfacial tension σ decreases linearly with Γ :
σ(Γ ) = σm − SΓ /Γm, where σm is the maximal interfacial tension on a lipid-free
interface, S is the maximal spreading pressure and Γm is the maximum lipid
concentration. We have the normal and tangential stress balances at y= h(x, t):

n · τ · n= p− σ(∇ · n), (2.7)
n · τ · t=∇σ · t. (2.8)

On the solid substrate y = 0, we impose the Navier slip boundary condition with a
slip length β:

u= β
∂u
∂y
, v = 0. (2.9a,b)

For the mucin transport, a no-flux boundary condition is imposed on the top and
bottom of the domain,

∂C
∂y
= 0. (2.10)

On the left and right ends of the domain, we impose zero-slope conditions as in
previous studies (Zhang et al. 2003b). The parameters of the model are summarized
in table 1.

Our treatment of the mucin (and hence viscosity) profile requires some explanation.
In healthy tear films, the glycocalyx consists of MAMs that form a more or less
immobile polymer-rich layer. Meanwhile, soluble mucins produced at the conjunctiva
diffuse freely in the tear film. The onset of ocular diseases often compromises the
glycocalyx, forcing the MAMs to shed their ectodomains into the aqueous medium
(Albertsmeyer et al. 2010; Govindarajan & Gipson 2010). The shed ectodomains then
diffuse alongside the soluble mucins to elevate the bulk viscosity of the tear film.
Our model does not represent the glycocalyx as a physical entity, and thus cannot
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capture its structural remodelling directly or distinguish between the membrane-bound
and soluble species of mucins. Instead, we represent the healthy and diseased states of
the mucin profile through the diffusivity Db. For the diseased state, where all mucins
diffuse in the bulk of the tear film, we adopt the Db value for biopolymers having
similar molecular weights to the mucins (Gribbon & Hardingham 1998; Celli et al.
2005), direct measurement of mucin diffusivity being unavailable in the literature. This
value, listed in table 1, marks the upper bound of Db as all mucins diffuse freely in
this case, with a diffusion time scale of a second. Lower Db values will be used to
maintain large gradients of mucin during the course of tear-film breakup. The healthy
tear film will be represented by a much lower Db that produces a nearly permanent
glycocalyx with little diffusion. Admittedly simplistic, this is an easy way to reflect
the changing mucin profiles without modelling the kinetics of structural changes.

2.2. Non-dimensionalization
The above system of equations and boundary conditions are non-dimensionalized using
the following scaling:

x∗ =
x
L
, y∗ =

y
H
, h∗ =

h
H
, β∗ =

β

H
,

u∗ =
u
V
, v∗ =

Lv
HV

, t∗ =
tV
L
, p∗ =

p
P
,

Γ ∗ =
Γ

Γm
, σ ∗ =

σ

σm
,


(2.11)

where

V =
A

6πµcHL
, P=

A
6πH3

(2.12a,b)

are the characteristic velocity and pressure, respectively. In the literature, the
characteristic viscosity µc is often taken to be that of ‘the aqueous layer’ (Zhang
et al. 2003a). In our CVM context, we define it as the viscosity at the top of the
tear film. Here H and L are the characteristic thickness and horizontal length scale
respectively of an undisturbed tear film. Following Braun et al. (2018), we define
L from a balance between viscous and capillary forces; it is much smaller than the
physical dimension of the ocular surface.

Dimensionless equations are obtained on applying the above scaling to (2.1)–(2.6).
For simplicity, we use the same symbols after the scaling, and all expressions below
are dimensionless unless otherwise stated:

ux + vy = 0, (2.13)
ε2Re(ut + uux + vuy)=−(p+ φ)x + 2ε2µuxx + [µ(uy + ε

2vx)]y, (2.14)
ε4Re(vt + uvx + vvy)=−py + ε

2
[µ(uy + ε

2vx)]x + 2ε2(µvy)y, (2.15)

Ct + uCx + vCy =
1

Peb

(
Cxx +

1
ε2

Cyy

)
, (2.16)

where subscripts t, x and y indicate partial derivatives with respect to that variable,
ε=H/L is the aspect ratio of the tear film, Re= ρVL/µc is the Reynolds number and
Peb= VL/Db is the Péclet number for bulk mucin diffusion. The boundary conditions
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are u=βuy, v= 0 and Cy= 0 at y= 0 (substrate), and the following at the free surface
y= h(x, t):

ht +

(∫ h(x,t)

0
u dy

)
x

= 0, (2.17)

Γt +∇s · (Γ us)+ Γ (∇s · n)(u · n)=
1

Pes
∇

2
sΓ , (2.18)

p(1+ ε2h2
x)=

2ε2µ

1+ ε2h2
x

[ε2uxh2
x + vy − (uy + ε

2vx)hx] −
Chxx

(1+ ε2h2
x)

1/2
, (2.19)

µ[(1− ε2h2
x)(uy + ε

2vx)− 4ε2hxux] =−
εMaΓx

Ca
(1+ ε2h2

x)
1/2, (2.20)

Cy = 0, (2.21)

where Pes = VL/Ds is the surface Péclet number for the surfactant diffusion, Ma =
(Γm/σm)(∂σ/∂Γ ) is the Marangoni number, Ca=µcV/σm is the capillary number and
C = ε3/Ca (Sharma & Ruckenstein 1986a,b; Oron et al. 1997).

