
TLP 12 (6): 889–927, 2012. C© Cambridge University Press 2011

doi:10.1017/S1471068411000391 First published online 30 June 2011

889

Coding guidelines for Prolog

MICHAEL A. COVINGTON

Institute for Artificial Intelligence, The University of Georgia, Athens, GA, USA

(e-mail: mc@uga.edu)

ROBERTO BAGNARA�
Department of Mathematics, University of Parma, Italy

BUGSENG srl, Parma, Italy

(e-mail: bagnara@cs.unipr.it)

RICHARD A. O’KEEFE

Department of Computer Science, University of Otago, Dunedin, New Zealand

(e-mail: ok@cs.otago.ac.nz)

JAN WIELEMAKER

Department of Computer Science, VU University Amsterdam, The Netherlands

(e-mail: j.wielemaker@cs.vu.nl)

SIMON PRICE

Intelligent Systems Laboratory, University of Bristol, Bristol, UK

(e-mail: simon.price@bristol.ac.uk)

submitted 15 November 2009; revised 11 November 2010; accepted 2 May 2011

Abstract

Coding standards and good practices are fundamental to a disciplined approach to software

projects irrespective of programing languages being employed. Prolog programing can benefit

from such an approach, perhaps more than programing in other languages. Despite this, no

widely accepted standards and practices seem to have emerged till now. The present paper is

a first step toward filling this void: It provides immediate guidelines for code layout, naming

conventions, documentation, proper use of Prolog features, program development, debugging,

and testing. Presented with each guideline is its rationale and, where sensible options exist,

illustrations of the relative pros and cons for each alternative. A coding standard should

always be selected on a per-project basis, based on a host of issues pertinent to any given

programing project; for this reason the paper goes beyond the mere provision of normative

guidelines by discussing key factors and important criteria that should be taken into account

when deciding on a full-fledged coding standard for the project.

KEYWORDS: Prolog, style, coding standards, debugging, efficiency

� The work of R. Bagnara has been partly supported by PRIN project “AIDA2007 – Abstract
Interpretation Design and Applications.”

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

890 M. A. Covington et al.

1 Introduction

The purpose of programing languages is to make programs readable by people.

Coding standards enhance this function, not only when multiple programmers and

a need for maintainability are present, but also even in the small projects of a single

programmer (one must, after all, read and debug one’s own work). Coding standards

for Prolog are particularly needed for several reasons:

Availability. As far as we know, a coherent and reasonably complete set of coding

guidelines for Prolog has never been published. Moreover, when we look at

the corpus of published Prolog programs, we do not see an emerging de facto

standard. The most important reason behind this apparent omission is that the

small Prolog community, due to lack of a comprehensive language standard,

is further fragmented into sub-communities centered around individual Prolog

systems, none of which has a dominant position (contrast this with the situation

of Java and Sun’s coding conventions for that language (Sun Microsystems, 1999)

or the precedents set for C by the UNIX source code).

Language. Language features that contribute to the power of the language make

it quite easy – especially for an nonexpert – to get things wrong, sometimes in

ways that are difficult to diagnose. For example, the lack of prescriptive typing

contributes to the suitability of Prolog for quick prototyping in some application

domains. At the same time, the fact that no redundant type information is available

to the development tools makes discipline particularly important. Besides types,

Prolog developers and maintainers are confronted with modes: the same arguments

of procedures can be inputs, outputs or both. This gives Prolog conciseness and

elegance through reversible predicates, but makes it necessary to keep track of

the modes that are supposed to be supported (within reasonable computational

complexity limits) by which predicates.

Compiler technology. Most Prolog compilers give no warnings except about single-

ton variables. Even though more advanced tools and development environments

exist, a disciplined approach is still (and will always be) the best device available

to those programing in standard Prolog (and any other language).

It is important to stress that we are not announcing the coding standard for Prolog.

This is a paper with five authors and on some points more than five opinions exist.

Rather, we address numerous issues that the maker of a full-fledged coding standard

will have to confront. In some cases, there are good reasons to prefer one alternative

to another. Other decisions are arbitrary, like driving on the left or on the right; a

community of programers can choose any of the several ways of doing something as

long as they are consistent. The classic style guide is The Elements of Programming

Style (Kernighan and Plauger 1978). Published in 1978 and using examples in PL/I

and Fortran, the majority of its advice is independent of programing language and

still much needed. Indeed, some of our own guidelines are not Prolog-specific but

are included because no style guide for practitioners would be complete without

them.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 891

The amount of standardization needed depends on the scale and duration of the

programming project. Just like a novel or a scientific paper, the quality of a computer

program can only be judged from the degree to which it satisfies the programmer’s

objectives, that is to say, “it works”: for example, we might say that a novel works

if it becomes the bestseller, the manual of a device works if it enables the average

user to effectively operate the device, and a scientific paper works if it is published

in a prestigious journal. Computer programs written for different purposes may or

may not “work” in different ways. Only for very simple programs written to solve

very simple tasks we can say that the program works if it functions correctly. For

even moderately complex programs a more sensible definition could be: the program

works if its developers and maintainers are able to approach the expected behavior of

the program over its intended lifespan.

In some cases correctness and maintainability over a long period are not impor-

tant. For instance, in rapid prototyping of applications (something for which Prolog

has its advantages) we might say that the program (prototype) works if (despite its

errors and limitations) it demonstrates that the approach is feasible. Still, the prototype

will be incomplete until it is finished, and its chances of being finished one day (as

opposed to collapsing and being abandoned before being of any use) depend on

qualities such as readability, extensibility, and whatever else helps the development

team.

In a sense, the text of a program is not very different from an argumentative

essay. Like an argumentative essay, a nontrivial program is addressed to an audience,

which needs to be accurately identified for the argumentation part of the program

to be effective. As for any argumentation, different audiences will require and be

prepared to share a different set of premises (hypotheses and preconditions explicitly

mentioned in the program text) and assumptions (hypotheses and knowledge that

are left implicit but still are essential for the comprehension of the program). Not

to mention that, in programing the intended audience is also heavily influenced by

the tools it has used.

To summarize, the existence of very different purposes and wildly different

audiences are such that a full-fledged coding standard can only be decided upon

on a per-project basis. Moreover, different, equally reasonable, and effective coding

standards can, on specific points, recommend plainly opposite things: a coherent

whole matters more than individual bits.

In this paper, which evolved from Covington (2002), we introduce a set of coding

guidelines that can serve as a starting point for the development of effective coding

standards. We highlight the aspects of Prolog program development that deserve

particular attention and can benefit from regulation; we illustrate the rationale that

is behind each of the proposed guidelines; when alternative guidelines can achieve

the desired effect, their relative merits are also discussed.

The paper is organized as follows: in Sections 2, 3, and 4 we discuss guidelines

concerning code layout, the naming of program entities, and documentation, re-

spectively; Section 5 concerns the effective use of language features; Section 6 deals

with the development, debugging, and testing of program units and their interfaces;

Section 7 concludes.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

892 M. A. Covington et al.

2 Layout

Do not let your programs be hampered by inconsistent layout. Poor layout is painful

to work with, is distracting, and can lead to otherwise perfectly avoidable mistakes.

Moreover, most text editors, if properly operated, can provide significant assistance

in ensuring layout consistency.

2.1 Indent with spaces instead of tabs

You cannot normally predict how tabs will be set in the editors and browsers that

others will use on your code. Moreover, mixing tabs and spaces makes searches and

substitutions more problematic. All in all, it is better not to use tabs altogether:

Almost any editor can be set to substitute spaces for tabs automatically when saving

your file.

2.2 Indent consistently

Code is more readable if it is indented consistently. Even though the choice of the

“right” indent size often leads to friction within the development team, a decision

has to be made. Most editors default to an indent size of 8 spaces and while such

a large indent does make shallowly nested indentation obvious, it uses up excessive

horizontal screen real estate and makes even moderately nested indentation hard

to read. A small indent size of 2 spaces is popular with some experienced Prolog

programers but can make it hard for less keen eyed readers or for those using

variable pitched fonts to interpret the indentation depth. The compromise value of

4 spaces has proven popular and practical in both Prolog and other well-known

languages.

If in doubt: Use an indent size of 4 spaces.

2.3 Limit the length of source code lines

Lines longer than 80 characters are almost always difficult to read. While 80-column-

wide screens are no longer in widespread use, 80-column is still the default width for

many text editors. Some editors may also display the last column in an inconvenient

way, so limiting the line length to 79 or 78 characters is a good idea.

High-quality printed listings can usually accommodate no more than 65 to 70

characters per line, depending on the type size and paper size. For maximum

readability you may need to lower this limit down to 55 characters (Covington

1994).

2.4 Limit the length (number of lines) of clauses

The ideal situation would of course be for each clause to fit onto an ordinary

computer screen. So 24 lines is the safest choice but lengths up to 48 lines can fit

on modern computer displays. You can consider this a limit not to be crossed, the

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 893

exceptions being for predicates doing long but conceptually simple sequences of I/O

or graphic operations.

More generally, always consider simplifying long clauses, whether or not they fit

onto your screen. Since in Prolog the only way to have a loop is to introduce another

predicate,1 and case analyses often (though not always) deserve their own predicates

too, it is no hardship to follow this guideline.

2.5 Be consistent in the use of space around commas

The simplest approach is to follow each comma with a space, just as in English. This

improves readability by increasing the visual separation among different arguments

of a term. Moreover, as this is consistent with the typesetting conventions used for

many other languages,2 doing so often avoids a disturbing mismatch between the

program text, its comments, and the string literals used in the program.

