THE BULLETIN OF SyMBOLIC LoGIC
Volume 25, Number 2, June 2019

FOUNDATIONS OF ONLINE STRUCTURE THEORY

NIKOLAY BAZHENOV, ROD DOWNEY, ISKANDER KALIMULLIN, AND ALEXANDER MELNIKOV

Abstract. The survey contains a detailed discussion of methods and results in the new
emerging area of online “punctual” structure theory. We also state several open problems.

§1. Introduction.

1.1. Our goal. Imagine your job is to receive—perhaps infinitely many—
objects of various sizes and pack them into bins, of a fixed size. You receive
object n and at time 7 + 1 you have to say which bin you should pack it into,
and this decision is irrevocable. You are in an online situation.

The goal of this article is to outline the ideas of a new programme in
computable mathematics devoted to online computable structure theory. This
will be a new subfield of computable structure theory, but one with its own
highly distinctive character.

First, we will discuss online algorithms for combinatorial structures.
Online combinatorics lacks general theory. We will also remind the reader
of the related ideas of (Turing) computable mathematics. This subject does
have a developed systematic theory; however, it uses the abstract notion of
Turing computation which is very far from being online. Then we will intro-
duce our main paradigm which will involve primitive recursive structures and
explain why this is the chosen paradigm. In the remaining sections, we will
explore results already obtained using this paradigm and articulate some of
the many open problems in the area.

1.2. Turing computable mathematics. The general area of computable or
effective mathematics is devoted to understanding the algorithmic content
of mathematics. The roots of the subject go back to the introduction of
noncomputable methods into mathematics at the beginning of the 20th
century as discussed in Metakides and Nerode [54]. Early work concentrated
on developing algorithmic mathematics in algebra, e.g., Grete Hermann [34],
analysis such as Bishop’s constructive analysis, (implicitly) using algorithmic
methods to understand randomness (Borel [7]. von Mises [56]. Church
[13]). understanding effective procedures in finitely presented groups such as
Dehn [15], and most notably Hilbert’s programme seeking to give a decision
procedure for first order logic. We know all of these historical roots led to

Received October 2, 2018.

2010 Mathematics Subject Classification. Primary 03D45, 03C57, Secondary 03D75,
03D80.

Key words and phrases. primitive recursion, online computation, punctual set theory.

© 2019, Association for Symbolic Logic
1079-8986/19/2502-0001
DOI:10.1017/bs1.2019.20
141
https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

142 NIKOLAY BAZHENOV ET AL.

the development of, for example, computability theory, complexity theory,
and algorithmic randomness (see e.g., Downey [18]). The modern version
of effective mathematics utilizes the tools developed in these areas, as well as
classical tools in algebra, analysis, etc., to calibrate the algorithmic content
of many areas of mathematics.

The standard model for such investigations is a (Turing) computable
presentation of a structure. By this, we mean a coding of the structure with
universe N, and the relations and functions coded Turing computably. For
example, a computable presentation of a group would be either a finite group
or one where the universe was considered as N and the group operation was
represented as a (Turing) computable function. Note that this framework
uses the general notion of a Turing computable function. In particular, we
put no resource bound on our computation.

1.3. Online combinatorics. A hallmark of the majority of algorithms on
finite structures is that the algorithm “knows all about the structure”. In
other words, the whole structure is given to the algorithm at once. For
example, when complexity theorists talk about the Hamiltonian path prob-
lem, they have in mind algorithms that given a description of a finite graph
(say, a matrix-presentation of it) output such a path. This is sometimes not
true for large datasets, and several LOGSPACE algorithms, but we are using
this to refer to those students which would learn in a basic algorithm course.
What happens to such algorithms if the graph is not given at once, but rather
is given to us step-by-step and vertex-by-vertex? This situation is an abstrac-
tion to an “online” computation in which the input data are too massive
to be given as an input at once. Now of course there are many problems in
computer science where we can safely assume that universe is infinite and
thus we need an online algorithm. For example, a scheduler which assigns
users to access shared memory is a classic example.

In the “online” setup the situation becomes quite a bit harder. Consider the
following example. Every tree is 2-colourable, but to achieve this colouring
you need to know the whole of the tree. Suppose we are given a vast tree one
vertex at a time so that G = U;G,, an online presentation of G. When we
give you the vertex v, we promise to tell you all of the vertices given so far to
which v is joined, that is, the induced subtree of vy, ..., v,. Your goal is to
colour the vertex v, before we give you v, ;. We are in an online situation.
For a tree with n vertices, the sharp lower bound is O(log n) many colours.
It follows that there are online presentations of infinite (computable) trees
which cannot be online coloured with any finite number of colours. We see
that switching to the online case affects not only the running time but also
the best solution that we can hope for. We remark that online algorithms
can be quite complex.

Beginning in the 1980s, there has been quite a lot of work on online infinite
combinatorics, particularly by Kierstead, Trotter, Remmel, and others [42,
43.45,47,58]. Some results were quite surprising. For example, Dilworth’s
theorem says that a partial ordering of width k& can be decomposed into
k chains. Szemeredi and others showed that there is a computable partial

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 143

ordering of width k that cannot be decomposed into & computable chains.
But in 1981, Kierstead proved that there is an online algorithm that will
decompose any online presentation of a computable partial ordering into
% many (computable) chains. Only in 2009 was this result improved by
Bosek and Krawczyk who demonstrated that it can be done with k!41ogk
many chains. Work here is ongoing. (See [44] for a somewhat dated survey.)
In the case of finite structures, most work comes from comparing offline vs
online performance. In this area, the typical setting is to build some kind
of function which is measured relative to some size, and the goal of online
algorithm design is to improve what is called the Competitive Performance
Ratio of online divided by offline. For example, first fit gives a competitive
ratio of 2 for the classical BIN PACKING problem (see Garey and Johnson
[27]).

1.4. Online vs. Turing computable. The notion of an “online” algorithm
in the results mentioned above is rather specific. One may complain that,
rather than saying that we must make a decision before the next vertex shows
up, it is fine to wait for a bit more of a graph to be shown to us. But how much
more exactly? Maybe we can wait for 17 more vertices to show up before we
make a decision. Perhaps, at stage s, we could ask for log(s) more vertices,
etc. It is not hard to see that various answers to this question will lead to
a proper hierarchy—rather, a zoo—of “online” computability notions. It is
natural to ask:

What is the most general notion of an online algorithm?

Understanding the online content of mathematics so far has no general
theory, there are only algorithms or proofs that no algorithm exists. Note
that the lack of theory for online mathematics stands in stark contrast with
the infinite off-line case described by the computable structure theory [4,24].
However, as we noted above, computable structure theory relies on the
most general notion of a computable process that we know today—a Turing
computable process. Turing computability provides us with many tools, such
as the universal Turing machine and the recursion theorem that are useful in
proving theorems about algorithms. However, Turing computability in its full
generality is not an adequate model in the online situation because Turing
computable algorithms can use an unbounded search. For instance, recall
the example in which we had to online colour a tree. A Turing computable
algorithm would just wait until a node gets connected to the root of the tree
via a path and then will make a decision. There is no a priori bound on
how long it may take for the path to be revealed, but a Turing computable
algorithm does not care. More importantly, Turing computability fails to
capture the “impatient” nature of an online algorithm which has to make a
decision “now”.

1.5. Our goal, revisited. Recall that our goal is to give a general abstract
foundation for online algorithms. As we will soon see, our approach is
based on one natural interpretation of “online” involving primitive recursive
structures.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

144 NIKOLAY BAZHENOV ET AL.

We look at infinite algebraic and combinatorial structures such as graphs,
linear orderings, groups, unary structures, etc. We will attempt to apply
the techniques and intuition coming from the above-mentioned (Turing)
computable structure theory [4,24] to our “online” framework. We will
succeed in applying some nontrivial techniques and methodology coming
from Turing computable structures. However, the intuition in our online case
is so different from the Turing computable case that hardly any nontrivial
result of computable structure theory can be transformed into one about
online algebraic structures. Instead, we will discuss some results that have
no analogy in Turing computable structures. Furthermore, many of our
results can be seen to hold for polynomial-time structures, and there will be
one theorem that settles a conjecture about automatic structures. We also
note that many of the results, proofs, and proof sketches that appear in this
survey are new.

1.6. The models. We will concentrate on infinite structures. Still to do is
to develop an appropriate model theory for online finite structures as asked
for by Downey and McCartin [22]. Downey, Melnikov, and Ng have some
recent ideas towards such a theory which we have added briefly in Section
9. These ideas also point at a new direction in our studies.

In its most general formulation, an online algorithm would act on a
structure A givenin stages f(1). £(2).....where f isa computable function
representing timestamps. At stage f(n), we would enumerate n into the
partial structure A4 ;(,) and give complete information about how n relates
to {0,....n —1}.

Now the question is: What kinds of structures and time functions should
be allowed? Different choices will result in different theories. Our goal is
to give a general setting that also reflects the common online structures
encountered. We examine some approaches from the literature:

1.6.1. Automatic structures. Khoussainov and Nerode [41]initiated a sys-
tematic study into automatically presentable algebraic structures; but these
seem quite rare. For example, the additive group of the rationals is not auto-
matic [60]. The approach via finite automata is highly sensitive to how we
define what we mean by automatic. For example, treating a function as a
relation yields quite a different kind of automatic presentation. See [23. 39]
for an alternate approach to automatic groups. Although the theory of auto-
matic structures is a beautiful subject, a finite automaton is definitely not a
general enough model for an online algorithm.

1.6.2. Polynomial time computable structures. Cenzer and Remmel, Grig-
orieff, Alaev, and others [2, 3, 12, 30] studied polynomial time presentable
structures. We omit the formal definitions, but we note that they are sensi-
tive to how exactly we code the domain. In many common algebraic classes,
we can show that all Turing computable structures have polynomial-time
computable copies. One attractive result is that every computably pre-
sentable linear ordering has a copy in linear time and logarithmic space [30].
Similar results hold for broad subclasses of Boolean algebras [10], some
commutative groups [9, 11] and some other structures [10].

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 145

1.6.3. Fully primitive recursive structures. As was noted in [35], many
known proofs from polynomial time structure theory (e.g.. [9-11,30]) are
focused on making the operations and relations on the structure primitive
recursive, and then observing that the presentation that we obtain is in fact
polynomial-time.

DerINITION 1.1 (Essentially Dedekind [14]). A function f : N — N is
primitive recursive if f can be generated from the basic functions s(x) =
x+1,0(x) =0, I"(x,....,x,) = x, by composition and the primitive
recursion operator 1 = P(f. g):

h(xy.....x..0) = f(x1.....x,).
h(xp,....xp.y+1)=g(x1.....x0. . h(x1. ... x5 9)).

The restricted Church-Turing thesis for primitive recursive functions says
that a function is primitive recursive iff it can be described by an algorithm
that uses only bounded loops. For example, we need to eliminate all instances
of WHILE ... DO, REPEAT ... UNTIL, and GOTO in a PASCAL-like
language.

As we noted above, primitive recursion plays a rather important interme-
diate role in transforming (Turing) computable structures into polynomial-
time structures. Furthermore, to illustrate that a structure has no polynomial
time copy, it is sometimes easiest to argue that it does not even have a copy
with primitive recursive operations, see, e.g., [11]. It is thus natural to sys-
tematically investigate into those structures that admit a presentation with
primitive recursive operations, as defined below. Kalimullin, Melnikov, and
Ng [35] proposed that an “online” structure must minimally satisfy:

DEFINITION 1.2 ([35.51]). A countable structure is fully primitive recursive
(fpr) if its domain is N and the operations and predicates of the structure
are (uniformly) primitive recursive.

The main intuition is that we need to define more of the structure “without
delay”. Here, “delay” really means an instance of a truly unbounded search.
We informally call fpr structures punctually computable. We could also agree
that all finite structures are also punctual by allowing initial segments of N
to serve as their domains. Although the definition above is not restricted
to finite languages, we will never consider infinite languages in the article;
therefore, we do not clarify what uniformity means in Definition 1.2.

REMARK 1.3. The word “fully” in “fully primitive recursive” emphasises
that the domain must be the whole of N and not merely a primitive recursive
subset of N; these are provably nonequivalent assumptions. If the domain
could be merely a primitive recursive subset of N, then we can delay elements
from appearing in the structure; this way one can easily show that each
Turing computable graph has a primitive recursive copy: cf. Theorem 2.2
below. We decided that structures in which elements can be delayed are not
really online.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

146 NIKOLAY BAZHENOV ET AL.

Our goal is to give a most general setting that also reflects the com-
mon online structures encountered. From a logician’s point of view, where
do computable structures come from? One of the fundamental results of
computable structure theory is that:

A decidable theory has a decidable model.

The proof of this elementary fact is to observe that the Henkin construc-
tion is effective in that if the theory is decidable then the constructed model
is decidable as a model. Many standard computable structures come from
decidable theories.

Most natural decidable theories are elementary decidable in that the deci-
sion procedures are relatively low level. We have to go out of our way to
have natural decidable theories whose decision procedures are not primitive
recursive. It is not hard to show (see below) that a theory with a primitive
recursive decision procedure has a model which is decidable in a primitive
recursive sense.