2.3. Thin-film approximation
Since the tear film is very thin relative to its transverse dimension, with an aspect
ratio ε� 1, we can neglect the inertial and the higher-order ε terms. Thus, using the
lubrication approximation (Oron et al. 1997), we obtain the following set of equations
at the leading order in ε:

ux + vy = 0, (2.22)
−px − φx + (µuy)y = 0, (2.23)

py = 0, (2.24)
Ct + uCx + vCy =Cyy/∆b, (2.25)

where ∆b = ε
2Peb is the rescaled bulk Péclet number. As explained by Oron et al.

(1997), ∆b can be O(1) despite the appearance of ε2, in the limit of very large Peb
or very small Db, which is relevant to the case at hand. Thus, the ∆b term is retained
to account for the mucin diffusion in the y direction. The above equations are subject
to the following boundary conditions.

At y= 0,
u= βuy, v = 0, Cy = 0. (2.26a−c)

At y= h(x, t),

ht +

(∫ h(x,t)

0
u dy

)
x

= 0, (2.27)

Γt + (usΓ )x =
Γxx

Pes
, (2.28)

p=−Chxx, (2.29)
µuy =−MΓx, (2.30)

Cy = 0, (2.31)

where M = εMa/Ca is the rescaled ratio of Marangoni to capillary number, and it
reflects the surfactant effects on the evolution of the free surface. Both the linear
stability analysis and nonlinear simulations discussed in the following are based on
the above set of equations after the lubrication approximation has been applied.
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3. Linear stability analysis
We first carry out a linear stability analysis of (2.22)–(2.31). Initially the tear film

is flat and stationary, with a height h0 = 1 and a uniform surfactant concentration Γ0.
Small perturbations are added to the initial state in the following form:

u= ũ(y)eikx+ωt, (3.1)
v = ṽ(y)eikx+ωt, (3.2)

h= h0 + h̃eikx+ωt, (3.3)
Γ = Γ0 + Γ̃ eikx+ωt, (3.4)

C=C0(y)+ C̃(y)eikx+ωt. (3.5)

The tilde quantities are assumed to be much smaller than the base-state variables,
e.g. |h̃| � h0. The initial concentration profile C0(y) is arbitrary. This allows us to
analyse the effect of an arbitrary initial viscosity profile µ0(y) on the stability of the
thin film. Since we restrict ourselves to a two-dimensional analysis, it is convenient
to define a stream function

ψ = ψ̃(y)eikx+ωt, (3.6)

such that u = ∂ψ/∂y and v = −∂ψ/∂x. Substituting the above into the governing
equations and retaining terms that are linear in the perturbations, we reduce the system
to ordinary differential equations (ODEs) for ψ̃ and C̃,

(µ0ψ̃yy)yy = 0, (3.7)

ωC̃+
k2C̃
Peb
−

C̃yy

ε2Peb
= ikψ̃, (3.8)

with the following boundary conditions:

µ0yψ̃yy+µ0ψ̃yyy=−
k2

ω

(
3
h4

0
− Ck2

)
ψ̃, µψ̃yy=−

k2MΓ0(
ω+

k2

Pes

) ψ̃y, C̃y=0 at y=h0,

(3.9a−c)
ψ̃ = 0, ψ̃y = βψ̃yy, C̃y = 0 at y= 0. (3.10a−c)

Equations (3.7)–(3.10) form an eigenvalue problem for ω, and its real part determines
the linear stability of the thin film. Note that as a consequence of zero mean flow in
the film, the stream function ψ̃ is decoupled from the concentration C̃. Thus, the linear
stability of the film can be solved from (3.7) along with the boundary conditions; it
will depend only on the initial viscosity profile. Then (3.8) and its boundary conditions
can be solved for the evolution of the concentration and viscosity profiles.

Equations (3.7)–(3.10) admit analytical solutions for uniform, linear and Heaviside
viscosity profiles. For an arbitrary viscosity profile, we employ a Chebyshev
collocation technique to solve the eigenvalue problem numerically. If the viscosity
profile contains a thin layer of steep gradient, as occurs across the diffuse outer
boundary of the mucin layer, we use a coordinate transformation to ‘stretch out’
the layer for adequate resolution at moderate numerical cost. The accuracy of the
numerical procedure is established by comparing the numerical solutions to analytical
ones for two simple viscosity profiles. For a uniform viscosity profile, our numerical
solution agrees closely with the analytical solution of Zhang et al. (2003b) (figure 3a).
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FIGURE 3. (Colour online) Comparisons between numerically computed dispersion
relations and analytical solutions. (a) For a uniform viscosity profile µ0 = 1 with surface
Péclet number Pes = 0.1. The analytical solution is from Zhang et al. (2003b). (b) For a
tanh viscosity profile with a sharp transition layer, with parameters δm = 0.01, hm = 0.2,
µr = 2 and Pes = 100. The analytic solution is from the TLM of Zhang et al. (2003a).
The other parameters are h0 = 1, Γ0 = 0.5, C = 1, M= 1 and β = 0.1.