The simplicity of the above guideline is valuable, but it misses the opportunity

to reduce the decoding effort for readers. An alternative is thus to use space in a

way that helps in recognizing the various uses of commas.3 One possibility is to

distinguish between

• comma meaning and–then: follow it by one or more spaces, an optional

comment and a newline (see also Guideline 2.7);

• comma separating arguments of a goal: follow it by one or more spaces;

• comma separating elements of a data structure: do not follow it by spaces.

Of course, in order to break long lines, extra new lines should be allowed in the

second and third case. In addition, it is tempting to use the ability of putting one or

more spaces to line things up, as in

shorten(person(Name, Address, Age),

person(Short_Name, Address, Age)) :-

...

Similarly, it may seem natural (to one person, on a particular day, and in a

particular context) to relax the rules in order to help distinguishing “levels,” as

in [[1,2,3], [4,5], [6,7,8,9]]. Also note that [alpha, beta, gamma] looks

nice because the terms are longer than in [1,2,3], but if you allow that to make a

difference, you can no longer rely on spaces to tell you anything you want to know.

This is why layout remains an art rather than a science. There will always be a

friction between the rules – which tend to be either too complex or too rigid but

1 There have been several proposals to provide in-line loop constructs. See, for example,
“Logical Loops” (Schimpf 2002), “Declarative Loops and List Comprehensions for Prolog – B-
Prolog” (www.probp.com/download/loops.pdf), or Lambdas in ISO Prolog (http://www.complang.
tuwien.ac.at/ulrich/Prolog-inedit/ISO-Hiord.html). We do not discuss these due to lack of agreement
in the community.

2 Both natural and formal languages, such as Ada 95 (Ausnit-Hood et al. 1997) and Java (Sun
Microsystems 1999).

3 It was pointed out long ago by critics of Prolog that different commas mean different things. Of course,
Prolog is by no means alone in this: take C as an example.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

894 M. A. Covington et al.

allow for uniformity – and taste – which can adapt to particular situations in often

nicer ways but is personal, variable, and sometimes inconsistent.

For small individual projects, following some general guidelines with flexibility and

applying taste on a case-by-case basis can give good results. However, for projects

that are bigger and/or have several developers, it is best to take style decisions on

the basis of explicit and precise principles rather than on the basis of what feels

good at the time: Sticking to precise rules may occasionally lead to some program

fragments that do not look very good, but the overall readability of the project as

a whole will benefit.

2.6 Begin each clause on a new line and indent all but the first line of each clause

For example, write

same_length([], []).

same_length([_|L1], [_|L2]) :-

same_length(L1, L2).

2.7 Put each subgoal on a separate line

Putting each subgoal on a new line greatly enhances readability. So, no matter how

short some subgoals may be, it is better to use one line for each of them. For

example,

ord_union_all(N, Sets0, Union, Sets) :-

A is N / 2,

Z is N - A,

ord_union_all(A, Sets0, X, Sets1),

ord_union_all(Z, Sets1, Y, Sets),

ord_union(X, Y, Union).

The only exception might be for short sequences of closely related subgoals, such as

those involving write and nl. For instance, one could have

write(’CPU time = ’), write(T), write(’ msec’), nl.

Note though that the format/[1,2,3] built-in predicates (not yet in the Prolog

standard, but provided by quite a few Prolog systems with reasonably compatible

implementations) provide a better way to underscore that, conceptually, several

output operations constitute a single step.

2.8 Use vertical space consistently to improve readability

It is natural for vertical distance to reflect the logical distance. For example: begin

the next clause of the same predicate on the next line; skip a line before the first

clause of the next related predicate; skip two lines before the first clause of the next

unrelated predicate. Notice that the unindented clause head is enough to separate

clauses within the definition of a single predicate: no lines need be skipped here.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 895

2.9 Comment source files, not just the predicates within them

In addition to the comments on particular clauses or predicates, a Prolog source

file should begin with some sort of standard header with metadata about the file:

name, version, author(s), revision history, copyright, license, and other information.

Next, there should be the module declaration (in case a module system is used) and

maybe other declarations. Immediately after the declaration a detailed comment

should explain what the file is all about, what the central ideas are, possibly with

illustrations of the data structures used.

It is best if this long explanatory comment is readable as a plain text with

a minimum of distracting punctuation: it is thus better to use plain /* and */

delimiters with no extra stars.4 (The % comment delimiter is reserved for comments

pertaining to individual predicates, as described below.) If a file divides naturally

into several sections, each section can have its own such comment.

2.10 Use layout to make comments more readable

While text editors can provide significant help in properly formatting code, for

comments the developer is usually on his or her own. Nonetheless, a little extra care

can do much to increase the readability and usefulness of comments. For example,

instead of writing

% This predicate classifies C as whitespace (ASCII < 33), alphabetic

% (a-z, A-Z), numeric (0-9), or symbolic (all other characters).

write something like this:

% This predicate classifies C as:

% - whitespace (ASCII < 33);

% - alphabetic (a-z, A-Z);

% - numeric (0-9); or

% - symbolic (all other characters).

Indented lists like this are much easier to read than lists disguised as paragraphs. It

is also much less work to add or remove an item or add comments about an item.

2.11 Avoid comments to the right of the code, unless they are inseparable from the

lines on which they appear

Comments on the right are problematic, since they so easily get out of step with

the code when small changes are made to the program. Moreover, as soon as there

is more than one end-of-line comment in the same predicate, it looks bad if they

do not begin in the same column, and maintaining this alignment when editing the

program becomes an extra chore.

4 But possibly with dashes at the top and bottom to increase visual separation.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

896 M. A. Covington et al.

If you cannot dispense with comments to the right of the code, at least make

them very short: just a few crucial hints and, if needed, a pointer to the predicate

documentation. For example:

%% pred(...)

% ...

% [Note 1] Long comment about how pred/n depends on subgoal/k...

% ...

pred(...) :-

...

subgoal(...), % See [Note 1] above.

...

Note that it is perfectly legitimate to write single- and multiple-line comments on

their own lines, indented like the other lines in a clause body.

2.12 Consider using comments consistently as reminders

With some discipline you can effectively mark the points that require your attention

at a later time. One possibility is to use the % comment delimiter to create “tags”

that can be easily and reliably retrieved with string search. For example:

%TBD: <short hint on what remains to be done>

%FIXME: <what/why this does not work in all cases>

%HACK: <why this is not completely satisfactory>

Here TBD abbreviates to be done. These abbreviations correspond to the //TODO:

comments familiar to C# and Java programers in various development environ-

ments.

In more extreme cases, you can guarantee that an unfinished section of your pro-

gram is not used by inserting Prolog code that will not work. In an unfinished predi-

cate, insert a call to something like tbd(’description of what is to be done’)

and do not define the predicate tbd. Then any attempt to call the predicate will

throw an error.

A related tip is to always write a special comment, like %DEBUG at the end of each

line added solely for debugging purposes. Indeed, forgetting to delete debugging

code is a common mistake. By tagging that code with %DEBUG or similar, it becomes

easy to search and delete all the temporary debugging goals and clauses.

2.13 Make clauses understandable in isolation

As far as you can easily do so, enable the reader to understand each clause without

having read everything above it. For example, if a test is unnecessary because a cut

guarantees its truth, say so in a comment at appropriate place. For example, write:

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 897

remove_duplicates([First|Rest], Result) :-

member(First, Rest),

!,

remove_duplicates(Rest, Result).

remove_duplicates([First|Rest], [First|New_Rest]) :-

% First does not occur in Rest.

remove_duplicates(Rest, New_Rest).

The comment keeps the clause from being misunderstood if the reader has not read

the preceding clause.

2.14 Indent an additional level between repeat and the corresponding cut

This makes a repeat structure look more like a loop. Here is an example:

process_queries :-

repeat,

read_query(Q),

handle(Q),

Q = [quit],

!,

write(’All done.’), nl.

2.15 Decide how you want to break long clause heads and subgoals

Even if you try to limit the number of arguments of your predicates (see Guide-

line 5.3), and, or perhaps because, you choose your names wisely (see Guidelines 3.1–

3.12), you will occasionally end up with a clause head or a subgoal that is too long

to fit on a single line. In this case, two alternatives make sense:

long_predicate_name(long_arg1, long_arg2, long_arg3,

long_arg4, long_arg5) :-

...

and

long_predicate_name(

long_arg1, long_arg2, long_arg3,

long_arg4, long_arg5

) :-

...

The second alternative may be perceived as less pretty, but it keeps predicate name

length from affecting indentation. By contrast, the first alternative forces you to

change the indentation of long_arg4 every time the predicate is renamed (which

happens fairly often during development). However, the lengths of the arguments

still affect the layout. Alternatives include placing each argument on its own line or

placing only semantically related groups of arguments on the same line.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

898 M. A. Covington et al.

2.16 Decide how to format disjunctions and if-then-elses

Prolog programers are deeply divided on how to format the semicolon (which means

“or”) and the if-then-else structure (Goal1 -> Goal2 ; Goal3). Above all, note the

following:

• Heavy use of semicolons and if-then-elses may indicate that the program is

not correctly broken up into clauses. The main ways to indicate disjunction

and conditionality are to provide multiple clauses and control the success

conditions of each clause. Use semicolons to mark small portions of a clause

as nondeterministic alternatives. Use if-then-else for deterministic conditionals,

as an alternative to cuts.

• A semicolon at the end of a line can easily go unnoticed and result in a serious

programming error.

• Programmers do not remember the relative precedence of commas and

semicolons; a,b;c means (a,b);c but this fact is not obvious. Thus, layout

and parentheses to indicate precedence are recommended.