1.6.4. The upshot. We have chosen fully primitive recursive structures as
our central model. Primitive recursiveness gives a useful unifying abstraction
to computational processes for structures with computationally bounded
presentations. In such investigations, we only care that there is some bound.
Furthermore, these models arise quite naturally through standard decision
procedures.

We also note that many results stated below in terms of primitive recursion
can likely be pushed to polynomial time structures. Furthermore, some of
our counterexamples can in fact be stated in terms of any class with suffi-
ciently nice closure properties, e.g., for a class of total computable functions
having a uniformly computable enumeration and closed under composi-
tion and primitive recursion. However, this does not mean that our choice
of primitive recursive algorithms as a central model is fairly arbitrary. The
above-mentioned generalisation to a class of total functions can be viewed as
a version of the subrecursive relativisation of primitive recursion. The study
of relativised versions of our results is interesting on its own right, but it is
not really beyond the primitive recursive model. Kalimullin, Melnikov, and
Montalban (in progress) have recently announced a number of unexpected
results connecting relativised primitive recursive presentations with syntax
in the spirit of Ash and Knight [4]. Also, an expert in computable structure
theory would know that relativisation is tightly connected with uniformity.
At the last section of our article, we will discuss uniformity in greater detail.

The above-mentioned generalisations to polynomial time classes seem to
require significant effort; in some instances, it is not clear at all if our method
leads to polynomial time algorithms. Alaev [1-3] has recently initiated a
research program focused on extending these ideas to polynomial time alge-
bra. Dealing with polynomial time algorithms requires specific techniques
and counting combinatorics; this is something we do not have to worry in
our more “relaxed” model. In contrast with, e.g., automatic algorithms or
polynomial-time algorithms, there is a highly convenient and clear version
of Turing-Church thesis for primitive recursive functions (see above). We

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 147

will use the thesis throughout the article without explicit reference. It will
allow to simplify our proofs and proof sketches. Irrelevant counting com-
binatorics is stripped from such proofs, thus emphasising the effects related
to the existence of a bound in principle (rather than specifying the bound).
These effects are far more significant than it may seem at first glance.

Before we describe our results into this direction, we must give examples
of punctual structures in common classes.

§2. The first steps. Examples.

2.1. Existence of punctual presentations. So what kinds of basic structures
have punctual presentations?

THEOREM 2.1 (Kalimullin, Melnikov, and Ng [35]). The following struc-
tures all have computable presentations iff they have fully primitive recursive
ones.

(1) Linear orderings (Grigorieff [30]).
(2) Boolean algebras.

(3) Equivalence structures.

(4) Torsion-free abelian groups.

(5) Abelian p-groups.

(6) Locally finite graphs.

Discussion. We outline the case of locally finite graphs. Although this
result is a triviality based on the general idea from [10]. it is actually new.

Suppose we are given an infinite computable locally finite G. Because G
is locally finite, for every finite subgraph H of G there exists an infinite set
S of nodes in G which are not related to H by an edge and are also pairwise
nonrelated.

We start by quickly enumerating an infinite set S that currently looks
independent and we wait for more of G to be computed. We copy the
current finite part of G into what we’ve build so far. When more nodes
appear in G we extend the isomorphic embedding of G into our copy, but
we always make sure that a bit more of the set S is used in the range of .
It is not hard to see that eventually all of the set S will be used. -

Although some clauses of Theorem 2.1 use nontrivial techniques such as
Dobritsa’s result [16] in (4), all these proofs exploit a similar idea: Quickly
enumerate an infinite nice subset of the structure that we can predict and use
it as a delaying gadget. This is of course not really an honest “online” proof.
However, we will see that algebraic structures typically have infinitely many
primitive recursive isomorphic copies, some of these presentations will be
“more online” and the other ones will be “less online” in the sense that will
be clarified later. A large portion of our new theory is focused on comparing
different punctual copies of structures.

In contrast to Theorem 2.1, Kalimullin, Melnikov, and Ng [35] also
showed:

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

148 NIKOLAY BAZHENOV ET AL.

THEOREM 2.2 (Kalimullin, Melnikov, and Ng [35]). In each of the classes
below, there are examples of computably presentable structures without fully
primitive recursive presentations.

(1) Torsion abelian groups.
(2) Undirected graphs.
(3) Archimedean ordered abelian groups.

ProOF IDEA. We note that the proofs of the different clauses use substan-
tially different ideas. We outline the proof of (3) which uses rudiments of
computable analysis.

We define a subgroup of R as a Q-vector space generated by {1,r}, where
r is a computable real in the sense of Turing [61,62] such that r does not have
a primitive recursive rapid approximation by basic intervals. Such a real can
be ecasily constructed using a straightforward diagonalisation technique.

Observe that the ordered group has a Turing computable presentation iff r
is a computable real and a fully primitive recursive presentation iff r admits
a primitive recursive rapid approximation. -

It is natural to ask whether there is a general description of computable
structures that admit a punctual presentation. The answer to this question
is negative. Let (M,).c., be the effective list of all partially computable
algebraic structures.

THEOREM 2.3 ([5]). The index set {e : M, has a punctual presentation} is
Xi-complete.

In other words, there is no simpler way to see whether a computable
structure has a punctual copy than just stating that there is an isomorphism
from the structure to some punctual presentation. This solves a problem left
open in the brief conference survey [51]. The proof is too technical to be
discussed in this survey, but [5] contains an extended informal discussion of
the proof.

Suprisingly, the same diagonalisation technique with insignificant adjust-
ments allows to prove:

THEOREM 2.4 ([5]). The index set {e : M, has an automatic presentation}
is X1-complete.

THEOREM 2.5 ([5]). The index set {e : M, has a polynomial-time
presentation} is E}—complele.

Theorem 2.4 answers a long standing open question by Khoussainov and
Nerode [41]. We see that the emerging theory of primitive recursive structures
has already found significant applications.

2.2. Primitive recursive decidability. Recall the discussion after Theo-
rem 2.1. In many cases the easiest way of producing a punctual copy of
a structure is to use a predictable part of it to “delay” the enumeration of
the nontrivial parts of it. As noted in [35], the resulting structure is not an
honest online structure.

It would be more satisfying if we had a way of pressing specific parts of
the structure to be quickly revealed. One way of formalising this idea uses
first-order logic. To make the terminology more easily expressible, we will

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 149

adopt the adjective “punctual” for primitive recursiveness. Thus we have the
following:

DEerINITION 2.6. We will call a structure with universe N punctually decid-
able if it has a primitive recursive Skolem function; that is, the existential
witnesses for first-order formulae Ja¢ (a, ¢) with parameters from the struc-
ture can be found punctually in their Godel indices. (If the formula fails
then the function returns —1.)

PROPOSITION 2.7. A theory T with a primitive recursive decision procedure
has a punctually decidable model.

Proor SKETCH. Observe that the usual Henkin construction works. Recall
that we add new constants C = {¢; | i € N} and consider a (primitive
recursive) enumeration {t; | j € N} of sentences of the language L(7T') of
T together with the constants. We construct the model A4 in stages and a
complete and promptly decidable theory Q = {¢¢. #....}in L(T)U C in
stages. We let ¢y denote (co = ¢p).

At stage s = 2e + 1 if ¢, is of the form Ix0(x). as usual find the least i
with ¢; not occurring in Q; and let ¢, = 0(c;) so that we realize the formula.

At stage s = 2e, let ¢ denote the constants in (Ayep,@i) — T.. Let
X denote the first sequence of variables of length [¢| not occurring in
(Agie0,Pi) — T.. We punctually check whether 7" proves VX((Ag,co,®i) —
7.)[X/<]. If so we let ¢ = 7., and if not, ¢; = —7,.

The result is a punctually decidable structure 4 which models 7. .

Recall that the standard method of saying a structure is a decidable one
is to say its full diagram is computable. Does the existence of punctual 3-
witnesses in a punctual structure A follow from its full diagram {¢(a) :
A | ¢(a), a in A} being primitively recursively decidable? The answer is
clearly negative, as illustrated by the straightforward example below.

ExampLE 2.8. Consider an equivalence structure E that has infinitely
many classes, each of size 2. Construct a punctual copy of E. Start by
rapidly enumerating an infinite set consisting of nonequivalent elements.
Delay the second representatives of some equivalence classes. We can primi-
tively recursively decide first-order statements about elements in the resulting
punctual presentation; however, the Skolem function will not be punctual.

Perhaps, asking for the full diagram to be punctually decidable is too much.
Perhaps. 1-decidability is already good enough. Restrict the definition of
punctually decidable structure to quantifier-free ¢ to get the natural notion
of a punctually 1-decidable structure (in [35]is was called strongly punctual).
More formally, there exists a primitive recursive ® such that

=1 AT el x).
D(C.¢) = {y, such that Z |= ¢(¢. y),

where ¢ € T and ¢ is (the Godel number of) a quantifier-free formula in the
language of the structure. We note that this more relaxed approach resembles
the earlier notion of an honest witness due to Cenzer and Remmel [10].

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

150 NIKOLAY BAZHENOV ET AL.

Clearly, there exist punctual structures that have no 1-decidable presen-
tation and thus no punctually 1-decidable presentation. For instance, there
exist computable linear orders in which the successivity relation is intrin-
sically undecidable [17], and similarly, there exists a computable Boolean
algebra in which the atom relation is intrinsically undecidable [28]. Now The-
orem 2.1 guarantees that in each of these classes, there are examples of punc-
tually presented structures that have no 1-decidable copy, let alone punctu-
ally 1-decidable copy. However, these examples are unsatisfying since they all
give punctual structures that are not even 1-decidable. A rather straightfor-
ward example below separates strongly primitive recursive structures from
1-decidable punctual structures.

PROPOSITION 2.9 ([35]). There exists a punctual 1-decidable equivalence
structure that has no strongly punctual presentation.

Proor. For any infinite set X, let £(X) denote the equivalence structure
having exactly one class of size x for each x € X. Note that for an infinite
c.e.set X, the structure E (X') has a computable, hence punctual presentation
(by Theorem 2.1(3)). To make E(X) 1-decidable, make the k™ class have
size exactly x;, where X' = {x. x;, x2. ...} is some computable enumeration
of X. Itis easy to see that deciding an existential formula about ¢ boils down
to deciding the sizes of the classes that contain ¢.

Thus, it remains to build an infinite c.e. set X (in fact, X will be com-
putable) such that £ (X) has no strongly punctual presentation. Suppose we
have enumerated {xo, ..., x; }. Suppose we want to diagonalize against the
e™ potential strongly punctual structure S,. When S, is first processed, we
use the primitive recursive Skolem function in S, to primitively recursively
decide if there exists a class [z] of size >s.

If no then we win because S, must contain at least two classes of equal
sizes and thus E(X) 2 S.. If yes then we can primitively recursively compute
a witness z. In this case, we say that S, is pending with witness z. We will
ensure that all future elements of X are chosen to be smaller than the current
approximation to the size of [z] in S,.

At stage s of the construction, we process each requirement S, fore < s. If
S, is unstarted, then we proceed as above and move to the next requirement.
If S, is already pending with witness z, we check if the size of [z] in S,
is larger than s. If yes, the status of S, remains pending, and we move to
the next requirement. If no, then the size of [z] must be s. In this case,
we terminate the actions of stage s at S, and initialize all lower priority
requirements.

Itiseasy tosee thatif s isenumerated in X at stage s, then this is compatible
with the satisfaction of all requirements R,, ¢ < s. Each requirement is
initialized finitely often and will be met. Finally X is infinite because only a
pending requirement can block the enumeration of s into X at stage s.

2.3. Punctual versions of known results. Another relatively straightfor-
ward way to extend the known results on Turing computable models uses
the primitive recursive analogy of relativisation. In other words, sometimes
a statement of a known result can be modified to a similar statement about

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 151

punctual structures. If we are careful enough, we might be able to keep almost
the same proof. The “punctualisation” principle tends to be a bit more sub-
tle than the standard relativisation principle. To illustrate this principle, we
shall consider the well-known result of Harrington [32] and Goncharov and
Nurtazin [29] which states that a decidable (complete) theory has a decid-
able prime model iff the set of principle types of the theory is uniformly
computable. To state and prove the primitive recursive version of this result,
we need several definitions.

If ¢(x) = q(x0.x1,....x,_1) is a (complete) n-type of a theory T, then
as usual, we identify ¢(x) with the set of Godel numbers of formulae from
g(x). Consider a sequence (g;);c., of types of a theory T'. We say that the
sequence (g;);ce 18 increasing if, for each i € w, it satisfies the following
conditions:

(@) ¢i = qi(xp.x1.....x;) and (x; # x;) € ¢; forall j < k <i:

(b) ¢i C gis1-

We say that a sequence of types (¢;)ice, 18 uniformly primitive recursive if
there is a primitive recursive function £, : @? — {0, 1} such that for every
i, the function f) . (i.-) is the characteristic function of the type ;.

Suppose that (¢;);c. is an increasing sequence of types. The sequence
(¢i)icw has quick witnesses if there is a primitive recursive function g, (x)
with the following property:

(QW) If k is the Godel number of a formula w(x;,....x;) =
390 (xi,. ..., x;,.y), where iy < -+ < iy, and ¥ € ¢, . then the
formula 6(x;,.....x;,. X, () belongs to the type ¢, (i, gu,(k))-

THEOREM 2.10. Suppose that T is a complete theory with a primitive
recursive decision procedure. Then the following conditions are equivalent:

(i) T has a punctually decidable prime model.

