
Probability in the Engineering and Informational Sciences, 36, 2022, 616–643.

doi:10.1017/S0269964820000704

ON MARKOVIAN QUEUES WITH SINGLE WORKING
VACATION AND BERNOULLI INTERRUPTIONS

RUILING TIAN

College of Sciences, Yanshan University, Qinhuangdao, 066004 Hebei, China

E-mail: tianrl@ysu.edu.cn

ZHE GEORGE ZHANG

Beedie School of Business, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
College of Business and Economics, Western Washington University, Bellingham, WA 98229, USA

E-mail: gzhang@sfu.ca

SIPING SU

College of Business and Economics, Western Washington University, Bellingham, WA 98229, USA

This paper considers the customers’ equilibrium and socially optimal joining–balking
behavior in a single-server Markovian queue with a single working vacation and Bernoulli
interruptions. The model is motivated by practical service systems where the service rate
can be adjusted according to whether or not the system is empty. Specifically, we focus
on a single-server queue in which the server’s service rate is reduced from a regular to
a lower one when the system becomes empty. This lower rate period is called a working
vacation for the server which may represent that part of the service facility is under a
maintenance process or works on other non-queueing job, or simply for saving the energy
(for a machine server case). In this paper, we assume that the working vacation period is
terminated after a random period or with probability p after serving a customer in a non-
empty system. Such a system is called a queue with single working vacation and Bernoulli
interruptions. Customers are strategic and can make choice of joining or balking based on
different levels of system information. We consider four scenarios: fully observable, almost
observable, almost unobservable, and fully unobservable queue cases. Under a reward-cost
structure, we analyze the customer’s equilibrium and social-optimal strategies. In addi-
tion, the effects of system parameters on optimal strategies are illustrated by numerical
examples.

Keywords: Bernoulli vacation interruptions, equilibrium balking strategy, queuing system, social
welfare, working vacation

1. INTRODUCTION

We consider a queueing system where the server may switch between two service rates.
When the system becomes empty, the service rate is reduced from regular rate to low rate.
This lower rate period is random and called a working vacation for the server. The word
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“working” means that the service rate is not zero. The working vacation is terminated either
after a random period or with a certain probability at a service completion instant when
some waiting customers exist. Such a model is motivated by some practical service systems.
For example, the server may be a service facility that requires maintenance when a busy
period ends. While the maintenance is in process, the service rate will be low (if the ser-
vice can still be offered). Thus, the maintenance period becomes a “working vacation.” In
this paper, we consider a special type of interruptions during a working vacation. That is,
during the working vacation period, if there are customers waiting at a service completion
instant, the server can resume the normal service rate (interrupt the working vacation) with
probability p (0 < p < 1) or keep the slow service rate (continue the vacation) with proba-
bility 1 − p. Such a vacation mechanism is called a single working vacation with Bernoulli
interruptions. Introducing the Bernoulli vacation interruptions into the model makes the
model more flexible to represent the real system with trade-off between minimizing customer
waiting time and utilizing the idle time for maintaining the service facility. For example,
if minimizing customer waiting time has higher priority than performing the maintenance
on the server, then the vacation interruption probability p can be set higher. An extreme
value of p = 1 represents that the maintenance is terminated whenever there is a waiting
customer in the system at a service completion during the maintenance process, reflecting
the highest priority of serving customers. The other extreme value of p = 0 represents that
the maintenance must be completed once it starts. In fact, the latter is the classical single
working vacation model. Another example is network services. In order to keep the server
running smoothly, virus scanning regularly is desirable for the server. This type of scanning
can be programmed to execute on a regular basis (i.e., whenever a service completion leaves
an idle system). Although the virus scanning consumes some system resources and reduces
the processing speed, the server can still provide service at a lower processing speed during
the virus scanning period. Again, the Bernoulli interruptions can be set to balance chances
of completing the virus scanning process (1 − p) and chances of quickly resuming the regular
processing speed p.

This single-server model can be also used to study the multi-server system approxi-
mately where a high service rate represents more servers are serving customers and a low
service rate represents fewer servers are on duty. Then, when the system is empty, some idle
servers may take a break or work on other non-queue jobs. The off-duty servers may return
after a break (or finishing the non-queue job) or called back if some waiting customers exist.
Another feature of our model is that customers can make choice of joining or balking based
on the delay information (i.e., queue length). Four information scenarios are considered:
fully observable queue, almost observable queue, almost unobservable queue, and unobserv-
able queue. In a fully observable case, arriving customers can observe both the state of the
server (either normal service or working vacation) and the queue length (i.e., the number of
customers in the system). In the almost observable case, arriving customers can observe the
queue length but do not know the state of the server. In an almost unobservable case, arriv-
ing customers cannot observe the queue length but know the state of the server. Finally,
in an unobservable case, a customer observes neither the queue length nor the server state.
An arriving customer decides whether to join the system or balk according to his or her
service utility. This service utility can be computed based on the reward-cost structure and
delay information. We study customer’s equilibrium and socially optimal strategies for the
service system of our interest.

Since our model belongs to a class of queues with server vacations, we briefly review
the related literature. In the past decades, queueing models with vacations were devel-
oped as useful performance analysis tools for computer systems, communication networks,
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and flexible manufacturing systems. Recently, researchers paid more attention to cus-
tomers’ strategic behaviors in vacation models under a reward-cost structure. Burnetas and
Economou [2] first studied a Markovian single-server queueing system with setup times and
strategic customers. They derived equilibrium joining strategies for customers under various
levels of delay information and analyzed the stationary behavior of the system under these
strategies. Economou and Kanta [4] considered a single-server queue with breakdowns and
repairs. They derived equilibrium threshold strategies in fully observable and almost observ-
able queues. Sun et al. [15,16] studied customers’ equilibrium and socially optimal balking
strategies in observable and unobservable queues with several types of setup/closedown
policies, respectively. More research in this area can be referred to Guo and Hassin [6,7],
Tian et al. [22], Yu et al. [25,26], Liu and Wang [11], Doo [8], and references therein.

As a generalization from zero to non-zero service rate during a vacation, queueing sys-
tems with working vacations have been studied extensively. Studies on various working
vacation queues can be found in a survey given by Tian et al. [21]. For work on customers’
choice behavior in queueing systems with working vacations, Zhang et al. [27] and Sun
and Li [14] studied equilibrium balking strategies in M/M/1 queues with multiple working
vacations under different information scenarios. Subsequently, Sun et al. [17,18] considered
customers’ optimal balking behavior in some single-server Markovian queues with two-stage
working vacations and double adaptive working vacations, respectively. Wang and Zhang
[24] considered equilibrium strategies in Markovian queues with a single working vacation.
Then, Tian et al. [23] studied customer equilibrium and social-optimal strategies in M/M/1
queues with multiple working vacations and vacation interruptions under three different lev-
els of system information. Doo [9] studied customer’s equilibrium joining/balking behaviors
in M/M/1 queues with a single working vacation and vacation interruptions.

Vacation models with Bernoulli interruptions were studied by Tao et al. [19,20], Gao
and Liu [5], and Li et al. [10]. All these studies did not consider strategic customers who
can decide to join the system or not. In other words, all customers enter the system for
service. However, to the best of the authors’ knowledge, the equilibrium strategies of join-
ing or balking in Markovian queueing systems with a single working vacation and Bernoulli
interruptions have not been studied. Therefore, we investigate an M/M/1 queueing model
with a single working vacation and Bernoulli interruptions where customers can make choice
of joining or balking under different information scenarios. The only work that is closely
related to ours is Doo [9] who studied the equilibrium balking strategies in a single vacation
model with working vacation and vacation interruptions. However, our study is significantly
different from his in two aspects. First, Doo’s model is a special case of ours with p = 1
(i.e., the vacation must be interrupted if waiting customers exist at a service completion
instant during vacation). From practical point of view, our model is more flexible as the
trade-off between minimizing customer wait and completing some non-queue job (working
vacation) can be addressed by changing p. Second, our analysis approach is different and
more complete. For example, in the unobservable queue case, we not only obtain the sta-
tionary distribution but also show the decomposition property in the vacation model with
strategic customers. Therefore, our results are more general than Doo’s from both practical
and theoretical perspectives.

