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Abstract Many results are known about test ideals and F-singularities for Q-Gorenstein rings. In this

paper, we generalize many of these results to the case when the symbolic Rees algebra OX ⊕OX (−K X )⊕
OX (−2K X )⊕ · · · is finitely generated (or more generally, in the log setting for −K X −1). In particular,

we show that the F-jumping numbers of τ(X, at ) are discrete and rational. We show that test ideals τ(X)
can be described by alterations as in Blickle–Schwede–Tucker (and hence show that splinters are strongly
F-regular in this setting – recovering a result of Singh). We demonstrate that multiplier ideals reduce

to test ideals under reduction modulo p when the symbolic Rees algebra is finitely generated. We prove

that Hartshorne–Speiser–Lyubeznik–Gabber-type stabilization still holds. We also show that test ideals
satisfy global generation properties in this setting.
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1. Introduction

Test ideals were introduced by Hochster and Huneke in their theory of tight closure
[31] within positive characteristic commutative algebra. After it was discovered that
test ideals were closely related to multiplier ideals [25, 56], a theory of test ideals of
pairs was developed analogous to the theory of multiplier ideals [26, 57]. However,
unlike multiplier ideals, test ideals were initially defined even without the hypothesis
that K X was Q-Cartier (see [18] for a similar theory of multiplier ideals). But
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the K X Q-Cartier hypothesis is useful for test ideals, and indeed a number of central
open questions are still unknown without it. The goal of this paper is to generalize
results from the hypothesis that K X is Q-Cartier to the setting where the local section
ring R(−K X ) := OX ⊕OX (−K X )⊕OX (−2K X )⊕ . . . (also known as the symbolic Rees
algebra) is finitely generated.

Most notably, perhaps the most important open problem within tight closure theory
is the question whether weak and strong F-regularity are equivalent or more generally,
whether splinters and strong F-regularity are equivalent (from the characteristic zero
perspective, splinters, weak and strong F-regularity are competing notions of singularities
analogous to KLT singularities that are all known to coincide in the Q-Gorenstein case).
These are known to be equivalent under the K X Q-Cartier hypothesis and under some
other conditions [1, 44, 45, 54]. Previously Singh announced a proof that splinters with
R(−K R) finitely generated are strongly F-regular [55]. We recover a new proof of this
result and in fact show something stronger. We prove that the (big) test ideal is equal to
the image of a multiplier-ideal-like construction involving alterations.

Theorem A (Theorem 5.6, Corollary 5.7). Suppose that X is a normal F-finite integral
scheme and that 1 on X is an effective Q-divisor such that S = R(−K X −1) is finitely
generated. Then there exists an alteration π : Y → X from a normal Y , factoring through
X ′ = Proj S so that

τ(X,1) = Image
(
π∗OY (dKY −π

∗(K X +1)e)→ OX
)
.

◦ If X is of finite type over a perfect field, one may take Y to be regular by [35].

◦ Alternately, one may take π to be a finite map (in which case Y is almost certainly
not regular).

As a consequence we obtain that

τ(X,1) =
⋂

π :Y→X

Image
(
π∗OY (dKY −π

∗(K X +1)e)→ OX
)
,

where π runs over all alterations with Y → X factoring through X ′. Alternately, one can
run π over all finite maps. If additionally X is of finite type over a perfect field, then one
can run π over all regular alterations factoring through X ′.

Actually we prove a stronger theorem allowing for triples (X,1, at ) but we do not
include it here to keep the statement simpler. Note that in characteristic zero, the same
intersection over regular alterations characterized multiplier ideals by [18] at least after
observing Remark 2.26.

Inspired by the analog with multiplier ideals [20], there has been a lot of interest in
showing that the jumping numbers of test ideals are rational and without limit points
[6–8, 10, 36, 37, 52]. At this point, we know that the F-jumping numbers are discrete
and rational for any F-finite scheme X with K X Q-Cartier. We also know discreteness
if R(−K X ) is finitely generated and X = Spec R is the spectrum of a graded ring [37].
On the other hand, we know that the jumping numbers of J (X,1, at ) are discrete and
rational if R(−K X −1) is finitely generated (see Remark 2.26). We prove the following.
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Theorem B (Theorem 3.5, Proposition 4.7). Suppose that (R,1) is a pair such that
R(−K R −1) is finitely generated. Then for any ideal a ⊆ R the F-jumping numbers of
τ(R,1, at ) are rational and without limit points.

We prove the discreteness result in two ways. First, pass to the local section
ring/symbolic Rees algebra, where the pullback of −K X −1 is Q-Cartier. We then show
that the test ideal of the symbolic Rees algebra restricts to the test ideal of the original
scheme. Alternately, in § 4, we prove the discreteness result for projective varieties by
utilizing the theory developed by the first author and Urbinati [15]. In particular, we
show a global generation result for test ideals, Theorem 4.5, which immediately implies
the test ideal result.

Another setting where the Q-Gorenstein hypothesis is used is in the study of
non-F-pure ideals. Recall that if R is F-finite, normal and Q-Gorenstein with index
not divisible by p, then it follows from [22, 29, 43] that the images of the evaluation-at-1
map

HomR(Fe
∗ R, R)→ R

stabilize for sufficiently large e. This stable image gives a canonical scheme structure to
the non-F-pure locus of a variety. We generalize this to the case that R(−K R) is finitely
generated (which includes the case where the index of −K R is divisible by p).

Theorem C (Corollary 3.4, Theorems 3.9 and 4.8). Suppose that R is an F-finite
normal domain and that B > 0 is a Q-divisor with Weil index not divisible by p. If
the anti-log-canonical algebra R(−K R − B) is finitely generated, then the image of the
evaluation-at-1 map HomR(Fe

∗ R((pe
− 1)B), R)→ R stabilizes for e sufficiently divisible.

Again we give several different proofs of this fact utilizing different strategies as above.
Finally, we also show the following theorem.

Theorem D (Theorem 6.4). Suppose that X is a normal quasi-projective variety over an
algebraically closed field of characteristic zero. Further suppose that 1 > 0 is a Q-divisor
such that R(−K X −1) is finitely generated and also suppose that a ⊆ OX is an ideal and
t > 0 is a rational number. Then

J (X,1, at )p = τ(X p,1p, a
t
p)

for p � 0.

This should be compared with [17] where the analogous result is shown under the
hypothesis that K X +1 is numerically Q-Cartier. This numerically Q-Cartier condition
is somewhat orthogonal to the finite generation of R(−K X −1). In particular, if
R(−K X −1) is finitely generated and −K X −1 is numerically Q-Cartier then it is not
difficult to see that −K X −1 is Q-Cartier; see also [12].

2. Preliminaries

In this section, we recall the basic properties that we will need of test ideals, local
section rings,1 as well as the theory of positivity for non-Q-Cartier divisors as developed

1Also called (divisorial) symbolic Rees algebras in the commutative algebra literature.
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by Urbinati and Chiecchio [15]. We conclude by stating a finite generation result for
local section rings of threefolds in positive characteristic (as a consequence of recent
breakthroughs in the MMP).

Setting 2.1. Throughout this paper, all rings will be assumed to be Noetherian, of
equal characteristic p > 0, and F-finite (which implies that they are excellent and have
dualizing complexes [22, 40]). All schemes will be assumed to be Noetherian, F-finite,
separated and have dualizing complexes. For us a variety is a separated integral scheme
of finite type over an F-finite field. For any scheme X , we use F : X → X to denote the
absolute Frobenius morphism. We also make the following universal assumption:

F !ω•X ∼= ω
•

X . (†)

This holds for all schemes of essentially finite type over an F-finite field (or even of
essentially of finite type over an F-finite local ring).

Frequently we will also consider divisors on schemes X . Whenever we talk about divisors
1 on X , we make the universal assumption that X is normal and integral. In particular,
whenever we consider a pair (R,1) or (X,1), then R or X is implicitly assumed to be
normal.

We make one remark on some non-standard notation that we use. If R is a normal
domain and D is a Weil divisor on X = Spec R, then we use R(D) to denote the fractional
ideal H0(X,OX (D)) ⊆ K (R).

2.1. Test ideals and F-singularities

We now recall the definitions and basic properties of test ideals. While test ideals were
introduced in [31], we are technically talking about the big/non-finitistic test ideal from
[30, 45]. The particular definition of the test ideal presented here can be found in
[9, Definition 9.3.8] among other places.

Definition 2.2 (Test ideals). Suppose that R is an F-finite normal domain, 1 > 0 is a
Q-divisor, a ⊆ R is a non-zero ideal sheaf and t > 0 is a real number. The test ideal

τ(X,1, at )

is the unique smallest non-zero ideal J ⊆ R such that for every e > 0 and every

φ ∈ (Fe
∗a
dpete) ·HomR(Fe

∗ R(d(pe
− 1)1e), R) ⊆ HomR(Fe

∗ R, R)

we have that φ(Fe
∗ J ) ⊆ J .

If 1 = 0 then we leave it out writing τ(X, at ). If a = R or t = 0 then we write τ(R,1).

It is not obvious that the test ideal exists. However, it can be shown that there exists
c ∈ R such that for each 0 6= d ∈ R, we have that c ∈

∑
e>0

∑
φ φ(F

e
∗ (d R)) where φ varies

over (Fe
∗a
dt (pe

−1)e) ·HomR(Fe
∗ R(d(pe

− 1)1e), R); see [49, Lemma 3.21]. This element c is
then called a (big) (R,1, at )-test element. We then immediately obtain the following
construction of the test ideal.
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Lemma 2.3. With notation as in Definition 2.2, if c is a big (R,1, at )-test element, then

τ(R,1, at ) =
∑
e>0

∑
φ

φ(Fe
∗ (cR)),

where again φ ranges over elements of (Fe
∗a
dt (pe

−1)e) ·HomR(Fe
∗ R(d(pe

− 1)1e), R).
One may also range φ over elements of (Fe

∗a
dtpe
e) ·HomR(Fe

∗ R(d(pe
− 1)1e), R).

Alternately, one may replace e > 0 with e � 0.
Finally, we also have that for any sufficiently large Cartier divisor D > 0 that

τ(R,1, at ) =
∑
e>e0

Tre Fe
∗

(
adtpe

e
·OX (K X − pe(K X +1)− D)

)
.

Proof. For the first statement, it is easy to see that c is contained in any ideal satisfying
the condition φ(Fe

∗ J ) ⊆ J for all φ ∈ (Fe
∗a
dt (pe

−1)e) ·HomR(Fe
∗ R(d(pe

− 1)1e), R). Hence
so is the sum. Thus the sum is the smallest such ideal.

For the second statement replacing adt (p
e
−1)e with adtpe

e obviously we have the τ ⊇
∑

containment. Notice that if c is a test element, then so is dc for any 0 6= d ∈ R. Hence
one can form the original sum with cd for some d so that dadt (p

e
−1)e
⊆ adtpe

e for all e.
The inclusion τ ⊆

∑
follows.

For the e � 0 statement, notice that if J is the sum for e � 0, then we still have
φ(Fe

∗ J ) ⊆ J . The final characterization of the test ideal follows immediately from the
fact that

adtpe
e
·OX (K X − pe(K X +1)− divX (c)) = adtpe

e
·OX (−D) ·H omOX (F

e
∗OX (bpe1c),OX ).

We notice that any difference coming from the fact that we round down instead of round
up can be absorbed into the difference between D and divX (c).

We also recall some properties of the test ideal for later use.