All but the simplest disjunctions should be displayed prominently using layouts such

as

(

disjunct_1

;

disjunct_2

;

disjunct_3

)

or the more compact

(disjunct_1

; disjunct_2

; disjunct_3

)

In both styles, parentheses are always present, the closing parenthesis is exactly below

the opening one, and the semicolons stick out in a way that makes misunderstanding

much more difficult. If all of this seems too prolix, recall the first bulleted item above.

The second style, besides compactness, has the advantage that it naturally

generalizes to if-then-elses as follows:

(test_1 ->

test_1_is_true

; test_2 ->

test_2_is_true_and_test_1_is_false

; both_are_false

)

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 899

A variation that lets the “->” operators be more visible at the expense of more

vertical space usage is:

(

test_1

->

test_1_is_true

;

test_2

->

test_2_is_true_and_test_1_is_false

;

both_are_false

)

This can also be written as

(test_1 ->

test_1_is_true

;

(test_2 ->

test_2_is_true_and_test_1_is_false

;

both_are_false

)

)

which is more expensive both in terms of horizontal and vertical space, but some

consider it more readable. A third alternative is to put -> and ; at the beginning of

lines:

(test_1

-> test_1_is_true

; (test_2

-> test_2_is_true_and_test_1_is_false

; both_are_false

)

)

A further variation is to put each -> and ; on a line by itself. Whichever style you

choose, you should work out how it will handle nesting.

2.17 Consider using automated tools to improve readability

A pretty-printer is a program that prints your programs in a neat and readable form.

Pretty-printers are sometimes called code beautifiers.

To be more precise, we should recall that, historically, a “pretty-printer” was

a program that altered the white space in the source code (adding and removing

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

900 M. A. Covington et al.

%% sum_list(+Number_List, ?Result)

% Unifies Result with the sum of the numbers in Number_List;

% calls error/1 if Number_List is not a list of numbers.

sum_list(Number_List, Result) :-

sum_list(Number_List, 0, Result).

% sum_list(+Number_List, +Accumulator, ?Result)

sum_list([], A, A). % At end: unify with accumulator.

sum_list([H|T], A, R) :- % Accumulate first and recur.

number(H),

!,

B is A + H,

sum_list(Rest, B, R).

sum_list(_, _A, _R) :- % Catch ill-formed arguments.

error(’first arg to sum_list/2 not a list of numbers’).

Fig. 1. Prolog code to be pretty-printed.

spaces and line breaks) in order to achieve consistent indentation. For C, cb and

GNU’s indent are programs of this type. Some Lisp and Scheme systems have a

pp function for printing functions prettily. Pretty-printing of this type can greatly

improve code readability.

Automatic (re-)indentation is built into many editors as is the ability to alter the

type style (plain, italic, bold, underlined, and the like) and/or the color of tokens

in order to indicate their role in the syntax (such as which characters are part of

comments, which are part of strings, and which are other program text). An example

is Emacs’ electric font lock. For a token styler that handles several programing

languages, including Prolog, see m2h by Richard O’Keefe (http://www.cs.otago.

ac.nz/staffpriv/ok/software.htm).

Nowadays, the term “pretty-printing” refers mainly to hardcopy and to listings

that are embedded in documentation, textbooks, and the like. For example, consider

the code in Figure 1. The LATEX listings package, which is highly customizable and

included in all LATEX distributions along with documentation, pretty-prints Prolog

code that is surrounded with the lines:

\lstset{language=Prolog, frame=lines}

\begin{lstlisting}[caption={Pretty-printing example},label=pp-ex]

...

\end{lstlisting}

The result is shown in Figure 2. Note how the characters of proportional-pitch type

are spread apart to help maintain horizontal alignment.

An alternative approach to presenting Prolog programs elegantly in LATEX is pltex

by Covington (http://www.ai.uga.edu/mc/pltex.zip). This experimental program

renders the same Prolog example as shown in Figure 3. Note the use of font

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 901

%% sum l i s t (+Number List , ?Resu l t)
% Uni f i e s Resu l t wi th the sum the numbers in Number List ;
% c a l l s e r ror /1 i f Number List i s not a l i s t o f numbers .

s um l i s t (Number List , Result) :−
s um l i s t (Number List , 0 , Result) .

% sum l i s t (+Number List , +Accumulator , ?Resu l t)

s um l i s t ([] , A, A) . % At end : un i f y wi th accumulator .
s um l i s t ([H |T] , A, R) :− % Accumulate f i r s t and recur .

number (H) ,
! ,
B i s A + H,
sum l i s t (Rest , B, R) .

s um l i s t (, A , R) :− % Catch i l l −formed arguments .
e r r o r (’ f i r s t arg to sum l i s t /2 not a l i s t o f numbers ’) .

Fig. 2. Prolog listing formatted by LATEX listings package.

%% sum list(+Numbers List, ?Result)
% Unifies Result with the sum the numbers in Numbers List;
% calls error/1 if Numbers List is not a list of numbers.

sum list(Numbers List , Result)
sum list(Numbers List , 0, Result).

% sum list(+Numbers List, +Accumulator, ?Result)

sum list([], A, A). % At end: unify with accumulator.
sum list([H |T], A, R) % Accumulate first and recur.

number(H),
!,
B is A + H ,
sum list(Rest , B , R).

sum list(, A, R) % Catch ill−formed arguments.
error('first�arg�to�sum list/2�not�a�list�of�numbers').

Fig. 3. Prolog listing formatted by Covington’s pltex.

styles to indicate syntax, and the replacement of :- by ←. The approach is inspired

by “Algol style” in early computer programing literature (Covington 1994). Also,

the aforementioned m2h program can produce LATEX output, in addition to HTML

and other output formats. The documentation of the LATEX listings package gives

references to other pretty-printers, several of which are applicable to Prolog. Finally,

Logtalk (Moura 2003) includes support for several syntax highlighters for publishing

and printing both Logtalk and Prolog codes.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

902 M. A. Covington et al.

Programmers are lulled into complacency by conventions.

By every once in a while, by subtly violating convention,

you force [the maintenance programmer] to read every line

of your code with a magnifying glass.

— Green (1996–2010)

3 Naming conventions

Choosing the right names is among the most crucial activities undertaken by any

software developer, especially when the programing language is Prolog (which is

untyped, with parameters that can act as input, output, input/output, and so forth).

Detailed advice on naming can be found in Ledgard and Tauer (1987) and Kernighan

and Pike (1999, p. 104 ff.).

3.1 Choose a writing style for multiple-word identifiers

The basic choice is between underscore-style (like_this) and internal capitalization

(“intercaps,” LikeThis). A complicating factor is that Prolog requires variables to

begin with an uppercase letter and atoms to begin with a lowercase letter. This

tempts some programmers to use “camel case” (likeThis), that is to say, intercaps

with the first letter lowercased, which other programers find particularly unaesthetic.

Recall that intercaps became popular in programing languages that did not allow

underscores within names, such as Pascal and Smalltalk. In suppressing the visual

separation between words, one seems to be reverting to the early Middle Ages, when

handwritten words were not separated (Thompson 1893, p. 65), and thus flouting

an important readability tool that is a thousand years old.

Since Prolog allows underscores, and underscores resemble spaces, there is much

to be said for using underscores everywhere a word separator is needed, both in

atoms and variable names. The question then remains how to capitalize variables

and atoms. The possibilities are to stick with one case, as in Result_So_Far and

is_boolean_function, or to choose the most appropriate case for each individual

word in a compound identifier, as in Result_so_far and is_Boolean_function.

The former convention is certainly more appropriate for variable names, with the

only possible exception constituted by short suffixes a program might consistently

use to make the information flow explicit, as in

simplify_expressions([E_in|Es_in], [E_out|Es_out]) :-

simplify_expression(E_in, E_out),

simplify_expressions(Es_in, Es_out).

An alternative practice, recommended by some, is to use intercaps for variable names

and underscores within atoms. In any case, consistency must be ensured: knowing

the words used in an identifier and knowing whether it is an atom or a variable

should allow any team member to know how to spell it immediately.

If in doubt: Use underscores to separate words in compound identifiers, that is to say,

write is well formed, not isWellFormed. Prefer Result So Far to Result so far.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 903

3.2 Make all names pronounceable

A predicate named stlacie is going to confuse anyone else reading your program –

including yourself at a later date – even though it may seem, at the time of writing,

to be a perfectly obvious way to abbreviate “sort the list and count its elements.”

If you don’t enjoy typing long names, type short ones. Call your predicate sac

or even sc while typing in your program, then do a global search-and-replace to

change it to sort_and_count.

3.3 Avoid using different names that are likely to be pronounced alike

If you use foo, do not also use fou or fu. Many people remember pronunciations,

not spellings. Accordingly, it must be absolutely obvious how to spell a name when

all you remember is its pronunciation.

For the same reason, do not mix up to, two, and too. At one time it was

fashionable to abbreviate “to” as “2,” thereby saving one character. That is how

computer programs got names such as afm2tfm (for “AFM-to-TFM,” a TEX

utility) and DOS’s exe2bin. However, this practice creates too much confusion.

Remembering how to spell words correctly is hard enough: do not ask readers of

your code to remember your creative misspellings, too. With the exception of the

widely used i18n (for “internationalization,” a usage coined at DEC many years

ago) and L10n (for “localization”), spellings like l8tr (or l8r?) and w1r3d do not

facilitate communication; they just make the reader suspect that you are still in high

school.

3.4 Within names, do not express numbers as words

If you have three predicates for which you have no better names, call them pred1,

pred2, and pred3 – not pred_one, pred_two, and pred_three. This is yet another

stratagem to make spellings more predictable from pronunciations.