This paper is organized as follows. Model description is given in Section 2. In Sec-
tions 3–6, we analyze the customer equilibrium and socially optimal strategies in the fully
observable, almost observable, almost unobservable, and unobservable cases, respectively.
In Section 7, some numerical examples are presented to illustrate the effects of several
parameters on customers’ behaviors and system performance. Finally, Section 8 concludes
the paper with a brief summary.
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2. MODEL DESCRIPTION

Consider an M/M/1 queueing system where customers arrive at the system according to
a Poisson process with rate λ and their service times are assumed to be exponentially dis-
tributed with rate μ1. At a service completion instant, if there is no customer in the system,
the server begins a working vacation and the vacation time is assumed to be exponentially
distributed with rate θ. During a vacation period, arriving customers can be still served
and service times are exponentially distributed at a lower rate of μ0 (μ0 < μ1). At a service
completion during the vacation, if there are customers waiting in the system, the vaca-
tion is either interrupted (i.e., terminated) with probability p (0 < p < 1) or continues with
probability 1 − p. Meanwhile, when a vacation ends, if there are customers in the system,
the server resumes service rate μ1 from μ0 and a regular service period starts. Otherwise,
the server enters an idle period and a new regular busy period with service rate μ1 starts
when a customer arrives. We assume that the inter-arrival times, service times, and working
vacation times are mutually independent. In addition, the service discipline is first in first
out (FIFO).

Let N(t) denote the number of customers in the system at time t and J(t) be the state of
server being with J(t) = 0 representing “on a working vacation” and J(t) = 1 representing
“in a regular service period” at time t. It is assumed that customers are homogeneous
and decide whether to join or balk upon arrival based on their own service utility. The
customer’s utility function is equal to a reward R for receiving service minus a waiting cost
which is computed as expected waiting time, denoted by E[W ] times waiting cost per time
unit, denoted by C. Finally, we assume that there are no retrials for balking customers nor
reneging for waiting customers. Thus, the system state can be completely represented by
(N(t), J(t)) which becomes a two-dimensional Markov chain due to the fact that all random
variables are exponential and mutually independent.

3. FULLY OBSERVABLE QUEUES

We begin with the fully observable case in which arriving customers not only know the
number of customers in the system, N(t), but also the state of the server, J(t), at arrival
time t. In such a system, there exists a balking threshold n(i) for a customer arriving at
state with (N(t) = n, J(t) = i), where n = 0, 1, . . . , i = 0, 1. If n ≤ n(i), the customer joins
the system; otherwise balks.

Let Tni be the customer’s system time (waiting plus service), given that he arrives at
state (n, i). Then, we have the following equations:

T00 =
1

μ0 + θ
+

θ

μ0 + θ

1
μ1

, (1)

Tn0 =
μ0

μ0 + θ

(
1
μ0

+ pTn−1,1 + (1 − p)Tn−1,0

)
+

θ

μ0 + θ
Tn1, n = 1, 2, . . . , (2)

Tn1 =
n + 1
μ1

, n = 0, 1, 2, . . . . (3)

Taking into account (2) and (3), we obtain

Tn0 − Tn−1,0 − 1
μ

=
(1 − p)μ0

μ0 + θ

(
Tn−1,0 − Tn−2,0 − 1

μ

)

=
(

(1 − p)μ0

μ0 + θ

)n−1(
T10 − T00 − 1

μ

)
. (4)
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Using (1) and (2), we can get

Tn0 − Tn−1,0 =
1
μ1

+
μ1 − μ0

μ1(μ0 + θ)

(
(1 − p)μ0

μ0 + θ

)n

. (5)

After the iteration of (5), we have

Tn0 =
n

μ1
+

(1 − p)μ0(μ1 − μ0)
μ1(μ0 + θ)(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)n)
+

μ1 + θ

μ1(μ0 + θ)
. (6)

Based on the reward-cost structure, the expected utility of a joining customer is

U(n, i) = R − CTni.

From (3) and (6), we obtain U(n, i) as follows:

U(n, 0) = R − CTn0

= R − C

(
n

μ1
+

(1 − p)μ0(μ1 − μ0)
μ1(μ0 + θ)(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)n)
+

μ1 + θ

μ1(μ0 + θ)

)
, (7)

U(n, 1) = R − CTn1 = R − C(n + 1)
μ1

. (8)

Obviously, Tn0 is increasing with respect to n, so U(n, 0) decreases in n. A customer
strictly prefers to join the queue if U(n, i) > 0 and is indifferent between joining and balking
if U(n, i) = 0. By solving U(n, i) = 0 for n, we obtain the customer’s equilibrium thresholds
(ne(0), ne(1)).

In order to obtain the closed form of equilibrium threshold, we make use of the non-
elementary Lambert W Function which is known as the product logarithm or productlog
function (See [1,3] ).

Definition 1: For all z ≥ −1/e, the Lambert W function is defined as either one or two
real-valued functions giving the solution to

W (z) eW (z) = z.

We refer to the specific branches of this function as W0(z) and W−1(z), with W0(z) >
W−1(z), z ≥ −1/e. The graphs of both branches are shown in Figure 1.

Hence, a pure threshold strategy for customers is specified by a pair (ne(0), ne(1)) as
stated in the following theorem.

Theorem 1: In a fully observable case, there exist a pair of thresholds (ne(0), ne(1)) and
equilibrium strategy has the form “a customer arriving at state (N(t), J(t)) enters if N(t) ≤
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Figure 1. The real-valued branches of the Lambert W function.

ne(J(t)) or balks otherwise.” In addition,

ne(0) =
⌊
d − W0(bcd ln(c))

ln(c)

⌋
, (9)

ne(1) =
⌊

Rμ1

C

⌋
− 1, (10)

where

b = − (1 − p)μ0(μ1 − μ0)
(μ0 + θ)(pμ0 + θ)

, c =
(1 − p)μ0

μ0 + θ
,

d =
Rμ1

C
− (1 − p)μ0(μ1 − μ0) + (μ1 + θ)(pμ0 + θ)

(μ0 + θ)(pμ0 + θ)
.

Proof: To obtain the customer’s equilibrium thresholds (ne(0), ne(1)), we need to solve
U(n, i) = 0 for n and extend U(n, i) from the non-negative integers to the reals.

Through mathematical operations, we see that the equation U(x, 0) = 0 is equivalent
to

x +
(1 − p)μ0(μ1 − μ0)
(μ0 + θ)(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)x)
+

μ1 + θ

μ0 + θ
=

Rμ1

C
.

Using the help of Mathematica, we obtain

(d − x) ln(c) e(d−x) ln(c) = ln(c)bcd. (11)

By Definition 1, the solution of the equation XeX = Y is X = W (Y ). Since equation
(11) satisfies the form XeX = Y , we have

x = d − 1
ln(c)

Wi(bcd ln(c)), i = −1, 0. (12)
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Figure 2. Transition rate diagram for a fully observable queue.