To approximate a two-layer setup with a sharp jump in viscosity, we use a tanh profile
with a thin transition layer of thickness δm at a height of y= hm:

µ0(y)= 1+
µr − 1

2

(
1− tanh

y− hm

δm

)
, (3.11)

where µ0 is scaled by the viscosity at the top of the aqueous layer and µr is the
viscosity ratio between the bottom and the top of the tear film. Similar viscosity
profiles were used in recent studies on stability of viscosity-stratified free-surface flows
down an incline (Usha et al. 2013). On the other hand, we take the analytical solution
of a TLM (Zhang et al. 2003a) and put to zero the interfacial tension between the two
layers as well as the van der Waals attractions between the liquid interface and both
the top and the bottom boundaries (Cm= 0, A1,2,4= 0 as defined in appendix A). Thus,
the TLM and the continuous tanh model approach a common limit, and the dispersion
relations are again in excellent agreement in this limit (figure 3b). These tests validate
the numerical procedure for solving the eigenvalue problem.

3.1. Effect of the viscosity profile
We examine the linear instability of four different viscosity profiles with the same
average viscosity: a uniform profile, two linear profiles with opposite slopes and a
tanh profile (figure 4a). To compare the growth rate ω among the four profiles, we
need to adjust its scaling somewhat. Our general scheme of non-dimensionalization
(2.12) uses the viscosity µc at the top of the tear film to define a time scale. Here
the four viscosity profiles share the same average viscosity but not the same µc. To
scale ω uniformly, we have made an exception to the general scheme by adopting, for
all four cases, the time scale based on the top viscosity of the tanh profile. In such
a scheme, the common average viscosity µa = 1.5 for all four profiles (figure 4a).

Figure 4(b) shows that the viscosity distribution has a marked effect on the growth
rate of the instability. If the more viscous fluid is situated at the bottom of the film,
the growth rate is lower and the film is relatively more stable. Between the two
profiles with negative gradients (i.e. ∂µ0/∂y < 0), the tanh profile has lower growth
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FIGURE 4. (Colour online) (a) Four different initial viscosity profiles, each with a mean
dimensionless viscosity of 1.5. For the tanh viscosity profile, µr = 2, hm = 0.5 and δm =

0.01. (b) Dispersion relations for the four viscosity profiles. The parameter values are h0=

1, Γ0 = 0.5, C = 1, M= 1, β = 0.1 and Pes = 100.

rate as it has more high-viscosity fluid in the bottom half of the film. To understand
this stabilization by more viscous fluids near the substrate, we investigate the linear
viscosity profile further, as it allows an analytical solution.

3.2. Analytical solution for linear viscosity profiles
We parametrize the linear viscosity in terms of µr, the viscosity ratio between the
bottom (y= 0) and the top (y= 1) of the film:

µ0(y)=µr − (µr − 1)y. (3.12)

Inserting the above into (3.7), we integrate with respect to y four times to obtain

ψ̃ =
c1y2

2(µr − 1)
−
µrc1 + (µr − 1)c2

(µr − 1)3
(µ0 lnµ0 −µ0)+ c3y+ c4, (3.13)

where c1, . . . , c4 are constants of integration to be determined from the four boundary
conditions in (3.9)–(3.10). The algebra of determining the eigenvalue ω is simplified
if we neglect Marangoni flow (M = 0) and slip on the bottom wall (β = 0). Under
these conditions, the growth rate ω can be expressed as

ω= k2(3− Ck2)

[
1

2(µr − 1)
−

1
(µr − 1)2

+
lnµr

(µr − 1)3

]
, (3.14)

where k is the wavelength.
In order to compare the growth rate for linear viscosity profiles having the same

average viscosity but different slopes, it is convenient to parametrize the dimensional
viscosity profile using the average viscosity µa and the slope µs: µ0(y)=µa+µs(y−
h0/2). Then the growth rate can be scaled uniformly using the time scale based on µa.
In the limit of gentle slope, with |µsh0/µa|� 1, equation (3.14) can be recast into the
following form for the rescaled growth rate:

ω̃= k2(3− Ck2)

[
1
3
+

1
12
µsh0

µa
+O

(
µ2

s h2
0

µ2
a

)]
. (3.15)

If the region of higher viscosity is located near y = 0, µs < 0 and the growth rate
is reduced relative to a uniform viscosity profile of the same mean viscosity. This
explains the trend observed in figure 4(b).
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4. Nonlinear numerical simulation

In the linear analysis, the equations governing the flow field and mucin transport
(3.7) and (3.8) are decoupled and, as a result, the consequences of mucin diffusion
cannot be studied within the linear framework. We therefore resort to a numerical
solution of the nonlinear lubrication equations (2.22)–(2.31). Because the mucin
diffusion equation is solved in two dimensions, our problem cannot be reduced to a
set of one-dimensional partial differential equations as in earlier nonlinear studies of
thin-film flows (Zhang et al. 2003a,b; Pototsky et al. 2004).