Furthermore, exported predicates should not have numeric suffixes unless the

number is some sort of code number. For example,

unicode_4_0_0(?Code, ?Class)

might be reasonable.

3.5 Choose sensible names for auxiliary predicates

If part of the algorithm for your predicate, which you have named foo, needs to

be placed in another predicate definition, do not immediately call that predicate

foo_aux; usually there are better alternatives. For example:

• If the auxiliary predicate and the main predicate have different numbers of

arguments, their names can be the same.

• If an auxiliary predicate is there to do a case analysis, you can use _case as

a better suffix than _aux.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

904 M. A. Covington et al.

• If an auxiliary predicate is a loop, _loop may be a good suffix.

• If an auxiliary predicate relies on a higher predicate to take care of resource

allocation and disposal, _unguarded might be a good suffix, as in:

foo(...) :-

acquire_resources(...),

call_cleanup(foo_unguarded(...), release_resources(...)).

foo_unguarded(...) :-

...

When all else seems inappropriate _aux can be used. Other arbitrary alternatives

are _1, _2, _3, and so on or _x, _xx, and so forth, but these give up any opportunity

to indicate the function of the auxiliary predicate and so should preferably be

accompanied by explanatory comments.

3.6 If a predicate represents a property or relation, its name should be a noun, noun

phrase, adjective, prepositional phrase, or indicative verb phrase

Examples include:

• sorted_list, well_formed_tree, parent (nouns or noun phrases);

• well_formed, ascending (adjectives);

• in_tree, between_limits (prepositional phrases);

• contains_duplicates, has_sublists (indicative verb phrases).

3.7 If a predicate is understood procedurally – that is, its job is to do something,

rather than to verify a property – its name should be an imperative verb phrase

Examples include remove_duplicates (that is to say, the second person impera-

tive form is used, not removes_duplicates) and print_contents (not prints_

contents).

3.8 Choose predicate names to help show the argument order

For example, mother_of(A, B) is ambiguous; does it mean “A is the mother of B”

or “the mother of A is B”? Naming it mother_child or mother_of_child would

eliminate the ambiguity.

In general, the predicate name is the only place in Prolog where you can conve-

niently give the user hints about the argument order. For example, a specification

like tree_size(+T, ?S) makes it clear that the tree argument precedes the size

argument. This means that sometimes the most salient type name needs to come

last. For example, to convert lists to trees, we might use list_to_tree(+L, ?T).

Module prefixes, on the other hand, can only be prefixes. If you see a goal of

the form tree:from_list(X, Y), can you tell which of the arguments is the tree

and which the list? Hence, tree:tree_from_list(X, Y) should not be seen as

gratuitously redundant.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 905

3.9 Use descriptive names for variables wherever possible, and make them accurate

For example, do not call a variable Tree if it is not a tree. You would be surprised

at how often such things are done by programmers who have changed their minds

midway through constructing a clause.

More generally, there are two things that can be encoded in the variable name:

its type and its role in the predicate. You can name the variable after only one of

these properties if the other is obvious from the context. For example, if you have

a predicate graph_nodes(+Graph, -Nodes), it is already obvious that the role of

the second argument is to represent graph nodes, so you may name it List, if it is

a list, or Assoc, if it is an association list; for maximum clarity you may even name

it Node_List or Node_Assoc.

3.10 Use single letter names only in presence of suitable conventions

Prolog has no global variables; most variables exist only in a very limited context.

For conciseness, some programmers adopt program-wide conventions whereby, for

instance, N is always the total number of elements to process and I is always the

number of elements processed so far. If you have a convention that L and U are

always the lower and upper bounds of some range, fine. If you have a convention

that C, C0, C1, C2 are always character codes, S, S0, S1, S2 are sequences, and so

on, fine; make sure that such conventions are prominently stated in the source file

documentation or are absolutely obvious from context. Whenever you have the

slightest doubt that the code may be tricky to read, forget about single letter names

and give your reader some help.

3.11 Consistently name threaded state variables

There is a special case for variables that receive an initial state, go through some

translations, and come to a final output. It is important to name those consistently.

For example, one can use names of the forms State0 (for the initial state), State1,

State2, and so on (for the intermediate states), and State (for the final state):

foo(..., State0, State) :-

foo_step(State0, State1),

foo(..., State1, State).

An alternative choice is to use the names State_in (for the initial state), State_tmp,

State_tmp1, State_tmp2, and so forth (for the intermediate states), and State_out

(for the final state):

foo(..., State_in, State_out) :-

foo_step(State_in, State_tmp),

foo(..., State_tmp, State_out).

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

906 M. A. Covington et al.

3.12 Use a singular noun for the first element of a list and its plural for the

remaining elements

For example, match a list of trees to [Tree|Trees]. If you use a single letter for

a list element, use that letter with an “s” after it for the remaining elements. For

example, match a list of trees to [T|Ts]. Only do this if something nearby in the

context, such as an adequately detailed comment, makes it obvious what the single

letter stands for. A compromise, which may be more readable in some situations, is

[T|Trees].

If there are two entities for which you would like to use the same single letter,

give them both full names, as in

term_translations([], []).

term_translations([Term|Terms], [Translation|Translations]) :-

term_translation(Term, Translation),

term_translations(Terms, Translations).

Here, using T would be confusing.

3.13 Decide whether predicate names should carry the types on which they operate

The reason a decision is necessary is that, when you also have module names, you

can end up with redundancies such as quaternion:quaternion_magnitude(Q, A).

If you are using a module system, and you are always including the module name,

then you need not put the same information in the predicate names.

On the other hand, a number of widely accepted libraries use predicate names

that carry the types on which they operate. This is the case, for example., for the

ordered set library (using the ord_ prefix) and the association lists library (using

the _assoc suffix). This convention predates the module system and is similar to

a long-standing convention in C, also predating other methods of managing the

namespace.

Even when modules are used, some people like to import predicates from other

modules and use them without module prefixes, the way one uses predicates provided

by the system. This is the historically preferred approach, because people expected

to convert Edinburgh Prolog code that used plain files to code that used modules

just by adding :- use_module directives. In this style, type names are still useful

even if they are identical to the module name.

3.14 Do not blindly import styles from other languages

For instance, do not blindly follow the Java tradition by calling everything in sight

is_xxx or get_yyy. It is fine to give the name is_tree/1 to a checker, that is,

a predicate that will only succeed, without leaving choice-points, on well-formed,

structurally complete trees. This will help the user to distinguish it from the generator

– whether its existence in the program is real or only conceivable – called tree/1.

Similarly, stay away from the massive overuse of “get” that stems from the Java

world. It is fine to use “get” to signal that information is being obtained in an

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 907

extralogical way, such as when I/O or the foreign language interface are involved.

But do not use “get” for fetching a property via an ordinary logical relation.

Much of the skill in writing unmaintainable code

is the art of naming variables and methods.

They don’t matter at all to the compiler.

That gives you huge latitude to use them

to befuddle the maintenance programmer.

— Green (1996–2010)

4 Documentation

All the good reasons why documentation is crucial to the success of any software

project, independently from the languages used to code it, are valid for Prolog code.

In addition, features like multiple modes, dynamic code, meta-programming facilities,

and the lack of prescriptive typing make documentation even more important than

for other programing languages.

On the other hand, writing good documentation is expensive and this cost may

not be fully justified for projects where Prolog is used for rapid prototyping. Each

project should choose a consistent documentation standard based on the expected

benefit/cost ratio. In this choice an important role can be played by the available

tools: if the code is written with a system that provides good support for writing,

checking, formatting, and retrieving the documentation, it is quite likely that choosing

the documentation standard(s) dictated by that system will be the most economical

solution.

In this section, we will review important points to consider when designing a code

documentation standard.

4.1 Begin every predicate (except perhaps auxiliary predicates) with an introductory

comment in a well-defined format

Predicates that can be called from elsewhere in the program – from code written

by others, or by yourself on a different occasion – must be documented by an

introductory comment. Here is an example:

%% remove_duplicates(+List, -Processed_List) is det

%

% Removes the duplicates in List, giving Processed_List.

% Elements are considered to match if they can

% be unified with each other; thus, a partly uninstantiated

% element may become further instantiated during testing.

% If several elements match, the last of them is preserved.

This comment follows the template in Figure 4. Note the overall layout and the use

of %% to mark the first line. Arguments are represented by variable names preceded

by mode specifiers from one of the systems in Table 1, and optionally followed by

type specifiers. At the end of the first line is a determinism specifier from Table 2.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

908 M. A. Covington et al.

%% <name>(<mode><variable>[:<type>], ...) is <determinism>

%

% <description line 1>

% <description line 2>

% ...

<name>(<variable>, ...) :-

...

Fig. 4. Example documentation template.

Argument mode specifiers. The first of the three systems in Table 1 is preferred

because it is the most explicit about information flow. For example, note that it

would be wrong to write

compare(?R:order, +T1:term, +T2:term)

to document the compare/3 primitive, because T1 and T2 are allowed to be variables,

and

compare(?R:order, ?T1:term, ?T2:term)

would be misleading because we expect that ? arguments will be unified with some-

thing. An annotation in this scheme that captures the sensible uses of "compare/3"is

compare(?R:order, =T1:term, =T2:term)

Argument-type specifiers. The type specifiers, if included, can be arbitrary types

meaningful to the reader. Informal types such as atomic, integer, list, and

string are fine, but it is recommended that any unconventional interpretation

be documented near the start of the file, program, or application as appropriate.