Due to b < 0 and 0 < c = ((1 − p)μ0)/(μ0 + θ) < 1, we can obtain bcd ln(c) > 0. It fol-
lows that the equilibrium threshold ne(0) is given by (10). By solving U(n, 1) = 0 for n, we
obtain the customer’s equilibrium threshold ne(1). This completes the proof. �

To avoid the trivial case, the service reward must exceed the expected cost of joining a
system empty. Thus, we assume

R > C max
{

1
μ1

,
μ1 + θ

μ1(μ0 + θ)

}
.

Since μ0 < μ1, we have (μ1 + θ)/(μ0 + θ) > 1. Therefore, the condition is reduced to

R >
C(μ1 + θ)
μ1(μ0 + θ)

.

Next, we discuss social-benefit in fully observable queues. To obtain the performance
measures, we consider the system process as a steady-state Markov chain with the state
space

Ωfo = {(n, i) | n = 0, 1, 2, . . . , n(i) + 1, i = 0, 1}.
The transition diagram is shown in Figure 2.
Due to the customer choice behavior, the Markov chain eventually reaches steady-state.

Let πni = limt→∞ P{N(t) = n, J(t) = i} with (n, i) ∈ Ωfo; then {πni : (n, i) ∈ Ωfo} is the
stationary distribution of the process {(N(t), J(t)), t ≥ 0}. These stationary probabilities
satisfy the following flow balance equations:

(λ + θ)π00 = μ0π10 + μ1π11, (13)

(λ + θ + μ0)πn0 = λπn−1,0 + (1 − p)μ0πn+1,0, n = 1, 2, . . . , n(0), (14)

(θ + μ0)πn(0)+1,0 = λπn(0),0, (15)

λπ01 = θπ00, (16)

(λ + μ1)πn1 = λπn−1,1 + μ1πn+1,1 + θπn0 + pμ0πn+1,0, n = 1, 2, . . . , n(0), (17)

(λ + μ1)πn(0)+1,1 = λπn(0)1 + μ1πn(0)+2,1 + θπn(0)+1,0, (18)

(λ + μ1)πn1 = λπn−1,1 + μ1πn+1,1, n = n(0) + 2, . . . , n(1), (19)

μ1πn(1)+1,1 = λπn(1),1. (20)

The stationary distribution of the system can be obtained by solving these equations
(the detailed derivations are presented in the Appendix). Since the probability of customer
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Figure 3. Transition rate diagram for almost observable queues.

balking is πn(0)+1,0 + πn(1)+1,1, the social-benefit (also called social-welfare) per time unit
when all customers follow a threshold policy (n(0), n(1)) is given by

Sfo(n(0), n(1)) = λR(1 − πn(0)+1,0 − πn(1)+1,1) − C

⎛
⎝n(0)+1∑

n=0

nπn0 +
n(1)+1∑

n=0

nπn1

⎞
⎠ . (21)

Let (n∗(0), n∗(1)) be the socially optimal threshold strategy. That is

(n∗(0), n∗(1)) = arg max
(n(0),n(1))

Sfo(n(0), n(1)).

Although we cannot analytically prove the discrepancy between customer equilibrium
strategy and socially optimal strategy, we can numerically demonstrate such a discrepancy.
For example, in a case with R = 15, C = 1, λ = 1.5, μ1 = 2, μ0 = 0.5, θ = 0.5, p = 0.4, we
obtain (n∗(0), n∗(1)) = (10, 11) by numerical search. Meanwhile, the equilibrium strategy is
(ne(0), ne(1)) = (25, 29). Note that ne(0) > n∗(0) and ne(1) > n∗(1), which are consistent
with the results for a single queue system [12].

4. ALMOST OBSERVABLE QUEUES

Next, we consider the almost observable case, where a customer can observe the queue
length N(t) but not the state of the server J(t) at the arrival instant.

Hence, the corresponding Markov chain is from Section 3 with ne(0) = ne(1) = ne and
the state space

Ωao = {(n, i) | n = 0, 1, 2, . . . , ne + 1, i = 0, 1}.
The transition diagram is shown in Figure 3.
The stationary probabilities satisfy the following flow balance equations:

(λ + θ)π00 = μ0π10 + μ1π11, (22)

(λ + θ + μ0)πn0 = λπn−1,0 + (1 − p)μ0πn+1,0, n = 1, 2, . . . , ne, (23)

(θ + μ0)πne+1,0 = λπne,0, (24)

λπ01 = θπ00, (25)

(λ + μ1)πn1 = λπn−1,1 + μ1πn+1,1 + θπn0 + pμ0πn+1,0, n = 1, 2, . . . , ne, (26)

μ1πne+1,1 = λπne,1 + θπne+1,0. (27)

The stationary distribution of the system can be obtained by solving these equations
(the detailed derivations are presented in the Appendix). Now, we begin to look for the
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expected net benefit of the customer that observes n customers and then decides to enter.
We have the following result.

Lemma 1: In the almost observable queue where customers use the same balking threshold
ne, the net benefit of an arriving customer that observes n customers in the system and
decides to enter is given by

Une(n) = R − C(n + 1)
μ1

− C(μ1 − μ0)
μ1(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)n+1
)

× xn
1 + δxn

2
μ1−μ0
μ1x1−λxn+1

1 + μ1−μ0
μ1x2−λδxn+1

2 + (λ−μ0x1
λ−μ1x1

+ θ
λ + (λ−μ0x2

λ−μ1x2
+ θ

λ )δ)ρn
,

n = 0, 1, . . . , ne + 1, (28)

where ρ = λ/μ1 and δ = −((1 − x2)/(1 − x1))(xne+2
1 /xne+2

2 ).

Proof: The net benefit of an arriving customer who observes n customers and decides to
enter is given by Une(n) = R − CT (n), where T (n) = E[S |N− = n] is his mean sojourn
time when he finds n customers in the system right before his arrival instant. Let πI|N (i |n)
(i = 0, 1) be the probability that an arriving customer finds there are n customers given
that the server is at state i. Conditioning on the state of the server, we obtain

T (n) = Tn0πI|N (0 |n) + Tn1πI|N (1 |n) (29)

and

πI|N (i |n) =
λπn0

λπn0 + λπn1
, n = 0, 1, . . . , ne + 1.

Using the stationary probabilities, we obtain the probabilities πI|N (i |n) for n =
0, 1, . . . , ne + 1. So, we obtain T (n), n = 0, 1, 2, . . . , ne + 1. It is worth noting that customer
does not enter the empty system if Une

(0) < 0. Otherwise, he enters the queue.
When a customer observes j (j = 1, 2, . . . , ne + 1) customers and decides to enter, the

expected sojourn time T (j) is greater than the expected sojourn time T (j − 1) when j − 1
customers are observed. Therefore, we have Une(j) < Une(j − 1) and Une

(n) is decreasing
with n.