(ii) T has a prime model and there is an increasing. uniformly primitive
recursive sequence (q;)icq, of principal types of T such that (q;);c., has
quick witnesses.

Proor. We follow the standard proof of Harrington [32] and Goncharov

and Nurtazin [29] which can be found in [31] and see what has to be modified.

(i)=(ii). Let M be a punctually decidable prime model of T, i.e., M has
a primitive recursive Skolem function. Recall that the set of types realized
in M is precisely the set of all principal types of T'.

Fori € w,letq;(xo. x1. ..., x;) bethe type realized by the tuple (0,1, ..., i)
in M. The desired function f, . (from the definition of a uniformly
primitive recursive sequence of types) can be defined as follows: for i € w,

(1) If y € w is not a Godel number of a first-order formula of the form
w(xo.....x;). thenset f(i.y) :=0.

(2) Otherwise, let w(x) be the formula with the number y. Using the
Skolem function, quickly decide whether

MEw(,1,....0). (1)
If (1) is true, then set f'(i, y) := 1. Otherwise, define £ (i, y) := 0.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

152 NIKOLAY BAZHENOV ET AL.

The described procedure shows that the sequence (¢;);c., is uniformly
primitive recursive.

A function g,,;; giving quick witnesses for (g;)ic., is recovered in a
straightforward way: If k is the Godel number of a formula w (%) =
3y0(xi,. ..., x;,.y). thencheck whether w (i, i,) holds, using the Skolem
function. If M £ w(iy.....i,), then set g,;(k) := 0. Otherwise, quickly
find an element m with M |= 0(i. ..., i,.m) and define g,,;; (k) := m.

(ii)=-(i). Let (¢;)icy be an increasing., uniformly primitive recursive
sequence of principal types from (ii). Fix a function f,,, witnessing the uni-
form primitive recursiveness of the sequence (g;);co. Let gui; be a function
giving quick witnesses for (¢;);ce.

Let C = {¢;:i € o} be a set of new constants. We define the com-
plete diagram = of a structure A as follows. The set C will be the domain
of N. Suppose that y is a sentence in the language L(7) U C. and n
is the largest number such that the constant ¢, occurs in w (if no ¢,
occurs in y, then just set n := 0). We find the G6del number k of the
formula y(xo/co. x1/c1.....x,/c,) and compute the value f,,,.(n. k). If
Siype(n.k) =1, then y € E. Otherwise, y ¢ E.

It is not hard to show that the described procedure produces a well-
defined complete diagram: Indeed, for any sentence w = w(co.....c,).
either w(x/¢) or ~yw(x/C) belongs to the type g,,. Hence, either y or —y lies
in E; therefore, E is a complete set of sentences. Furthermore, since ¢; C ¢, 1
for all 7, the set E is consistent.

Since T C ¢; for every i, the structure A is a model of 7. Recall that
(x; # xx) € g; forall j < k < i;thus, M |= (¢; # ¢) for all j # k.
Therefore, one may assume that the domain of AV is equal to w.

A primitive recursive Skolem function Sk(x) can be defined as follows.
Suppose that k is the Godel number of a sentence

w(Ciyse i) =3y0(Ciys -1 Cis V)
where iy < -+ < i,. Using the function f,(i,.-). we promptly check
whether the formula w(x/¢) belongs to ¢;. If w(x/¢) & q;,. then set
Sk(k) := —1. Otherwise, compute the value g,,;,(k) and define Sk(k) :=
€, (k)- Hence, the structure NV is punctually decidable.

Now it is sufficient to show that the model A is atomic. The definition of
N ensures that for every i, the tuple ¢’ := (cy. ¢;) realizes the type ¢; and
thus, ¢’ satisfies some complete formula y(xo.....x;). We need to prove
that any tuple (¢j,.c;,) also satisfies a complete formula. For simplicity,
we assume that (¢j,.....¢;,) = (Cmt1.....Cme,) for some m and r # 0.
Then we have

M): dyo... Elyn1(//m+r(y07 e Vs Cmtls e e Cm+r)-

Note that for any formula &(%) = &(Xp41,.... Xmer), we have either T
(™" — &) or T+ (y™" — =&), This implies that for any &(x). either
T = @y (5.%) — &%) or T F (Fpy™(7.%) — —&(%)). Thus,

dpw™ (5, X) is a complete formula of the theory T, and (¢4 1. Cmnir)
realizes a principal type. Therefore, the model N is prime. Theorem 2.10 is
proved. -

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 153

Also, Downey, Harrison-Trainor, Greenberg, and Turetsky have recently
observed that it follows from Millar’s work [55] that a complete primitive
recursive theory 7 has a punctually decidable model that omits a given
primitive recursive nonprincipal type p.

Pure primitive recursive model theory is not yet developed aside from the
observations included in this section. An interesting project will be to see
what develops henceforth.

PrROBLEM 2.11. Develop punctual model theory.

83. Uniqueness of presentation. Recall that in the previous section, we
looked at various examples of punctually presented structures. We also
noted that often the easiest way of producing a punctual copy is “dishon-
est” since we typically construct a copy which is not punctually 1-decidable.
However, these same structures will usually have punctual presentations
which are much better behaved, see. e.g., Example 2.8. The same structure
will usually have more than one punctual presentation, with different pre-
sentations having substantially different “online” properties. Consider the
following simple but instructive example:

ExampLE 3.1. Let (w, S) be the unary structure of the natural numbers
with the successor. Clearly, the “natural” presentation N of (w, S) has a
number of pleasant online features such as punctual 1-decidability. On the
other hand, we can construct a “bad” punctual copy B of (w, S) which has
no punctual Skolem function, as follows. Introduce a new element x and
keep it disconnected from 0. Wait for as long as necessary for diagonalisation
against the eth potential Skolem function using 3y S(y) = x. Then connect
x to the origin. Repeat for e + 1, etc.

Note that the unique isomorphism from N onto B is primitive recursive
but its inverse is not primitive recursive.

The example above brings us to the problem of comparing different punc-
tual presentations of the same algebraic structure. When two punctual copies
of the same structure are identical from the perspective of our framework?

To answer this question, we use the intuition coming from computable
structure theory. The central classification tool in algebraic structure the-
ory is algebraic isomorphism. Whenever we talk about (Turing) computable
structure theory, we keep in mind that the central classification tool is a
(Turing) computable isomorphism. This fundamental principle was implicit
in the dawn of the modern incarnation of effective mathematics. One of the
fundamental articles from this period is Frohlich and Shepherdson [26]. This
article clearly shows the historical context of the subject, the clear intuition
of van der Waerden (which apparently came from Emmy Noether’s lec-
ture notes) and the fact that isomorphic computable structures (here fields)
can have distinct algorithmic properties and hence cannot be computably
isomorphic. Here, we quote from the abstract.

“Van der Waerden (1930a, pp. 128-131) has discussed the problem
of carrying out certain field theoretical procedures effectively, i.e., in

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

154 NIKOLAY BAZHENOV ET AL.

a finite number of steps. He defined an ‘explicitly given’ field as one
whose elements are uniquely represented by distinguishable symbols
with which one can perform the operations of addition, multiplica-
tion, subtraction and division in a finite number of steps. He pointed
out that if a field K is explicitly given then any finite extension K’ of K
can be explicitly given, and that if there is a splitting algorithm for K,
i.e., an effective procedure for splitting polynomials with coefficients
in K into their irreducible factors in K[x], then (1) there is a splitting
algorithm for K’. He observed in (1930b), however, that there was
no general splitting algorithm applicable to all explicitly given fields
K ... We sharpen van der Waerden’s result on the non-existence of
a general splitting algorithm by constructing (Section 7) a particu-
lar explicitly given field which has no splitting algorithm. We show
(Section 7) that the result on the existence of a splitting algorithm
for a finite extension field does not hold for inseparable extensions,
i.e., we construct a particular explicitly given field K and an explicitly
given inseparable algebraic extension K (x) such that K has a splitting
algorithm but K (x) has not.”

So in modern terms Frohlich and Shepherdson [26] showed that the halt-
ing problem is many-one reducible to the problem of having a splitting
algorithm.! Subsequently, Mal’tsev [50] gave an example of an abelian group
which has two noncomputably isomorphic computable copies; in one copy,
there is an algorithm for linear dependence, and in the other copy, there is no
such algorithm. Mal’tsev [49] proposed that (Turing) computable presenta-
tions must be identified under (Turing) computable isomorphism. He also
suggested the notion of computable categoricity (autostability): A structure
is computably categorical if it has a unique (Turing) computable copy up to
(Turing) computable isomorphism.

We go back to primitive recursion. Here we may be tempted to use primi-
tive recursive isomorphism as the fundamental classification tool. However,
the elementary Example 3.1 provides us with two primitively recursively
isomorphic punctual copies of (w,S) which have substantially different
punctual properties. Of course, we need to be more careful.

DErINITION 3.2. We say that punctually computable structures A and B
are punctually isomorphic iff there is an isomorphism f taking A to B with
both f and f~! primitive recursive. (Functions f with this property will be
called fully primitive recursive or PR for short.)

Some results of computable structure theory lift easily. In this section,
we focus on such results, while the later sections will be devoted to more
technical theorems.

"Metakides and Nerode [53] proved this closure was computably unique (i.e.. up to com-
putable isomorphism) iff the field has a separable splitting algorithm. (The message here
is that the usual method of constructing a closure via adjoining roots essentially using a
splitting algorithm is not the only way to construct a closure.)

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 155

For example, we can easily show that Mal'tsev’s example discussed
above can be made primitive recursive. We can also look at the Frohlich—
Shepherdson work and observe that every primitive recursively presentable
field has a fully primitive recursively presentable algebraic closure.

However, there is mathematical depth in the new definition. This depth
comes from the fact that we must define the isomorphism and its inverse
“now”. That is we specify the domain of A in stages s once a enters the
domain by some primitive recursive time stamp g(s) weneed ab € domB,)
with f(a) = b and additionally for each ¢ occurring in domB; by some
primitive recursive time stamp /(s) we must specify a d € domA,(,) with
f(d) = c. This punctuality means that many classical categoricity argu-
ments fail for primitive recursive structures. For instance, (w. S) clearly has
a unique Turing computable copy, but Example 3.1 gives us two non-PR iso-
morphic punctual presentations of the structure. Consider also the following
example.

ExaMmpLE 3.3. The very first categoricity argument we meet will be Can-
tor’s proof that the countable dense linear ordering without end-points is
categorical. This proof is effective but the proof involves unbounded search.
That is, at some stage s we have defined x < y < z in the domain of one
copy. and have already specified f(x) < f(y). Density guarantees that at
some stage some ¢ will enter the other copy of the ordering between f (x)
and f(y) (thinking of them as being computably presented), and we can
then map f(z) = q. But in the primitive recursive case, why should such a q
enter the other copy punctually? In fact, it provably does not have to.

The example above can be extended to prove the following. If a structure
has a unique punctual presentation up to PR isomorphism, then we say that
it is punctually categorical.

THEOREM 3.4 ([35]).

(1) An equivalence structure S is punctually categorical iff it is either of
the form F U E, where F is finite and E has only classes of size 1, or S
has finitely many classes at most one of which is infinite.

(2) A linear order is punctually categorical iff it is finite.

(3) A Boolean algebra is punctually categorical iff it is finite.

(4) An abelian p-group is punctually categorical iff it has the form F &'V,
where pV = 0 and F is finite.

(5) A torsion-free abelian group is punctually categorical iff it is the trivial
group 0.

DiscussioN. In some clauses, the proof follows from Theorem 2.1 and
the known description of computable categoricity in the respective class.
For instance, for (2), note that each computable linear order is computably
isomorphic to a punctually computable one (follows from the proof of
Theorem 2.1). It is well-known that a linear order is computably categorical
iff it has only finitely many adjacencies. Suppose a punctual L is not like
that. Produce a computable copy B of L that is not computably isomorphic
to L. and then computably transform it into a punctual B’. Then L and

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

156 NIKOLAY BAZHENOV ET AL.

B’ are not even computably isomorphic. On the other hand, if L has only
finitely many adjacencies, then use the idea from Example 3.3.

The case of Boolean algebras has a less straightforward proof. The prob-
lem is that Theorem 2.1 in the case of Boolean algebras does not necessarily
give a computably isomorphic punctual copy. Thus, to prove (3). we have
to combine the strategies from the respective clause of Theorem 2.1 with a
diagonalisation requirement. =

The highly unexpected result below will play a significant role in later
Sections of this article.

THEOREM 3.5 ([19]). Let G be an undirected graph. Then the following are
equivalent:

(1) G is punctually categorical.

(2) G becomes a clique or an anti-clique (an independent set) after removing
finitely many vertices v = vy, . . ., v; with each v; being either adjacent
toall x € (G —) or not adjacent to all x € (G — v).

We give a fairly detailed sketch below. If the reader is not interested in the
technical side of our investigations, or is not willing to dig into any detailed
explanation at this stage, they can safely skip the sketch below and perhaps
return to it later.