Lemma 2.4. Suppose that (R,1, at ) is as in Definition 2.2. Then:

(a) The formation of τ(R,1, at ) commutes with localization and so one can define
τ(X,1, at ) for schemes as well.

(b) If s > t, then τ(R,1, as) ⊆ τ(R,1, at ).

(c) For any t > 0, there exists an ε > 0 so that if s ∈ [t, t + ε), then τ(X,1, at ) =

τ(X,1, as).

(d) If 0 6= f ∈ R and H = V ( f ) is the corresponding Cartier divisor, then

f τ(X,1, at ) = τ(X,1, at )⊗OX (−H) = τ(X,1+ H, at ).

Proof. Part (a) follows immediately from Lemma 2.3. Part (d) follows similarly (use the
projection formula). Part (b) is obvious also from Lemma 2.3.

For part (c), this is [9, Exercise 9.12]. Let us quickly sketch the proof since we
do not know of a reference where this is addressed in full generality. Choose c 6=
0, a test element. It is easy to choose c that works for all s ∈ [t, t + 1]. We then
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write τ(R,1, at ) =
∑

e>0
∑
φ φ(F

e
∗ (cd R)) for d, some element in a. This sum is a finite

sum, say for e = 0 to e = m. Let ε = 1
pm . Then

τ(R,1, at ) =

m∑
e=0

∑
φ

φ(Fe
∗ (cd R)) =

m∑
e=0

∑
ψ

ψ(Fe
∗ (cdadtpe

e)) ⊆

m∑
e=0

∑
ψ

ψ(Fe
∗ (ca

dtpe
e+1)),

where ψ now runs over HomR(Fe
∗ R(d(pe

− 1)1e), R).
We then see that dt (pe

− 1)e+ 1 > d(t + ε)pe
e for e 6 m and so

τ(R,1, at ) ⊆

m∑
e=0

∑
ψ

ψ(Fe
∗ (ca

d(t+ε)pe
e)) ⊆ τ(R,1, at+ε).

The other containment was handled in (b).

Finally, we make one more definition related to test ideals.

Definition 2.5. A triple (X,1, at ) as in Definition 2.2 is called strongly F-regular if
τ(R,1, at ) = R.

We briefly also recall some formalities of p−e-linear maps and connections with divisors.

Lemma 2.6. Suppose that X = Spec R is an F-finite normal scheme.

(a) There is a bijection between effective divisors 1 such that (pe
− 1)(K R +1) ∼ 0

and elements φ of HomR(Fe
∗ R, R) modulo pre-multiplication by units. We use the

following notation for this correspondence:

φ 7→ 1φ,

1 7→ φ1.

(b) If φ ∈ HomR(Fe
∗ R, R) corresponds to a Q-divisor 1φ, then the map

ψ( ) = φ(Fe
∗ (d · ))

corresponds to the divisor 1ψ = 1φ +
1

pe−1 div(d).

(c) If φ ∈ HomR(Fe
∗ R, R) and φn

:= φ ◦ (Fe
∗φ) ◦ · · · ◦ (F

(n−1)e
∗ ) : Fne

∗ R→ R, then
1φn = 1φ.

(d) Using the bijection of (a), if 1 > 0 is any effective R-divisor, then the elements φ of
HomR(Fe

∗ R(d(pe
− 1)1e) ⊆ HomR(Fe

∗ R, R) (modulo multiplication by units) are in
bijection with divisors 1φ with 1φ > 1 and of course with (pe

− 1)(K R +1) ∼ 0.

Proof. (a) is just [48, Theorem 3.13]. (b) is a straightforward exercise; see [9, Exercise
4.11]. (c) is [48, Theorem 3.11(e)]. (d) is also not difficult to check; see for instance [51,
Definition 6.8].

2.2. Local section rings of divisors/symbolic Rees algebras

Suppose that X is an F-finite normal integral Noetherian scheme and 0 is a Q-divisor
on X . Then one can form

S = R(X, 0) =
⊕

i∈Z>0

OX (bi0c).
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Additionally for any integer n > 0 we use S(n) := R(X, n0) to denote the nth Veronese

subalgebra. Note that there is a canonical map OX → S and dually a map Spec S
κ
−→ X of

schemes (note S may not be Noetherian). If S (or equivalently Y = Spec S) is Noetherian,

then we also have Proj S
µ
−→ X . These maps are very well behaved outside of codimension

> 2. We recall that the map Proj S
µ
−→ X is called the Q-Cartierization of 0. It is a

small projective morphism Y
f
−→ X such that the strict transform f −1

∗ 0 is Q-Cartier and
f -ample. Moreover, such a map exists if and only if S is Noetherian [39, Lemma 6.2].
When S is finitely generated, both Spec S and Proj S are normal; see for instance [19]
and also see [58].

Lemma 2.7. Suppose that S is finitely generated and W ⊆ X is a closed subset of
codimension > 2. Then κ−1W and µ−1W are also of codimension > 2 in Spec S and
Proj S respectively. Additionally µ is an isomorphism outside a closed codimension > 2
subset of X and if 0 is integral, then κ is an A1-bundle outside a set of codimension 2.

As a consequence, if D is any Q-divisor on X , then we have canonical pullbacks κ∗D
and µ∗D.

Proof. Since S is a symbolic Rees algebra (of a module of rank 1), the map µ : Proj S→ X
is small [39, Lemma 6.2]. The case for κ can be verified locally on X .

Let U = Spec R ⊆ X , S′ = S
∣∣
U , and I ⊆ R be the ideal defining W in U . Then

k−1U = Spec S and µ−1U = Proj S. The map µ is small; thus, µ−1W has codimension > 2.
Therefore, dim Proj(S′/S′ · I )6 dim Proj S′− 2. However, dim(S′/S′ · I )= Proj(S′/S′ · I )+ 1
and dim S′= dim Proj S′+ 1. Hence, dim(S′/S′ · I ) 6 dim S′− 2′, that is, codim κ−1W > 2.

The fact that κ is an A1-bundle, at least outside a set of codimension 2, follows
immediately from the fact that in that case, 0 is an integral Cartier divisor and so
the section ring S looks locally like OX [t] outside a set of codimension 2.

Remark 2.8. When X is separated, the pullback µ∗0 coincides with the pullback of de
Fernex and Hacon, [18]; see Remark 2.12.

We are very interested in proving that various section rings are finitely generated and
so recall the following.

Lemma 2.9. With notation as defined at the start of § 2.2:

(a) S is finitely generated if and only if S(n) is finitely generated for some (equivalently
any) n > 0.

(b) Suppose that g : Y → X is a finite dominant map from another normal integral
Noetherian scheme Y . Let T = R(Y, g∗0). Then T is finitely generated if S is
finitely generated.

Proof. Part (a) is exactly [23, Lemma 2.4] (although it can also be found in numerous
other sources). For (b) we do not know a good reference but we sketch a proof here. By
(a), we may assume that 0 is integral. It is also harmless to assume that X = Spec A is
affine and hence so is Y = Spec B. Then we can pass to the category of commutative rings
so that S and T are actually rings (and not sheaves of rings). In particular, we suppress
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all g∗ notation that we might otherwise need. We have the diagram

A //

��

B

��

S // T

First choose a single element c ∈ A so that S[c−1
] ∼= A[c−1, t] and T [c−1

] = B[c−1, t]
(here we identify the ts). It follows that S[c−1

] ⊆ T [c−1
] is finite and hence integral and

K (S)→ K (T ) is a finite extension as well. Let T ′ be the integral closure of S inside T .
We want to show that T = T ′, which will complete the proof.

Recall we already assumed that 0 is integral. Let W ⊆ X be a closed set of codimension
2 outside of which 0 is Cartier. Consider the functor H0(X \W, ) applied to all of
the rings (or sheaves of rings) involved. As T is a direct sum of reflexive OY -modules,
H0(X \W, T ) = H0(Y \ g−1(W ), T ) is just the global sections of T by Hartog’s lemma for
reflexive sheaves [28]. Thus H0(X \W, T ) is identified with T since X and Y are affine.

On the other hand, κ−1W is a codimension > 2 subset of Spec S, outside of which T
and T ′ obviously agree. Hence H0(X \W, T ) = H0(X \W, T ′) = H0(Spec S \ κ−1W, T ′).
But T ′ is normal and so we also have that H0(Spec S \ κ−1W, T ′) = T ′. We have just
shown that T = T ′ as desired.

We also need to understand the canonical divisors of Spec S and Proj S.

Lemma 2.10. Continuing with notation from the start of § 2.2, assuming that S is finitely
generated, then KProj S ∼ µ

∗K X . If additionally, 0 is a Weil divisor then we have that

KSpec S ∼ κ
∗K X and κ∗0 ∼ 0. In particular, if 0 = −K X , then KSpec S ∼ 0 and so S is

quasi-Gorenstein.2

Proof. Recall that κ is an A1-bundle outside a set of codimension 2 and hence κ∗ makes
sense. First let us show that κ∗0 really is linearly equivalent to zero. Note if 0 is a Weil
divisor, then OSpec S(κ

∗0) is just OSpec S[1] as a graded OSpec S-module. Since this is

abstractly isomorphic to OSpec S this proves that κ∗0 ∼ 0 as claimed.

The computation of κ∗K X can be found in [23, Theorem 4.5] although they write
KSpec S ∼ κ

∗K X + κ
∗0. This is not a contradiction since κ∗0 ∼ 0. Indeed, the +κ∗0

term just gives the canonical module a different grading. Alternately, instead of citing
[23, Theorem 4.5], note that κ is an A1-bundle outside a codimension-2 subset of the
base.

The initial statement that KProj S = µ
∗K X is obvious since µ is small (or it follows

from what we have already done on Spec S).

2.3. Positivity for non-Q-Cartier divisors

In this section, we will recall some definitions and results of [15]. Let us recall that,
if f : Y → X is a morphism of schemes, a coherent sheaf F on Y is relatively globally
generated, or f -globally generated, if the natural map f ∗ f∗F → F is surjective. If Y is

2Also called 1-Gorenstein.
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a normal scheme and D is a Weil divisor on Y , it might be that, for example, OY (D)
is f -globally generated, but OY (2D) is not. To account for such pathologies we have to
work asymptotically: we will say that a Q-divisor D is relatively asymptotically globally
generated, or f -agg, if OY (m D) is f -globally generated for all positive m sufficiently
divisible.

Let f : Y → X be a projective morphism of normal Noetherian schemes. A Q-Weil
divisor D on X is f -nef if, for every f -ample Q-Cartier Q-divisor A on Y , D+ A is
f -agg; if X = Spec k, we will simply say that D is nef [15, Definition 2.4]. The Q-divisor
D is f -ample if, for every ample Q-Cartier Q-divisor A on Y , there exists b > 0 such
that bD− A is f -nef and the algebra of local sections R(X, D) is finitely generated;
if X = Spec k, we will say that D is ample [15, Definition 2.14]. Notice that when D
is Q-Cartier, these notions coincide with the usual ones of nefness and amplitude. We
remark that amplitude for Weil divisors is given by two conditions: a positivity one –
which is based on the fact that the regular ample cone is the interior of the nef cone –
and a technical one – on the finite generation of the algebra of local sections. These two
conditions are independent; in particular, there are examples of Weil divisors A satisfying
the positivity condition, but with algebra of local sections R(X, A) not finitely generated
[15, Example 2.20].

These notions of positivity behave very much like in the Q-Cartier world: for example,
if A is an ample Weil Q-divisor and D is a globally generated Q-Cartier divisor, D+ A
is ample [15, Lemma 2.18(i)].