4.1. Problem setup and numerics
The mucin concentration field evolves in the two-dimensional domain whose upper
boundary, the surface of the film, changes in time. To avoid solving a moving
boundary system in the domain x ∈ [0, L], y ∈ [0, h(x, t)], we introduce a mapping

η=
y

h(x, t)
(4.1)

that transforms the tear film into a rectangular domain x ∈ [0, L]; η ∈ [0, 1].
Accordingly, the governing equations are transformed into the (x, η) coordinates:

ux − uη
η

h
hx +

vη

h
= 0, (4.2)

−(p+ φ)x +
1
h2
(µuη)η = 0, (4.3)

Ct −Cη

η

h
ht + u

(
Cx −Cη

η

h
hx

)
+ v

Cη

h
=

1
∆b

Cηη

h2
, (4.4)

subject to the following boundary conditions. At η= 1,

ht + uhx = v, (4.5)

Γt + (uΓ )x =
Γxx

Pes
, (4.6)

µ
uη
h
=−MΓx, (4.7)

p=−Chxx, (4.8)
Cη = 0, (4.9)

and at η= 0,

u= β
uη
h
, v = 0, Cη = 0. (4.10a−c)

After solving the problem in the (x, η) plane, the solution is transformed back to the
(x, y) plane for visualization and analysis.

We impose the following sinusoidal initial perturbation:

h(x, 0)= h0 + h̃eikmx, (4.11)
Γ (x, 0)= Γ0 + Γ̃ eikmx, (4.12)

C(x, y, 0)=C0(y)+ C̃eikmx, (4.13)
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FIGURE 5. (Colour online) Validation of our numerical schemes: the instantaneous
interfacial profile of a liquid film at the moment of rupture, computed using two different
methods and compared with the result of Burelbach, Bankoff & Davis (1988). The
abscissa is labelled in terms of the fastest-growing wavelength λm.

where km is the wavenumber of the fastest growing mode of linear instability, and
the small initial amplitudes (h̃, Γ̃ , C̃) are calculated by solving the set of equations
(3.7)–(3.10) with h̃= 0.01. The dimensionless initial conditions have h0= 1 and Γ0=

0.5. The initial mucin concentration profile is

C0(y)= 1+
µr − 1

2

(
1− tanh

y− hm

δm

)
, (4.14)

and we adopt a dimensionless viscosity

µ(C)=C, (4.15)

ignoring the solvent contribution relative to the mucin contribution. In addition, a
linear and uniform profile will also be tested in § 4.4 for comparison, as has been
done in the linear stability analysis of § 3.

To solve the nonlinear film breakup problem outlined above, we have used two
independent numerical methods. One is the finite-element solver COMSOL 5.2, and
the other is an in-house MATLAB solver that uses a central difference scheme in the
x direction and a Chebyshev pseudo-spectral discretization in the η direction, along
with an Adam–Moulton time-stepping scheme. As validation, we have computed the
one-dimensional problem of an isothermal film breakup, with constant viscosity and
no surfactant, for which a solution is available in the literature (Burelbach et al.
1988). To be consistent with Burelbach et al. (1988), we impose periodic boundary
conditions between the left and right edges of the domain. For the parameter set
of figure 4 of Burelbach et al. (1988), figure 5 shows that our two numerical
procedures produce essentially identical results, agreeing closely with the earlier
result of Burelbach et al. (1988). In particular, we have predicted rupture times
trup = 4.085 using COMSOL and trup = 4.072 using the MATLAB solver, close to
trup = 4.164 predicted by Burelbach et al. (1988). In the following, we will only
present results computed using COMSOL, as all cases computed using our MATLAB
solver yielded essentially the same results.
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FIGURE 6. (Colour online) A representative solution of nonlinear film breakup.
(a) Temporal evolution of the interface and (b) evolution of the surfactant concentration
until rupture at t = 0.667. (c) Contours of the mucin concentration and (d) contours of
the magnitude of the velocity in the tear film at t= 0.66, just before rupture.

4.2. General characteristics of film rupture
Figure 6 presents a representative solution for the evolution of the interface to rupture,
using the following baseline set of parameters: hm = 0.2, µr = 2, δm = 10−2, C = 0.1,
M= 1, Pes = 100, ∆b = 1 and β = 0.1. Starting from the small disturbance imposed
on the surface of a uniform stationary film (4.11)–(4.13), a pressure gradient due
to the short-range van der Waals forces causes the disturbance to grow (figure 6a)
by moving liquid from the valley to the crest region. This flow also transports
the insoluble surfactant on the surface (figure 6b), generating a Marangoni flow
that tends to oppose the film thinning due to van der Waals force. Meanwhile, the
mucin distribution deviates from its initial profile (4.14) by convection and diffusion
(figure 6c). Although the Marangoni flow slows down film thinning to some extent,
it is unable to overcome the destabilizing effect of the van der Waals attraction, and
the thinning flow continues (figure 6d) until the film ruptures at trup = 0.667.