SKETCH. It is not hard to see that locally finite graphs satisfy the theorem.
The proof in this special case goes through several subcases. For example,
suppose the graph is connected. In this case, we use that at every stage
there will be vertices “far-far away” from what we’ve already built. Build a
“bad” punctual copy B in which we have a punctual sequence of pairwise
disconnected vertices. We use this sequence to delay the other parts of
the graph from being enumerated into the bad copy, and we use them for
diagonalisation purposes. Then slowly incorporate these extra vertices into
the expanding actual image of our graph within B. The case of several
components is similar. This argument can be extended to the case of at most
finitely many vertices of infinite degree.

In the harder case of infinitely many vertices of infinite degree, we use the
following key technical proposition:

PrOPOSITION 3.6. Suppose G is punctually categorical, and x € G has
degree co. Then the set N(x) = {y € G : (x,y) € E(G)} has to be punctual.

SKETCH. We write |X| for the cardinality of X. Imagine that x is the
only vertex of G with the property deg(x) = oo, and assume N (x) is very
slowly growing, i.e., there is no primitive recursive bound on the stage at
which the nth vertex appears in N (x). In this simple case, the strategy is
straightforward. Build a copy B of G which is essentially identical to G but
with |[Np(x)| = |[Ng(x)| — 1 at every stage. Any isomorphism must match
the points of infinite degree, and we know the graph has only one such point.
We also know that “most of the time” G puts points into G \ Ng(x), and
therefore in B we can eventually delay one element from appearing in the
1-neighbourhood of x and still keep B punctual. All we need to do is to wait
until p : G — B is diagonalised on the extra vertex that G hasin N (x) when

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 157

compared with B. Note that we must eventually succeed, for otherwise, we
would use p to extract a primitive recursive bound on the speed of growth
of N(x)in G.

When G has many vertices of infinite degree and is not rigid, we have
to consider 2 copies, 4 and B, of G and look at two vertices in G. This is
necessary because p : B — A does not have to map the natural version of x
in B to the natural version of x in 4. So suppose 4 is copying G via y and
B via ¢ (both are defined by us), and suppose we are trying to diagonalise
against a pair (p, ¢)., where p : B — 4 and (supposedly) p~!' = g.

The idea is to either keep |N4(pd(x))| < |Np(é(x))| or [N4(pop(x))| >
|Ng(¢(x))| for aslong as possible, and use either p or ¢ to press the opponent
to grow the respective neighbourhoods in G. It is also crucial to avoid
IN4(po(x))| = |Np(é(x))]| at all costs because in this situation we cannot
“press” the opponent. We informally explain how we “press” below.

For example, suppose at stage s have [N4(pp(x))| < |[Np(¢(x))|. Then
evaluate p on Np(¢(x))[s]: the opponent must grow Ng (v ! pé(x))in G.
The trick here is that we do not make the 1-neighbourhood equal, but rather
delay at most one point and press the opponent to grow Ng (v~ po(x)) 1-
point larger than Ng(¢(x))[s]. So one point appears in G and makes the two
1-neighbourhoods look equal; however, we keep this point out of our struc-
ture A and wait for another point to appear in Ng (! p¢(x)). This is fine
to delay one point from the diagram of A4. Just consider the next point u in
G.Ifu ¢ Ng(w~"'pé(x)) then copy itinto A. Ifitisin Ng(w ! pé(x)) then
this is exactly what we needed. But recall that we challenged the opponent by
computing p on the currently larger Nz(¢(x)). The opponent must respond
by enumerating more points into Ng (! p¢(x)). and it must do so within
the time bound of p, for otherwise p is not an isomorphism. Thus, unless
Ng(x) (thus, Ng(¢(x))) grows within the time needed for p(Ng(é(x))[s])
to converge, we will be able to make |[N4(pd(x))| > |Np(4(x))|. But then
we can evaluate ¢ on N4(p$(x)) and similarly press the opponent to grow
Np(4(x)) by extending N (x) in G; this was our ultimate goal. In the worst
case scenario, the time bound can be extracted from and ¢(N4(po(x))[1]).
where ¢ depends on the convergence time for p(Ng(¢(x))[s]). making the
described above process punctual.

The sketch above describes the worst case scenario, but there will be
various cases which also had to be incorporated into the formal argument
in [19]. To maintain the inequality |N4(pd(x))| # |[Np(¢(x))| at every stage
we will have to consider the cases when either N4 (po(x)) or Np(¢(x)) starts
growing faster than anticipated. Also, |[N4(p¢(x))| and |[Np(4(x))| do not
have to differ by only one element at a given stage. In all these cases, we
have even more advantage over the opponent, however, considering such
cases significantly increases the combinatorial complexity of the formal
argument. .

ProposiTION 3.7. Suppose G is punctually categorical, and a,b € G both
have infinite degree. Then N (a) =* N (b). i.e., a and b share the same adjacent
vertices, up to a finite difference.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

158 NIKOLAY BAZHENOV ET AL.

ProOF. By Proposition 3.6, both N (a) and N (a) must be punctual in any
punctual copy of G. If there is an infinite punctual sequence in N (b)\ N (a),
then it is easy to produce a punctual copy of G in which N(a) is not
punctual, contradicting Proposition 3.6. To do so punctually list elements
in N(b) \ N(a) and use the usual trick to delay other elements, including
those in N (a). from appearing in the copy.

Thus, N(b) \ N(a) must have no infinite punctual subsequence. In other
words, there is no primitive recursive bound on how long we wait between
the stages when we see new points in N (b) but not in N(a). Informally,
this means that N (b) does not press us to give points not connected to a.
The trick is to think about the graph-theoretic complement G of G (i.e.,
the graph on the same vertices but with the nonedge relation of G). Unless
N(b) \ N(a) is finite, we can modify G to get a new punctual copy H in
which the nonedge 1-neighbourhood of « is not punctual, as follows.

Copy only N (b) into H to diagonalise against the next primitive recursive
bound on the speed of growth of N(a) in G. We must eventually see a
disagreement, for otherwise we could use the construction of H to produce
a similar bound for N (b) \ N (a), contradicting the assumption. As soon as
a disagreement is found, copy all the currently skipped points into H and
restart from there, this time for the next primitive recursive bound. -

PROPOSITION 3.8. Suppose G is punctually categorical and deg(x) = oo
for some x € G. Then x is connected to a.e. vertex in G.

Proor. Artificially adjoin an extra vertex v to G and connect v to all
vertices in G by an edge. Then (G. v) is punctually categorical as well. Apply
the previous proposition to see that G = N (v) =* N(x). -

PrOPOSITION 3.9. Suppose G has infinitely many vertices of infinite degree.
For each n € w. there are only finitely many vertices of degree n. The same
holds for co-degree n.

Proor. Fixany n+1 distinct vertices of infinite degree. By Proposition 3.8,
almost every vertex in G is adjacent to a/l of them, and thus has degree at
least n + 1. -

ProposITION 3.10. Suppose G has infinitely many vertices of infinite degree
and infinitely many vertices of finite degree. For eachv € G, consider (G —v)
which stands for G without v. Then G % (G — v).

Proor. Consider the case when deg(v) = n < oo, the case of co-finite
degree is symmetric. Notice that for any x in (G-v), its degree in (G-v) is
either the same as its degree in G, or is one less. The latter can only happen
if x is adjacent to v.

Suppose v has degree n. By Proposition 3.9, there are only finitely many
vertices of degree n. If G is isomorphic to (G-v), some yy in G drops from
degree n + 1 to degree n. But then there must also be some y; which drops
from degree n + 2 to degree n + 1, etc. But each of these y; is adjacent to v,
contrary to the assumption that v has finite degree. —|

Suppose G (or its complement) is not essentially locally finite. To diago-
nalise against a pair (p, ¢), delay one vertex v in an auxiliary copy that we

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 159

build. Wait for (p, ¢) to illustrate a disagreement and then put v into the
copy.

We conclude that G must be either a clique or an anti-clique after remov-
ing finitely many nodes. It is fairly obvious that such a G must also be
automorphically trivial; we omit details. —

One naturally seeks to extend the argument above to more complex
combinatorial objects:

PrOBLEM 3.11. Is there an algebraic description of punctually categorical
structures with finitely many binary relations? What about ternary relations?”

Note that nothing of this nature has been seen in computable structure
theory, as all these classes are universal for Turing computability. We will
discuss universality later in the article.

PrOBLEM 3.12. Is there an algebraic description of punctually categorical
unary structures?

Itis not hard to see that a structure with only one unary functional symbol
can encode an arbitrary family of sets; in particular, there is an example of a
computably categorical unary structure which is not relatively computably
categorical. But we however strongly suspect that, at least in the case of only
one or perhaps two unary operations, there will be an algebraic description
of punctual categoricity.

At this point, the reader might think that all punctually categorical struc-
tures must be either finite or perhaps trivially homogeneous such as a vector
space over a finite field, cf. Theorem 3.4(4). It is also natural to conjecture
that punctual categoricity always implies computable categoricity, especially
after we have seen that graphs fall into this pattern.

Our next goal is to outline the construction of a punctually categorical
structure which is not computably categorical. Although logically there is
no contradiction in the statement, the reader should agree that it just “does
not sound right”.

84. The punctual monster.

THEOREM 4.1 ([35]). There is a punctually categorical structure A which is
not computably categorical.

We will not give the proof in full detail. We will however give a fairly
detailed outline of the main “pressing” strategy that will be useful to anyone
who is willing to learn more about the technical side of our investigations.

2While the article was under review, Downey, Greenberg, Melnikov, Ng, and Turetsky
have announced a generalisation of the theorem above to finitely many binary relations; such
structures must also be automorphically trivial.

3Downey. Greenberg, Melnikov, Ng, and Turetsky have announced an explicit description
of punctually categorical structures with exactly one unary functional symbol in their lan-
guage. They have also came up with a complex argument showing that no unary structure
can be punctually universal. This contrasts with the punctual universality of structures with
a binary function (to be discussed later). It is still not known whether there is a reason-
able description of punctual categoricity of structures with more than one unary functional
symbol. All these results were proven while this article was under review.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

160 NIKOLAY BAZHENOV ET AL.

Our proof sketch of Theorem 7.3 which will appear later in the article uses
the same strategy. An impatient reader may safely skip the explanation below
and go straight to Section 4.1 which contains a further discussion and open
problems.

PrOOF SKETCH. We must have a way of meeting the requirements:
A=P, = A=, P,.

where (P,).c. is the natural uniformly computable listing of all punctual
structures. Clearly, the list itself is not primitive recursive, for otherwise we
would be able to produce a punctual structure which is not in the list.

The idea is as follows. Start by building an infinite chain using a unary
function S

0— S(0) — S%(0) — S3(0) — - -

and use another unary function, say U, to attach a U-loop of some fixed
small size to each S"(0). To be more specific, suppose we attach 2-loops.
Use another unary function r that sends each point back to the origin:

Vxr(x)=0.

Wait for the opponent’s structure Py to respond. As soon as P, responds by
giving a 2-loop, we switch from the pattern

2-2-2-2-2-2-2-2_...
to the pattern (say)
242 4-2-4-2_4—...

assuming that 4 is currently not forbidden in the construction.

How do we punctually map x € Py to A? Recall that x was a part of a
chain of 2-loops. In A, the initial segment consisting of adjacent 2-loops has
a specific length that we know, say k. In Py, calculate r on x to find the origin
and then calculate S of the origin at most k times to figure the position of
x. To compute the unique isomorphism from A to Py, simply start from the
origin in Py and map A onto Py naturally, according to the speed with which
Py is generated. In both cases, we will use the primitive recursive time which
measures the speed of its enumeration (see the discussion above). In a way.
this will be a nonuniformly primitive recursive proof. See [35] for a detailed
explanation.

Now assume we are dealing with two structures, Py and P;. Then Py
will be using U-loops of even length, and P; of odd length. The loops
corresponding to Py are located at even positions:

2-0-2-0-2-0-2—---,

where the content of the [Is does not worry the strategy for Py. The strategy
then switches to

e 2-0-4-0-2-0O-4—---,

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 161

assuming 4 is small enough and not restrained. However, imagine all the
larger loops are currently restrained, but the strategy must act. Simply use a
more complex pattern of 2 and 4, such as

e 2-0-4-0-4-0-2-0-4—-0—4---.

We could even get around with using only 2 and 4 throughout the con-
struction, for Py. Our punctual definition of the isomorphism between Py
and A is essentially the same as in the description of one strategy in isolation;
the same can be said about P;. We only need to look at a bit larger interval
in Py around a given point.

In the general case of many P, we generalise the ideas described above. We
reserve specific locations for loops in A corresponding to different P,. Think
of (P,).cq as of being “increasingly slow in e”. However, we will argue that
for each fixed e there is a primitive recursive time-function, i.e., a function
that bounds the speed of approximation of P, = | J, P, within the overall
uniformly primitive recursive approximation (P,). c.. For now, take this
property for granted. We delay the formal proof of this fact until Section
10. At later stages, the construction will respect more of the P-structures.
Further tensions can be sorted using priority.