Completely informal descriptions can only work for simple and/or small projects. In

more complex cases a BNF-like notation can be adopted or, better, one can borrow

the syntax of some formal type system, such as the ones described by Mycroft and

O’Keefe (1984), Hermenegildo (2000), Jeffery et al. (2000), and Fages and Coquery

(2001).5

Predicate determinism specifiers. The degree of determinism of a Prolog predicate

is an important part of its behavior and so must always be documented. Doing

so forces the author to consciously consider the determinism and ensures that this

information is available for other users of the predicate. Furthermore, by specifying

determinism in a standardized representation, like the one defined in Table 2, this

5 It has not escaped our notice that the use of formal types in code documentation immediately suggests
the possibility of giving the compiler access to them in order to enable useful diagnostics of all types, if
not optimized compilation. Even though we believe that adding standard ways of optionally specifying
prescriptive types and other annotations (for example, modes, determinism, cost, termination) to Prolog
would result in a significantly more powerful language, all this is completely beyond the scope of this
paper.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 909

Table 1. Three systems of argument mode specifiers

Recommended system:

* ground on entry, that is, it must already be instantiated to a term that contains

no uninstantiated variables when the predicate is called. Thought of as input.

+ nonvar on entry, that is, it must already be instantiated to a term that is not

an uninstantiated variable (although the term may contain an uninstantiated

variable) when the predicate is called. Thought of as input.

= Thought of as input but may be var on entry, that is, it may or may not

be instantiated when the predicate is called. This argument should not share

variables with any argument that might be further instantiated by this predicate;

this one will be left as it was found.

- var on entry, that is, it must be uninstantiated when the predicate is called.

Thought of as output.

/ Similar to ‘-’: this argument should be an unbound variable that, in addition, is

not shared with any other argument.

> Thought of as output but might be nonvar on entry. Instantiation must not

control the behavior of the predicate.

? Not specified, that is, it may or may not be instantiated when the predicate is

called. Instantiation may control the behavior of the predicate. Thought of as

either input or output or both input and output.

System used in PlDoc (see below):

+ nonvar on entry, that is, it must already be instantiated to a term that is not

an uninstantiated variable (although the term may contain an uninstantiated

variable) when the predicate is called. Thought of as input.

- var on entry, that is, it must be uninstantiated when the predicate is called.

Thought of as output.

? Not specified, that is, may or may not be instantiated upon entry. Thought of as

either input or output or both input and output.

: A meta-argument. Implies +.

@ Not further instantiated. Typically used for type-tests.

! Contains a mutable structure that may be modified using setarg/3 or

nb_setarg/3.

Simplest system:

+ nonvar on entry (normally), i.e., will normally be instantiated to a term that is

not an uninstantiated variable (although the term may contain an uninstantiated

variable) when the predicate is called. Thought of as input.

- var on entry (normally), i.e., will normally be uninstantiated when the predicate

is called. Thought of as output.

? Not specified, i.e., may or may not be instantiated when the predicate is called.

Thought of as either input or output or both input and output.

Table 2. Predicate determinism specifiers for the template of Figure 4

det Must succeed exactly once and leave no choice-points.

semidet Must either fail or succeed exactly once and leave no choice-points.

multi Must succeed at least once but may leave choice-points on the last success.

nondet May either fail or succeed any number of times and may leave choice-

points on last success.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

910 M. A. Covington et al.

information is made available to automated test tools. Informally, det is used for

deterministic transformations (for example, arithmetic), semidet for tests, nondet

and multi for generators.

After the predicate specification comes a clear explanation, in natural language,

of what the predicate does, including special cases (in the remove_duplicates/2

example, lists with uninstantiated elements). Normally, you should write the comment

before constructing the predicate definition; if you cannot describe a predicate

coherently in natural language, then you are not ready to write it.

The basic template can easily be extended to deal with multiple modes, for

example,

%% age(+Name:atom, -Age:integer) is semidet

%% age(-Name:atom, +Age:integer) is nondet

%

% ...

Similarly, it is often convenient to document tightly related predicates with multiple

arities using just one documentation block, as in

%% rdf_load(+File)

%% rdf_load(+File, +Options)

%

% ...

rdf_load(File) :-

rdf_load(File, []).

rdf_load(File, Options) :-

...

When a documentation system supported by adequate tools is available, it should

be given appropriate consideration. For instance, if you use SWI-Prolog, it may

be advantageous to use PlDoc, the SWI-Prolog source-code documentation in-

frastructure (http://www.swi-prolog.org/pldoc/package/pldoc.html). The comment

template used by PlDoc is not very different from the one exemplified in this

guideline. It uses the second set of argument mode specifiers, and it also provides

tags such as @param, @throws, and @error for further description of a predicate’s

requirements and behavior.

4.2 Use comments to make main predicates visibly distinct from auxiliary predicates

Auxiliary predicates exist only to continue the definition of another predicate, and

are not called from anywhere else. For example, recursive loops and subordinate

decision-making procedures are often placed in auxiliary predicates. While users of

your code need not know about auxiliary predicates, commenting predicates can

provide useful technical documentation for maintenance and reuse.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 911

Begin the first line of comments with %% when introducing a predicate called from

elsewhere in the program, but use % when introducing an auxiliary predicate. For

example, we can have

%% remove_duplicates(+List, -Processed_List) is det

%

% Removes the duplicates in List, giving Processed_List.

% ...

and

% remove_duplicates_loop(+List, -Processed_List) is det

%

% Processed_List contains the first occurrence of each element

% of List, in the same order.

Auxiliary predicates in Prolog often correspond to loops in other languages; the

meaning of the Prolog predicate is the loop invariant, and really should be stated in

a comment.

4.3 Use descriptive argument names in the introductory comment

The argument names Index, List, and Elem in the introductory comment of the

predicate nth0/3 below were chosen to convey its intended usage.

%% nth0(?Index, ?List, ?Elem)

%

% True if Elem is the Index’th element of List.

% Counting starts at 0.

nth0(Index, List, Elem) :-

...

Well-chosen argument names can also hint at the expected type of arguments,

which is particularly important if explicit argument types are not specified. For

example, it is reasonable to expect the argument List to be associated with some

representation of a list and, in the absence of any other information, this would

most likely be the usual Prolog list representation. Likewise, Index would, in the

absence of any other information, suggest a numeric argument type.

4.4 Argument names in the clauses should preferably be the same as in the

introductory comment

Where practical, use the same argument names in the clause definitions as used in

the introductory comment, like this:

%% nth0(?Index, ?List, ?Elem)

%

% True if Elem is the Index’th element of List.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

912 M. A. Covington et al.

% Counting starts at 0.

nth0(Index, List, Elem) :-

...

However, there will be frequent occasions when this is not practical; in the following

example, List in the comment corresponds to [X|_] in one clause and [_|T] in

the other:

%% member(?Elem, ?List)

%

% True if Elem is a member of List.

member(X, [X|_]).

member(X, [_|T]) :-

member(X, T).

4.5 If code needs elaborate explanation, consider rewriting it

Prolog lends itself to simple, logical programs: one predicate, one idea. The act of

producing documentation is also helpful because it gives you a chance to spot design

mistakes: if you use “and” several times while describing a single predicate, that

predicate is doing too many jobs and should be broken up.

You don’t have to actively lie,

just fail to keep comments as up to date with the code.

— Green (1996–2010)

5 Language idioms

These guidelines are particularly addressed to those who are relatively new to Prolog

and accustomed to the practices of other programing languages. In particular, we

highlight the importance of steadfastness and tail recursion, the dangers of abusing

cuts and the database, and the choice of the right kind of lists depending on the

operations to be efficiently supported.

5.1 Predicates must be steadfast

Any decent predicate must be “steadfast,” that is to say, it must work correctly if

its output variable already happens to be instantiated to the output value (O’Keefe

1990). That is,

?- foo(X), X = x.

and

?- foo(x).

must succeed under exactly the same conditions and have the same side effects.

Failure to do so is only tolerable for auxiliary predicates whose call patterns are

strongly constrained by main predicates.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 913

5.2 Place arguments in the following order: inputs, intermediate results, and final

results

In any programing language, it can get confusing when a procedure has more than

a few parameters. C’s stdio6 is famously confusing because it sometimes puts the

stream argument first and sometimes last. Programing language designers know

three things that can help:

(1) Strong types help the compiler notice when parameters are in wrong order.

Prolog does not have such a type system, although the related languages Gödel

(Hill and Lloyd 1994) and Mercury (Somogyi et al. 1995) do have, and the

DEC-10 Prolog type checker (Mycroft and O’Keefe 1984) has inspired several

type systems for Prolog. However, even a type system does not help when

two arguments have the same type. What would have been a single “reference

parameter” in C++ or “in out” parameter in Ada or Fortran is a before/after

pair of parameters in Prolog.

(2) Keywords are used in many languages, including Common Lisp, Ada, S, DEC

Pascal, Mesa, SML (in a sense), and Smalltalk. As yet no keyword facility for

Prolog has become well known, let alone widely accepted. Some people have

used “wrappers,” writing code like

generalised_hanoi(pegs(5), discs(10), solution(S))

Single-constructor, single-argument types in SML and Haskell can be used this

way, but those compilers have been let into the secret. Prolog systems take

these wrappers literally and build run-time structures for them, which hurt

performance. The big problem is indexing, which usually does not look inside

wrappers. This style cannot be recommended.

(3) A consistent convention is the only alternative left.

You can, of course, try to devise your own convention. The one described here

is a simplification of the one presented by O’Keefe (1990, pp. 12–16), which was

constructed to be consistent with the built-in predicates of then-current Edinburgh

Prologs.