In the following, the film breakup is quantified in terms of the evolution of the free
interface and the rupture time trup. We will compare the nonlinear instability with the
predictions of linear growth, and analyse how film rupture is affected by the mucin
diffusivity and the initial mucin concentration profile. Unless otherwise stated, we will
vary the parameters relative to the baseline values given above. We have also explored
the effects of slip on the ocular surface and the magnitude of the van der Waals
forces. These turn out to be qualitatively the same as reported earlier for a single-layer
model (Zhang et al. 2003b) and TLMs (Sharma & Ruckenstein 1986a,b; Zhang et al.
2003a). As expected, larger slip and stronger van der Waals attraction both lead to
faster growth and breakup. We omit these results for brevity.
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FIGURE 7. (Colour online) Nonlinear growth of the instability as affected by mucin
diffusivity, ∆b being the rescaled Péclet number. (a) Comparison of the nonlinear growth
metric G with the linear growth (LSA). (b) Temporal evolution of the minimum height hmin
for the nonlinear cases. For comparison, we have included in both plots the solution for
a uniform-viscosity film whose viscosity equals the average viscosity of the tanh profile.

4.3. Effect of mucin diffusivity
In the nonlinear phase of the instability, the higher order terms are no longer
negligible and mucin diffusion plays a key role. Following Matar (2002), we define
a nonlinear growth metric

G= ln
[

hmax(t)− hmin(t)
hmax(0)− hmin(0)

]
, (4.16)

where hmax(t) and hmin(t) are the maximum and minimum film thickness at time t, and
compare it to the linear growth ωmt, ωm being the fastest growth rate among the linear
modes of instability.

Using the tanh initial mucin profile with the baseline parameters, we have tested
several values of the rescaled Péclet number ∆b for mucin diffusion (2.25), and
compared the nonlinear growth against the linear prediction in figure 7(a). Note first
that the nonlinear curves coincide with the linear result at short times, as is expected.
Later the growth rate increasingly deviates from the prediction of linear instability,
resulting in a catastrophic rupture at the end (figure 7b), as opposed to the exponential
rupture predicted by linear instability. Among the four nonlinear growth curves, the
rupture occurs faster for the smaller values of ∆b, i.e. larger mucin diffusivity. This
can be rationalized from our linear analysis of the effect of the viscosity profile.
Figure 4 shows that having high-viscosity fluid near the solid boundary tends to
suppress the linear growth rate and stabilize the film. In the nonlinear regime, the
mucin diffuses from the near-wall region, where C is the highest, towards the free
surface of the film, where C is the lowest. This dynamically lowers the viscosity near
the substrate and raises it near the free surface, thereby accelerating the instability
according to the linear analysis. Thus, higher mucin diffusivity leads to faster growth
and earlier rupture.

It is interesting to examine the limits of rapid and slow diffusion. As discussed
in § 2, the rapid diffusion at the Db value of table 1 (∆b= 4.4× 10−4) corresponds to
complete loss of the MAMs and free diffusion of mobile mucins. Diffusion being so
rapid, the tear film behaves essentially as if with a uniform initial viscosity profile,
shown by the curve labelled by µuniform in figure 7. At the slow diffusion limit,
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FIGURE 8. (Colour online) Evolution of the minimum film thickness hmin(t) for the four
initial viscosity profiles of figure 4(a). Similar to figure 4(b), we have scaled time by the
same characteristic time, corresponding to the tanh profile, for all four viscosity profiles.

represented by the curve for ∆b = 100, the mucin profile diffuses little during the
breakup process, approximating the intact glycocalyx in a healthy tear film. In both
limits, the tear film dynamics is insensitive to ∆b, and we have chosen an intermediate
∆b= 1 as our baseline for the purpose of demonstrating the effect of mucin diffusion.
We compare the model predictions of breakup time with experimental measurements
on healthy tear films in § 5.3.

The transition from the slow to the fast diffusion limit may be identified with the
gradual loss of MAMs due to diseases such as dry eye syndrome and eye infection
(Sharma & Ruckenstein 1985). It has long been observed that the tear-film breakup
time is shortened under such pathological conditions (Norn 1969; Dohlman et al.
1976). Our CVM prediction is consistent with these observations. Moreover, the
model provides a plausible explanation for the shortened breakup time through the
outward mucin diffusion from the glycocalyx.

4.4. Effect of the initial viscosity profile
To explore how the initial mucin and viscosity profiles affect the nonlinear instability,
we compare in figure 8 nonlinear breakup starting from the four initial profiles
tested for linear stability in figure 4(a). The temporal evolution of the minimum film
thickness hmin(t) shows that the nonlinear instability, up to film rupture, obeys the
same trend discovered from linear stability analysis. That is, the profile that puts
more viscous fluid near the solid wall tends to stabilize the film more and delay the
film breakup (figure 4b). Along with the effect of mucin diffusion discussed above,
this furnishes another example of how the simple rule established by linear analysis
(§ 3.2) continues to hold into the nonlinear stages of film breakup.