Substituting n = ne and n = ne + 1 into (28), we get

Une(ne) = R − C(ne + 1)
μ1

− C(μ1 − μ0)
μ1(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)ne+1
)

× μ0 + θ
λ(μ1−μ0)(μ1(μ0+θ)−λ(1−p)μ0)

(1−p)μ0(μ1x1−λ)(μ1x2−λ) + λ
x2−x1

( (θ+pμ0x1)x2
λ−μ0x1

(λ−μ0x1
λ−μ1x1

+ θ
λ )( ρ

x1
)ne

− (θ+pμ0x2)x1
λ−μ0x2

(λ−μ0x2
λ−μ1x2

+ θ
λ )( ρ

x2
)ne)

, (30)

Une(ne + 1) = R − C(ne + 2)
μ1

− C(μ1 − μ0)
μ1(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)ne+2
)

× (1 − p)μ0

λ(μ1−μ0)(μ1−λ)
(μ1x1−λ)(μ1x2−λ) + λ

x2−x1
( θ+pμ0x1

λ−μ0x1
(λ−μ0x1

λ−μ1x1
+ θ

λ )( ρ
x1

)ne+1

− θ+pμ0x2
λ−μ0x2

(λ−μ0x2
λ−μ1x2

+ θ
λ )( ρ

x2
)ne+1)

. (31)
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Let

f1(n) = R − C(n + 1)
μ1

− C(μ1 − μ0)
μ1(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)n+1
)

× μ0 + θ
λ(μ1−μ0)(μ1(μ0+θ)−λ(1−p)μ0)

(1−p)μ0(μ1x1−λ)(μ1x2−λ) + λ
x2−x1

( (θ+pμ0x1)x2
λ−μ0x1

(λ−μ0x1
λ−μ1x1

+ θ
λ )( ρ

x1
)n

− (θ+pμ0x2)x1
λ−μ0x2

(λ−μ0x2
λ−μ1x2

+ θ
λ )( ρ

x2
)n)

,

n = 0, 1, 2, . . . (32)

f2(n) = R − C(n + 1)
μ1

− C(μ1 − μ0)
μ1(pμ0 + θ)

(
1 −

(
(1 − p)μ0

μ0 + θ

)n+1
)

× (1 − p)μ0

λ(μ1−μ0)(μ1−λ)
(μ1x1−λ)(μ1x2−λ) + λ

x2−x1
( θ+pμ0x1

λ−μ0x1
(λ−μ0x1

λ−μ1x1
+ θ

λ )( ρ
x1

)n

− θ+pμ0x2
λ−μ0x2

(λ−μ0x2
λ−μ1x2

+ θ
λ )( ρ

x2
)n)

,

n = 0, 1, 2, . . . . (33)

Clearly, f1(n) = Un(n), n = 0, 1, . . . , ne, f2(n) = Un−1(n). Moreover, f1(n) ≥ f2(n),
n ≥ 0.

We have that if U0(0) > 0 and limn→∞ f1(n) = −∞, then f1(0) > 0. So, we can find a
finite number nu in the sequence (f1(n)) that satisfies inequality

f1(0), f1(1), . . . , f1(nu) > 0, f1(nu + 1) ≤ 0. (34)

Obviously, f1(n) > f2(n), n = 0, 1, . . ., so f2(nu + 1) < f1(nu + 1) ≤ 0. In the range
from 0 to nu + 1, we can find that a number nl satisfies the inequality

f2(nl) > 0, f2(nl + 1), f2(nl + 2), . . . , f2(nu + 1) ≤ 0, (35)

where nl is the first positive term of the sequence (f2(n)). If the sequence (f2(n)) is non-
positive between 0 and nu + 1, then we have

f2(0), f2(1), . . . , f2(nu), f2(nu + 1) ≤ 0. (36)

This completes the proof of the lemma. �

Next, we establish the equilibrium threshold strategies stated in the following theorem.

Theorem 2: In the almost observable queues with single working vacation and Bernoulli
interruptions, ne = nl, nl + 1, . . . , nu are equilibrium strategies.

Proof: We consider a tagged customer at his arrival instant. It follows from (28), (32), and
(34) that the customer prefers to enter when he finds n (n ≤ ne) customers in the system.

If an arriving customer finds that the number of customers in the system is ne + 1,
the customer prefers to balk. It follows from (33), (35), and (36) that the expected net
benefit f2(ne + 1) ≤ 0. Therefore, we conclude that there are equilibrium strategies ne =
nl, nl + 1, . . . , nu. �
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Figure 4. Transition rate diagram for almost unobservable queues.

Since the probability of customer balking is πne+1,0 + πne+1,1, the equilibrium social-
benefit per time unit when all customers follow the threshold policy ne is given by

Sao(ne) = λR(1 − πne+1,0 − πne+1,1) − C

ne+1∑
n=0

n(πn0 + πn1). (37)

Let n∗ be the socially optimal threshold strategy. That is,

n∗ = arg max
n

Sao(n).

For example, when R = 10, C = 1, λ = 0.8, μ1 = 2, μ0 = 0.6, θ = 0.3, and p = 0.3, we
obtain n∗ = 11. While customers’ equilibrium strategy is ne = 17, 18. We observe that n*
< ne, which indicates that individual optimization results in a queue that is longer than
the socially desired one.

5. ALMOST UNOBSERVABLE QUEUES

In this section, we turn to the almost unobservable case, where a customer can observe the
state of the server J(t) but not the queue length N(t) at the arrival instant. The customer
equilibrium strategy in this case can be described by a joining probability qi (0 ≤ q ≤ 1),
which is the proportion of joining customers when the server is in the state J(t) = i, i = 0, 1,
and the effective arrival rate to the system is λqi. While the two extreme values of qi = 0, 1
represent two pure strategies of joining and balking, respectively, 0 < qi < 1 represents a
mixed strategy. The state space for this case is Ωau = {(n, i) |n ≥ 0, i = 0, 1} and the
transition diagram is illustrated in Figure 4.

We denote the stationary distribution as

πni = lim
t→∞P{N(t) = n, J(t) = i}, (n, i) ∈ Ωpo.

πn = (πn0, πn1), n ≥ 0.

Using the lexicographical sequence for the states, the transition rate matrix Q can be
written as a tri-diagonal block form:

Q =

⎛
⎜⎜⎜⎜⎜⎝

A0 C0

B1 A C
B A C

B A C
. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎠ ,
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where

A0 =
( −(λq0 + θ) θ

0 −λq1

)
, B1 =

(
μ0 0
μ1 0

)
,

A =
( −(λq0 + θ + μ0) θ

0 −(λq1 + μ1)

)
, B =

(
(1 − p)μ0 pμ0

0 μ1

)
,

C =
(

λq0 0
0 λq1

)
.

The structure of Q indicates that {(N(t), J(t)), t ≥ 0} is a quasi-birth-and-death (QBD)
process (see [13]). To analyze this QBD process, it is necessary to solve for the minimal
non-negative solution of the matrix quadratic equation

R2B + RA + C = 0, (38)

and this solution, denoted by R and called the rate matrix, is obtained in the following
lemmas.

Lemma 2: If ρ1 = λq1μ
−1 < 1, the matrix equation (38) has the minimal non-negative

solution

R =

⎛
⎝ r0

(θ + pμ0r0)r0

μ1(1 − r0)
0 ρ1

⎞
⎠ ,

where

r0 =
λq0 + μ0 + θ −√(λq0 + μ0 + θ)2 − 4λq0(1 − p)μ0

2(1 − p)μ0
(39)

and 0 < r0 < 1.

Proof: Because matrices A, B, C are all upper triangular, R should have the same
structure as

R =
(

r11 r12

0 r22

)
.

Substituting R2 and R into (38), we obtain the following set of equations:

⎧⎨
⎩

(1 − p)μ0r
2
11 − (λq0 + μ0 + θ)r11 + λq0 = 0,

μ1r
2
22 − (λq1 + μ1)r22 + λq1 = 0,

pμ0r
2
11 + μ1r12(r11 + r22) + θr11 − (λq1 + μ1)r12 = 0.