In order to be useful, an argument order convention must not only be consistent

but also be memorable, which suggests that it should be built on some sort of natural

metaphor. The one used here is Space-Is-Time. If X is known or needed before Y

in time, it is placed before Y in the arguments. If X represents an earlier state and

Y represents a later one, then X is earlier in the arguments.

The basic rule then is “inputs before outputs,” which is compatible with first-

argument indexing. When the computer is choosing a clause, or a human is

reading a predicate, some of the arguments are more important than others,

typically the argument(s) controlling a recursion. These being needed before the

others (which might be context parameters or accumulators) are written before

them.

6 Part of the C standard library providing various standard input and output operations.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

914 M. A. Covington et al.

Let us consider a small example. We want to walk over a binary tree, collecting

labels that include a given flag. There will be four parameters. We will be using a

Labels0. . . Labels pair to build the list. There will be the Flag we want to look

for. And there will be the Tree. The Labels are an output, so that pair go last.

Within that pair, Labels0 precedes Labels in the list, so it precedes Labels in the

parameters. The Tree drives the induction, so it is the input we need first. Hence,

there is no choice here:

items_including(Tree, Flag, Labels) :-

items_including(Tree, Flag, Labels, []).

items_including(empty, _, Labels, Labels).

items_including(node(Label,Left,Right), Flag, Labels0, Labels) :-

items_including(Left, Labels0, Labels1),

(member(Flag, Label) ->

Labels1 = [Label|Labels2]

;

Labels1 = Labels2

),

items_including(Right, Labels2, Labels).

There is a noteworthy and bitterly regrettable exception to the “most discrim-

inating inputs first” rule, and that is input/output commands with a Stream

argument. These commands were introduced at Quintus without any internal

discussion. A vastly better design would have been something like MIT Scheme’s

with-input-from-port and with-output-from-port, making it easy for pro-

gramers to write composite input/output commands that could be redirected easily

without any stream argument threading. It would not only have been easier to use

but it would also have been more efficient, because Stream arguments have to be

checked every time they are used. Indeed, a preliminary input redirection facility of

this kind was in the Quintus library when write(Stream, Term) was introduced.

Why do we mention this here? Because there are two important style lessons:

(1) Get ideas from more than one other language. Stream arguments were a direct

copy from C. The better alternative is found in Scheme and Ada. Scheme and

functional languages are often good sources of ideas for Prolog; C and Java are

less likely to have ideas that fit well into a (mostly) declarative framework.

(2) Talk to other people before you release.

This raises the question of optional arguments. Sometimes a family of predicates

can be thought of as a single predicate with optional arguments. There are two

patterns that you can use:

• required inputs, optional inputs, and outputs;

• inputs, required outputs, and optional outputs.

Sometimes technically you might be able to have both optional inputs and optional

outputs, relying on some required input to discriminate, but people reading the

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 915

code will have a hard time. Never do that. Stream arguments are again an

exception to the rule, but the Options in open and write_term and so on show the

norm.

The other major exception to the inputs before outputs pattern is is/2. This

follows the convention of assignment commands in most programing languages, so

should not be hard to remember. Note, however, that when SWI-Prolog lets you

call your own predicates in arithmetic expressions, it requires them to report their

result via their last argument, conforming to the usual pattern.

5.3 Try to limit the number of predicate arguments

A predicate with too many arguments may be trying to do several conceptually

separate jobs at once, or some of the arguments may need to be replaced with data

structures containing pieces of information bundled together.

5.4 Use cuts sparingly but precisely

First think through how to do the computation without a cut; then add cuts to save

work. For further guidance see O’Keefe (1990, pp. 88–101). Concerning code layout,

make sure cuts do not go unnoticed: if a green cut7 may be placed on the same line

as the previous predicate call, red cuts definitely must be on their own line of code.

5.5 Never add a cut to correct an unknown problem

A common type of Prolog programing error is manifested in a predicate that yields

the right result on the first try but goes wrong upon backtracking. Rather than add

a cut to eliminate the backtracking, investigate what went wrong with the logic.

There is a real risk that if the problem is cured by adding the cut, the cut will be far

away from the actual error (even in a different predicate), which will remain present

to cause other problems later.

5.6 Work at the beginning of the list

You can get to the first element of a 1,000-element list in one step; getting to the

last element requires 1,000 steps. But do not let this or any other guideline stop you

from doing the computation that you need to do. In some cases you can speed up

a computation by building a list in the reverse of the order you first thought of.

5.7 Avoid append where speed is important

Generally, append is slow because it has to go all the way to the end of the first list

before adding a pointer to the second. Use it sparingly in speed-critical code. But

7 A green cut is the one that only prunes away some computation paths not contributing new solutions.
A red cut is a cut that is not green.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

916 M. A. Covington et al.

don’t be silly: do not re-implement append with another name just to avoid using

the original one.

One good tactic is to use append liberally in prototyping, and then change to

other methods, such as difference pairs, in the finished implementation.

5.8 Use difference pairs (difference lists) to achieve fast concatenation

Suppose you want to combine the sequences 〈a, b, c〉 and 〈d, e, f〉 to get 〈a, b, c, d, e, f〉.
One way is to append the lists [a,b,c] and [d,e,f].

But there’s another way. Store the sequences as lists with uninstantiated tails,

[a,b,c|X] and [d,e,f|Y], and keep copies of X and Y outside the lists (so you can

get to them without stepping through the lists, which is what append wastes time

doing). Then just instantiate X to your second list, [d,e,f|Y]. Voilà: the first list

is now [a,b,c,d,e,f|Y]; you have added material at the end by instantiating its

tail. Later, by instantiating Y to something, you can add even more elements. The

applicability of this technique is limited by the fact that difference pairs can only be

appended once.

Difference pairs are discussed, for instance, by O’Keefe (1990) and Covington

et al. (1997).

5.9 Recognize the memory advantages of tail recursion

Tail recursion is recursion in which the recursive call is the last subgoal of the

last clause, leaving no backtrack points. Under this circumstance, there is no

need to create a new environment frame on the stack: control can be directly

transferred to the beginning of the predicate. See, for example, Covington et al. (1997,

Ch. 4).

The memory saved by tail recursion can be very important when a recursive

loop has to go through thousands or millions of cycles, such as processing single

characters of a large input file. When the recursion depth is measured in dozens

or less, the memory saved by tail recursion is not important. Moreover, not all

computations can easily be made tail recursive. Accordingly, do not be afraid of

body recursion (non-tail recursion) if you need it.

Ordinarily, in your first version of a program, you should use tail recursion if you

can easily do so, but use body recursion if that makes it easier to get the code right.

Then change body recursion to tail recursion if you find that there is a substantial

advantage in doing so.

5.10 Avoid asserta/assertz and retract unless you actually need to preserve

information through backtracking

Although it depends on your compiler, asserta/assertz and retract are usually

very slow. Their purpose is to store information that must survive backtracking. If

you are merely passing intermediate results from one step of computation to the

next, use arguments.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 917

If you have a dynamic predicate, write interface predicates for changing it instead

of using “bare” calls to asserta/assertz and retract, so that your interface

predicates can check that the changes are logically correct, maintain mutexes for

multiple threads, and so forth.

5.11 Consider doing things in batches rather than one at a time

This is a language-independent advice. The reason for it is that if you have several

things to do to one data structure, you can often share the overheads among a group

of operations.

Balanced binary trees typically take about twice as much memory as lists, but

they are superb for inserting, deleting, and testing for the presence of single elements

in O(log n) worst case time. You can compute the union, intersection, set difference,

and so on of sets of size m and n in O(m log n) time. But using sorted lists, you can

do these operations in O(m + n) time (see O’Keefe (1990)). That is why setof/3

returns a sorted list of answers.

The “merge” paradigm can be used any time you have collections sorted on

some key to be combined in some way. For example, if you represent polynomials

as lists of Exponent–Coefficient pairs, the usual algorithm for adding them is a

merge.

This makes sorting an important efficiency tool in Prolog. Beware of comparing

non-ground terms, however.

5.12 For sorting, use merge sort or a built-in sorting algorithm

Several Prolog books show how “cute” quicksort is in Prolog, using it as an example

of the use of list differences, but fail to point out that merge sort is better for Prolog

(and for other languages, such as ML and Haskell).

Merge sort, an O(n log n) sorting algorithm, generally outperforms quicksort,

which is also O(n log n) in the average case but O(n2) in a surprisingly common

worst case. A Prolog implementation of merge sort is given by Covington et al.

(1997). A bottom-up merge sort that is O(n) for already sorted input is given by

Brady (2005).

Quicksort was invented for an Elliot 405 computer with 512 words of memory

(Hoare 1962). The performance comparison in that paper is of a drum-based

quicksort with a drum-based merge sort. The chief virtues of quicksort are that it

does not require extra workspace and that the inner loop is fast if comparisons

are exceedingly cheap. Neither advantage exists when sorting linked lists. As Hoare

(1962) showed, quicksort does significantly more comparisons than merge sort.

Perhaps more interestingly, merge sort gives you the chance to combine the values

of key-value pairs on the fly; because quicksort often puts records with equal keys

in different partitions, quicksort variants have to wait until the end.

It should be stressed that many Prolog systems have efficient built-in sorting

algorithms that are likely to be faster than anything you would have written, if they

fit your needs.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

918 M. A. Covington et al.

5.13 Develop your own ad hoc run-time type and mode checking system

Many problems during development (especially if the program is large and/or

there are several developers involved) are caused by passing incorrect arguments.

Even if the documentation is there to explain, for each predicate, which arguments

are expected on entry and on successful exit, they can be, and all too often they

are, overlooked or ignored. Moreover, when a “wrong” argument is passed, erratic

behavior can manifest itself far from where the mistake was made (and, of course,

following Murphy’s laws, at the most inconvenient time).