Now we focus on the tanh profile only. Keeping the viscosity at the top fixed, the
viscosity ratio µr and the height of the mucin-rich layer hm can be varied in concert to
keep the mean viscosity of the profile constant. According to this protocol, figure 9(a)
shows three initial viscosity profiles with different hm, a smaller hm corresponding to a
thinner but more viscous mucin layer next to the wall. Figure 9(b) shows the rupture
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FIGURE 9. (Colour online) (a) For a fixed mean viscosity of 1.5, the initially imposed
viscosity profiles for three different values of hm. (b) Effect of hm on the tear film rupture
time trup for a healthy tear film with ∆b = 100.

time as a function of the initial mucin layer thickness hm. The general trend is that
the breakup time trup increases with decreasing hm. Putting more viscous material next
to the ocular surface tends to stabilize the tear film against breakup, an effect that
has been confirmed repeatedly in the above. As hm becomes very thin, however, the
trend levels off. This can be rationalized by the mucin diffusion from the near-wall
region toward the free surface. A smaller hm implies a sharper mucin concentration
gradient at the start, which is more quickly smeared out by diffusion after the onset
of instability. Roughly speaking, the C or µ profile will quickly relax towards that of
a thicker hm in figure 9(a). This explains how trup becomes insensitive to hm as it gets
too thin.

5. Comparison with TLMs
As stated in § 1, the main impetus of this study is to propose a model for tear-film

breakup with a continuous mucin profile, as an alternative to the earlier models that
assumed an aqueous layer atop an immiscible mucus layer. It is therefore important
to compare the predictions of the new model with those of earlier models and with
available experimental data. The TLM and CVM share a common limit, as noted
in § 3, and figure 3(b) demonstrates that the two models yield the same linear-stability
solution in that common limit. In the following, we first confirm that the two models
predict the same nonlinear instability in the common limit, and then compare their
predictions under conditions relevant to realistic tear films.

5.1. Nonlinear film rupture in the common limit
The common limit is approximated in the tanh viscosity profile by employing a sharp
transition layer (with a small δm = 10−4) along with slow diffusion (with a large
∆b = 100). The parameters for the TLM are given in appendix A. Among these we
put to zero the interfacial tension for the mucin–aqueous interface (Cm = 0), as well
as the van der Waals forces between this interface and the solid substrate and the
free surface (A1,2,4 = 0). Figure 10 compares the CVM and TLM in the common
limit for a film with hm = 0.5, with equal initial thickness for the two layers. The
two models show very close agreement in the nonlinear regime of film rupture. The
nonlinear growth factor follows the linear prediction up to t ≈ 0.5, after which the
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FIGURE 10. (Colour online) The common limit for the TLM and the CVM. (a) Growth
of the initial perturbations with time in the TLM and CVM, in comparison with the
linear growth rate (LSA). (b) The air–water and water–mucin interfaces of the TLM are
superimposed on the mucin concentration field in the CVM at time t= 1.031, just before
rupture.

nonlinear rate becomes increasingly greater, ending with a sharp upturn toward rupture
(figure 10a). Snapshots of the interfacial profile also agree between the two models.
The TLM has an air–water interface at ha(x, t) and a mucus–aqueous layer interface
at hm(x, t). These are overlaid on the contours of mucin concentration in the CVM
(figure 10b) at t = 1.031, shortly before rupture takes place. The air–liquid interface
agrees closely between the two models, and the water–mucin interface in the TLM
overlaps the CVM contour C = 1.5, at the centre of the tanh profile. Thus, we have
confirmed that in the limiting scenario the two models agree in both the linear and
the nonlinear regimes.

5.2. TLM for tear film

The TLM differs from our CVM in posing an immiscible interface between the mucus
and aqueous layers that possesses an interfacial tension and also interacts via van
der Waals forces with the top and bottom surfaces. Bearing this in mind, we first
investigate how the mucus–aqueous interfacial tension and the van der Waals attraction
between the mucus–aqueous interface and the two boundaries affect the process of
film breakup.

Similar studies have been performed before (Zhang et al. 2003a), but our case
differs in allowing slip on the solid substrate in a two-layer setup. After adding the
Navier slip boundary condition to the TLM of Zhang et al. (2003a) for Newtonian
fluids, we solve these equations numerically. The predicted breakup time is depicted in
figure 11 as a function of the dimensionless mucus–aqueous interfacial tension Cm for
two values of the Hamaker constant A1 (definitions given in appendix A). Increasing
interfacial tension at the mucus–aqueous interface hinders the growth of instability.
Thus, the breakup time trup increases monotonically with Cm. On the other hand, since
the van der Waals attraction is the driving force for the breakup, trup decreases with
increasing A1. Both trends are consistent with previous predictions using TLM in the
absence of slip (Sharma & Ruckenstein 1986a,b; Zhang et al. 2003a).
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FIGURE 11. (Colour online) Effects of the interfacial tension and van der Waals attraction
on the tear-film breakup time trup in the TLM. The parameter Cm is the dimensionless
mucus–aqueous interfacial tension, and A1 represents the aqueous–substrate interaction in
the presence of the mucus layer (Zhang et al. 2003a). The other TLM parameters are
hm = 0.2, µr = 2, A2 =A3 =A4 = 1, C = 0.1, M= 1, Pes = 100 and β = 0.1.