(40)

Using the discriminant of quadratic equation, we have r11 = r0, 0 < r0 < 1, where r0 is
one root of the first equation of (40) (the other root is greater than 1). It follows from the
second equation of (40) that r22 = ρ1 (the other roots is r22 = 1). Substituting r0 and ρ1

into the last equation of (40), we obtain r12 = ((θ + pμ0r0)r0)/(μ1(1 − r0)). This completes
the proof of the Lemma 2. �
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From Lemma 2, we also know that r0 satisfies the following relationships:

θ + pμ0r0

1 − r0
+ μ0 =

λq

r0
, (41)

(λq0 − μ0r0)(1 − r0) = (θ + pμ0r0)r0 > 0. (42)

Using the matrix-geometric solution method, we have

πn = (πn0, πn1) = (π10, π11)Rn−1, n ≥ 1, (43)

and (π00, π01, π10, π11) satisfies the set of equations:

(π00, π01, π10, π11)B[R] = 0, (44)

where

B[R] =
(

A0 C0

B1 A + RB

)

=

⎛
⎜⎜⎜⎝

−(λq0 + θ) θ λq0 0
0 −λq1 0 λq1

μ0 0 −λq0

r0

θ + pμ0r0

1 − r0
μ1 0 0 −μ1

⎞
⎟⎟⎟⎠ . (45)

In terms of r0, we can obtain the explicit expressions for the stationary probabilities.

Theorem 3: Assumed that ρ1 < 1, the stationary probabilities {πni : (n, i) ∈ Ωpo} are as
follows: ⎧⎨

⎩
πn0 = Krn

0 , n ≥ 0,

πn1 = K

(
θ

μ1
ρn−1
1 +

(θ + pμ0r0)r0

μ1(1 − r0)
∑n−1

j=0 rj
0ρ

n−1−j
1

)
, n ≥ 1,

(46)

where

K = (1 − ρ1)(1 − r0)
(

λq1 + θ

λq1
(1 − r0) +

(
1 − μ0

μ1

)
r0 +

λq0 − λq1

μ1

)−1

. (47)

Proof: From (44) and (45), we obtain the following equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(λq1 + θ)π00 + μ0π10 + μ1π11 = 0,
θπ00 − λq1π01 = 0,

λq0π00 − λq0

r0
π10 = 0,

λq1π01 +
θ + pμ0r0

1 − r0
π10 − μ1π11 = 0.

(48)

Solving (48) and letting π00 = K, we obtain

(π00, π01) = K

(
1,

θ

λq1

)
, (49)
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(π10, π11) = K

(
r0,

θ

μ1
+

(θ + pμ0r0)r0

μ1(1 − r0)

)
. (50)

Furthermore,

Rn−1 =

⎛
⎜⎝ rn−1

0

(θ + pμ0r0)r0

μ1(1 − r0)

n−2∑
j=0

rj
0ρ

n−j−2
1

0 ρn−1
1

⎞
⎟⎠ , (51)

Substituting (49), (50), and (51) into (43), we obtain (46). Finally, π00 = K can be
determined by the normalization condition. This completes the proof. �

From (46), we have the steady-state probability that the server is in state J(t) = i,
denoted by pi, as follows:

p0 =
∞∑

n=0

πn0 =
K

1 − r0
, (52)

p1 =
∞∑

n=0

πn1 = K

(
θ

λq1
+

θ

μ1(1 − ρ1)
+

(θ + pμ0r0)r0

μ1(1 − r0)2(1 − ρ1)

)
. (53)

The conditional expected sojourn time (waiting plus service) of a joining customer who
finds the server in state i = 0 or i = 1 is given by

W0(q0) =
∑∞

n=0 Tn0πn0

p0

=
r0

μ1(1 − r0)
+

(1 − p)μ0(μ1 − μ0)
μ1(μ0 + θ)

r0

μ0 + θ − (1 − p)μ0r0
+

μ1 + θ

μ1(μ0 + θ)
, (54)

as a function of q0 or

W1(q0, q1) =
∑∞

n=0 Tn1πn1

p1

=
1

μ1 − λq1
+

λq1(λq0 − μ0r0)
μ1(1 − r0)(θμ1(1 − r0) + λq1(λq0 − μ0r0))

, (55)

as a function of q0 and q1. Based on the reward-cost structure, the expected net benefit
(i.e., utility) of an arriving customer joining the system at server state i is as follows:

U0(q0) = R − C

(
r0

μ1(1 − r0)
+

μ0r0(1 − p)(μ1 − μ0)
μ1(μ0 + θ)(μ0 + θ − (1 − p)μ0r0)

+
μ1 + θ

μ1(μ0 + θ)

)
,

(56)

U1(q0, q1) = R − C

(
1

μ1 − λq1
+

λq1(λq0 − μ0r0)
μ1(1 − r0)(θμ1(1 − r0) + λq1(λq0 − μ0r0))

)
. (57)

Using (56) and (57), we can determine equilibrium strategies for a customer in this
partially observable queue case in the following.

Theorem 4: For a partially observable queue, there exists a unique mixed-equilibrium
strategy (qe

0, q
e
1) as follows:
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Case (1): C(θ+μ1)
μ1(θ+μ0)

< R ≤ Cr(1)
μ1(1−r(1)) + Cμ0r(1)(1−p)(μ1−μ0)

μ1(μ0+θ)(μ0+θ−(1−p)μ0r(1)) + C(μ1+θ)
μ1(μ0+θ) .

(qe
0, q

e
1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x1, x2),
C

μ1
≤ R ≤ C

μ1 − λ
+

Cλ(λx1 − μ0r(x1))
μ1(1 − r(x1))(θμ1(1 − r(x1))

+λ(λx1 − μ0r(x1)))

,

(x1, 1), R >
C

μ1 − λ
+

Cλ(λx1 − μ0r(x1))
μ1(1 − r(x1))(θμ1(1 − r(x1)) + λ(λx1 − μ0r(x1)))

.

Case (2): R > Cr(1)
μ1(1−r(1)) + Cμ0r(1)(1−p)(μ1−μ0)

μ1(μ0+θ)(μ0+θ−(1−p)μ0r(1)) + C(μ1+θ)
μ1(μ0+θ) .

(qe
0, q

e
1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1, 0), R <
C

μ1
,

(1, x3),
C

μ1
≤ R ≤ C

μ1 − λ
+

Cλ(λ − μ0r(1))
μ1(1 − r(1))(θμ1(1 − r(1)) + λ(λ − μ0r(1)))

,

(1, 1), R >
C

μ1 − λ
+

Cλ(λ − μ0r(1))
μ1(1 − r(1))(θμ1(1 − r(1)) + λ(λ − μ0r(1)))

,

where

x1 = {q0|U0(q0) = 0, 0 < q0 < 1}, x2 = {q1|U1(x1, q1) = 0, 0 < q1 < 1},

x3 = {q1|U1(1, q1) = 0, 0 < q1 < 1}, r(1) =
λ + μ0 + θ −√(λ + μ0 + θ)2 − 4λ(1 − p)μ0

2(1 − p)μ0
,

r(x1) =
λx1 + μ0 + θ −√(λx1 + μ0 + θ)2 − 4λx1(1 − p)μ0

2(1 − p)μ0
.

Proof: Taking the first-order derivative of (39) with respect to q0, we have

dr0

dq0
=

λ

2(1 − p)μ0

(
1 − λq0 + θ − (1 − 2p)μ0√

(λq0 + θ − (1 − 2p)μ0)2 + 4(1 − p)μ0(θ + pμ0)

)
> 0, (58)

so r0 is strictly increasing in q0 ∈ [0, 1]. Then, we obtain

dW0

dq0
=

dr0
dq0

μ1(1 − r0)2
+

(1 − p)μ0(μ1 − μ0)
μ1(μ0 + θ)

(μ0 + θ)dr0
dq0

(μ0 + θ − (1 − p)μ0r0)2
> 0, (59)

dW1

dq1
=

λ

(μ1 − λq1)2
+

λθ(λq0 − μ0r0)
(θμ1(1 − r0) + λq1(λq0 − μ0r0))2

> 0. (60)

Therefore, W0(q0) is strictly increasing in q0 ∈ [0, 1] and W1(q0, q1) is strictly increasing
in q1 ∈ [0, 1]. Thus, we conclude that U0(q0) and U1(q0, q1) are decreasing with q0 and q1,
respectively.