4.0.1. The idea of the diagonalisation. In the actual proof of the theorem,
the pressing strategy will be very similar, but the structure will no longer
be just a chain of loops. More generally, it cannot be finitely generated (for
otherwise, it would be computably categorical). The structure will consist
of infinitely many finite chains of loops that we call components. The only
difference with the strategy outlined above is that we will eventually stop
growing the currently active chain and start building a new one.

We will also be constructing a computable B = A. We must meet the
diagonalisation requirements:

Yo : BE A.

We can afford to delay B, but we cannot delay .A. This will be crucial.
Here is the outline of the diagonalisation strategy:

(1) Associate ¢, with some special and (currently) unique component C,
in both A and B.

(2) Wait for ¢, to converge on C,.

(3) Initiate the enumeration of a new, fresh and unique component Z, in
A, according to the instructions of the pressing strategy. Label C, in
A using Z,; this can be done by mapping the origin of Z, into the
origin of C, using some special unary function.

(4) Freeze the enumeration of A.

(5) When Z, is finished, introduce a new and fresh component Y, in A
which is built according to the pressing strategy. Also, introduce an
identical copy of C, and label it using Y,.

(6) Assoon as Y, is finished, unfreeze B. In B, label its current C, by Y,,
and introduce its identical copy labeled by Z..

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

162 NIKOLAY BAZHENOV ET AL.

It is crucial that we do the actions in the right order. For instance, we must
first put Z, to make sure that the copy of C, that a structure P; currently
has is the right copy. Then we must put Y, and use it to press P; to reveal
its version of Y,. But if P; shows Y, then it must also promptly show us the
other, new copy of C,. We omit further details; see [35]. —|

4.1. Furtherrelated questions. Ithasrecently been shown that computably
categorical (c.c.) structures are unclassifiable; more formally, the index set
of c.c. structures is IT}-complete [21]. We have discovered that punctually
(PR) categorical structures do not form a proper subclass of c.c. structures.
This brings us to the problem:

PROBLEM 4.2. Measure the complexity of the index set {e
P, is punctually categorical}.

The (current) lack of techniques makes the problem above difficult to
approach. It may sound silly, but the authors have not agreed on the
conjecture for the question below:

QUESTION 4.3. Is every punctually categorical structure (relatively) AY-
categorical for some computable o? (The definition of (relative) Al -
categoricity can be found in [4].)

Why do we care? The combinatorial games that we play when we study
such questions are in the heart of our “online” framework. The universe
shows us a pattern and we must recognise it zow. Punctual categoricity serves
as a unifying abstraction for such games, while (relative) A -categoricity is a
typical way to measure the complexity of a structure in computable structure
theory. One naturally seeks to understand the relationship between the two
measures of complexity. In the next section, we will further develop these
ideas, but this time using back-and-forth analysis rather than categoricity.

One might hope to push the ideas described in this section to a construc-
tion of a non-A-categorical but punctually categorical example. However,
it seems to necessarily require a new idea.*

85. An online back-and-forth invariant. Recall that the inverse of a primi-
tive recursive function does not have to be primitive recursive. Fix a punctual
structure A. The collection of all punctual presentations of A carries a
natural reduction, as defined below.

DEerINITION 5.1. Let 4 be a punctual structure. Then, for punctual C, B
isomorphic to 4, we say that C is punctually reducible to B, written C <,, B,
if there exists a surjective primitive isomorphism f : C —,,;, B.

This leads to an equivalence relation =, and the degree structure on the
classes which will be denoted PR(4).

*While the article was under review. Greenberg, Downey, Melnikov, Turetsky, and Ng
have announced that, for each computable ordinal «, there is an example of a punctually
categorical structure which is not A%-categorial. Their proof is quite technically involved. If
correct, it will answer Question 4.3 negatively.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 163

What does PR(A) reflect? If C <, B then, in a way, B has more online
content than C does, in the sense that more things happen in B. For example,
the standard copy of (Q, <) punctually embeds any other punctual copy of
the rationals; it has a prompt Skolem function, but some other copies may
have slow intervals. Also, the standard copy of (w.S) can be punctually
embedded into any other copy: the other copies of (w. S) will contain points
that look nonstandard (“infinite”, “disconnected”) for a very long time, but
no such points can be found in the standard copy. In other words, 4 <, B
means that B enumerates itself more impatiently.

This is a new concept unseen in effective mathematics. Thus, we would
like to pick some specific algebraic structure and try to understand its punc-
tual degrees in full depth. We will do so for the dense linear order (Q. <).
Perhaps, the main outcome of our investigation into this direction is that our
proofs will be unexpectedly nontrivial even for this algebraically elementary
structure, and we strongly conjecture that this complexity is unavoidable.
Even though we gave it a good thought, we still know very little about the
algebraic structure of PR(Q. <). and this investigation is definitely of some
technical interest; see Section 6 for more details.

We could also take two punctual structures A and B and compare PR(A)
and PR(B). IfPR(A) and PR(B) are similar or isomorphic, then the “online
content” of the two structures is the same. Also, we could fix some class (or a
property) of structures and see whether there is some common feature shared
between all PR(A) when A ranges over the class (or over structures having
this property, respectively). See Section 7 for results and open problems into
this direction.

We will also see that there is a nontrivial connection between punctual
degrees and the notion of punctual categoricity from the previous section;
we discuss this in the paragraph below.

5.1. Does back and forth imply back-and-forth? Note that if PR(A4) con-
tains a single degree this means that for any two punctual copies C, B of 4
there is a pair of primitive recursive isomorphisms, one going from C onto
B, and the other mapping B onto C. Note that it is not obvious at all that
there must be a primitive recursive isomorphism f : B — C with primitive
recursive inverse.

QUESTION 5.2. For a punctual A, is |PR(A)| = 1 equivalent to saying that
A is punctually categorical?

The question is open in general, but it can be answered positively for
many standard classes including Boolean algebras, linear orders, and, most
notably, graphs [52] via a rather nontrivial proof.

THEOREM 5.3. Suppose G is a (punctual) graph. Then |PR(G)| = 1 iff G is
punctually categorical.

INFORMAL DISCUSSION. The strategies from the proof of Theorem 3.5 that
describes punctually categorical graphs seem to be of little help. Some of
the strategies there relied heavily on the isomorphism being fully primitive
recursive (i.e., with primitive recursive inverse). In particular, Proposition 3.6

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

164 NIKOLAY BAZHENOV ET AL.

heavily relied on the fact that, for p : B — A. gp(x’) = x’. where ¢ is the
intended inverse of p.
We need a new notion.

(1) [PR(G)| = 1.

(2) Given any two f.p.r. copies A = B of G, there exist primitive recur-
sive isomorphisms f : A — Band g : B — A, and a primitive
recursive function ¢ : N +— N such that given ¢ € A, either
Orb(a) = {(gf)"(a) : n € w} has size at most t(a), or every
permutation u of Orb(a) can be extended to an automorphism
of G.

Note that given (2) we can run a primitive recursive back-and-forth con-
struction to produce a PR isomorphism between two punctual copies. First,
check whether Orb(a) has size <t(a). If “yes” then match Orb(a) with
Orb(f (a)). Otherwise. if Orb(a) has not yet closed after #(a) steps, then do
the back-and-forth on Orb(a) and Orb(f (a)) essentially ignoring the rest
of the structure. Unfortunately, the implication (1) — (2) is quite nontrivial
and will not be presented here. -

5.2. Punctual degrees as partial orders. We could approach punctual
degrees from a different perspective. Instead of looking at punctual
degrees of some familiar structures, we could attack the general problem
below.

PrROBLEM 5.4. [Is there a convenient description of partial orders that can
be realised as the punctual degrees of a (computably categorical) punctual
structure?

See [36] for several (quite basic) results into this direction. It is well-known
that there exist (Turing) computable algebraic structures that have exactly 2
computable copies up to computable isomorphism.

QUESTION 5.5. Is there a structure A such that 1 < |PR(A)| < co?

Melnikov and Ng have recently announced:

STRONG CONIJECTURE. There is a structure with exactly two punctual
presentations, up to PR isomorphism.

The proof is rather technical, but the authors are currently convinced it
works. We note that the proof does not even resemble the dimension 2 proof
in computable structure theory.

QUESTION 5.6. Is there a structure A such that |PR(A)| > 1 and PR(A) is
a linear order under <,.?

More generally. we know little about the possible algebraic types of the
order PR(A), but several basic results can be found in [37]. We will return
to this question in Section 7, where we will refute the conjecture that the
punctual degrees of a finitely generated structure cannot have the greatest
element unless the structure is punctually categorical.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 165

86. Homogeneous structures. Recall that a structure X' is homogeneous
if every isomorphism f : F; — F, between any two finitely generated
substructures Fi. F, C X is extendable to an automorphism of X. (Such
structures are also called ultrahomogeneous in the literature.) See [48] for a
survey on homogeneous structures.

ExaMPLE 6.1. The following structures are homogeneous:
e (Q. <), the dense linear order without end-points.
e R, the Random Graph.

o P =@, Zy~. the universal countable abelian p-group (the infinite
direct power of the Priifer group Z).

Each structure in Example 6.1 is the Fraisse limit of finite structures within
the respective class. Also, they do share essentially the same back-and-forth
proof of their uniqueness up to isomorphism. More specifically, we pick
another element and wait for a suitable element on one side, and then we
switch sides. The back-and-forth proofs for these structures are identical
from the general Turing computability point of view. In particular, all these
proofs are Turing computable and all these structures are computably cate-
gorical. Furthermore, there is only one instance of a potentially unbounded
search involved in this algorithm. It is natural to conjecture that these proofs
are also the same from the standpoint of primitive recursion.

Remarkably, the recent result of Melnikov and Ng [52] below shows
that the back-and-forth proofs for these three structures differ from the
perspective of primitive recursion.

THEOREM 6.2. The punctual degree structures of the dense linear order
(Q. <). the random graph R., and the universal divisible abelian p-group P are
pairwise nonisomorphic.

Proor IDEA. The proof is essentially degree-theoretic in nature. First, we
establish that PR(R) and PR(P) have no greatest element. while PR(7)
does. Also, PR(P) has no maximal elements, while PR(R) does. Some of
these facts require a nontrivial proof. =

We note that Alaev [1] has recently investigated the primitive recursive con-
tent of the countable atomless Boolean algebra . (We note that the use
of polynomial time presentations of f in [1] does not really make much
difference.) We conjecture that PR(f) =2 PR(y). but establishing such an
isomorphism could be quite tricky (if it exists); the most naive attempt via
the interval algebra presentation seems to fail.

QUESTION 6.3. Is PR(Q. <) = PR(p). where B is the atomless Boolean
algebra?

The reader may find Theorem 6.2 counterintuitive; the authors definitely
do. In fact, the theorem disproves our initial conjecture that the punctual
degrees of these structures should be isomorphic. The discovery of Theo-
rem 6.2 led us to the conclusion that we do not know enough about the punctual
degrees of even the algebraically simplest structures. It makes sense to pick
one familiar and algebraically simple structure and try to understand its

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

166 NIKOLAY BAZHENOV ET AL.

punctual degrees in full depth. The hope is that some of the ideas and
techniques can then be applied to some other, perhaps more algebraically
interesting, structures.

The dense linear order (Q. <) is the standard (and perhaps the simplest
natural) example of when a back-and-forth proof works, it makes sense
to investigate PR(Q, <) in some depth, hoping that some of the ideas and
techniques will be useful for the general theory. Remarkably, proving the
theorem below takes some effort.

THEOREM 6.4 ([52]). PR(Q. <) is downwards dense.

The proof of the above theorem is nonuniform and quite combinatorially
involved; we omit details.

QUESTION 6.5. Is PR(Q, <) dense?

Melnikov and Ng have recently conjectured that PR(Q, <) is upwards
dense, but their proof contained a serious problem.

We do not know much about the punctual degrees of common natural
structures (such as the atomless Boolean algebra) beyond the results dis-
cussed in this section. Such investigations will be of technical interest and
will hopefully shed some light on the nature of punctual back-and-forth
proofs.

PROBLEM 6.6. [nvestigate into the punctual degrees of some elementary
natural computably categorical algebraic structures such as:

(1) the dense linear order (Q, <);

(2) the atomless Boolean algebra (compare with the dense linear order):;

(3) (@.S). (N, +), and (N, 4+, x) (do they all have isomorphic punctual
degree structures?);

(4) finitely generated abelian groups:

(5) algebraically closed fields of finite transcendence degree (is PR(Z,) =
PR(Q). where F stands for the algebraic closure of F?):

Even for such algebraically simple classes as above, the raised questions
may turn to be very challenging. It seems that the punctual degrees are
an extremely sensitive computability-theoretic invariant that can be used to
draw conclusions about the algebraic properties of the structure, especially
in some natural classes. This is some work to do in the future.

87. Finitely generated structures. We have discussed homogeneous struc-
tures. Within (relatively) computably categorical structures, the finitely
generated structures are the opposite extreme: they become rigid after fixing
a finite tuple of generators. One would expect the results on such structures
to be somewhat dual to those for the homogeneous ones. However, most of
the results discussed in this section were unexpected.