Lemma 2.11. Let E be a Q-divisor on a normal Noetherian projective scheme X over
a field k. If the algebra of local section R(X, E) is finitely generated then there exists a
Cartier divisor L such that L + E is an ample Weil divisor.

Proof. Notice that n(L + E) is ample for some/every n > 0, if and only if L + E is ample
[15, Lemma 2.18(b)]. So, without loss of generality, we can assume that R(X, E) is
generated in degree 1 and that E is integral. Let H be an ample Cartier divisor. By
definition, there exists m > 0 such that OX (m H + E) is globally generated. There is a
surjection

OX (E)⊗n � OX (E)·n = OX (nE),

where the last equality is a consequence of the assumption on the finite generation
of the algebra of local sections. Thus, for each n > 0, OX (n(m H + E)) is globally
generated, that is, m H + E is asymptotically globally generated. Moreover, since H is
Cartier, R(X,m H + E) is also finitely generated. By [15, Lemma 2.18(i)], m H + E + H =
(m+ 1)H + E is ample.

The main characterization of the above positivity is in terms of their Q-Cartierization.
Let X be a normal projective Noetherian scheme over an algebraically closed field k, and

let D be a Q-divisor with S = R(X, D) finitely generated. Let Proj S
µ
−→ X . Notice that

D′ = µ−1
∗ D is Q-Cartier. Then D is nef/ample if and only if so is D′ [15, Theorems 3.3

and 3.6].
Using this characterization, Urbinati and the first author proved Fujita vanishing for

locally free sheaves [15, Corollary 4.2]. Let X be a normal projective Noetherian scheme
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over an algebraically closed field k, let A be an ample Q-divisor on X and let F be a
locally free coherent sheaf on X . There exists an integer m(A,F ) such that

H i (X,F ⊗OX (m A+ D)) = 0

for all positive m divisible by m(A,F ), all nef Cartier divisors D and all i > 0.

2.4. Pullback of Weil divisors

Let f : Y → X be a proper birational morphism of normal Noetherian separated schemes.
In [18], de Fernex and Hacon introduced a way of pulling back a Weil divisor on X via f .

For any Weil divisor D on X , the \-pullback of D along f , denoted by f \D, is the Weil
divisor on Y such that

OY (− f \D) = (OX (−D) ·OY )
∨∨ (2.11.1)

[18, Definition 2.6]. The negative sign appearing is so that, when D is effective, we are
pulling back the ideal defining it as a subscheme. The pullback of D along f is

f ∗D = lim inf
m

f \(m D)
m

= lim
m

f \(m!D)
m!

coefficient-wise.

The above is well defined; the infimum limit over m is a limit over m! and an R-divisor
[18, Lemma 2.8 and Definition 2.9]. Moreover, the above definition of f ∗ coincides with
the usual one whenever D is Q-Cartier [18, Proposition 2.10].

Remark 2.12. If f : Y → X is a small, projective birational morphism, then f ∗D =
f −1
∗ D.

This notion of pullback is not quite functorial, unfortunately. Let f : Y → X and
g : V → Y be two birational morphisms of normal Noetherian separated schemes, and D
be a Weil divisor on X . The divisor ( f g)\(D)− g\ f \(D) is effective and g-exceptional.
Moreover, if OX (−D) ·OY is an invertible sheaf, ( f g)\(D) = g\ f \(D) [18, Lemma 2.7].

Lemma 2.13. Let X be a normal Noetherian scheme. Let D be a Weil divisor on X ,

such that S = R(X, D) is finitely generated; let X ′ = Proj S
µ
−→ X and let D′ := µ−1

∗ D.
Then OX (m D) ·OX ′ = OX ′(m D′) for all positive m sufficiently divisible. In particular,
OX (m D) ·OX ′ is reflexive for m sufficiently divisible.

Proof. Since D′ is µ-ample (see [39, Lemma 6.2]), OY ′(m D′) is µ-globally generated for
all positive m sufficiently divisible, that is, the natural map

µ∗µ∗OX ′(m D′)→ OX ′(m D′)

is surjective for positive m sufficiently divisible. Since µ is small, µ∗OX ′(m D′) = OX (m D)
for all integers m (this is well known; for a proof see [14, Lemma 2.8]). Thus, for all positive
m sufficiently divisible, we have a surjection

µ∗OX (m D)� OX ′(m D′).
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Notice that OX ′ ·OX (m D) is isomorphic to the quotient of µ∗OX (m D) by its torsion
[27, Caution II.7.12.2]. Since OX ′(m D′) is torsion-free, the above surjection induces a
surjection

OX ′ ·OX (m D)� OX ′(m D′).

On the other hand, since µ is small, for all integers m, OX ′(m D′) =
(
OX ′ ·OX (m D)

)∨∨
;

since OX ′ ·OX (m D) is torsion-free, we have a natural inclusion

OX ′ ·OX (m D) ↪→ OX ′(m D′).

Lemma 2.14. Let X be a normal Noetherian separated scheme. Let D be a Weil divisor on

X , such that R(X,−D) is finitely generated, and let Proj R(X,−D)
µ
−→ X . Let f : Y → X

be any birational morphism factoring as Y
g
−→ Proj R(X,−D)

µ
−→ X , with Y a normal

Noetherian separated scheme. Then, for any positive m sufficiently divisible, f \(m D) =
g\µ\(m D) = g∗µ\(m D). Therefore, f ∗(D) = g∗µ∗(D).

Proof. This is an application of Lemma 2.13, which we now explain. Consider the
following chain of equalities. The first and last equalities are by definition and the third
is by Lemma 2.13 since m is sufficiently divisible:

OY (− f \m D) = OX (−m D) ·OY

= OX (−m D) ·OX ′ ·OY

= OX ′(−µ
\m D) ·OY

= OY (−g\µ\m D).

This proves the first statement. The final statement is a consequence of the fact that
1
mµ

\m D
= µ∗(D) for m sufficiently divisible by our finite generation hypothesis.

Lemma 2.15. Suppose we have a composition of birational morphisms f ′ : Y ′
g
−→ Y

f
−→ X

between normal varieties and D is a Weil on X , then f ∗D = g∗ f ′∗D.

Proof. To check the identity it suffices to show ordE ( f ∗D) = ordE (g∗ f ′∗D) for each prime
divisor E on Y . The generic point of each prime divisor E on Y gives rise to a DVR
(AE ,mE ). For any sufficiently divisible positive integer m, set νE (m D) the power of
mE agreeing with OX (−m D)AE ; so by definition ordE ( f ∗D) = lim νE (m D)/m. A similar
calculation computes f ′∗D on Y ′. Finally, as g is birational g∗ f ′∗D keeps the same
coefficients on divisors that are not contracted by g; thus, ordE ( f ∗D) = ordE (g∗ f ′∗D)
for each prime divisor E on Y , as desired.

We define multiplier ideals in a way that is a slight generalization of the one in [18].

Definition 2.16. Let X be a normal quasi-projective variety over an algebraically closed
field of characteristic zero,1 an R-Weil divisor, and I =

∏
J ak

k a formal R-linear product
of non-zero fractional ideal sheaves. The collection of the data of X , 1 and I will be called
a triple, and it will be denoted by (X,1, I ). We say that the triple is effective if 1 > 0,
I =

∏
J ak

k , where all the Jks are ideals and ak > 0 for all k.
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Remark 2.17. Notice that we do not assume that K X +1 is R-Cartier.

Remark 2.18. A triple is effective if and only if (X,1+ I ) is an effective pair in the sense
of [18, Definition 4.3].

Definition 2.19. Let (X,1, I ) be an effective triple and let m be a positive integer. Let
f : Y → X be a log resolution of the pair (X,OX (−m(K X +1))+ I ) [18, Definition 4.1
and Theorem 4.2]. Let I =

∏
J ak

k be a formal product, and OY ·Jk = OX (−Gk). We
define the sheaf

Jm(X,1, I ) := f∗OY

(⌈
KY −

1
m

f \(m(K X +1))−
∑

ak Gk

⌉)
.

Remark 2.20. The reason for this new notation is that our notation is slightly more
general than the one of [18]. In particular, de Fernex and Hacon did not include a
boundary divisor term.

This might cause some confusion since the reader might think one could absorb the
divisor 1 into the ideal I (indeed, what is a divisor but a formal combination of height
1 ideals). Unfortunately, this does not yield the same object (and in particular, does not
yield the usual multiplier ideal even when K X +1 is Q-Cartier). The difference is that
asymptotics are already built into Q-Cartier K X +1 whereas no asymptotics are built
into I in [18].

In particular, let I (1) denote the formal product of ideals corresponding to 1 in the
obvious way. Then in general, Jm(X,1, I ) ⊇ Jm(X, I ·I (1)); we have

Jm(X, I ·I (1)) = f∗OY

(⌈
KY −

1
m

f \(mK X )− f \1−
∑

ak Gk

⌉)
⊆ f∗OY

(⌈
KY −

1
m

f \(mK X )−
1
m

f \(m1)−
∑

ak Gk

⌉)
⊆ f∗OY

(⌈
KY −

1
m

f \(mK X +m1)−
∑

ak Gk

⌉)
= Jm(X,1, I ).

Here the first containment is [18, Lemma 2.8] and the second is a consequence of [18,
Remark 2.11].

Lemma 2.21. Let (X,1, I ) be an effective triple. The sheaf Jm(X,1, I ) is a (coherent)
sheaf of ideals on X , and its definition is independent of the choice of f .

Proof. The proof proceeds as in the proof of [18, 4.4].

Lemma 2.22. Let (X,1, I ) be an effective triple. The set of ideal sheaves {Jm(X,
1, I )}m>1 has a unique maximal element.

Proof. For any positive integers m, q, Jm(X,1, I ) ⊆ Jmq(X,1, I ) by [18, Remark 3.3]
(by the previous lemma the two ideals can be computed on a common resolution). The
unique maximal ideal exists by Noetherianity.
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Definition 2.23. Let (X,1, I ) be an effective triple. We will call the unique maximal
element of {Jm(X,1, I )}m>1 the multiplier ideal of the triple (X,1, I ), and we will
denote it by J (X,1, I ).

Remark 2.24. In the case when 1 = 0 we write J (X, I ) = J (X, 0, I ) and then our
definition agrees with the one in [18].

Corollary 2.25. Working in characteristic zero, suppose R(−K X −1) is finitely generated
and X ′ = Proj R(−K X −1) just as before. Let a be any ideal sheaf on X ; then we have
J (X,1, at ) = µ∗J (X ′, µ∗1, (a ·OX ′)

t ).

Proof. Let π : ProjX R(X, D) = X ′→ X and 1′ := π−1
∗ 1. It is enough to show that, for

every m satisfying the result of Lemma 2.13,

π∗J ((X ′,1′); t I ·OX ′) = Jm(X,1, t I ).

Let f : Y → X be a log resolution of (X,m1+ I ) factoring through X ′. Let I =
∏

J ak
k

and let Jk ·OY = O(−Gk); since OY · I = OY ·OX ′ · I , f is a log resolution of ((X ′,1′); I ).
Let g : Y → X ′. Since (X ′,1′) is a log pair, the multiplier ideal J ((X ′,1′); t I ·OX ′) is

J ((X ′,1′); t I ·OX ′) = g∗OY (dKY − g∗(K X ′ +1
′)−

∑
tak Gke).

On the other hand, for each m > 1, the multiplier ideal Jm(X,1; t I ) is

Jm(X,1, t I ) = f∗OY

(⌈
KY −

1
m

f \(m(K X +1))−
∑

tak Gk

⌉)
.