First, we focus on U0(q0). Condition R > C(μ1 + θ)/(μ1(μ0 + θ)) ensures the existence
of qe

0. Therefore, we have two cases.
Case 1: U0(0) > 0 and U0(1) ≤ 0. That is, R > (C(θ + μ1))/(μ1(θ + μ0)) and R ≤

CW0(1). In this case, if all other customers finding empty system enter the system, that is
qe
0 = 1, then the tagged customer receives a negative expected benefit by joining the system.

Hence, qe
0 = 1 does not lead to an equilibrium. Similarly, if all other customers balk qe

0 = 0,
then the tagged customer receives a positive expected benefit by joining the system; thus,
qe
0 = 0 does not lead to an equilibrium either. Therefore, there exists a unique qe

0 satisfying
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R − CW0(qe
0) = 0 for which customers are indifferent between joining and balking. This is

given by qe
0 = x1.

In this situation, the expected benefit U1 is given by

U1(x1, q1) = R − C

μ1 − λq1
− Cλq1(λx1 − μ0r(x1))

μ1(1 − r(x1))(θμ1(1 − r(x1)) + λq1(λx1 − μ0r(x1)))
. (61)

Using the equilibrium analysis in an unobservable queue case, we derive from (45) the
following equilibria:

(1) if U1(x1, 0) < 0, then the equilibrium strategy is qe
1 = 0.

(2) if U1(x1, 0) ≥ 0 and U1(x1, 1) ≤ 0, then there exists a unique qe
1 satisfying

U1(x1, q
e
1) = 0 and the equilibrium strategy is qe

1 = x2.
(3) if U1(x1, 1) > 0, then the equilibrium strategy is qe

1 = 1.

Case 2: U0(1) ≥ 0. That is, R > Cr(1)
μ1(1−r(1)) + Cμ0r(1)(1−p)(μ1−μ0)

μ1(μ0+θ)(μ0+θ−(1−p)μ0r(1)) + C(μ1+θ)
μ1(μ0+θ) . In

this case, for every strategy of the other customers, the tagged customer has a positive
expected net benefit if he decides to enter. Hence, qe

0 = 1.
In this situation, the expected benefit U1 is given by

U1(1, q1) = R − C

μ1 − λq1
− Cλq1(λ − μ0r(1))

μ1(1 − r(1))(θμ1(1 − r(1)) + λq1(λ − μ0r(1)))
. (62)

Similarly, we obtain the following equilibria of qe
1:

(1) if U1(1, 0) < 0, then the equilibrium strategy is qe
1 = 0.

(2) if U1(1, 0) ≥ 0 and U1(1, 1) ≤ 0, then there exists a unique qe
1 satisfying U1(1, qe

1) = 0
and the equilibrium strategy is qe

1 = x3.
(3) if U1(1, 1) > 0, then the equilibrium strategy is qe

1 = 1.

By rearranging Cases 1–2, we obtain the results of Theorem 4. This completes the
proof. �

Using (46), we have the mean queue length as a function of joining probabilities:

L(q0, q1) =
∞∑

n=0

n(πn0 + πn1)

= K

(
r0

(1 − r0)2
+

θ

μ1(1 − ρ1)2
+

r0(θ + pμ0r0)(1 − r0ρ1)
μ1(1 − r0)3(1 − ρ1)2

)

=
K

(1 − r0)2

(
r0 +

θ(1 − r0)2 + (λq0 − μ0r0)(1 − r0ρ1)
μ1(1 − ρ1)2

)
, (63)

and the corresponding social benefit for a mixed strategy (q0, q1) as

Sau(q0, q1) = λR − CL(q0, q1)

= λR − CK

(1 − r0)2

(
r0 +

θ(1 − r0)2 + (λq0 − μ0r0)(1 − r0ρ1)
μ1(1 − ρ1)2

)
, (64)

where λ = λ(p0q0 + p1q1) is the effective arrival rate.
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Figure 5. Transition rate diagram for fully unobservable queues.

The goal of a social planner is to maximize total social welfare. Let (q∗0 , q∗1) be the
socially optimal mixed strategy. That is,

(q∗0 , q∗1) = arg max
(q0,q1)

Sau(q0, q1).

We again use a numerical example to show the discrepancy between customer equi-
librium strategy and socially optimal strategy. In a system with R = 4, C = 1, λ = 0.8,
μ1 = 1, μ0 = 0.6, and θ = 0.3, we obtain (q∗0 , q∗1) = (0.6221, 0.5242). Meanwhile, customers’
equilibrium strategy is (qe

0, q
e
1) = (1, 0.7621). We observe that two types of strategies are

inconsistent. This ordering of q∗0 < qe
0 or q∗1 < qe

1 is consistent with the one in a classical
unobservable queue situation.

6. FULLY UNOBSERVABLE QUEUES

In this section, an unobservable queue case, where customers cannot observe either the state
of the server (J(t) or the number of customers in the system (N(t)). In this situation, a pure
or mixed strategy can be described by a fraction q (0 ≤ q ≤ 1), which is the probability of
joining the system. The effective arrival rate, or joining rate, is λq. Again, state (N(t), J(t))
is a Markov chain with state space Ωfu = {(n, i) |n ≥ 0, i = 0, 1} and the transition diagram
is shown in Figure 5.

The stationary distribution of the system when all customers follow a given strategy q
can be obtained by simply setting q0 = q1 = q in the partially observable queue case. Hence,
we have ⎧⎪⎪⎨

⎪⎪⎩
πn0 = Krn, n ≥ 0,

πn1 = K

⎛
⎝ θ

μ1
ρn−1
1 +

(θ + pμ0r)r
μ1(1 − r)

n−1∑
j=0

rjρn−1−j
1

⎞
⎠ , n ≥ 1,

(65)

where

r =
λq + μ0 + θ −√(λq + μ0 + θ)2 − 4λq(1 − p)μ0

2(1 − p)μ0
, (66)

K = (1 − ρ1)(1 − r)K1, (67)

K1 =
(

λq + θ

λq
(1 − r) +

(
1 − μ0

μ1

)
r

)−1

. (68)
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From (65), we obtain the probability-generating function of the queue length, denoted
by L(z), as follows:

L(z) =
∞∑

n=0

zk(πn0 + πn1)

= K

(
1

1 − rz
+

θ

λq
+

(θ + pμ0r)r
μ1(1 − r)

z

(1 − rz)(1 − ρ1z)
+

θ

μ1

z

1 − ρ1z

)

= K1
1 − ρ1

1 − ρ1z

(
1 − r

1 − rz
(1 − ρ1z) +

θ

λq
(1 − r)(1 − ρ1z)

)

+ K1
1 − ρ1

1 − ρ1z

(
(θ + pμ0r)r
μ1(1 − r)

(1 − r)z
(1 − rz)(1 − ρ1z)

+
θz

μ1
(1 − r)

)
. (69)

Using

(θ + pμ0r)r
μ1(1 − r)

= ρ1 − μ0

μ1
r,

1 − r

1 − rz
(1 − ρ1z) = 1 − r + (r − ρ1)

z(1 − r)
1 − rz

.

in (69), L(z) can be rewritten as

L(z) = K1
1 − ρ1

1 − ρ1z

(
λq + θ

λq
(1 − r) + r

(
1 − μ0

μ1

)
(1 − r)z
1 − rz

)
. (70)

Equation (70) implies the stochastic decomposition property in this working vacation
model. The mean number of customers in the system, denoted by E[L], can be obtained as

E[L] =
ρ1

1 − ρ1
+ K1

(
1 − μ0

μ1

)
r

1 − r
. (71)

Hence, the mean sojourn time of a joining customer can be obtained by using Little’s
law:

W (q) =
1

μ1 − λq
+ K1

(
1 − μ0

μ1

)
r

λq(1 − r)
. (72)

Taking first-order derivatives of (66) and (68), we have dr/dq > 0 and

dK1

dq
=
(

λq + θ

λq
(1 − r) +

(
1 − μ0

μ1

)
r

)−2(
θ

λq2
(1 − r) +

(
μ0

μ1
+

θ

λq

)
dr

dq

)
> 0. (73)

Then, we obtain

dW

dq
=

λ

(μ1 − λq)2
+

dK1

dq

(
1 − μ0

μ1

)
r

λq(1 − r)
+ K1

(
1 − μ0

μ1

)
λr(1 − r + λq dr

dq )

(λq(1 − r))2
> 0.