We concentrate on finitely generated (f.g.) structures in a (finite) func-
tional language. Clearly, every such structure is computably categorical in
the sense of (Turing) computable structure theory. If A4 is punctual and
f.g. then PR(A) has the least degree which is the “naturally generated” term
algebra built around the finitely many generators of 4. Even the simplest

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 167

f.g. structures, such as (w, S), will typically have a pathological copy in which
some elements will be kept “disconnected” from the generators long enough
to allow for a diagonalisation against primitive recursive isomorphisms.

ExampLE 7.1. PR(w,S) has no maximal elements and is dense. The
strategy described in Example 3.1 can be used to construct a copy strictly
<pr-above any given copy. Density will follow from a more general result
below.

One might hope for a general fact that would generalise the example
above to all f.g. structures, but this will not work. In our proof sketch
of Theorem 4.1, we outlined the construction of a 1-generated punctually
categorical infinite rigid structure (this is Proposition 4.2 in [35]). Thus, we
can have [PR(A4)| = 1 for an infinite f.g. A4.

Recall that it is open whether |[PR(A)| = 1 implies punctual categoricity
of A, but we know it does for graphs. It is not hard to see that, for a f.g. A,
[PR(A)| = 1 is equivalent to punctual categoricity of 4 [6]; we omit details.

Suppose a f.g. 4 is not punctually categorical. Can we have 1 < [PR(A4)| <
o0?

THEOREM 7.2 ([6]). Suppose a f.g. A is punctual and |[PR(A)| > 1. Then
PR(A) is infinite and dense.

PrOOF. Let B <, T be two punctual presentations of 4. We build a
punctual copy X with the property:

B <, X<, T.

The first idea is to switch between copying B and T. The second idea
is to use some fixed tuple of generators & in both B and T to exclude the
unpleasant scenario in which a potential isomorphism from 7 to X (or from
X to B) is not onto. This will allow us to keep the strategies strictly finitary.
We will not attempt to diagonalise against, say, p, : X — B until we see that
p.(g) generates the version of g in B. Note that if p, is an onto isomorphism
then the p.-image of the generators of X must span the generators of B.
Suppose p. : X — B is ready for diagonalisation in the sense above, but
X is currently copying B. We can punctually switch to X copying T by
identifying the natural image of B within 7' (given by B <,, T') with X.
Then we wait for a finitary local disagreement confirming p, : X 4 B, and
then we can switch back to copying B. if necessary. The latter is done by
ceasing all actions in X except for evaluating the functional symbols on the
already enumerated elements and waiting for (the natural image of) B (in
X) to catch up on the extra elements that we may have adjoined to X while
copying 7. As soon as this happens, we are in the position to diagonalise
against some ¢; : T — X which is ready for diagonalisation (in the sense
above), etc. The rest is sorted using priority. =

Perhaps, one could strengthen the theorem above and show that [PR(A)|
are upwards dense for every f.g. structure 4 (unless [PR(A)| = 1). Rather
surprisingly, this natural hypothesis fails.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

168 NIKOLAY BAZHENOV ET AL.

THEOREM 7.3 ([6]). There exists a f.g. A such that |PR(A4)| > 1 and PR(A)
has a greatest element.

IDEA. Combine the pressing technique described in Section 4 with an
(. S)-style diagonalisation. (In (w., S), we would keep some element dis-
connected from the origin for a long time before we connect it back to
0.)

To build the “top” copy T, we keep a part of the long chain of loops
disconnected from the origin. The key idea here is that we could still build
a primitive recursive f : P — T from a given copy, because the pressing
strategy still works if we introduce another unary function that sends a point
not to the origin but to the beginning of the currently disconnected island.
The exact formal details are unpleasant, but there are no surprises in the
proof. -

Kalimullin, Melnikov, and Zubkov [38] have discovered the following
rather pleasant structural property of punctual degrees in the rigid case.

THEOREM 7.4. Let A be a f.g. rigid punctual structure with PR(A) infinite.
and let L be a countable lattice. TFAE:

(1) L is embeddable into PR(A) preserving sup and inf:
(2) L is distributive.

We do not know if rigidity can be omitted from the theorem. We do
know that, without the rigidity assumption, a lower cone in PR(A4) is never
a Boolean algebra for a f.g. 4; see [38]. More generally, we still do not
know any example of a f.g. 4 for which PR(A) would be fully algebraically
understood, with the exception of the elementary case when |PR(A4)| = 1.

88. Graphs and universality. Itis natural to ask whether any structure can
be effectively coded into a structure from some specific class preserving all
primitive recursive properties of interest, such as punctual categoricity, the
isomorphism type of the punctual degrees, or some other property. Intu-
itively, a class is punctually universal if it can (punctually) code any other
punctual structure 4 into B € K so that a structure X = 4 can be (punctu-
ally) reconstructed from any given copy C = B in a particularly nice way.
The formal definitions can be found in Appendix B. There is a very strong
resemblance between punctual universality and Turing computable univer-
sality of a class in [33]. The only essential difference is that we use primitive
recursive functionals instead of Turing functionals. Thus, in particular, every
punctually universal class is Turing universal as well.

TraeorReM 8.1 ([19]). The class of structures with only one binary functional
symbol is punctually universal.

Formally, Theorem 8.1 says: There exists a primitive recursive functional I
which, given a structure in a finite signature A outputs a structure I'(A) in the
language of one binary functional symbol such that:

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 169

(1) if F : A — B is an isomorphism then there is an isomorphism G :
I'(A) — T(B) for which we have G € P(F) and G~' € P(F~1)?

(2) if G : T(A) — T(B) is an isomorphism then there is an isomorphism
F : A — B for which we have F € P(G) and F~' € P(G™);

(3) if U = T(A) then there is a structure B = A in P(U) and an
isomorphism H : T'(B) — U with both H and H™" in P(U, A).

Furthermore, G and H and their inverses can also be witnessed by primitive
recursive functionals with respective inputs.

PrOOF SKETCH OF THEOREM 8.1. First of all, replace all predicate symbols
in A by functional symbols by adding two extra constants, 0 and 1, and
replacing each of the finitely many predicates by a function that map tuples
to these constants. Hence, we can assume from the beginning that .4 has
only functional symbols. We claim that, w.l.o.g., the functions may have
different arity. For example, replace f(xi.....x,) by f/(x1..... X Xpy1) =
f(x1.....x,). Suppose the maximal arity among the finitely many functions
is m, and the functional symbol of the arity k. 1 < k < m, is f.

Under these assumptions let I'(A) be the structure with the domain

{Ix1, X2, cox,] 1 <k <m&xy,x2,...,x; € A}

containing all nonempty strings of the length not greater than m in the
alphabet A. The structure I'(A) has the binary symbol for truncated
concatenation

[x15x27"'7xi]*[y]:yz:---:yj] - [x15x27"'7xi7y17y27"'7ymin(m—i‘j)]

and the unary functional symbols

go([xr. xa. ..o xp]) = [(enn a0 xg)]

gil[xr. x2.....x]) = {[Xl], otherwise

forl <i<m.

We will identify each element x € A with the one-element string [x] €
I'(A). Then the structure A is an automorphism base of I'(4) (due to
[x1.....x%] = [x1]* - - - *[xx]) which is furthermore definable in I'(A4) as the
range of all the g;, 1 < k < m. Observe that A can be punctually interpreted
in T(A) via fr(x1.....x%) = go(x1 * - x x;). The properties (1), (2). and
(3) hold for I'(A); we omit details. It remains to emulate the unary functions
gi. 0 < i < m, using only one binary function * defined above: this can be
done by further enriching the structure by new elements. To do so we add
into I'(A4) new elements

co,Cl1s..,Ciy
such that
SFor a total function f : w — . let P(f) be the least class containing / and all primitive

recursive functions closed under composition and primitive recursion. Similarly, we can
define the notion of a primitive recursive functional.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

170 NIKOLAY BAZHENOV ET AL.

Ci * Cj = Crmin(m.i+j+1) for0 <i.j<m,

xXxc;=co, for0<i<m,x+#co,Cls...,Cm,
cixx=gi(x), for0<i<m.x#cocr.....Cn.

It is clear that each of the new elements c¢.cy....,c, can be quickly
reconstructed from any copy of the structure; for instance, ¢, is the unique
element such that x * ¢y = ¢¢ for at least m + 2 different x; ¢; = ¢o * ¢o:
¢> = ¢y * ¢o; etc. The verification of (1)—(3) is routine. =

Recall that we delayed the formal definition of universality until Appendix
B. It is a piece of standard knowledge that graphs are universal for Turing
computable structures. In contrast, we have:

THEOREM 8.2. Graphs are not universal among punctual structures.

The reader might object that graphs could be universal for some other
definition of universality which is different from the one found in Appendix
B. However, we claim that graphs cannot be universal for any reasonable
punctual universality notion; we explain why. Theorem 3.5 says that a punc-
tually categorical graph becomes a clique or an anti-clique after removing
finitely many vertices. In particular, every punctually categorical graph is
computably categorical. We also know that there exist punctually categori-
cal structures that are not computably categorical, see Theorem 4.1. As we
noted above, any reasonable notion of punctual universality must also be a
notion of (Turing) computable universality; in particular, it should preserve
computable categoricity.

We leave open:

PrOBLEM 8.3. Is there a punctually universal structure in a predicate
language?®

8.1. Sub-recursive relativisation. Note that the formal statement of the
universality result for binary functions relies on a certain notion of subre-
cursive relativisation. That is, we can relativise a primitive recursive process
by adding a total function f to the primitive recursive schemata; it is per-
haps more natural to assume the function f is computable. Informally, this
means that we allow the minimisation operator with the bound given by £
and we view everything computed within the time bounds of f as quick
enough. We could also define the notion of primitive recursion relative to a
class of functions or consider an arbitrary class of functions closed under
primitive recursive operators and composition.

Remarkably, most (if not all) of the results surveyed in the article will
hold relative to an arbitrary total function f or relative to a class of total
computable functions. Sometimes we do not even have to assume that the
function (or the class) is computable, all we need is totality. For instance,
Theorem 8.1 above is an example of one such result that works in the most
general setting of total functions.

®While the article was under review, Kalimullin, Melnikov, and Montalban have announced

a negative solution to this problem. They are currently working on a detailed proof. See also
Section 9 for a brief discussion.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 171

PrOBLEM 8.4. Develop a systematic theory of structures punctual relative
to a total oracle. Study subrecursive hierarchies of structures.

So far, the only result into this direction is the theorem below.

THEOREM 8.5 ([36]). For every n > 0 there exists a fully primitive
recursive structure which is punctually Ogll)z-calegorical but not punctually

OEfR_ 1)-categorical.

In the theorem above, 0%, stands for the primitive recursive jump:; this is
the total function that naturally enumerates all primitive recursive functions:

f(n.x) = p,(x). This process can be naturally iterated to define OEfR_ D see

[36] for details. The notion of punctual Oﬂflg—categoricity should be self-
explanatory. The proof of the theorem is basically a (punctual) coding of a
total function into the diagram of a structure, so it works not only specifically
for the primitive recursive jumps; see [36]. See also Section 9 below for a
discussion of subrecursive relativisation.

It is widely believed that primitive recursion serves as an adequate model

for finitism in proof theory: see, e.g.. Tait [59].

PROBLEM 8.6. Investigate the proof-theoretic content of punctual structures,
perhaps in relation with reverse mathematics.

89. A uniformmodel. So far, our intuition for online computation is based
around lack of delay. Recently, Downey., Melnikov, and Ng have begun
another project which concentrates on the uniformity of online algorithms;
even those on finite structures. This approach is compatible with the one
essayed so far in this article. It is still in its infancy, but we would like to take
the opportunity to point out this new direction to the reader.

By way of motivation, consider an online algorithm for colouring graphs.
We can consider this as an adversarial situation where the universe conspires
to give us graphs “badly”. Our opponent’s task is to supply us with a new
vertex v at step s and tell us which of the vertices in Gy the vertex v is
connected to. We can consider v = s + 1 with this model.

In the simplest model, the online algorithm A4 acts on G, to (irrevocably)
colour v = s + 1. For simplicity, we do not allow the algorithm to see
f(s 4+ 1) many new points, where / would be primitive recursive, before
making its decision. (In more general models, we could consider some kind
of primitive recursive delay.) The crucial insight is that 4 must act uniformly
on any sequence Gy, ..., Gs.1,.... The offline algorithm can be considered
as a sequence of algorithms A, acting on G, for each s.

The idea is to topologise the situation and consider online algorithms
as uniform operators acting on (representations of) topological spaces
correlating to the inputs and outputs.

9.1. The definition for monotone online. For the most general definition
of an online structure upon which online algorithms act we will work with
representations. We look at the monotone situation above, where the objects
only grow. The approach is flexible enough to also deal with situations where

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

172 NIKOLAY BAZHENOV ET AL.

the domains are A9, or similarly the ranges are A9 (such as online matching

of bipartite graphs).
A class C of structures is called inductive if A € C implies A has a filtration
A = UzA, where each A4, is finite and has universe {1,...,n} and for all

n’ > n the substructure induced by {1,....n}in 4, is 4,. (If the language
has functions f we’d need to say this as the restriction of f(i) for i < n for
n — i steps.)

In the above, the structures are graphs, with the height » structures being
all the possible graphs with n vertices. The structures are represented by paths
through this tree of possibilities. Other examples include all the structures
considered by Khoussainov [40] with a height function in his work on
random infinite structures. By abusing notation, let C<” denote the class
of finite substructures of C.