For each m satisfying OX (m(−K X −1)) ·OX ′ = OX ′(m(−K X ′ −1
′)), by Lemma 2.14,

f \(m(K X +1)) = g∗π \(m(K X +1)) = g∗(m(K X ′ +1
′)) = mg∗(K X ′ +1

′).

Therefore, for each m satisfying OX (m(−K X −1)) ·OX ′ = OX ′(m(−K X ′ −1
′)),

Jm(X,1, t I ) = f∗OY

(⌈
KY −

1
m

f \(m(K X +1))−
∑

tak Gk

⌉)
= f∗OY

(⌈
KY − g∗(K X ′ +1

′)−
∑

tak Gk

⌉)
= π∗g∗OY

(⌈
KY − g∗(K X ′ +1

′)−
∑

tak Gk

⌉)
= π∗J ((X ′,1′); t I ·OX ′).

Remark 2.26. With the assumptions of Corollary 2.25, it follows immediately that the
jumping numbers of J (X,1, at ) are rational and without limit points. Recall that the
jumping numbers are real numbers t0 > 0 such that J (X,1, at0−ε) 6= J (X,1, at0) for
any ε > 0. It also follows that

J (X,1, at ) =
⋂

π :Y→X

Image
(
π∗OY (dKY −π

∗(K X +1)− tGe)
TrY/X
−−−→ OX

)
,

where π runs over all alterations factoring through µ : X ′→ X such that aOY = OY (−G)
is invertible.
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2.5. Finite generation of local section rings for threefolds in characteristic

p > 5

Of course, one might ask how often it even happens that a section ring R(X, D) is finitely
generated. For (pseudo-)rational surface singularities of any characteristic, it is known
that D is always locally torsion in the divisor class group (see [42, Theorem 17.4]), and
so obviously R(D) is finitely generated. However, for threefolds, rational singularities are
not enough by an example of Cutkosky [16], even if they are additionally log canonical.
Of course, in characteristic zero, the finite generation of these section rings holds for KLT
X of any dimension by the minimal model program [38, Theorem 92] (and of course is
closely linked with the existence of flips).

Using the recent breakthroughs on the minimal model program for threefolds in
characteristic p > 5 [3, 5, 13, 24, 59], one can prove finite generation of R(X, D) in some
important cases (again in dimension 3, characteristic p > 5). The proof is essentially the
same as it is in characteristic zero (see [38, Exercises 108 and 109]), but we reproduce it
here for the reader’s convenience.

Theorem 2.27. Let (X,1) be a KLT pair of dimension 3 with K X +1 Q-Cartier over an
algebraically closed field k of char p > 5. Then, for any Q-divisor D, the algebra R(X, D)
is finitely generated.

Proof. Let φ : X̂ → X be a small Q-factorialization of X , which exists by [3, Theorem
1.6]. Set 1̂ and D̂ to be the strict transforms of 1 and D on X̂ . Then we notice that
(X̂ , 1̂+ (1/m)D̂) is KLT for m � 0. By [3, Theorem 1.3], since K X̂ + 1̂+ (1/m)D̂ is big
over X , we see that ⊕

n>0

φ∗OX̂ (n(K X̂ + 1̂+ (1/m)D̂))

is finitely generated. Since φ is small, this implies that⊕
n>0

OX (n(K X +1+ (1/m)D))

is finitely generated as well (since the algebras are the same). However, by taking a high
Veronese, and recalling that K X +1 is Q-Cartier (and so locally, contributes nothing to
finite generation) we conclude that

⊕
n>0 OX (nD) is finitely generated as desired.

Of course this also implies that strongly F-regular pairs have finitely generated local
section algebras since they are always KLT for an appropriate boundary by [50].

3. Stabilization, discreteness and rationality via Rees algebras

In this section, we aim to prove discreteness and rationality of jumping numbers of test
ideals as well as Hartshorne–Speiser–Lyubeznik–Gabber-type stabilization results under
the hypothesis that the anti-canonical algebra S = R(−K R) is finitely generated. We first
notice that we can extend p−e-linear maps on R to p−e-linear maps on S. Note that this
argument is substantially simpler than what the fourth author and K. Tucker did to
obtain similar results for finite maps in [51].
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Lemma 3.1. Suppose that R is an F-finite normal domain and D is a Weil divisor on
Spec R with associated algebra S := R(D). Then for any R-linear map φ : Fe

∗ R→ R we
have an induced S-linear map φS : Fe

∗ S→ S and a commutative diagram

Fe
∗ R� _

��

φ
// R� _

��

Fe
∗ S

φS //

Fe
∗ρ

��

S

ρ

��

Fe
∗ R

φ
// R

where ρ is the projection map onto degree zero S→ R.

Proof. First note that we give Fe
∗ S a Z[ 1

pe ]-graded structure so that our induced map
φS will be homogeneous. The idea is then simple, given an integer i > 0, [Fe

∗ S]i =
Fe
∗ R(i pe D). We want to show that

φ(Fe
∗ R(i pe D)) ⊆ R(i D). (3.1.1)

But this is obvious since it holds in codimension 1 and all the sheaves are reflexive. Finally,
we simply have φS send [Fe

∗ S]i/pe to zero if i is not divisible by pe. This completes the
proof.

In fact, it is not difficult to see that every homogeneous p−e-linear map on S comes
from R in this way.

Lemma 3.2. Suppose R is an F-finite normal domain, D a Weil divisor on Spec R, and
S = R(D); suppose we have a homogeneous map φS : Fe

∗ S→ S (again we give Fe
∗ S the

Z[1/pe
]-grading). Then φS is induced from φS|R = φ : Fe

∗ R→ R as in Lemma 3.1.

Proof. Choose Fe
∗ z ∈ [Fe

∗ S]i = Fe
∗ R(pei D), invert an element u ∈ S0 = R to make D

Cartier and principal and then z = ( f/um)y pe
, where y generates R(i D)[u−1

] and the
element f/um

∈ R[u−1
] ⊆ S[u−1

] is in degree zero in S[u−1
]. We see that

umpe
z = f um(pe

−1)y pe
∈ Fe
∗ R(pei D).

Hence umφS(Fe
∗ z) = φS(Fe

∗umpe
z) = φS(Fe

∗ f um(pe
−1)y pe

) = yφS(Fe
∗ f um(pe

−1)). The point
is that we can choose the same y regardless of the choice of z. Hence φS is completely
determined by φS|R .

Lemma 3.1 is key in the following proposition which lets us relate p−e-linear maps in
general on R and S.

Proposition 3.3. Suppose that R is an F-finite normal domain, D is a Weil divisor, and
the algebra S = R(D) is finitely generated (and in particular an F-finite Noetherian ring).
Further suppose that G is an effective Weil divisor on Spec R with pullback h∗G = GS on
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Spec S. Then we have a commutative diagram

HomS(Fe
∗ S(GS), S) �

�
//

ν

��

HomS(Fe
∗ S, S)

ES=eval@1
//

γ

��

S

ρ

��

HomR(Fe
∗ R(G), R) �

�
// HomR(Fe

∗ R, R)
ER=eval@1

// R.

Here the map ρ is a projection onto the 0th coordinate [S]0 = R and γ is the map
that restricts φ ∈ HomS(Fe

∗ S, S) to Fe
∗ R = [Fe

∗ S]0 and then projects onto [S]0 = R.
Furthermore the maps γ and ν are surjective.

Proof. We first handle the commutativity. Given ψ ∈ HomS(Fe
∗ S, S), we see that

ρ(ES(ψ)) = ρ(ψ(1)). On the other hand, ER(γ (ψ)) = ρ(ψ(1)) as well. Hence we have
commutativity of the right square. The commutativity of the left square is obvious since
GS is pulled back from Spec R.

To see that γ is surjective, for any φ ∈ HomR(Fe
∗ R, R) construct φS as in Lemma 3.1.

Obviously γ (φS) = φ. Similarly, Lemma 3.1 implies the surjectivity of the map ν.

As an immediate corollary we obtain a stabilization result similar to
Hartshorne–Speiser–Lyubeznik–Gabber.

Corollary 3.4. Suppose that R is an F-finite normal domain and that B > 0 is a Weil
divisor. If the anti-log-canonical algebra R(−K R − B) is finitely generated, then the image
of the evaluation-at-1 map HomR(Fe

∗ R((pe
− 1)B), R)→ R stabilizes for e � 0.

Proof. Set S = R(−K R − B) and consider the diagram of Proposition 3.3. Since KS + h∗B
is Cartier, we see that the images of

Ee
S : HomS(Fe

∗ S((pe
− 1)h∗B), S)

eval@1
−−−−→ S

stabilize; see for instance [21]. But then since ν, as in Proposition 3.3, surjects, we see
that the image of

HomS(Fe
∗ S((pe

− 1)B), R)
ν
−→ Fe

∗ HomR(Fe
∗ R((pe

− 1)B), R)
eval@1
−−−−→ R (3.4.1)

coincides with that of HomR(Fe
∗ R((pe

− 1)B), R)
Ee

R
−→ R. But the image of (3.4.1) is the

same as the image of

HomS(Fe
∗ S((pe

− 1)h∗B), S)
Ee

S
−→ S

ρ
−→ R.

However, for e � 0, the Ee
S have a stable image as we have already observed and the

result follows.

Later in Theorem 3.9, we will obtain the same result for Q-divisors whose Weil index
is not divisible by p. For now though, we move on to discreteness and rationality of
F-jumping numbers, generalizing [37, Theorem 6.4] from the case of a graded ring R.

Theorem 3.5. Suppose that R is a normal domain and 1 > 0 is an effective Q-divisor
such that R(−K R −1) is finitely generated. Then for any ideal a ⊆ R the F-jumping
numbers of τ(R,1, at ) are rational and without limit points.
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Proof. First let R ⊆ R′ be a separable extension of normal F-finite domains

corresponding to a map of schemes Spec R′ = X ′
ν
−→ X = Spec R such that ν∗1 is an

integral divisor (this is easy, the idea is to simply take roots of generators of DVRs;
if one has to take a pth root, use Artin–Schreyer-type equations – see [11, Lemma
4.5]). Let Tr : K (X ′)→ K (X) be the trace map and then recall that Tr

(
ν∗τ(X ′, ν∗1−

Ramν, (aR′)t )
)
= τ(X,1, at ) by the main result of [51]. It immediately follows that if

the F-jumping numbers of test ideal τ(X ′, ν∗1−Ramν, a
t ) are discrete and rational, so

are the F-jumping numbers of τ(X,1, at ). Additionally, by adding a Cartier divisor H
to 1, we can assume that ν∗1−Ramν is effective since τ(X,1+ H, at ) = τ(X,1, at )⊗

OX (−H) by Lemma 2.4(d). Finally, note that

−K R′ − ν
∗1+Ramν = ν

∗(−K R −1)

and so R(−K R′ − ν
∗1+Ramν) is finitely generated by Lemma 2.9. The upshot of this

entire paragraph is of course that we may now without loss of generality assume that 1
is an integral effective divisor.

Next choose c ∈ R that is a test element for both (R,1) and S := R(−K R −1). The
choice of such a c is easy; simply choose a test element so that additionally −K R −1

is Cartier on X \ V (c). Away from V (c), S looks locally like R[t], which will certainly
be strongly F-regular over wherever R is strongly F-regular [33]. Let H be the Cartier
divisor corresponding to c and consider the commutative diagram.