(74)
Therefore, in the unobservable queue case with λ < μ1, W (q) is strictly increasing in

q ∈ [0, 1]. If a tagged customer decides to enter the system, his expected net benefit is

U(q) = R − CW (q)

= R − C

μ1 − λq
− CK1

(
1 − μ0

μ1

)
r

λq(1 − r)
, (75)

which is strictly decreasing in q. Thus, U(q) = 0 has a unique root q∗e . Consequently, we
have the following theorem.
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Theorem 5: In the unobservable queue, the condition λq < μ1 holds, there exists a unique
equilibrium joining strategy qe, where qe is given by

qe = min{q∗e , 1}. (76)

The social-benefit per time unit can be computed as easily computed as

Sfu(q) = λqR − CE[L]

= λqR − Cλq

μ1 − λq
− CK1

(
1 − μ0

μ1

)
r

(1 − r)
. (77)

Let x∗ be the root of the equation S′
fu(q) = 0 and let q∗ be the optimal joining proba-

bility. Then, we have the following conclusions: if 0 < x∗ < 1 and S′′
fu(q) ≤ 0, then q∗ = x∗;

if 0 < x∗ < 1 and S′′
fu(q) > 0 or x∗ ≥ 1, then q∗ = 1.

When R = 4, C = 1,λ = 0.8, μ1 = 1, μ0 = 0.6, and θ = 0.3, then we obtain q∗ = 0.556.
While customers’ equilibrium strategy is qe = 0.882. We observe that q∗ < qe, which indi-
cates that individual optimization leads queues to be longer than socially desired. Therefore,
it is clear that the social planner would like a toll to discourage arrivals in this case.

Remarks 1: When p = 0, the system studied in this paper becomes a queuing system with
a single working vacation. All results for the single working vacation model can be obtained
by setting p = 0 in our model. Furthermore, when p = 1, the system studied in this paper
becomes a queuing system with a single working vacation and vacation interruptions which
was studied by Doo [9]. Again by setting p = 1 in our model, the results are completely
consistent with Doo [9].

7. NUMERICAL EXAMPLES

In this section, we present numerical results to illustrate the effects of the system parame-
ters on customer equilibrium and socially optimal strategies for fully observable, partially
observable, and unobservable cases.

For the customer equilibrium strategy in a fully observable queue, while one threshold,
ne(1), has a very simple and explicit expression, the other threshold can only be obtained by
solving a complicated equation for the unique root (Theorem 1). Figure 6 shows how these
four thresholds change with μ1 (regular service rate) in a working vacation system with
Bernoulli interruptions. It is noticed that all thresholds ne(1), ne(0), nu, nl increase with
μ1 and the equilibrium threshold ne of the partially observable cases is always between ne(1)
and ne(0) in the fully observable case. It is intuitive that as the regular service rate increases,
arriving customers are more likely to join the system. Figure 7 illustrates how ne(0) varies
with θ (vacation rate) at different interruption probabilities. As θ or p increases, the working
vacation duration will decrease, thus customers arriving during a working vacation period
are more likely to join.

Figure 8 shows the relation between customer equilibrium strategy and total arrival
rate, λ, in a partially observable queue or an unobservable queue. The intuitive decreasing
relation reflects the fact that for a given service capacity and a reward-cost structure,
the total joining rate is bounded. In Figure 9, the relations between equilibrium joining
probabilities and the service reward R for both partially observable and unobservable cases
are illustrated. While qe

0 and qe are increasing in R, qe
1 changes with R in a non-monotonic

way. This non-monotonic relation is not entirely intuitive. At the beginning, since the joining
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Figure 6. Equilibrium threshold strategies for the observable case when R = 5, C = 1,
λ = 1, μ0 = 0.5, θ = 0.1, p = 0.7.

Figure 7. Equilibrium threshold strategies for the observable case when R = 5, C = 1,
λ = 1, μ1 = 2, μ0 = 0.5.

probability is small and the system is not congested (low traffic intensity), an increase in R
will attract more customers to join (i.e., joining probability increases with R). As the joining
probability keeps increasing, the waiting cost is increasing at a faster rate than the linear
increase in R, so the joining probability starts to decrease. However, the system is stable
(λ = 0.7, μ1 = 1). Thus, when R keeps increasing to very large value, the reward becomes
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Figure 8. Equilibrium joining strategies for the unobservable case when R = 1, C = 1,
μ1 = 1, μ0 = 0.6, θ = 0.3, and p = 0.5.

dominate again, and the joining probability becomes increasing again. Hence, the relation
between q1 and R is non-monotonic. Furthermore, three functions intersect at one point.
At this point, denoted by R∗, the joining probability for the partially observable case is
the same as the unobservable case, indicating that the server state information does not
affect customer’s joining strategy. If R < R∗, qe

1 > qe
0, otherwise qe

1 < qe
0. Thus, for higher

service value cases, joining probability during a working vacation is higher than that during
the regular service period. Figures 10 and 11 show how customer equilibrium strategies
depend on service rates, μ1 and μ0. The increasing relations between joining probabilities
and μ1 are very intuitive. However, the relations between joining probabilities and μ0 are
not intuitive for the partially observable case. Again, three joining probability functions
intersect at one point similarly as in Figure 9. In particular, the relation between qe

1 and
μ0 is non-monotonic with a single minimum. Such a relation is not intuitive but can be
explained as follows: Over the lower value range, as μ0 increases, the increasing rate of qe

0

is quite high. However, for a given service capacity and reward-cost structure, the overall
joining probability qe

0p0 + qe
1p1 should be bounded. Thus, qe

1 will decrease over this value
range of μ0 in which qe

0 is quite high. When μ0 increases to the high value range where qe
0’s

increasing rate becomes smaller, qe
1 will start to increase.

Figures 12 and 13 show how equilibrium joining probabilities change with the vacation
rate and interruption probability, respectively, for partially observable and unobservable
cases. Similar patterns to Figure 10 are shown for these relations. This is because increasing
θ or p implies decreasing the mean working vacation duration (i.e., low service rate period).
Hence, qe or qe

0p0 + qe
1p1 (overall joining rate in partially observable case) should be increas-

ing in θ or p although qe
1 is decreasing in θ or p. Similarly, the socially optimal strategies

have the same changing trend for p as shown in Figure 14.
Finally, Figures 15 and 16 reveal how equilibrium social benefits and their correspond-

ing social benefits change with the vacation interruption probability p. It is observed that
as p increases (i.e., minimizing customer waiting has higher priority than completing the
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Figure 9. Equilibrium joining strategies for the unobservable case when C = 1, λ = 0.7,
μ1 = 1, μ0 = 0.5, θ = 0.3, and p = 0.2.