To have a computability theory, we need a notion of effective presentation.
We borrow it from computable analysis. A representation of a class C of
structures is a surjective function F : 0<% — C<®, or sometimes we will use
2<¢ in place of w<®, which acts computably in the sense that F (¢) = C, for
|o| = nand |C,| = n, and if ¢ < 7 then F (o) is an induced substructure of
F (7). There is also the natural induced topology. For example, in the graph
case, this would be compact and have the totally disconnected topology with
basic open sets being the extensions of a given graph. When the meaning is
clear, we will regard ¢ and F (o) as being the same, to avoid notation.

For simplicity, we will consider online algorithms which compute some
kind of function from an online presentation of a structure. A good example
is when the function is a colouring which would also cover the case of BIN
PACKING, or online chain decomposition of a partial ordering in the sense
of Kierstead [42]. The reader familiar with computable analysis can think
of this as a Weihrauch Problem. Thus an online algorithm will take some
inductive structure from C to one in D. (Of course here we are identifying
structures with their representations.) The idea is that an online algorithm
is simply a type 2 computable function [62], but with a restricted use.

DEFINITION 9.1.

e An online algorithm on C is a computable function 4 with domain (a
representation of) C<® such that for all o, A(c) |€ D<? satisfying the
appropriate continuity conditions. That s, if 4(C,) = D, then|z| = |o
and o < ¢’ implies 7 < 7’ (where A(C,/) = D).

s

e An online algorithm with delay h, where h is a computable function
similarly is one where for each 7 with ¢ < 7 and |z| = |o| + A(|o]).
A(t) = D(n) for some 7 of length |o|.

e An online algorithm is punctual if it is given by a primitive recursive
functional on the representations.’

"This works particularly well if the topology of representations is totally disconnected.
Note also that in a relational language the representations are compact.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 173

We could also add parameters to the above, and then the online algorithm
would be 4 which had as input C<“, ¢ where ¢ is code for a member of C<®.

The key difference is that there is now no reason that the structures we
are dealing with, even in the punctual case, need to be primitive recursive.
Suppose that the representation is 2“. Then there will be uncountably many
structures represented as paths through the tree. It is the algorithm acting on
the paths which is uniform, and the primitive recursiveness would be relative
to the path.

On the other hand, we have a nice realization of our intuition that for
an online algorithm, the algorithm cannot know if the domain is infinite or
not.

PROPOSITION 9.2.

e Suppose that A acts in an online fashion uniformly on all finite strings.
Then A acts uniformly online on all computable paths through the
representing space.

e Suppose that the algorithm A is total and acts uniformly online on all
computable paths. Then A acts uniformly on all paths.

PrOOF. (i) If A fails on some computable paths «, it must fail on some
finite initial segment.
(ii)) Computable paths are dense. —

Currently, there is very little in the way of theorems in this setting. But we
mention why we believe that this area has potential. Here are some classical
things which can be put into this setting.

(1) Online algorithms like those of Kierstead, Trotter, and others. (See,
e.g.. the chapter by Gasarch in [25].)

(2) Classical computer science online algorithms like scheduling, bin
packing, colouring, etc.; see [8].

For example, BIN PACKING. This problem takes as input sizes a; € N
and a parameter V for simplicity, and colours a; with colour ¢(a;)
subject to Z(?(u,-):c a; < V, and seeks to minimize the number of
colours.

Classical computer science algorithms look at performance ratio.
In this setting, let C<“ be graphs, D<® will be coloured graphs. This
can also have a number y(A(c)) which is the number of colours used.
An offline algorithm Q associated with C, D will be an algorithm for
the same problem, but lacking continuity, so that Q is defined on the
actual path. (Probably it is a Baire 1 algorithm.) In most cases A,
in the sense that it is given by a sequence of approximations in the
obvious way. The performance ratio would be

x(4(o))
7(Q(a))
(3) Distributed algorithms: e.g., consensus, wait-free synchronisation,
etc.
(4) Computational learning theory such as EX learning [57] and other
notions from inductive inference. For example, in EX learning, D<®

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

174 NIKOLAY BAZHENOV ET AL.

is simply @<® and we learn a member of the class when we keep
outputting the same index from some point onwards.
(5) Classical computable analysis.

9.2. Partial things. We can also talk about partial online algorithms. This
will be ones like the above and in the punctual case must halt punctually on
paths they halt on. For example, we might imagine an algorithm working on
trees acting on the space of all graphs. Or one on reals but only on convergent
sequences representing them. With a bit more work for algorithms we could
look at polynomial time algorithms, but we can use the type 2 polynomial
time complexity of Ker-I Ko and Harvey Friedman [46].

This also allows for connections with other notions of uniformity. Recall
from Downey-Hirschfeldt-Khoussainov [20] that a computable structure G
is uniformly computably categorical (ucc) if there is a partial computable
operator @ such that if M, = G then ®¥¢ is a computable isomorphism
from M, to G. Ventsov’s theorem states that ucc is equivalent to relative
computable categoricity, and this is, in turn, equivalent to existence of X!
Scott Family. Also the Kreisel-Lacombe-Shoenfield Theorem can be recast
in this setting.

We note that Kalimullin, Melnikov, and Montalban (work in progress)
have recently studied similar uniform notions of punctual categoricity. In
particular, they have investigated into the technical notion of uniform punc-
tual categoricity on a cone; we omit the technical definition. They have found
an unexpected application of these highly abstract notions to the problems
of universality raised in Section 8.

In any case, this work is actively being pursued and would seem to have a
distinct unifying theme.

§10. Appendix A: Primitive recursive time. We clarify the use of (subrecur-
sively) nonuniform arguments in our proofs. In some proof sketches above
we used that a certain process was primitive recursive relative to some prim-
itive recursive function in the total enumeration of all primitive recursive
functions. Although the intuition behind this trick is fairly straightforward,
it does require a careful thought and a rigorous verification. We intend to
use the content of this appendix as a standard reference for our upcoming
articles on the subject.

Let (¢.).cq be the computable listing of all Turing computable functions
viewed as general recursive schemata. There is a uniformly computable sub-
listing (cp,(e))eao that consists of all primitive recursive schemata. Write
pe for ¢;(,). There also is a uniformly primitive recursive approximation
(@)escw Where (essentially) g, , = p,[s].

More formally, f(¥)[s] is a primitive recursive approximation to a
computable function f (%) if

(1) if £ (X)[s] | then f(X)[s] = f(x) < s and £ (¥)[s + 1])
(2) for every X there is a stage s such that f(¥)[s] |:

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 175

(3) the function

e[@
/ (x’s)_{fb?)[s], if £ ()51 |

IS primitive recursive.

The function #(¥) = min{s : f(X)[s] |} is called the time function for a
total computable f ().

LeEMMA 10.1. There is a primitive recursive function i (n) such that for every
n the function p;(,y = @(i(n)) i the time function for p, = ¢;,) with respect to
the uniformly primitive recursive approximation (g, s)n.sco as defined above.

In particular, a function f is primitive recursive iff it can be emulated on the
universal Turing machine with a primitive recursive time-bound on the steps
of approximation. Furthermore, the index of the primitive recursive time
function for f* can be found uniformly and primitively recursively in any
given index of f. We advise to skip the technical and notationally heavy
proof of the lemma below at the first reading.

Proor. We will prove a more general result which can be used to define
the primitive recursive jump and “relativize” results in the subrecursive
hierarchy. It is also quite instructive because it clarifies what it means to
be primitive recursive relative to some total computable function. Its proof,
however, is not really any harder than the proof of the stated less general
lemma.

For a total function f(¥) define the f-primitive recursive schemas p/ by
induction:

(1) The functions o(x) = x,s(x) = x+1, I(xy...., x,) = x, and f(X)
are f-primitive recursive schemas.

(2) (Composition). If gk(¥), 0 < k < n. and g2(yo.....y,) are
f-primitive recursive schemas then the function g3(x):

g3(¥) = g2(g)(%).....¢M(X))

is a f-primitive recursive schema.
(3) (Primitive recursion). If g;(¥) and g»(X, y. z) are f-primitive recursive
schemas then the function g3(¥, y):
23(¥.0) = g1(¥) and g3(X. y + 1) = g2(X. y. g3(X. »))
is a f-primitive recursive schema.

Let f(X)[s] be a primitive recursive approximation for f (%) with the
corresponding time function 7(¥). Define inductively the primitive recursive
approximation p/[s] for each f-primitively recursive schema p/:

(1) The function f(X) already has the primitive recursive approximation
f(X)[s]. The primitive recursive approximation for basic primitive
recursive functions o(x), s(x) and I (X) are defined as

1(X)[s]] <= 3y < s)[(F.y) € graph u].

where u 1s one of these basic functions.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

176 NIKOLAY BAZHENOV ET AL.

(2) If gf(¥)[s], 0 < k < n, and g2(yo. ..., y,)[s] are primitive recursive
approximations to gf(¥), 0 < k < n, and g2(yo.....y,) with the
corresponding time functions t{‘ (¥).0 <k <n, and tr(yp..... Vn).

respectively, then for the function g3(x)

&3(%) = 22(g](%)..... /(%))
we define the primitive recursive approximation g3(x’)[s] such that

(X511 = (Vk < n)lgf (#)[s]] & g2(g) (F). ... gl (F))Is] |-

It is easy to see that the function

13(¥) = max({r{ (%) : 0 < k < n}U{n(g](x).....¢[(X))}
is the corresponding time function for g3(X).
(3) If g;(X)[s] and g»(X. y. z)[s] are primitive recursive approximations
to g1(¥) and g»(X, y. z) with the corresponding time functions ¢;(¥)
and 1,(X, y. z), respectively, then for the function g3(x, y):

£3(¥.0) = g1(¥) and g3(X. y + 1) = g2(¥. y. g3(X. y))
we define the primitive recursive approximation g3(¥, y)[s] such that
(X)1 = (Fu..... uy < 9)[g1(X)s]d= up & (Vi < p)[g2(X. i, ui)[s] 4= u;1]].

It is easy to see that the function

;3(X.y) = max({1(X)} U {a(X. 7. g3(X.7)) : i < y})
is the corresponding time function for g3(¥, 2).

It follows from the inductive definitions above that we have proven more:
There is a primitive recursive function i(n) such that for every n the function

(D{ @(x) is the time function for pi (x) with respect to the uniformly primitive

recursive approximation p,{ (x)[s]. -

§11. Appendix B: Punctual universality. This section contains all formal
definitions related to punctual universality which were used informally in
Section 8.

For a total function f : w — w, let P(f) be the least class containing
/ and all primitive recursive functions which is closed under composition
and primitive recursion. This is done by forbidding the (unbounded) min-
imisation operator and adding f to the recursive schemata. Then for any
g € P(f). there is a “recipe” for generating g from f and the primitive
recursive functions, using composition and primitive recursion. Replacing
f in this recipe with another function f would resultina ¢ € P(f). A
primitive recursive functional @ is thus a schemata for generating a function
from a function symbol f and various primitive recursive functions, using
composition and primitive recursion. And ®(/) is the function obtained by
interpreting f as /. We define primitive recursive functionals on subsets of
w by identifying such sets with their characteristic function.

DEerINITION 11.1. A category of structures on w is a category where the
objects are a set of structures with domain w, closed under isomorphisms,
and the morphisms are the isomorphisms between structures.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 177

We can view any class of structures closed under isomorphism as a category
of structures on w and vice versa.

Recall that a functor F: C — D maps objects in C to objects in D, and
morphisms in C to morphisms in D, such that:

e forevery A € C, F must map the identity on A to the identity on F (A),

and
e for all morphisms g: A, — A and h: Ay — A3, F(hog) = F(h) o
F(g).
A functor is primitive recursive if, essentially, it is given by primitive recursive
functionals.

DeriNITION 11.2. Let C and D be categories of structures on . A primitive
recursive functor is a functor F : C — D for which there exist primitive
recursive functionals ® and ®@* such that

e forevery A€ C. ®(A) = F(A),
e for every morphism g : A — B, we have ®* (A D B D g) = F(g).

Note that we also get that F(g~!) is primitive recursive in g —!.

We also need a notion of two functors being effectively the same. This is
somewhat technical.

DerINITION 11.3. A functor F: C — D is primitive recursively naturally
isomorphic (or just p.r. isomorphic) to a functor G: C — D if there are
primitive recursive functionals A, A~! such that for every A € C, A(A)
is an isomorphism from F(A) to G(A) and A~'(A) is its inverse, and
the following diagram commutes for every A, B € C and every morphism
h: A— B:

Two functors are pseudo-inverses if their composition is p.r. isomorphic to
the identity.

Now we can define a reduction between categories.

DEFINITION 11.4. Say that a class C is (uniformly) p.r. reducible to a class
D if there is a subclass D’ of D and computable functors F: C — D',
G: D' — C such that F and G are pseudo-inverses.

Note that D" must be closed under isomorphisms; so the functor G must
be defined on any structure isomorphic to one in the image of F. Also note
that this is transitive; if C is p.r. reducible to D, and D is p.r. reducible to &,
then C is p.r. reducible to £.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

178 NIKOLAY BAZHENOV ET AL.

DermNiTION 11.5. A class D is p.r. universal if for every finite lan-
guage L, the category of structures in the language £ is p.r. reducible
to D.