5.3. Comparison between CVM and TLM
A prerequisite for a meaningful comparison is to match the parameters of the two
models. The complete set of parameters of the CVM are C, µr, hm, δm, ∆b, Pes, β and
M, as described in detail in § 2. On the other hand, the TLM assumes a two-layered
description within the tear film and thus has a different set of governing parameters:
C, Cm, µr, hm, A1, A2, A3, A4, Pes, β and M, as described in detail in appendix A.
Of the parameters common to both models, C, µr and hm are based on the intrinsic
properties of the tear film itself and can be readily evaluated for typical tear films
of the healthy eye, and matched between the two models. The other parameters are
chosen on the basis of previous TLM simulations (Sharma & Ruckenstein 1986a;
Zhang et al. 2003a). As a reference, Zhang et al. (2003a) adopted a power-law non-
Newtonian viscosity for the mucus layer and a no-slip boundary condition on the
substrate. Under these conditions, their TLM predicted a tear-film breakup time in the
range of 15–50 s for healthy eyes.

We compare the two models under conditions that correspond roughly to the tear
films of healthy eyes, with slip on the ocular surface (Zhang et al. 2003a; Braun &
King-Smith 2007; Heryudono et al. 2007). Figure 12 plots the predicted trup for a
range of C, the scaled dimensionless air–tear interfacial tension. For both models, trup

increases with C, as one may expect. However, the predictions using the two models
differ by orders of magnitude under the given set of parameters. In dimensional
terms, the TLM predicts a range of trup from 0.7 s to less than 2 s for 10−2 6 C 6 1.
Meanwhile, the CVM predicts trup ranging from 8 s to approximately 760 s over the
same range of C, with trup= 80.4 s for the baseline value of C = 0.1. It is interesting
to note that our TLM predicts a much shorter trup than that of Zhang et al. (2003a)
cited above. This is partly due to their assumption of no slip on the substrate and
a power-law viscosity in the mucus layer. By imposing no-slip boundary condition
in our TLM, we obtain trup between 1 and 4 s (figure 12), which is comparable to
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FIGURE 12. (Colour online) Comparison of the dimensional breakup time trup predicted
by the TLM and CVM for a healthy tear film over a range of the air–aqueous interfacial
tension C. The following parameters are common to both models: µr = 2, hm= 0.2, Pes=

100, β = 0.1 and M= 1. In addition, we have used δm= 0.01 and ∆b= 100 for the CVM,
and Cm = 10, A1 =A2 =A3 =A4 = 1 for the TLM. A prediction of a no-slip TLM with
β = 0 is also plotted for comparison.

Range of trup (s) Sources

3–132 Norn (1969)
15–34 Lemp & Hamill (1973)
5–100 Vanley et al. (1977)
20–50 Holly & Lemp (1977)
4–214 Mengher et al. (1985)
>10 Cho & Douthwaite (1992), Korb, Greiner & Herman (2001),

Sullivan et al. (2012)

TABLE 2. Experimental data for the breakup time trup of healthy tear films.

trup= 7.7 s that Zhang et al. (2003a) predicted for a Newtonian mucus layer with no
slip.

Naturally one would seek experimental data to serve as a benchmark against
which to compare the predictions of the CVM and TLM. Tear-film breakup time
can be measured using invasive (e.g. fluorescence imaging) as well as non-invasive
(e.g. retroillumination, keratometry, corneal topography measurements) techniques
(Sweeney, Millar & Raju 2013). Unfortunately, both types of measurements are
affected by a variety of biological and environment factors that are difficult to control,
including ambient air humidity and temperature, variations in the chemical makeup of
healthy tear films, partial blinking, illumination intensity, and the concentration, pH
and the type of fluorescein used. Consequently, measured trup for healthy eyes falls in
a wide range, with poor reproducibility (Sweeney et al. 2013). Table 2 summarizes
all such data as we can find in the literature.

Compared with the experimental data, the TLM prediction of trup = 0.7–2 s is too
short, and amounts to almost instant breakup. This can be attributed to the additional
van der Waals force on the thin mucus layer that is assumed in the TLM, which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.776


Tear-film breakup 371

hastens the rupture of the mucus–aqueous interface, and in turn making way for the
breakup of the aqueous layer. Such a breakup sequence has been illustrated by Zhang
et al. (2003a). As the dynamics of the mucus layer dominates the breakup of the
whole tear film, the air–liquid interfacial tension has a relatively minor role in the
TLM. Hence, trup does not vary as much with C as in the CVM. In comparison, the
CVM predicts trup that ranges up to hundreds of seconds, in better agreement with
the measured data in table 2. This supports our initial argument that the CVM, with
a suitable viscosity profile, more closely represents the true structure of the tear film
than the TLM.

6. Conclusion
As an alternative to the prevailing TLM for the tear film, we have proposed a

CVM for studying the breakup of a tear film driven by van der Waals attraction.
This is motivated by experimental evidence that shows a continuous profile of mucin
concentration through the thickness of the tear film, without a distinct boundary
separating a mucus layer and an aqueous layer. Using linear stability analysis and
nonlinear numerical simulations, we have explored how mucin and viscosity variations
across the depth of the tear film affect the speed of tear-film rupture. Within the
range of parameters studied, whose evaluation is based on available experimental
measurements and prior modelling, the CVM predicts the following main results.