(Fe
∗ (aS)dt (p

e
−1)e) ·HomS(Fe

∗ S(h∗(pe
− 1)1+ h∗H), S) �

�
//

ν

��

HomS(Fe
∗ S, S) eval@1 //

γ

��

S

ρ

��

(Fe
∗a
dt (pe

−1)e) ·HomR(Fe
∗ R((pe

− 1)1+ H), R) �
�

// HomR(Fe
∗ R, R)

eval@1
// R.

The sum over e > 0 of the images of the bottom rows is equal to τ(R,1, at ) and the
sum over e > 0 of the images of the top row is equal to τ(S, h∗1, (aS)t ). Since ν surjects
by Proposition 3.3, we immediately see that ρ(τ(S, h∗1, (aS)t )) = τ(R,1, at ). But now
observe that −KS − h∗1 = h∗(−KS −1) ∼ 0 by Lemma 2.10. But then the F-jumping
numbers of τ(S, h∗1, (aS)t ) are discrete and rational by [52]. The result follows.

We immediately obtain the following using the aforementioned breakthroughs in the
MMP.

Corollary 3.6. Suppose that R is strongly F-regular, of dimension 3, and of finite type
over an algebraically closed field of characteristic p > 5. Then the F-jumping numbers
τ(R,1, at ) are rational and without limit points for any choice of Q-divisor 1 and ideal a.

Proof. Since R is strongly F-regular, there exists a divisor 0 > 0 so that K R +0 is
Q-Cartier and so that (R, 0) is KLT by [50]. The result then follows from Theorem 2.27
and Theorem 3.5.

Of course, we also obtain discreteness and rationality of F-jumping numbers τ(R,1, at )

for any R, a three-dimensional ring of finite type over an algebraically closed field k of
characteristic p > 5 such that there exists a 0 > 0 so that (R, 0) is KLT.
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3.1. A more general Hartshorne–Speiser-type result

In Corollary 3.4, we used a compatibility of the formation of Rees algebras to prove
that the images of HomR(Fe

∗ R, R)→ R stabilize for large e if S := R(−K R) is finitely
generated. In this short section, we generalize this result to the case of Q-divisors, at
least whose Weil index is not divisible by p. As an alternate strategy, one could try
to prove compatibilities analogous to Proposition 3.3 for Rees algebras of Q-divisors.
Unfortunately this gets quite messy. Instead we take a different approach utilizing Proj S.
We first prove the result for Q-Gorenstein varieties and then we handle the finitely
generated case via the small map µ : X ′→ X .

We do restrict ourselves to the case where the Weil index of K X +1 is not divisible by
p. We realize that the methods we discuss here can apply to more general situations but
there are then several potential competing definitions for what the stable image should
be.

Proposition 3.7. Suppose that (R,1 > 0) is a pair such that K R +1 is Q-Cartier.
Suppose that the Weil index of K R +1 is not divisible by p and that (pe

− 1)(K R +1)

is an integral Weil divisor. Then

σne(R,1) := Image
(

HomR(Fne
∗ R((pne

− 1)1), R)
Ene
=eval@1

−−−−−−−→ R
)

stabilizes for large n.

Proof. Fix m > 0 so that m(K R +1) is a Cartier divisor. The main idea is that module
HomR(Fne

∗ R((pne
− 1)1), R) only takes on the values of finitely many sheaves, at least

up to twisting by line bundles (in particular, multiples of R(m(K R +1)). We also take
advantage of the fact that it is sufficient to show that the images stabilize partially up
the chain.

Claim 3.8. Fix n0 > 0 and consider n > n0. Then

HomR(Fne
∗ R((pne

− 1)1), R)
Ene
=eval@1

−−−−−−−→ R

factors through

HomR(Fn0e
∗ R((pn0e

− 1)1), R)
En0e
=eval@1

−−−−−−−−→ R.

Hence it is sufficient to show that the images of HomR(Fne
∗ R((pne

− 1)1), R) in

HomR(Fn0e
∗ R((pn0e

− 1)1), R)

stabilize.

Proof of Claim. One simply notices that

p(n−n0)e(pn0e
− 1)1 6 (pne

− 1)1

and hence (R((pne
− 1)1))1/pne

contains (R((pn0e
− 1)1))1/pn0e

. Thus the claimed
factorization occurs simply by restriction of scalars.
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We continue on with the main proof. Note that pt (mod m) is eventually periodic. Then
choose a linear function θ(a) = ca+ r , for c > 0, r > 0, c, r ∈ Z, such that (pθ(a)e− 1)
(mod m) is constant. Set

M = R(((1− pre) (mod m))(K R +1)) = R(((1− pθ(0)e) (mod m))(K R +1))

and note that for any a > 0,

HomR(Fθ(a)e∗ R((pθ(a)e− 1)1), R)
∼= Fθ(a)e∗ R((1− pθ(a)e)(K R +1))

∼= Fθ(a)e∗

(
R(((1− pθ(a)e) (mod m))(K R +1))⊗ R

(⌊
1− pθ(a)e

m

⌋
m(K R +1)

))

∼= Fθ(a)e∗

(
M ⊗ R

(⌊
1− pθ(a)e

m

⌋
m(K R +1)

))
.

By inverting an element of R if necessary, we may assume that m(K R +1) ∼ 0. Thus
by utilizing this, we have maps

· · ·
ta
−→ Fθ(a)e∗ M

ta−1
−−→ Fθ(a−1)e

∗ M → · · ·
t1
−→ Fθ(1)e∗ M

t0
−→ Fθ(0)e∗ M.

If these maps are Frobenius pushforwards of each other, i.e., Fce
∗ ta−1 = ta (or at least

up to a unit), then we can apply the standard Hartshorne–Speiser–Lyubeznik–Gabber

theorem [22] to conclude that the images stabilize in Fθ(0)e∗ M . But this may be checked in
codimension 1 (since all sheaves are reflexive and so maps between them are determined in
codimension 1). However, after localizing to reduce to codimension 1, all the complicated
twisting we have done is irrelevant. Furthermore, in codimension 1, R is Gorenstein with
K R ∼ 0 and 1 is Q-Cartier with index not divisible by p > 0 (since its Weil index was
not divisible by p > 0). Our chain of maps then just turns into

HomR(F
θ(a)e
∗ R((pθ(a)e − 1)1), R) // HomR(F

θ(a−1)e
∗ R((pθ(a−1)e

− 1)1), R)→ . . .

Fθ(a)e∗ ωR(−pθ(a)e(K R)− (pθ(a)e − 1)1)
��

∼

OO

Tr
// Fθ(a−1)e
∗ ωR(−pθ(a−1)e(K R)− (pθ(a−1)e

− 1)1)
��

∼

OO

F(ca+r)e
∗ ωR(−(p(ca+r)e

− 1)1)
��

∼

OO

Tr
// F(c(a−1)+r)e
∗ ωR(−(p(c(a−1)+r)e

− 1)1).
��

∼

OO

The bottom horizontal map is then obtained via

F (ca+r)e
∗ ωR(−(p(ca+r)e

− 1)1) ↪→ F (ca+r)e
∗ ωR(−pce(p(c(a−1)+r)e

− 1)1)
Tr
−→ F (c(a−1)+r)e

∗ ωR(−(p(c(a−1)+r)e
− 1)1).

Note the inclusion ↪→ can be identified with multiplication by a defining equation for

−pce(p(c(a−1)+r)e
− 1)1+ (p(ca+r)e

− 1)1 = (pce
− 1)1.
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This is independent of a and so the maps in our chain are really the same, up to
pushforward, as claimed.

Note that this completes the proof. Even though we only proved stabilization of images
for a subset of ne > 0, these images are descending and our subset is infinite.

Now we are in a position to prove Corollary 3.4 in the more general situation.

Theorem 3.9. Suppose that R is an F-finite normal domain and that B > 0 is a Q-divisor
with Weil index not divisible by p. If the anti-log-canonical algebra R(−K R − B) is finitely
generated, then the image of the evaluation-at-1 map HomR(Fe

∗ R((pe
− 1)B), R)→ R

stabilizes for e sufficiently divisible.

Proof. For this proof, we will phrase our evaluation-at-1 maps in terms of the trace

Fe
∗ R((1− pe)(K R + B))→ R.

We thus fix an e > 0 so that (pe
− 1)(K R + B) is an integral Weil divisor.

Let µ : X ′ = Proj R(−K R − B)→ X = Spec R be as before. We observe that
µ∗(−K R − B) is Q-Cartier and also still has Weil index not divisible by p by Lemma 2.9.
Hence the images

. . . → F (n+1)e
∗ OX ′((1− p(n+1)e)(K X ′ +µ

∗B))

→ Fne
∗ OX ′((1− pne)(K X ′ +µ

∗B))

→ . . .

→ Fe
∗OX ′((1− pe)(K X ′ +µ

∗B))

→ OX ′ (3.9.1)

stabilize by Proposition 3.7. In fact, the same argument even shows that the images
even stabilize in any finite stage, such as in Fne

∗ OX ′((1− pne)(K X ′ +µ
∗B)). However, the

terms and maps in this chain take on finitely many values up to twisting by (large)
Cartier multiples of −(K X ′ +µ

∗B) (as argued in Proposition 3.7). Our goal is to thus
show that these images stabilize after pushing forward by µ.

Claim 3.10. If one applies µ∗ to (3.9.1), obtaining

· · · → µ∗Fne
∗ OX ′((1− pne)(K X ′ +µ

∗B))→ · · · → µ∗Fe
∗OX ′((1− pe)(K X ′ +µ

∗B))→ µ∗OX ′

then the chain of images in OX = µ∗OX ′ still stabilizes.

Proof of Claim. Choose d > 0 so that

Image
(

F (n+d)e
∗ OX ′((1− p(n+d)e)(K X ′ +µ

∗B))→ Fne
∗ OX ′((1− pne)(K X ′ +µ

∗B))
)

(3.10.1)
is equal to the stable image, which we denote by Fne

∗ σne, for all n > 0 (note by
Proposition 3.7 there are finitely many conditions). Observe that there are only finitely
many σne up to twisting by (large) multiples of −(K X ′ +µ

∗B). The fact that −(K X ′ +

µ∗B) is ample implies that there exists an n0 > 0 so that for any n > n0,
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Fne
∗ µ∗σne = Image

(
F (n+d)e
∗ µ∗OX ′((1− p(n+d)e)(K X ′ +µ

∗B))

→ Fne
∗ µ∗OX ′((1− pne)(K X ′ +µ

∗B))
)

= Image
(

F (n+d)e
∗ µ∗OX ′((1− p(n+d)e)(K X ′ +µ

∗B))→ Fne
∗ µ∗σne

)
= Image

(
F (n+2d)e
∗ µ∗OX ′((1− p(n+2d)e)(K X ′ +µ

∗B))

→ Fne
∗ µ∗OX ′((1− pne)(K X ′ +µ

∗B))
)
.