In order to significantly mitigate such problems, do take the time to write your

own predicates for checking the legality of arguments on entry to and on exit from

your procedures. In the production version, the goals you added for these checks

can be compiled away using goal_expansion/2.

Global variables save you from having to specify arguments in

[predicates]. Take full advantage of this. Elect one or more of these

global variables to specify what kinds of processes to do on the

others. Maintenance programmers foolishly assume that [Prolog

predicates] will not have side effects.

— Green (1996–2010)

6 Development, debugging, and testing

The fundamental principles of reliable program development and testing are the

same for all programing languages, but the details of how to apply these principles

in Prolog involve ideas that will be new to those who have only worked with

conventional languages. In particular, unification, backtracking, and the concept of

success versus failure, all introduce new twists to the art of program debugging.

6.1 Invest appropriate (not excessive) effort in the program; distinguish a prototype

from a finished product

Many Prolog programs are exploratory; when trying to figure out whether something

can be done, it is reasonable to do each part of it in the easiest possible way, whether

or not it is efficient.

6.2 The most efficient program is the one that does the right computation, not the

one with the most tricks

Using efficiency tricks, you can sometimes double the speed of a computation. By

choosing a better basic algorithm, you can sometimes speed up a computation by a

factor of a million.

Do not modify your code just for the sake of efficiency until you are sure it is

actually doing the right computation. Of course, there may be more than one “right”

computation, so keep in mind that simplicity often leads to speed.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 919

6.3 When efficiency is critical, make tests

Do not believe what people tell you (including us); do your own experiments.

The built-in Prolog predicate statistics will tell you the time and memory used

by a computation. Many Prolog compilers provide other predicates for measuring

efficiency. If available in your Prolog environment, use the profiler to measure and

analyze efficiency.

Use the debugger, especially a graphical one if available, to examine choice points

(backtrack points) and see whether they are as you expect them to be. Careful control

of choice points can dramatically reduce the memory footprint of computation.

Results from efficiency tests are not usually portable between different Prolog

environments. Prolog environment developers usually try to ensure that performance

of a particular construct does not deteriorate in later versions, but sometimes an

alternative construct may become much faster. Make experiments in the specific

version of the Prolog environment that you eventually intend to run your program

in. Where experiments lead you to choose one construct over another, document the

reason for the choice by adding comments to the code.

6.4 Conduct experiments by writing separate small programs, not by mangling the

main one

You will often have to experiment to pin down the exact behavior of a poorly

documented built-in routine or to determine which of the two computations is more

efficient. Do this by writing separate small programs so that you will know exactly

what you are experimenting with. Do not risk making erroneous changes in a larger

program in which you have invested considerable effort. There is always the risk

that if you make experimental changes, you will forget to undo them (or, worse,

forget how to undo them). Even if a code versioning system8 makes it easy to roll

back experimental changes, microbenchmarks are often more indicated to assess the

efficiency of alternative solutions. In fact, when the experiment is conducted on a

large program, the changes frequently have effects that are harder to understand

because there is more code for them to interact with.

6.5 Look out for constructs that are almost always wrong

These include

• a cut at the end of the last clause of a predicate (exactly what alternatives is

it supposed to eliminate?);9

8 Highly recommended: see Guideline 6.18.
9 Such a cut can be legitimate, for example, when a subgoal in the last clause leaves choice points that

need to be discarded (even though the use of once/1 is a better option). In any case, a predicate
ending with a cut is so often a programming error that it bears careful scrutiny, and if intentional,
should be commented as such (and still scrutinized).

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

920 M. A. Covington et al.

• a repeat not followed by a cut (when will it stop repeating?);

• append with a one-element list as its first argument (use the element and |

instead).

6.6 Isolate non-portable code

Suppose you are writing an SWI-Prolog program that passes some commands to

Windows. You might be tempted to put calls such as

...,

win_exec(X, normal),

...

all through it. Resist the temptation. Instead, define a predicate:

pass_command_to_windows(X) :-

win_exec(X, normal).

Elsewhere in your program, call pass_command_to_windows, not win_exec. That

way, when you move to another Prolog system in which win_exec has a differ-

ent name or works differently, you will only need to change one line in your

program.

6.7 Isolate “magic numbers” and other constants

If a number occurs more than once in your program, make it the argument of a

fact. Instead of writing

X is 3.14159 * Y

in one place and

Z is 3.14159 * Q

somewhere else, define a fact:

pi(3.14159).

and write

pi(P),

X is P * Y

and so forth.

This example may seem silly because the value of π never changes, but if you

encode 3.14159 in only one place, you don’t have to worry about mistyping it

elsewhere.

And if a number in your program really does change – a number denoting an

interest rate, or the maximum size of a file, or something – then it is very important

to be able to update the program by changing it in just one place, without having

to check for its other occurrences.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 921

It is a common practice to define a predicate setting/2 to store constants that are

likely to be changed – essentially, parameters that are hard-coded into the program,

such as:

setting(require_login, true).

setting(timeout_milliseconds, 500).

setting(output_directory, ’/home/users/student42/project/output’).

...

6.8 Take the extra minute to prevent errors rather than having to find them later

This is a basic rule of programming. Don’t take the extra hour – just take the extra

minute. In particular, think through loops. For example, given the

predicate

count_up(10) :-

!.

count_up(X) :-

write(X),

Y is X + 1,

count_up(Y).

what is the first number printed when you count up from 1? The last number? What

happens if you try to count up from 11, or from 0.5? A minute’s careful thought at

the right time can save you an hour of debugging on the computer.

6.9 Test code at its boundaries (limits)

With count_up above, the boundary is 10, so you should be especially attentive

to situations where the argument is near 10 – slightly below 10, or exactly 10, or

slightly above it.

6.10 Test that each loop starts correctly, advances correctly, and ends correctly

In count_up:

• What is the first number printed?

• After printing a particular number (such as 5), what gets printed next?

• What is the last number printed?

That is the essence of understanding any loop: you have to know where it starts,

how it advances from one value to the next, and where it stops.

6.11 Test every predicate by failing back into it

It is not enough to try

?- count_up(5).

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

922 M. A. Covington et al.

and see what prints out. You must also try

?- count_up(5), fail.

and see what happens when count_up is forced to backtrack. This will show you

why the first clause of count_up has to contain a cut.

6.12 Do not waste time testing for errors that will be caught anyway

If you type

?- count_up(five).

the program throws an arithmetic exception. That’s probably okay; the important

thing is that you should know that it will happen.

Do not burden your Prolog programs by testing the type of every argument of

every predicate. Check only for errors that (1) are likely to occur, and (2) can be

handled by your program in some useful way. For example, what happens if you

execute this query?

?- count_up(What).

The most common “arguments of the wrong type” are uninstantiated arguments.

Beware: they match anything!

The documentation for a predicate should make clear the types of arguments

that are expected and the patterns of argument instantiation that are supported.

Where you think it is likely that incorrect argument types might be supplied, then

add a check to protect against this. However, to avoid rechecking the arguments at

each level of recursion, consider adding a separate entry-point predicate that checks

the arguments before invoking the original predicate. The original predicate will, of

course, need to be renamed.

6.13 For anything beyond a proof-of-concept prototype, use testing systematically

Equip yourself with some infrastructure to conduct systematic regression testing.

Run tests frequently, at least whenever substantial code changes are made. Some

Prolog systems provide excellent tools for unit testing. For example, SWI-Prolog

provides plunit,10 a tool that is meant to be portable to other systems as well.

6.14 In any error situation, make the program either correct the problem or crash

(not just fail)

In Prolog, failing is not the same as crashing. Crashing here means calling the ISO

Prolog standard built-in predicate throw/1. If the exception is not caught by the

program, the program will terminate with an error.

10 See http://www.swi-prolog.org/pldoc/package/plunit.html

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 923

Failing is the same as answering a question “no.” “No” can be a truthful and

informative answer, and it is not the same as saying, “Your question does not make

sense,” or “I cannot compute the answer.” An example:

?- square_root(169, 13).

yes

?- square_root(169, 12).

no % makes sense because 12 is not the square root of 169

?- square_root(georgia, X).

no % misleading because the question is ill-formed

In the last case the program should complain that georgia is not a number.

6.15 Make error messages informative

Whenever your program outputs an error message, that message must actually

explain what is wrong, and, if possible, display the data that caused the problem.

It should also indicate where the error was detected (for example, by giving the

predicate name). A good example:

mysort/3: ’x(y,z,w)’ cannot be sorted because it is not a list

A bad example:

error: illegal data, wrong type

That doesn’t say what data are the wrong type or where these were found.

Error reports in library files or modules should be related to the exported predicate

they originated from, not to some internal predicate that the user doesn’t know about.

In order to achieve this, it may be necessary to add error handlers to some exported

predicates just so that they can handle internal deeply generated exceptions and

map them back to meaningful user-level descriptions.

6.16 Master the Prolog debugger; it is simple, powerful, and portable

The classic Prolog debugger allows you to step through a program. It works the

same way in virtually all compilers and is described by Covington et al. (1997),

Clocksin and Mellish (2003), and other books.

If your Prolog environment supports graphical debugging, then learn how to use

it. The principles are the same as the standard command line debugger, but much

more information can be displayed on-screen at once, and the program state is more

readily visible.

6.17 Do not use write for debugging

The easiest way to see what a program does is to sprinkle it with print/1-2 output

commands (when supported by your Prolog compiler), so that you can see the values

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

924 M. A. Covington et al.

of the variables as computation proceeds. This is a good tactic in all programing

languages.