Acknowledgments. R. Downey and A. Melnikov were partially supported
by Marsden Fund of New Zealand. 1. Kalimullin was supported by the
RFBR grant No. 18-01-00574, also he was funded by the Russian Ministry
of Science and Education as a Federal Professor in Mathematics (project.
No. 1.451.2016/1.4). N. Bazhenov was supported by the Russian Science
Foundation, project No. 18-11-00028.

REFERENCES

[11P. E. Aragv. Atomless Boolean algebras computable in polynomial time. Siberian
Electronic Mathematical Reports, vol. 13 (2016), pp. 1035-1039.

[2] . Structures computable in polynomial time. I. Algebra Logic. vol. 55 (2017), no.
6. pp. 421-435.

[3] . Structures computable in polynomial time. II. Algebra Logic, vol. 56 (2018),
no. 6. pp. 429-442.

[4] C. AsH and J. KNIGHT, Computable Structures and the Hyperarithmetical Hierarchy,
North-Holland, Amsterdam. 2000.

[5] N. BAzHENOV, M. HARRISON-TRAINOR, I. KALIMULLIN, A. MELNIKOV, and K. M. NaG,
Automatic and polynomial-time algebraic structures. The Journal of Symbolic Logic, to appear.

[6] N. BaznHENov, I. KALIMULLIN, A. MELNIKOV, and K. M. NG, Punctual presentations
of finitely generated structures. submitted.

[7] E. BOREL, Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti
del Circolo Matematico di Palermo, vol. 27 (1909), no. 1, pp. 247-271.

[8] A. BoropIN and R. EL-YANIV., Online Computation and Competitive Analysis,
Cambridge University Press, New York, 1998.

[9]1 D. A. CeEnzER, R. G. DownEY, J. B. REMMEL, and Z. UDDIN, Space complexity of
abelian groups. Archive for Mathematical Logic. vol. 48 (2009). no. 1. pp. 115-140.

[10] D. A. CenzEr and J. B. REMMEL, Polynomial-time versus recursive models. Annals of
Pure and Applied Logic, vol. 54 (1991), no. 1, pp. 17-58.

[11] . Polynomial-time abelian groups. Annals of Pure and Applied Logic. vol. 56
(1992). no. 1-3, pp. 313-363.

[12] , Complexity theoretic model theory and algebra, Handbook of Recursive Math-
ematics, vol. 1 (Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors), Studies
in Logic and the Foundations of Mathematics, vol. 138, North-Holland, Amsterdam, 1998,
pp. 381-513.

[13] A. CHURCH, On the concept of a random sequence. Bulletin of the American
Mathematical Society. vol. 46 (1940), no. 2. pp. 130-135.

[14] R. DEDEKIND, Was sind und was sollen die Zahlen? 8te unverdinderte Aufl, Friedr.
Vieweg & Sohn, Braunschweig, 1960.

[15] M. DEBN, Uber unendliche diskontinuierliche Gruppen. Mathematische Annalen. vol.
71 (1911), no. 1, pp. 116-144.

[16] V. P. DOBRITSA, Some constructivizations of abelian groups. Siberian Mathematical
Journal., vol. 24 (1983). no. 2, pp. 167-173.

[17] R. DowNEY, Computability theory and linear orderings, Handbook of Recursive Math-
ematics, vol. 2 (Yu. L. Ershov. S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek,
editors), Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland,
Amsterdam, 1998, pp. 823-976.

[18] . Turing and randomness, The Turing Guide (B. J. Copeland, J. P. Bowen,
M. Sprevak, and R. Wilson, editors), Oxford University Press, Oxford, 2017, pp. 427-436.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 179

[19] R. DownNEY, M. HARRISON-TRAINOR, [. KALIMULLIN, A. MELNIKOV, and D. TURET-
SKY, Graphs are not universal for online computablility, preprint.

[20]R. DownNey, D. HirscHFELDT, and B. KHoUSsAINOV, Uniformity in the the-
ory of computable structures. Algebra Logika, vol. 42 (2003). no. 5. pp. 566-593,
637.

[211R. G. DownNEY, A. M. KacH, S. LEmpp. A. E. M. LEwis-PYE, A. MONTALBAN, and
D. D. TURETSKY, The complexity of computable categoricity. Advances in Mathematics, vol.
268 (2015). pp. 423-466.

[22] R. G. DownNEY and C. McCARTIN, Some new directions and questions in parame-
terized complexity, Developments in Language Theory (C. S. Calude, E. Calude, and M. J.
Dinneen, editors), Lecture Notes in Computer Science, vol. 3340, Springer. Berlin. 2004,
pp. 12-26.

[23]1 D. B. A. EpsTEIN, J. W. CannON, D. F. Horr, S. V. F. LEvy, M. S. PATERSON, and
W. P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA,
1992.

[24] Y. ErsHoV and S. GoNCHAROV, Constructive Models, Siberian School of Algebra and
Logic, Consultants Bureau, New York, 2000.

[251Y. L. ErsHov, S. S. GONCHAROV, A. NERODE, J. B. REMMEL, and V. W. MAREK
(eds.), Handbook of Recursive Mathematics, vol. 2. Studies in Logic and the Foundations
of Mathematics, vol. 139, North-Holland, Amsterdam. 1998.

[26] A. FROHLICH and J. SHEPHERDSON, Effective procedures in field theory. Philosophical
Transactions of the Royal Society of London. Series A, vol. 248 (1956). pp. 407-432.

[27] M. R. GaREY and D. S. JoHNSON, Computers and Intractability. A Guide to the Theory
of NP-completeness. A Series of Books in the Mathematical Sciences, W. H. Freeman and
Co., San Francisco, CA, 1979.

[28] S. GoNcHAROV, Countable Boolean Algebras and Decidability, Siberian School of
Algebra and Logic, Consultants Bureau, New York, 1997.

[29] S. S. GoncHAROV and A. T. NURTAZIN, Constructive models of complete solvable
theories. Algebra Logic. vol. 12 (1973). no. 2, pp. 67-77.

[30]1S. GRIGORIEFF, Every recursive linear ordering has a copy in DTIME-
SPACE (n.log(n)). The Journal of Symbolic Logic, vol. 55 (1990), no. 1, pp. 260-276.

[31] V. S. HarR1ZANOV, Pure computable model theory, Handbook of Recursive Mathematics,
vol. 1 (Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors), Studies in
Logic and the Foundations of Mathematics, vol. 138, North-Holland, Amsterdam, 1998,
pp- 3-114.

[32] L. HARRINGTON, Recursively presentable prime models. The Journal of Symbolic Logic.,
vol. 39 (1974), pp. 305-309.

[33] M. HARRISON-TRAINOR, A. MELNIKOV, R. MILLER, and A. MONTALBAN, Computable
functors and effective interpretability. The Journal of Symbolic Logic, vol. 82 (2017), no. 1,
pp. 77-97.

[34] G. HERMANN, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale.
Mathematische Annalen, vol. 95 (1926). no. 1, pp. 736-788.

[35] I. KALIMULLIN, A. MELNIKOV, and K. M. NG, Algebraic structures computable without
delay. Theoretical Computer Science, vol. 674 (2017), pp. 73-98.

[36] I. S. KaLIMULLIN, A. G. MELNIKOV, and K. M. NG. Different versions of categoricity
without delays. Algebra Logika. vol. 56 (2017), no. 2. pp. 256-266.

[37] . The diversity of categoricity without delay. Algebra Logic, vol. 56 (2017), no.
2. pp. 171-177.

[38] 1. KaLmMuLLIN, A. MELNIKOV, and M. ZUBKovV, Punctual degrees and lattice
embeddings, preprint.

[39]1 O. KHarrampovicH, B. Knoussamov, and A. MIASNIKOV, From automatic
structures to automatic groups. Groups, Geometry, and Dynamics. vol. 8 (2014), pp.
157-198.

[40] B. KHOUSSAINOV, A quest for algorithmically random infinite structures, Proceed-
ings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

180 NIKOLAY BAZHENOV ET AL.

Science Logic (CSL) and the Twenty-Ninth Annual ACM /IEEE Symposium on Logic in
Computer Science (LICS), Association for Computing Machinery. New York, 2014, p. 56,
Article No. 9.

[41] B. KHoussamNov and A. NERODE, Automatic presentations of structures, Logic and
Computational Complexity (Indianapolis, IN, 1994) (D. Leivant, editor). Lecture Notes in
Computer Science. vol. 960, Springer, Berlin, 1995, pp. 367-392.

[42] H. A. KIERSTEAD, An effective version of Dilworth’s theorem. Transactions of the
American Mathematical Society. vol. 268 (1981). pp. 63-77.

[43] . On line coloring k-colorable graphs. Israel Journal of Mathematics, vol. 105
(1998). no. 1. pp. 93-104.

[44] . Recursive and on-line graph coloring, Handbook of Recursive Mathematics,
vol. 2 (Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel. editors), Studies in
Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998,
pp. 1233-1269.

[45] H. A. KIERSTEAD., S. G. PENRICE, and W. T. TROTTER, Jr., On-line coloring and recursive
graph theory. SIAM Journal on Discrete Mathematics. vol. 7 (1994), pp. 72—89.

[46] K.-I. Ko and H. FRIEDMAN, Computational complexity of real functions. Theoretical
Computer Science, vol. 20 (1982), no. 3. pp. 323-352.

[47]1 L. LovAsz, M. Saks, and W. T. TROTTER, Jr., An on-line graph coloring algo-
rithm with sublinear performance ratio. Discrete Mathematics, vol. 75 (1989), pp.
319-325.

[48] D. MACPHERSON, 4 survey of homogeneous structures. Discrete Mathematics. vol. 311
(2011), no. 15, pp. 1599-1634

[49] A. MAL'cEv. Constructive algebras. 1. Uspekhi Matematicheskikh Nauk, vol. 16
(1961), no. 3(99). pp. 3-60.

[50] . On recursive abelian groups. Doklady Akademii Nauk SSSR. vol. 146 (1962),
pp. 1009-1012.

[S1] A. G. MELNIKOV, Eliminating unbounded search in computable algebra, Unveiling
Dynamics and Complexity (). Kari, F. Manea. and 1. Petre, editors), Lecture Notes in
Computer Science. Springer, Cham, 2017, pp. 77-87.

[52] A. G. MELNIKOV and K. M. NG, The back-and-forth method and computability without
delay. Israel Journal of Mathematics, in press.

[53] G. METAKIDES and A. NERODE, Effective content of field theory. Annals of Mathemat-
ical Logic, vol. 17 (1979). no. 3. pp. 289-320.

[54] . The introduction of nonrecursive methods into mathematics, The L. E. J.
Brouwer Centenary Symposium (Noordwijkerhout, 1981) (A. S. Troelstra and D. van Dalen,
editors), Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam,
1982, pp. 319-335.

[55] T. MILLAR, Omitting types, type spectrums, and decidability. The Journal of Symbolic
Logic. vol. 48 (1983). no. 1, pp. 171-181.

[56] R. von Mises, Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische
Zeitschrift, vol. 5 (1919), no. 1-2. pp. 52-99.

[57] D. OsHErsON, M. StoB, and S. WEINSTEIN, Systems that Learn, MIT Press,
Cambridge, MA, 1986.

[58] J. B. REMMEL, Graph colorings and recursively bounded T1%-classes. Annals of Pure and
Applied Logic, vol. 32 (1986). pp. 185-194.

[59] W. W. Tarr, Finitism. The Journal of Philosophy. vol. 78 (1981). pp. 524-546.

[60] T. Tsankov, The additive group of the rationals does not have an automatic presentation.
Journal of Symbolic Logic. vol. 76 (2011). no. 4, pp. 1341-1351.

[611 A. M. TURING, On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, vol. 42 (1936). pp.
230-265.

[62] K. WEHRAUCH, Computable Analysis, Texts in Theoretical Computer Science, An
EATCS Series, Springer-Verlag, Berlin, 2000.

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

FOUNDATIONS OF ONLINE STRUCTURE THEORY 181

LABORATORY OF COMPUTABILITY THEORY AND APPLIED LOGIC
SOBOLEV INSTITUTE OF MATHEMATICS
NOVOSIBIRSK, RUSSIA
and
DEPARTMENT OF MATHEMATICS AND MECHANICS
NOVOSIBIRSK STATE UNIVERSITY
NOVOSIBIRSK, RUSSIA
E-mail: bazhenov@math.nsc.ru

SCHOOL OF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITY OF WELLINGTON
WELLINGTON, NEW ZEALAND
E-mail: rod.downey@msor.vuw.ac.nz

DEPARTMENT OF MATHEMATICS
KAZAN FEDERAL (VOLGA REGION) UNIVERSITY
KAZAN, RUSSIA
E-mail: ikalimul@gmail.com

SCHOOL OF NATURAL AND COMPUTATIONAL SCIENCES
MASSEY UNIVERSITY
AUCKLAND, NEW ZEALAND
E-mail: alexander.g.melnikov@gmail.com

https://doi.org/10.1017/bsl.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.20