Figure 10. Equilibrium joining strategies for the unobservable case when R = 2, C = 1,
λ = 0.9, μ0 = 0.6, θ = 0.3, and p = 0.9.
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Figure 11. Equilibrium joining strategies for the unobservable case when R = 2, C = 1,
λ = 0.7, μ1 = 1.2, θ = 0.3, and p = 0.3.

Figure 12. Equilibrium joining strategies for the unobservable case when R = 2.5, C = 1,
λ = 0.8, μ1 = 1, μ0 = 0.5, and p = 0.5.
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Figure 13. Equilibrium joining strategies for the unobservable case when R = 2, C = 1,
λ = 0.8, μ1 = 1.3, μ0 = 0.6, and θ = 0.3.

Figure 14. Socially optimal strategies for the unobservable case with various p when
R = 4, C = 1, λ = 0.8, μ1 = 1, μ0 = 0.6, and θ = 0.3.
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Figure 15. Equilibrium social benefit with various p when R = 5, C = 1, λ = 1.2, μ1 = 2,
μ0 = 0.5, and θ = 0.15.

Figure 16. Optimal social benefit with various p when R = 5, C = 1, λ = 0.8, μ1 = 2,
μ0 = 0.6, and θ = 0.12.

working vacation), the system should admit more customers into the system. In addition,
the additional social benefit of offering the server state information is more significant when
p is getting larger as shown in Figures 15 and 16.
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8. CONCLUSION

In this study, we analyzed customers’ strategic behavior in the M/M/1 queueing system
with a single working vacation and Bernoulli interruptions where arriving customers can
decide whether to join the system or balk. Four different levels of information disclosed to
arriving customers were considered. The customer equilibrium strategies for each informa-
tion scenario were derived. We compared the equilibrium strategy with the socially optimal
strategy numerically for each case and observed that customers tend to overuse the system
if they follow the equilibrium strategies. From the perspective of social planners, a toll may
be adopted to discourage customers from joining a queue. Moreover, we investigated the
effects of system parameters on equilibrium strategies and socially optimal strategies in the
almost unobservable and fully unobservable cases.

Based on this work, addressing the issue of using subsidy or price to induce socially
optimal strategies under different information scenarios can be a topic of future research.
Another direction for future work is to consider non-Markovian queues with various vacation
policies.
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APPENDIX

Solving the stationary probabilities for fully observable queue case

From (14), it is easy to obtain that {πn0 | 1 ≤ n ≤ n(0)} are solutions of the homogeneous linear
difference equation

(1 − p)μ0xn+1 − (λ + μ0 + θ)xn + λxn−1 = 0, n = 1, 2, . . . , n(0), (A.1)

and its corresponding characteristic equation (1 − p)μ0x2 − (λ + μ0 + θ)x + λ = 0 has two roots:

x1,2 =
(λ + μ0 + θ) ±

√
(λ + μ0 + θ)2 − 4λ(1 − p)μ0

2(1 − p)μ0
, (A.2)

Then, the homogeneous solution of (18) is xn = A1xn
1 + B1xn

2 , n = 0, 1, . . . , n(0) + 1, where
A1 and B1 are constants to be determined. Using (13) and (15), we have{

A1(λ + θ − μ0x1) + B1(λ + θ − μ0x2) = μ1π11,

A1((μ0 + θ)x
n(0)+1
1 − λx

n(0)
1 ) + B1((μ0 + θ)x

n(0)+1
2 − λx

n(0)
2 ) = 0.

(A.3)

Then, we derive

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1 =
μ1((μ0 + θ)x

n(0)+1
2 − λx

n(0)
2 )

(λ + θ − μ0x1)((μ0 + θ)x
n(0)+1
2 − λx

n(0)
2 ) − (λ + θ − μ0x2)((μ0 + θ)x

n(0)+1
1 − λx

n(0)
1 )

π11,

B1 =
μ1((μ0 + θ)x

n(0)+1
1 − λx

n(0)
1 )

(λ + θ − μ0x2)((μ0 + θ)x
n(0)+1
1 − λx

n(0)
1 ) − (λ + θ − μ0x1)((μ0 + θ)x

n(0)+1
2 − λx

n(0)
2 )

π11.

(A.4)
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Thus,

πn0 = A1xn
1 + B1xn

2 , n = 0, 1, . . . , n(0) + 1. (A.5)

Then, we consider the probability {πn1 |1 ≤ n ≤ n(0)}. From (17), we find that the probability
is equivalent to solutions of the non-homogeneous linear difference equation

μ1xn+1 − (λ + μ1)xn + λxn−1 = −θπn0 − pμ0πn+1,0

= −(θ + pμ0x1)A1xn
1 − (θ + pμ0x2)B1xn

2 , n = 1, 2, . . . , n(0). (A.6)

Hence, its corresponding characteristic equation μ1x2 − (λ + μ1)x + λ = 0 has two roots at 1
and ρ = λ/μ1. Assume that ρ �= 1; then the homogeneous solution of (A.6) is xhom

n = A21
n + B2ρn.

The general solution of the non-homogeneous equation is given as xgen
n = xhom

n + xspec
n , where xspec

n

is a specific solution. We find a specific solution xspec
n = Cxn

1 + Dxn
2 . Substituting it into (A.6), we

derive ⎧⎪⎪⎨
⎪⎪⎩

C =
A1x1(θ + pμ0x1)

(1 − x1)(μ1x1 − λ)
,

D =
B1x2(θ + pμ0x2)

(1 − x2)(μ1x2 − λ)
.

(A.7)

Therefore, the general solution of the non-homogeneous equation (A.6) is given as

xgen
n = A2 + B2ρn + Cxn

1 + Dxn
2 , n = 1, 2, . . . , n(0) + 1. (A.8)

Taking account of (17), we obtain{
A2 + B2ρ = π11 − (Cx1 + Dx2),

A2μ1 + B2μ1ρ2 = (λ + μ1)π11 − λπ01 − θπ10 − pμ0π20 − μ1(Cx2
1 + Dx2

2).
(A.9)

Solving the equations, we obtain⎧⎪⎪⎨
⎪⎪⎩

A2 =
μ1π11 + λ(Cx1 + Dx2) − μ1(Cx2

1 + Dx2
2) − λπ01 − θπ10 − pμ0π20

μ1 − λ
,

B2 =
μ1(Cx2

1 + Dx2
2 − Cx1 − Dx2) + λπ01 + θπ10 + pμ0π20 − λπ11

λ(1 − ρ)
.

(A.10)

Thus, from (A.8), we obtain

πn1 = A2 + B2ρn + Cxn
1 + Dxn

2 , n = 1, 2, . . . , n(0) + 1. (A.11)

Finally, we compute the probability {πn1|n(0) + 1 ≤ n ≤ n(1) + 1}. From (16), we find that
they are solutions of the homogeneous linear difference equation of (A.6). Therefore, the homo-
geneous solution is xn = A3 + B3ρn, n = n(0) + 1, n(0) + 2, . . . , n(1) + 1, where A3 and B3 are
constants to be determined. Using (20) and (A.11), we have{

μ1(A3 + B3ρn(1)+1) = λ(A3 + B3ρn(1)),

A3 + B3ρn(0)+2 = A2 + B2ρn(0)+2 + Cx
n(0)+2
1 + Dx

n(0)+2
2 .

(A.12)

Then, we derive ⎧⎪⎨
⎪⎩

A3 = 0,

B3 =
A2 + B2ρn(0)+2 + Cx

n(0)+2
1 + Dx

n(0)+2
2

ρn(0)+2
,

(A.13)

Additionally,

πn1 = B3ρn, n = n(0) + 1, n(0) + 2, . . . , n(1) + 1. (A.14)

Thus, we have all the stationary probabilities in terms of π11. The remaining probability, π11,
can be found from the normalization condition.
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