But the map F (n+2d)e
∗ µ∗OX ′((1− p(n+2d)e)(K X ′ +µ

∗B))→ Fne
∗ µ∗OX ′((1− pne)(K X ′ +

µ∗B)) factors through

F (n+2d)e
∗ µ∗OX ′((1− p(n+2d)e)(K X ′ +µ

∗B))→ F (n+d)e
∗ µ∗OX ′((1− p(n+d)e)(K X ′ +µ

∗B)),

which has image µ∗σ(n+d)e by our assumption that (3.10.1) is the stable image, applied

to the choice of n = n+ d. It follows that F (n+d)e
∗ µ∗σ(n+d)e → Fne

∗ µ∗σne surjects for all

n and so by composition, F (n+c)e
∗ µ∗σ(n+c)e → Fne

∗ µ∗σne surjects for every n > n0 and

every c > d (note n does not depend on c). Thus since F (n+c)e
∗ µ∗σ(n+c)e is the image of

µ∗F
(n+d+c)e
∗ OX ′((1− p(n+d+c)e)(K X ′ +µ

∗B)), we see that

Image
(

F (n+c)e
∗ µ∗OX ′((1− p(n+c)e)(K X ′ +µ

∗B))→ Fne
∗ µ∗OX ′((1− pne)(K X ′ +µ

∗B))
)

= µ∗ Image
(

F (n+c)e
∗ OX ′((1− p(n+c)e)(K X ′ +µ

∗B))→ Fne
∗ OX ′((1− pne)(K X ′ +µ

∗B))
)

= µ∗σne

for all n > n0 and all c > 2d. This clearly proves the desired stabilization.

We return to the proof of the theorem. But this is trivial once we observe that

Fne
∗ µ∗OX ′((1− pne)(K X ′ +µ

∗B)) = Fne
∗ OX ((1− pne)(K X + B))

since µ is small. Hence the proof is complete.

4. Stabilization and discreteness via positivity

In the previous section, we showed the discreteness and rationality of F-jumping numbers
via passing to the local section algebra (i.e., a symbolic Rees algebra) where we already
knew discreteness and rationality. In this section, we recover the same discreteness result
in the projective setting by using the methods of [15], which allow us to apply asymptotic
vanishing theorems to Weil divisors. Indeed we first prove global generation results for
test ideals by employing similar methods to [46].

Setting 4.1. Let X be a normal projective variety of characteristic p > 0, 1 > 0 an
effective Weil Q-divisor, a an ideal sheaf on X and t ∈ Q. We make no assumptions
about K X +1 being Q-Cartier.

Assume G is a line bundle such that there are global sections x1, . . . , xm ∈ H0(X, a⊗G )
that globally generate a⊗G and then let Symc(x1, . . . , xm) denote the cth symmetric
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power of the vector space 〈x1, . . . , xm〉. Observe that Symc(x1, . . . , xl) ⊆ H0(X, ac
⊗G c)

globally generates ac
⊗G c. Thus we have a surjection of sheaves

Symc(x1, . . . , xt )⊗k G−c
→ ac.

Lemma 4.2. If the Weil index of 1 is not divisible by p, and t = a/b, with p not dividing
b, then there is a Cartier divisor H and a finite set of integers e1, . . . , es � 0 such that
(pei − 1)1 is integral, (pei − 1)t ∈ Z and τ(X,1, at ) equals

s∑
i=1

Image


Fei
∗ Symt (pei−1)(x1, . . . , xm )⊗k G−t (pei−1)

⊗OX ((1− pei )(K X +1)− H)

����

// OX

Fei
∗ at (pei−1)

·OX ((1− pei )(K X +1)− H)

Trei

33


.

At some level this result is obvious. The only technicalities involve showing that the
various rounding choices we make all give the same result in the end (since we can absorb
any differences into the test element – a local generator of H). We include a complete
proof but we invite the reader to skip over it if they are already familiar with this type
of argument.

Proof. The statement in the end is local and so trivializing G it suffices to show that

τ(X,1, at ) =

s∑
i=1

Trei Fei
∗

(
at (pei−1)

·OX ((1− pei )(K X +1)− H)
)
.

Pick an effective Cartier divisor H0 corresponding to the vanishing locus of a test element
so that for any integer e0 > 0

τ(X,1, at ) =
∑
e>e0

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− He)

for all Cartier H > H0; c.f., [52, Proposition 3.6], [10, Definition-Proposition 3.3]. This
equality also holds for any Q-divisor H > H0 as one can always pick a Cartier H ′ so that
H ′ > H > H0 and one obtains inclusions

τ(X,1, at ) =
∑
e>e0

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− H0e)

⊃

∑
e>e0

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− He)

⊃

∑
e>e0

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− H ′e) = τ(X,1, at ).

Next consider the claim that will allow us to restrict to those e that are multiples of e0.
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Claim 4.3. For any Weil divisor H > H0, there exists a Cartier divisor G such that for
any integer 0 6 b 6 e0− 1 and for any integer m > 0 we have

Tre0m+b Fe0m+b
∗ adtpe0m+b

eOX (dK X − pe0m+b(K X +1)− H −Ge)

⊆ Tre0m Fe0m
∗ adtpe0m

eOX (dK X − pe0m(K X +1)− Hee).

Proof. To prove the claim, first note that by [48, Lemma 4.6] (among many other places),

if d ∈ alpe0
⊆ al(pb

−1) then

dadtpe0m+b
e
⊆ adtpe0m

e+l(pb
−1)
⊆ (adtpe0m

e)[p
b
],

where again l is an upper bound for the number of generators of a (note that d works
for any b 6 e0− 1). Then set G = div(d)+ pe0 H and notice that

Trb Fb
∗ a
dtpe0m+b

eOX (dK X − pe0m+b(K X +1)− H −Ge)

⊆ Trb Fb
∗

(
dadtpe0m+b

eOX (dK X − pe0m+b(K X +1)e)⊗OX (−pb H)
)

⊆ Trb Fb
∗

(
(adtpe0m

e)[p
b
]OX (dK X − pe0m+b(K X +1)e)⊗OX (−pb H)

)
⊆ adtpe0m

eOX (dK X − pe0m(K X +1)e)⊗OX (−H)

⊆ adtpe0m
eOX (dK X − pe0m(K X +1)− He).

Now applying Tre0m Fe0m
∗ proves the claim.

Now we return to the proof of the lemma. The claim and our previous work imply that
for a sufficiently large Cartier divisor H > H0 and G depending on H , we have that

τ(X,1, at ) =
∑
e>e0

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− H −Ge)

⊆

∑
e0|e

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− He)

⊆

∑
e>e0

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− He)

= τ(X,1, at )

and therefore that τ(X,1, at ) =
∑

e0|e Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− He).

Pick a Cartier divisor H ′ so that H ′ > H0+1+dtediv(d) > H0 where d ∈ a. We have
that

τ(X,1, at ) =
∑
e0|e

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− H ′e)

⊆

∑
e0|e

Tre Fe
∗a
dt (pe

−1)eOX (dK X − pe(K X +1)+1− H ′e)

=

∑
e0|e

Tre Fe
∗a
dt (pe

−1)eOX (d(1− pe)(K X +1)− H ′e)

⊆

∑
e0|e

Tre Fe
∗a
dt (pe

−1)eOX (d(1− pe)(K X +1)− H0−1−dtediv(d)e)
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⊆

∑
e0|e

Tre Fe
∗a
dt (pe

−1)e+dteOX (dK X − pe(K X +1)− H0e)

⊆

∑
e0|e

Tre Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− H0e)

⊆ τ(X,1, at ).

In particular,

τ(X,1, at ) =
∑
e0|e

Tre Fe
∗a
dt (pe

−1)eOX (d(1− pe)(K X +1)− H ′e).

Since the Weil index of1 is not divisible by p, (1− pe)(Kx +1+ t D) is an integral divisor
for e sufficiently divisible. Hence by choosing our e0 sufficiently divisible and noting that
our scheme is Noetherian and so the above sum is finite, we obtain our desired result.

Remark 4.4. While it is certainly possible to generalize this to handle t ∈ R or to handle
1 such that (pe

− 1)(K X +1) is not integral, those generalizations are not the ones we
need. In particular, we will need a power of K X +1 times a locally free sheaf.

Theorem 4.5. Suppose X is normal and projective, R(X,−K X −1) is finitely generated
and 1 has Weil index not divisible by p and fix t > 0. There exists a Cartier divisor3 L
such that

τ(X,1, aw)⊗OX (L)

is globally generated when 0 6 w = a/b 6 t, with p not dividing b.

Proof. Choose a line bundle G = OX (G) such that a⊗G is globally generated by sections
x1, . . . , xm ∈ H0(X, a⊗G ). By Lemma 4.2 there is a Cartier divisor H and integers
e1, . . . , es � 0 such that the test ideal τ(X,1, aw) is equal to

s∑
i=1

Image
(

Fei
∗ Symc(x1, . . . , xm)⊗k G−w(p

ei−1)
⊗OX ((1− pei )(K X +1)− H),

T ei
−−→ OX

)
which is globally generated if each summand is. Fix now A a globally generated ample
Cartier divisor. We claim it suffices to find a Cartier divisor L1, such that(

Fei
∗ OX ((1− pei )(K X +1+wG)− H)

)
⊗OX (L1+ (d + 1)A)

= Fei
∗ OX ((pei − 1)(L1−1− K X −wG)+ L1− H + pei (d + 1)A)

is globally generated (the equality in the displayed equation follows from the projection
formula). Indeed, assuming this global generation, choose L = L1+ (d + 1)A with
d = dim X and note that the image of a globally generated sheaf is still globally generated.
We will find a single L1 that works for all 0 6 w 6 t .

Since R(X,−1− K X ) is finitely generated, we can use Lemma 2.11 to find a Cartier
divisor M so that (M −1− K X ) is an ample Weil divisor. Moreover, we can find an ample
Cartier divisor N such that N − tG is ample. Notice that, for all 0 6 w 6 t ,

N −wG =
(

1−
w

t

)
N +

w

t
(N − tG) is ample.

3See Remark 4.6 for a discussion of how to choose L effectively.
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This observation is what lets us replace tG with wG. Set L1 := M + N . By [15, Lemma
2.18(i)], L1− K X −1−wG = (M − K X −1)+ (N −wG) is an ample Weil divisor.

Fix 0 6 w 6 t . We now show that the Castelnuovo–Mumford regularity, with respect
to A, of

Fe
∗OX ((pe

− 1)(L1−1− K X −wG)+ L1− H + pe(d + 1)A)

is zero for each e = ei � 0, which guarantees by Mumford’s theorem [41, Theorem 1.8.3]
the desired global generation. It suffices now to show that

H i (X,OX (−i A)⊗OX Fe
∗OX ((pe

− 1)(L1−1− K X −wG)+ L1− H + pe(d + 1)A)) = 0,
(4.5.1)

which by the projection formula and the fact that Fe
∗ does not change the underlying

sheaves of Abelian groups, is the same as showing

H i (X,OX ((pe
− 1)(L1−1− K X −wG)+ L1− H + pe(d + 1− i)A)) = 0

for 0 < i 6 d and d = dim X . Since we may assume that e � 0, L1− H + pe(d + 1− i)A
is nef. Therefore because L1−1− K X −wG is ample Weil and L − H + pe(d + 1− i)A
is nef and Cartier, we may apply the version of Fujita vanishing [15, Theorem 4.1] to
obtain the vanishing desired in (4.5.1). This completes the proof.

Remark 4.6. Indeed, it is not hard to choose L effectively. Summarizing the proof above,
fix an ample Cartier G so that a⊗OX (G) is globally generated, fix A to be a globally
generated ample Cartier divisor, and fix M Cartier so that M −1− K X is ample and
choose an ample Cartier N so that N − tG is ample. Then we can take

L = (d + a)A+M + N .

We now turn to the promised results on discreteness and rationality.

Proposition 4.7. Suppose now that X is normal and projective and R(X,−K X −1) is
finitely generated. Then for any ideal sheaf a on X , the jumping numbers of τ(X,1, at )

are without limit points.