(i) With the mean viscosity held constant, a profile that features more viscous fluids
next to the solid substrate retards the growth of the interfacial instability and
delays the tear-film breakup. This trend holds in the linear and nonlinear stages
alike.

(ii) Mucin diffusion affects breakup by modifying the mucin and viscosity profiles.
Starting with an initial profile with higher mucin concentration near the substrate
than in the upper part of the tear film, the diffusion destabilizes the film and
hastens its breakup.

(iii) The CVM predicts breakup times in better agreement than the TLM with
experimental measurements for healthy tear films. This supports our intuition
that the CVM better represents the structure of the tear film, and consequently
its fluid dynamics.

(iv) The lipid layer atop the tear film, treated as insoluble surfactants, has a stabilizing
effect against rupture through the Marangoni stress. In contrast, the slip on the
corneal epithelium destabilizes the tear film and shortens the rupture time. These
effects are consistent with previous TLM predictions.

An interesting inference from the CVM prediction is that eye diseases are likely
to hasten tear-film breakup, in agreement with clinical observations (Norn 1969;
Dohlman et al. 1976; Sharma & Ruckenstein 1985). One possible mechanism is
suggested by our examination of the effect of mucin diffusivity. MAMs are largely
immobile, and we represent this by a low mucin diffusivity. As pathological conditions
compromise the MAMs in the glycocalyx, more of the mucin can diffuse into the
aqueous medium and reduce the viscosity gradient in the tear film. Our model predicts
that this leads to shorter breakup times, up to a factor of about 2 (cf. figure 7).
Another potential cause of faster rupture is the slip on the corneal surface, which
may be aggravated by the loss of MAMs. Conceivably, both mechanisms can be
tested in careful experiments that monitor the structural degradation of the corneal
glycocalyx caused by eye diseases (Bron et al. 2015). The model predictions suggest
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the interesting possibility of using the tear-film breakup as a diagnostic of the health
of the glycocalyx and of impending eye infections (Yokoi et al. 2017). We should
caution, however, that eye infection is a complex disease involving myriad factors.
For example, inflammation and immune responses may change the composition and
structure of the tear film as well, and such factors may complicate the linkage
between tear-film breakup and eye diseases.

Finally, we should point out the shortcomings of the CVM as presented here.
In building a new model that deviates from the paradigm of the layered tear-film
structure, we have neglected many complicating factors that exist in the real tear
film. These include, among others, evaporation, flow due to the blinking cycle,
gravity-induced drainage, non-Newtonian rheology and transport of mucin due to
osmosis. Many of these factors have been studied in single-layer models or TLMs
(Zhang et al. 2003a; Jones et al. 2005; Siddique & Braun 2015). Moreover, there is
considerable uncertainty in some of the parameter values, e.g. the mucin diffusivity
and the corneal slip. For lack of experimental data, we are forced to make rough
estimations. Of course, the TLM suffers from the same problem, perhaps more acutely
for the greater number of parameters therein. For these reasons, we should see the
present version of the CVM as a working model that attempts to better represent the
structure of the tear film. By incorporating the neglected factors into the model and
by evaluating the model parameters more accurately for healthy and diseased tear
films, one can improve the CVM significantly in its predictive power.
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Appendix A. Parameters in the TLM
Consider the TLM with a mucus layer of thickness hm below an aqueous layer, the

total tear film thickness being ha. Owing to van der Waals forces, we modify the
capillary pressure inside the mucus and aqueous layers by disjoining pressures:

Pm = pm + φm, (A 1)
Pa = pa + φa, (A 2)

where pa, pm and φa, φm are the capillary and disjoining pressure terms at the two
interfaces, respectively, and are expressed as

pm =−Cha,xx − Cmhm,xx, pa =−Cha,xx, (A 3a,b)

φm =
A1

h3
m

+
A2

h3
a

, φa =
A3

h3
a

+
A4

(ha − hm)3
, (A 4a,b)

where the Hamaker constants A1,2,3,4 are as defined in the literature (Sharma 1998;
Sharma, Khanna & Reiter 1999; Zhang et al. 2003a; Bandyopadhyay & Sharma 2006).
In our implementation, these are made dimensionless by the Hamaker constant A of
table 1. Of the two scaled interfacial tensions,

C =
ε3σa

µaV
, Cm =

ε3σm

µaV
, (A 5a,b)
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C is for the air–aqueous interface (σa and µa being the air–aqueous surface tension
and the aqueous viscosity), and is identical to its CVM counterpart. Here Cm is for
the mucus–aqueous interface (σm being the mucus–aqueous interfacial tension), and
is unique to the TLM. The surface Péclet number for the lipids and the Maragoni
number are the same as in CVM:

Pes =
VL
Ds
, M=

εΓm

µaV
∂Γ

∂σ
, (A 6a,b)

as is the Navier slip length β. Finally, the mucus–aqueous viscosity ratio µr and the
initial position of the mucus–aqueous interface hm have counterparts in the CVM. In
the above, the characteristic velocity is defined using the Hamaker constant A:

V =
A

6πµaHL
, (A 7)

where H and L are the characteristic thickness and horizontal length scale.
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