In Prolog, don’t let backtracking confuse you. You might want to put a unique

number in each print/1-2 so that you can tell exactly which one produced any

particular line of output.

The advantage of using print/1-2 instead of write/1-2 is that the output

of print/1-2 can be tailored and, in particular, appropriately abbreviated for

debugging whereas write/1-2 insists on showing you everything.

When the output from your program is not being displayed or where debug

output would be hard to see for some other reason, remember that you can use

print/2 to explicitly direct output to the terminal or a log file.

If you add tracing print commands to a program until you don’t need any more,

you will find that you have too many to make sense of the output. What you need

is selective tracing. For example, in UNIX the C syslog() function has a priority

argument with values representing emergency, critical condition, error, warning,

notice, information, and debugging. This allows the production of tracing output to

be controlled by how important it is. That’s often not enough. Part of your program

may be suspect, and other parts not, so you might want everything about one topic

to be reported while only errors should be reported elsewhere.

The answer is language-independent common practice. Look for a “tracing” or

“logging” facility that lets you say “here is a message at this severity level about

this topic with this content,” where the topics and severities that get reported can be

selected at run time. SWI-Prolog, for example, has print_message/2, which offers

severity level and programmer-defined formatting, and debug/2, which offers topic

and format-string formatting. If you don’t find exactly what you need, write your

own logging library.

You should normally leave logging commands in your source code and suppress

their output by selecting no topics and only severe levels. Do not assume that their

presence is hurting performance until you have measurements that prove it. Use

compiler options to remove debugging and logging code. If you are using your own

logging library, and your Prolog system supports term expansion or goal expansion,

then you might be able to rewrite unwanted logging goals to true.

6.18 Use a revision control system

Every serious programmer can benefit from a revision control system (version control

system). For an individual developer a revision control system provides an audit

trail of changes to a program; a way to retrieve previous versions; and a way to

manage different branches of your code. For multiple developers, a revision control

system makes collaborative work possible.

The lowest form of revision control system is to make a new backup copy of the

entire project before every work session. This is, of course, wasteful of disk space.

Proper revision control systems are available as local, client-server, and distributed

systems. Commonly used packages include CVS, Subversion, Mercurial, and Git.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 925

There are numerous free and commercial implementations. Choose one that suits

your needs and use it.

As well as your Prolog programs, keep your test cases, documentation, data files

and associated scripts under revision control too. For scientific work, repeatability

is essential, so make sure that you flag the version used in a published work. Many

revision control systems have a web interface that is an ideal way to make your

programs available publicly.

Be sure to comment out unused code instead of deleting it

and relying on version control to bring it back if necessary.

In no way document whether the new code was intended to supplement

or completely replace the old code, or whether the old code worked

at all, what was wrong with it, why it was replaced, etc. Comment it

out with a lead /* and trail */ rather than a [%]

on each line. That way it might more easily be mistaken for live code

and partially maintained.

— Green (1996–2010)

7 Conclusion

It is widely acknowledged that the adoption of coding standards is one of the

key factors in the success of a project: It makes it possible to cut the software

maintenance costs; it enables effective collaboration between developers; it may

even prevent implosion of the project (due to poor readability, lack of useful

documentation, use of conflicting conventions and interfaces . . . plus, of course, the

friction within the development team all this usually generates).

For a language like Prolog, coding standards are even more important due to the

following factors:

(1) Powerful (and complex) language features, such as multiple modes, dynamic

code, meta-programing facilities.

(2) Lack of prescriptive typing and other machine-checkable declarations.

(3) Substantial lack of sophisticated software development tools.

Despite its potential benefits, a coherent and reasonably complete set of coding

guidelines for Prolog has, to the best of our knowledge, never been published.

Moreover, no de facto standard seems to have emerged. This can be partly explained

by the fact that, also due to the lack of a comprehensive language standard, the user

community is fragmented into sub-communities that are centered around individual

Prolog systems.

In this paper we have made a first step toward filling this gap. We have highlighted

those aspects of Prolog program development that deserve particular attention and

would benefit from a disciplined approach. For each of those we have introduced

a set of coding guidelines, illustrating the underlying rationale. Where alternative

(or even conflicting) guidelines could achieve the desired effect, their relative merits

have been discussed.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

926 M. A. Covington et al.

In addition to the guidelines that are valuable for any Prolog programmer, this

paper contains advice that may be obvious to the more expert. This is intentional:

as truly expert Prolog programmers are in very short supply (logic programming

courses have been dropped in many universities), the availability and adoption of

even simple coding guidelines can improve the productivity of many projects.

Of course, a good degree of subjectiveness is unavoidable on these matters.

Nonetheless, we have explained the reasons why it is important to pay attention

to certain aspects of Prolog and provided examples that may serve as a basis for

further elaboration. Such an elaboration is unavoidable: due to differences in project

purposes, environments and developer communities, a full-fledged coding standard

can only be established on a per-project basis. We believe the present paper provides

a useful starting point in this respect.

Acknowledgements

The authors gratefully thank all those who provided feedback and suggestions to

improve the paper; among them are Abramo Bagnara, Alan Baljeu, Jan Burse,

Parker Jones, Günter Kniesel, Andrzej Lewandowski, Naomi Lindenstrauss, José

Morales, Paulo Moura, Robert Muetzelfeldt, Ulrich Neumerkel, Philip Smith, Sylvain

Soliman, Michael Sperberg-McQueen, Walter Wilson, and the anonymous reviewers.

The input provided by Andrzej Lewandowski and Paulo Moura was particularly

valuable.

References

Ausnit-Hood, C., Johnson, K. A., Pettit, IV, R. G. and Opdahl, S. B., Eds. 1997. Ada

95 Quality and Style, Guideline for Professional Programmers, Lecture Notes in Computer

Science, vol. 1344. Springer-Verlag, Berlin, Germany: Springer-Verlag.

Brady, M. H. 2005. ‘Runsort ’—An Adaptive Mergesort for Prolog . Computer Science

Technical Report TCD-CS-2005-34, Computer Science Department, Trinity College Dublin,

Ireland.

Clocksin, W. F. and Mellish, C. S. 2003. Programming in Prolog , 5th ed. Springer, Berlin,

Germany.

Covington, M. A. 1994. Computer languages in type. Journal of Scholarly Publishing 26, 1,

34–41.

Covington, M. A. 2002. Some coding guidelines for Prolog [online]. Retrieved 14 June 2011.

Available at http://www.ai.uga.edu/mc/plcoding2002.pdf

Covington, M. A., Nute, D. and Vellino, A. 1997. Prolog Programming in Depth. Prentice-

Hall, Upper Saddle River, NJ.

Fages, F. and Coquery, E. 2001. Typing constraint logic programs. Theory and Practice of

Logic Programming 1, 6, 751–777.

Green, R. 1996–2010. Unmaintainable code [online]. Retrieved 14 June 2011. Available at

http://mindprod.com/jgloss/unmain.html

Hermenegildo, M. V. 2000. A documentation generator for (C)LP systems. In Computational

Logic: Proceedings of the First International Conference (CL 2000), J. W. Lloyd, V. Dahl,

U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

Coding guidelines for Prolog 927

Stuckey, Eds. Lecture Notes in Computer Science, vol. 1861. Springer-Verlag, London, UK,

1345–1361.

Hill, P. M. and Lloyd, J. W. 1994. The Gödel Programming Language. MIT Press, Cambridge,

MA.

Hoare, C. A. R. 1962. Quicksort. The Computer Journal 5, 1, 10–16.

Jeffery, D., Henderson, F. and Somogyi, Z. 2000. Type classes in Mercury. In Proceedings

of the 23rd Australasian Computer Science Conference (ACSC 2000), J. Edwards, Ed. IEEE

Computer Society, Canberra, Australia, 128–135.

Kernighan, B. W. and Pike, R. 1999. The Practice of Programming. Addison-Wesley

Longman, Boston, MA.

Kernighan, B. W. and Plauger, P. J. 1978. The Elements of Programming Style, 2nd ed.

McGraw-Hill, New York, NY.

Ledgard, H. and Tauer, J. 1987. Professional Software, Vol. 2: Programming Practice.

Addison-Wesley Longman, Boston, MA.

Moura, P. 2003. Logtalk – Design of An Object-Oriented Logic Programming Language. Ph.D.

thesis, Department of Computer Science, University of Beira Interior, Portugal.

Mycroft, A. and O’Keefe, R. A. 1984. A polymorphic type system for Prolog. Artificial

Intelligence 23 , 3, 295–307.

O’Keefe, R. A. 1990. The Craft of Prolog. MIT Press, Cambridge, MA.

Schimpf, J. 2002. Logical loops. In Proceedings of the 18th International Conference on

Logic Programming (ICLP 2002), P. J. Stuckey, Ed. Lecture Notes in Computer Science,

vol. 2401. Springer, Copenhagen, Denmark, 224–238.

Somogyi, Z., Henderson, F. and Conway, T. 1995. Mercury: An efficient purely declarative

logic programming language. In Proceedings of the 18th Australasian Computer Science

Conference (ACSC ’95), Glenelg, Australia, February 1995, (R. Kotagiri, Ed.) Australian

Computer Science Communications 17 , 1, 499–512.

Sun Microsystems. 1999. Code conventions for the Java programming language [online].

Retrieved 14 June 2011. Available at http://java.sun.com/docs/codeconv/.

Thompson, E. M. 1893. Handbook of Greek and Latin Palæography. Kegan Paul, Trench,

Trübner & Co, London, U.K.

https://doi.org/10.1017/S1471068411000391 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000391