Proof. First assume that 1 has Weil index not divisible by p. It follows from an
appropriately generalized version of the argument of [10, Lemma 3.23] that τ(X,1, at ) =

τ(X,1, at+ε) for all 0 < ε � 1. Hence for every real number t ∈ R>0, there is a
rational number w = a/b with p not dividing p with τ(X,1, at ) = τ(X,1, aw). Now
fix t0 > 0. It follows from Theorem 4.5 that there exists a Cartier divisor L such
that τ(X,1, aw)⊗OX (L) is globally generated for every w < t0 with w = a/b and
where p does not divide b. But then by our previous discussion, we also see that
τ(X,1, at )⊗OX (L) is globally generated for every t < t0. The discreteness follows since
now for 0 6 t < t0, H0(X, τ (X,1, at )⊗OX (L)) ⊆ H0(X,OX (L)) form a decreasing chain
of subspaces of a finite dimensional vector space H0(X,OX (L)), and of course by
the global generation hypothesis, if H0(X, τ (X,1, at2)⊗OX (L)) = H0(X, τ (X,1, at1)⊗

OX (L)) then τ(X,1, at2) = τ(X,1, at1). This proves the result when 1 has Weil index
not divisible by p.
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Next assume that pd1 has Weil index divisible by p. Fix a map Fd
∗OX (K X )→ OX (K X )

inducing a map on the fraction fields T : Fd
∗ K(X)→ K(X). As in [51, Theorem 6.25], this

map induces a possibly non-effective Weil divisor RT ∼ (1− pd)K X with

T
(
τ(X, pd1−RT , (a

[pd
])t )
)
= τ(X,1, at ). (4.7.1)

Choose a Cartier divisor G so that pd1−RT + pd G is effective and notice that it also
has Weil index not divisible by p. Next observe that

−K X − pd1+RT − pd G ∼ −K X − pd1+ (1− pd)K X − pd G

= −pd(K X +1)− pd G

= Fd∗(−K X −1−G)

and hence that R(X,−K X − pd1+RT − pd G) is finitely generated (note that −G is
Cartier and thus harmless so we are really taking the pdth Veronese of R(X,−K X −1).
Hence by what we have already shown, the F-jumping numbers of τ(X, pd1−

RT , (a
[pd
])t ) have no limit points. Therefore by applying T via (4.7.1), we see that the

F-jumping numbers of τ(X,1+G, at ) also have no limit points. But then by [10, 3.26]
the F-jumping numbers of τ(X,1, at ) have no limit points proving the theorem.

4.1. Global generation and stabilization of σ

We now give another proof of Corollary 3.4 in the projective setting.

Theorem 4.8. Suppose that (X,1) is a projective pair such that R(X,−K X −1) is finitely
generated and K X +1 has Weil index not divisible by p. Then the images

Image
(
Fe
∗OX ((1− pe)(K X +1))→ OX

)
stabilize for e sufficiently large and divisible. We use σ(X,1) to denote this stable image.

Proof. Choose a globally generated ample Cartier divisor A and a Cartier divisor L such
that L − K X −1 is an ample Weil divisor by 2.11. For each e such that (pe

− 1)(K X +1)

is integral, set

σe(X,1) = Image
(
Fe
∗OX ((1− pe)(K X +1))→ OX

)
.

Then fixing d = dim X

σe(X,1)⊗OX (d A+ L) = Image
(
Fe
∗OX (ped A+ L + (pe

− 1)(L − K X −1))→ OX
)
.

We immediately notice that Fe
∗OX (ped A+ L + (pe

− 1)(L − K X −1)) is 0-regular with
respect to A and hence its image σe(X,1)⊗OX (d A+ L) is globally generated. As the
global generating sections all lie in H0(X,OX (d A+ L)), which is finite dimensional, and
as σe form a descending chain of ideals as e increases, we see that σe stabilizes for e
sufficiently large and divisible as claimed.

As an immediate corollary of the proof, we obtain the following.

Corollary 4.9. Suppose again that (X,1) is a projective pair of dimension d such that
R(X,−K X −1) is finitely generated and that K X +1 has Weil index not divisible by p.
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If L is a Cartier divisor such that L − K X −1 is an ample Weil divisor and if A
is a globally generated ample Cartier divisor, then σ(X,1)⊗OX (d A+ L) is globally
generated.

5. Alterations

In this section, we give a description of the test ideal τ(X,1, at ) under the assumption
that R(−K X −1) is finitely generated. This generalizes [11] from the case that −K X −1

is Q-Cartier. As a consequence, we obtain a generalization of a result of Singh’s [55];4

also compare with [54].
Before starting in on this, let us fix notation and recall the following from § 2.

Setting 5.1. Suppose that 1 > 0 is a Q-divisor on an F-finite normal scheme X and

R(−K X −1) is finitely generated with X ′ = Proj R(−K X −1)
µ
−→ X . Suppose that a is

an ideal sheaf on X and t > 0 is a real number.

We have already seen that we can pull back −K X −1 to X ′ by µ where it becomes
a Q-Cartier divisor; see Lemma 2.10. Suppose further that π : Y → X is any alteration
that factors through X ′ as

Y

π

@@

ψ
// X ′

µ
// X.

Then we define π∗(K X +1) = ψ
∗µ∗(K X +1), or equivalently we define π∗ as in [18]

(even though π is not birational); see § 2.4. Recall, of course, that if π : Y → X is a small
alteration (meaning that the non-finite-to-1 locus of π has codimension > 2 in Y ), then
this coincides with the obvious pullback operation. More generally, if π : Y → X is any

alteration and ρ : Y ′
ξ
−→ Y

π
−→ X factors through both π and X ′

µ
−→ X , and ξ is birational,

then we define π∗(K X +1) to be ξ∗ρ
∗(−K X −1).

In the next lemma and later in the section, we use the notion and notation of parameter
test modules τ(ωX , K X +1, a

t ) := τ(X,1, at ). For a concise introduction and more about
their relation to test ideals, see [52, § 4].

Lemma 5.2. Working in Setting 5.1, if m ∈ Z>0 is such that tm ∈ Z, that m1 is integral,
and such that the mth Veronese of the symbolic Rees algebra R(X,−K X −1) is generated
in degree 1, then

τ(X,1, at ) = τ(ωX , (OX (−m(K X +1))a
tm)

1
m ) = τ(X,−K X , (OX (−m(K X +1))a

tm)
1
m ).

Proof. We know by Lemma 2.3 that for any sufficiently large Cartier D > 0 and any
e0 > 0 that

τ(X,1, at ) =
∑
e>e0

Tre
X

(
Fe
∗a
dtpe
eOX (dK X − pe(K X +1)− De)

)
.

4This result was announced years ago, but has not been distributed.
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Choose 0 < D′ 6 D′′ divisors such that D′′ is Cartier and K X − D′ is Cartier. Since

τ(X,1, at ) =
∑
e>e0

Tre
X

(
Fe
∗a
dtpe
e
·OX (dK X − pe(K X +1)− D− D′′e)

)
⊆

∑
e>e0

Tre
X

(
Fe
∗a
dtpe
e
·OX (dK X − D′− pe(K X +1)− De)

)
=

∑
e>e0

Tre
X

(
Fe
∗a
dtpe
e
·OX (K X − D′) ·OX (d−pe(K X +1)− De)

)
⊆

∑
e>e0

Tre
X

(
Fe
∗a
dtpe
e
·OX (K X ) ·OX (d−pe(K X +1)− De)

)
⊆

∑
e>e0

Tre
X

(
Fe
∗a
dtpe
e
·OX (dK X − pe(K X +1)− De)

)
= τ(X,1, at ),

we see that τ(X,1, at ) =
∑

e>e0
Tre

X

(
Fe
∗a
dtpe
e
·OX (K X ) ·OX (d−pe(K X +1)− De)

)
.

This is already very close.

Claim 5.3. We can choose a Cartier D3 > 0 so that

OX (−D3) · a
dtpe
e
·OX (d−pe(K X +1)e) ⊆

(
(atm) ·OX (−m(K X +1))

)d 1
m ·p

e
e

for all e > 0.

Proof of Claim. Checking this assertion is easy, we can certainly knock adtpe
e into

(atm)d
1
m pe
e by multiplication by a Cartier divisor. Handling the other multiplication

is a little trickier. Likewise certainly we can multiply OX (d−pe(K X +1)e) into
OX (−d

pe

m em(K X +1)). But then notice that OX (−am(K X +1)) = OX (−m(K X +1))
a

by our finite generation hypothesis. This proves the claim.

Returning to the proof, we see that

τ(X,1, at ) =
∑
e>e0

Tre
X

(
Fe
∗a
dtpe
e
·OX (K X ) ·OX (d−pe(K X +1)− D− D3e)

)
⊆

∑
e>e0

Tre
X

(
Fe
∗ (OX (K X ) · (a

tm)d
1
m pe
e
·OX (−m(K X +1))

d
1
m pe
e
·OX (−D))

)
=

∑
e>e0

Tre
X

(
Fe
∗ (OX (K X − pe(K X − K X ))

· (atm)d
1
m pe
e
·OX (−m(K X +1))

d
1
m pe
e
·OX (−D))

)
= τ(X,−K X , (OX (−m(K X +1))a

tm)
1
m )

= τ(ωX , (OX (−m(K X +1))a
tm)

1
m )

https://doi.org/10.1017/S1474748015000456 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000456


Test ideals and anti-canonical algebras 199

⊆

∑
e>e0

Tre
X

(
Fe
∗ (a

tm)d
1
m pe
e
·OX (dK X − pe(K X +1)− De)

)
= τ(X,1, at ),

which proves the Lemma.

Remark 5.4. It is tempting to try to use Lemma 5.2 to give another proof of discreteness
and rationality of F-jumping numbers by appealing to [52]. However, this does not seem
to work. In particular, in [52] the authors did not prove discreteness and rationality of
F-jumping numbers for τ(X,1, bsat ) (as t varies) – mixed test ideals were not handled.
One could probably easily recover discreteness of F-jumping numbers via the usual
arguments of gauge boundedness for Cartier algebras [6] at least in the case when X is of
finite type over a field. For additional reading on mixed test ideals (and their pathologies)
we invite the reader to look at [47].

The really convenient thing about Lemma 5.2 for our purposes is the following.

Lemma 5.5. Using the notation of Lemma 5.2, suppose that π : Y → X is an alteration
from a normal Y where if we write b = OX (−m(K X +1)) then b ·OY = OY (−TY ) is an
invertible sheaf. Then TY = mπ∗(K X +1), where π∗(K X +1) is defined as in the text
below Setting 5.1.

Proof. This is easy. Indeed, we already know that π factors through the normalized
blowup of b by the universal property of blowups. On the other hand OY (−mπ∗(K X +

1)) = b ·OY .

As a result, we immediately obtain the following.

Theorem 5.6. Suppose that X is a normal F-finite integral scheme and that 1 on X is an
effective Q-divisor such that S = R(−K X −1) is finitely generated. Suppose also that a is
an ideal sheaf and t > 0 is a rational number. Then there exists an alteration π : Y → X
from a normal Y , factoring through X ′ = Proj S and with G = divY (a), so that

τ(X,1, at ) = Image
(
π∗OY (dKY −π

∗(K X +1)− tGe)→ OX
)
. (5.6.1)

This π may be taken independently of t > 0 if desired. If a is locally principal (for instance
if a = OX ), then one may take π to be a small alteration if desired. Alternately, if X is
essentially of finite type over a perfect field, then one may take Y regular by [35].

As a consequence we obtain that

τ(X,1, at ) =
⋂

π :Y→X

Image
(
π∗OY (dKY −π

∗(K X +1+ tG)e)→ OX
)
,

where π runs over all alterations with a ·OY = OY (−G) being invertible (or all such
regular alterations if X is of finite type over a perfect field).

Proof. Most of the result follows immediately from [52, Theorem A] combined with
Lemma 5.2 and Lemma 5.5. Indeed, simply choose m such that tm is an integer and the
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condition of Lemma 5.2 is satisfied; then apply [52, Theorem A] to find an alteration such

that the image of the above map is τ(X,−K X , (OX (−m(K X +1))a
tm)

1
m ). Consider the

alterations π that occur in the intersection
⋂
π :Y→X . Following [52, Theorem A] might

seem to require that we only consider π that factor through the normalized blowup of
a ·OX (−m(K X +1)) (for m sufficiently divisible). However, it is easy to see that other
Y ’s can be dominated by those that factor through this blowup and the further blowups
certainly have smaller images.

One also must handle the case of varying t , which is not quite done in [52,
Theorem A] in our generality (there the authors treated τ(X,1, at ), while here we
need τ(X,−K X , b

sat )). However, the argument there essentially goes through verbatim
(alternately, this is the same argument as in [53]).

The only remaining part of the statement that does not follow immediately is the
assertion in the case when a is locally principal. However, in the proof of [52, Theorem
A], the alteration needed can always be taken to be a finite cover of the normalized
blowup of the ideal (in this case, the normalized blowup of OX (−m(K X +1))a

tm , which
coincides with the normalized blowup of OX (−m(K X +1))). This normalized blowup is
of course X ′ in our setting.

In the above proof, our constructed Y was definitely not finite over X . This is different
from [11], where the simplest constructed Y definitely was finite over X . Fortunately, we
can reduce to the case of a finite Y at least when a = OX .

Corollary 5.7. Suppose that X is a normal F-finite integral scheme and that 1 on X is
an effective Q-divisor such that S = R(−K X −1) is finitely generated. Then there exists
a finite map φ : Y → X from a normal Y , factoring through X ′ = Proj S such that

τ(X,1) = Image
(
φ∗OY (dKY −φ

∗(K X +1)e)→ OX
)
.

Proof. Let π : Y ′→ X be a small alteration satisfying (5.6.1) from Theorem 5.6.
Additionally assume that π∗(K X +1) is integral (for simplicity of notation). Next let

Y ′
α
−→ Y

φ
−→ X be the Stein factorization of π . Since α : Y ′→ Y is small, we see that

π∗OY ′(KY ′ −π
∗(K X +1)) = φ∗OY (KY −φ

∗(K X +1))

and the result follows.

Question 5.8. Can one limit oneself to separable alterations in Theorem 5.6? In particular,
is there always a separable alteration π : Y → X with

τ(X,1) = Image
(
π∗OY (dKY −π

∗(K X +1)e)→ OX
)
?

The analogous result is known if K X +1 is Q-Cartier by [11]. However in our proof, π
is definitely not separable because we rely on [52, Theorem A], which uses Frobenius to
induce certain vanishing results. It is possible that this could be replaced by cohomology
killing arguments as in for instance [2, 11, 32, 34].

As a special case, we recover a result of Anurag K. Singh (that was announced years
ago) [55].
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Corollary 5.9 (Singh). Suppose that X is an F-finite splinter and R(−K X ) is finitely
generated. Then X is strongly F-regular.

Proof. Indeed, if X is a splinter then for any finite morphism φ : Y → X ,
the evaluation-at-1 map H omOX (φ∗OY ,OX )→ OX surjects. However,
H omOX (φ∗OY ,OX ) ∼= φ∗OY (KY −φ

∗K X ) and the trace map to OX is identified with the
evaluation-at-1 map. Hence using Corollary 5.7 we see that τ(X) = τ(X, 0) = OX . Since
for us τ(X) always denotes the big test ideal, this proves that X is strongly F-regular.

It would be natural to try to use the above to show that splinters are strongly F-regular
for three-dimensional varieties of characteristic p > 5, using the fact that such KLT
varieties satisfy finite generation of their anti-canonical rings (Theorem 2.27). The gap
is the following.

Question 5.10. Suppose that R is a normal F-finite domain that is also a splinter.
Does there exist a Q-divisor 1 > 0 on Spec R such that K X +1 is Q-Cartier and that
(Spec R,1) is KLT?

The analogous result on the existence of 1 for strongly F-regular varieties was shown
in [50]. Of course, the fact that splinters are in fact derived splinters in characteristic
p > 0 [2] would likely be useful.

In particular, we do obtain the following.

Corollary 5.11. Suppose that R is an F-finite three-dimensional splinter that is also KLT
(for an appropriate 1 > 0) and that R is finite type over an algebraically closed field of
characteristic p > 5. Then R is strongly F-regular.

6. Reduction from characteristic zero

The goal of this section is to show that multiplier ideals J (X,1, at ) reduce to test ideals
τ(X p,1p, a

t
p) after reduction to characteristic p � 0 at least if R(−K X −1) is finitely

generated. We begin with some preliminaries on the reduction process.
Let X be a scheme of finite type over an algebraically closed field k of characteristic

zero, 1 a Q-divisor, and a ⊂ OX an ideal sheaf. One may choose a subring A ⊂ k that is
finitely generated over Z over which X , 1, and a are all defined. Denote by X A, 1A, and
aA ⊂ OX A the models of X , 1, and a over A. For any closed point s ∈ Spec A we denote
the corresponding reductions Xs , 1s , and as ⊂ OXs defined over the residue field k(s),
which is necessarily finite. In the simple case where A = Z, if X A = SpecZ[x1, . . . , xn]/I
for I = ( f1, . . . , fm) and p ∈ Z is prime, the scheme X p = SpecFp[x1, . . . , xn]/( f1 mod
p, . . . , fm mod p).

Warning 6.1. In what follows, we abuse terminology in the following way. By p � 0, we
actually mean the set of closed points of an open dense set U ⊆ Spec A. Furthermore,
if we start with X as above, by X p for p � 0 we actually mean some Xs for some
closed point s in the aforementioned U . This is a common abuse of notation and we
do not expect it will cause any confusion. It does substantially shorten statements of
theorems.
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Lemma 6.2. Suppose X is a normal quasi-projective variety over an algebraically closed
field k of characteristic zero. For any Q-divisor 0 so that R(X, 0) is finitely generated
we have R(X, 0)p ∼= R(X p, 0p) for p � 0.

In particular, if 1 is a Q-divisor and R(X,−K X −1) is finitely generated, setting
X ′ = Proj R(X,−K X −1) and µ : X ′→ X we have

R(X,−K X −1)p = R(X p, (−K X −1)p) = R(X p,−K X p −1p)

and so this ring is also finitely generated. This means (X ′)p = (X p)
′. We denote both by

X ′p.

Proof. Note that R(X, 0)p makes sense for p � 0 as R(X, 0) is finitely generated and
R(X, 0)p is naturally finitely generated by the reduction of the generators of R(X, 0).
The problem is that potentially the algebra R(X, 0)p may not be the symbolic Rees
algebra (local section algebra)

⊕
n>0 OX p (n0p). Throughout this proof we will constantly

need to choose p � 0 (or technically, restrict to a smaller open subset U of Spec A). First
we record a claim that is certainly well known to experts.

Claim 6.3. For any Weil divisor D and prime p � 0, potentially depending on D, we
claim that OX (D)p ∼= OX p (Dp) as sheaves of OX p -modules.

Proof of Claim. To see this we prove that OX (D)p is reflexive and agrees outside a
codimension 2 subset with OX p (Dp). Of course, since OX (D) is reflexive,

OX (D)→H omX (H omX (OX (D),OX ),OX )

is an isomorphism. But this isomorphism is certainly preserved via reduction to
characteristic p, so (OX (D))p is reflexive at least for p � 0. Choose a closed set Z ⊆ X
of codimension 2, defined with no additional coefficients (other than the ones already
needed to define D and X) so that D|X\Z is Cartier. Note that Dp|X p\Z p is Cartier and
so OX p\Z p (Dp) is locally free and agrees with (OX\Z (D))p; the claim follows.

We return to the proof of the lemma. Next define X ′ to be the blowup of OX (m0) for
some m � 0 sufficiently divisible. Then since µ : X ′→ X is small, so is µp : X ′p → X p,
and note that X ′p is still the blowup of (OX (m0))p = OX p (m0p) by the claim. Since

m0′ = mπ−1
∗ 0 was Cartier in characteristic zero, m0′p is Cartier after reduction to

characteristic p � 0 as well. Now X ′p → X p is still small and notice that 0′p is relatively
ample (since X ′p was obtained by blowing up OX p (m0p)). Hence⊕

n>0

(µp)∗OX ′p (n0
′
p) =

⊕
n>0

OX p (n0p)

is finitely generated and has Proj equal to X ′p. The lemma follows immediately.

Armed with this lemma, the proof of the main theorem for this section is easy.

Theorem 6.4. Suppose that X is a normal quasi-projective variety over an algebraically
closed field of characteristic zero. Further suppose that 1 > 0 is a Q-divisor such that
R(−K X −1) is finitely generated and also suppose that a ⊆ OX is an ideal and t > 0 is
a rational number. Then

J (X,1, at )p = τ(X p,1p, a
t
p)

for p � 0.
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Proof. We know that J (X,1, at ) = π∗OX̃ (dK X̃ −
1
mπ

\m(K X +1)− tGe) for some
sufficiently divisible m and sufficiently large log resolution of singularities, by
Definition 2.19 (here we need that OX (−m(K X +1)) ·OX̃ = OX̃ (−A) and a ·OX̃ =

OX̃ (−B) are invertible). We rewrite this multiplier ideal as

π∗OX̃

(⌈
K X̃ −

1
m
π \m(K X +1)− tG

⌉)
= π∗OX̃

(⌈
K X̃ −π

\(K X − K X )−
1
m

A− t B
⌉)

and observe it is equal to J (X,−K X ,OX (−m(K X +1))
1
m · at ). Note that since

R(−K X −1) is finitely generated, the choice of X̃ is independent of the choice of m
(at least for m sufficiently divisible).

Since K X − K X is Cartier, we know that

J (X,−K X ,OX (−m(K X +1))
1
m · at )p = τ(X p,−K X p ,OX p (−m(K X p +1p))

1
m )

for p � 0 by [26, 57]. But Lemma 5.2 shows that τ(X p,−K X p ,OX p (−m(K X p +1p))
1
m ) =

τ(X p,1p, a
t
p). Combining these equalities proves the result.

Remark 6.5. Theorem 6.4 also implies that if X p is strongly F-regular for all p � 0 and
R(−K X ) is finitely generated, then X is KLT. Nobuo Hara gave a talk about this result
at the conference in honor of Mel Hochster’s 65th birthday in 2008 but the result was
never published.

Corollary 6.6. Suppose X is a variety over an algebraically closed field of characteristic
zero that is KLT in the sense of [18]. Then for any Q-divisor 1 > 0 and any ideal sheaf
a and rational t > 0, we have that

J (X,1, at )p = τ(X p,1p, a
t
p)

for p � 0.

Proof. It follows from the minimal model program [4] and in particular, [38, Theorem 92]
that R(−K X −1) is finitely generated; the result follows immediately from Theorem 6.4.
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46. M. Mustaţă, The non-nef locus in positive characteristic, in A Celebration of Algebraic
Geometry, Clay Math. Proc., Volume 18, pp. 535–551 (Amer. Math. Soc., Providence, RI,
2013).
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