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Non-Newtonian stress, collisional dissipation
and heat flux in the shear flow of inelastic disks:

a reduction via Grad’s moment method
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The non-Newtonian stress tensor, collisional dissipation rate and heat flux in the
plane shear flow of smooth inelastic disks are analysed from the Grad-level moment
equations using the anisotropic Gaussian as a reference. For steady uniform shear
flow, the balance equation for the second moment of velocity fluctuations is solved
semi-analytically, yielding closed-form expressions for the shear viscosity µ, pressure
p, first normal stress difference N1 and dissipation rate D as functions of (i) density
or area fraction ν, (ii) restitution coefficient e, (iii) dimensionless shear rate R,
(iv) temperature anisotropy η (the difference between the principal eigenvalues
of the second-moment tensor) and (v) angle φ between the principal directions
of the shear tensor and the second-moment tensor. The last two parameters are
zero at the Navier–Stokes order, recovering the known exact transport coefficients
from the present analysis in the limit η, φ→ 0, and are therefore measures of the
non-Newtonian rheology of the medium. An exact analytical solution for leading-order
moment equations is given, which helped to determine the scaling relations of R, η
and φ with inelasticity. We show that the terms at super-Burnett order must be retained
for a quantitative prediction of transport coefficients, especially at moderate to large
densities for small values of the restitution coefficient (e� 1). Particle simulation data
for a sheared inelastic hard-disk system are compared with theoretical results, with
good agreement for p, µ and N1 over a range of densities spanning from the dilute
to close to the freezing point. In contrast, the predictions from a constitutive model
at Navier–Stokes order are found to deviate significantly from both the simulation
and the moment theory even at moderate values of the restitution coefficient (e∼ 0.9).
Lastly, a generalized Fourier law for the granular heat flux, which vanishes identically
in the uniform shear state, is derived for a dilute granular gas by analysing the
non-uniform shear flow via an expansion around the anisotropic Gaussian state. We
show that the gradient of the deviatoric part of the kinetic stress drives a heat current
and the thermal conductivity is characterized by an anisotropic second-rank tensor,
for which explicit analytical expressions are given.
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1. Introduction
A driven system of macroscopic or non-Brownian particles (e.g. driven by external

vibration or shearing) resembles a molecular gas in which the particles move around
randomly but lose energy upon collision, with the latter being a major difference
between a granular gas and its molecular counterpart. Such a non-equilibrium state
of agitated particles is also known as a rapid granular fluid (Goldhirsch 2003), for
which the dense-gas kinetic theory (Chapman & Cowling 1970) has been appropriately
modified and successfully used for a variety of flow configurations over the past three
decades (Savage & Jeffrey 1981; Jenkins & Richman 1985a,b; Brey et al. 1998; Sela
& Goldhirsch 1998; Brilliantov & Pöschel 2004; Rao & Nott 2008). In this paper
we investigate the non-Newtonian rheology of a sheared granular system via kinetic
theory. For an N-particle system, the stress tensor has contributions from both kinetic
and collisional mechanisms of transport:

P = Pkin + Pcoll. (1.1)

The first mechanism is dominant in the dilute regime, whereas the second one
dominates in the dense regime. This can be further decomposed as

P = pI + P̂, (1.2)

where p ≡ Pii/dim is the isotropic pressure (dim is the dimension), I is the identity
tensor and the deviatoric stress is P̂. The off-diagonal components of P̂ are related
to shear viscosity, which, in general, depends on the deformation rate. At the
Navier–Stokes (NS) order, the stress tensor is Newtonian (i.e. linear in the shear
rate, with the proportionality constant being the shear viscosity) and its diagonal
components are equal. The latter implies that the first and second normal stress
differences, N1 ∼ Pxx − Pyy and N2 ∼ Pyy − Pzz, respectively, are identically zero. The
non-zero normal stresses and/or the shear-rate dependence of viscosity are signatures
of the non-Newtonian rheology of the medium. In kinetic theory, the normal stresses
appear at the Burnett order (Burnett 1935; Grad 1949; Chapman & Cowling 1970)
and hence cannot be taken into account in the standard NS-order hydrodynamic
equations. Higher-order theories such as the Burnett equations (Burnett 1935; Sela &
Goldhirsch 1998) or Grad’s 13-moment equations (Grad 1949; Jenkins & Richman
1985a,b; Torrilhon & Struchtrup 2004) should therefore be used to correctly model
the nonlinear rheology of granular fluids. Although the rest state of the Burnett
equations is known to be unstable for molecular gases, there are ways to regularize
these equations (Rosenau 1989). Moreover, it has been established recently (Santos
2008) that the partial sum of the shear stress converges in the uniform shear of a
granular fluid, with its radius of convergence increasing with increasing dissipation
or inelasticity. On the other hand, in Grad’s method the distribution function is
expanded in a Hermite series around the local Maxwellian of thermal equilibrium,
and the moment equations for an extended set of hydrodynamic fields are written
down.

The sheared granular fluid is known to possess finite normal stress differences for
the whole range of densities (Sela & Goldhirsch 1998; Alam & Luding 2003a,b,
2005a,b) and the rate dependence of viscosity seems to be an inherent feature of
the uniform shear state of a granular fluid (Santos, Garzo & Dufty 2004). Figure 1
indicates that the first normal stress difference is finite in a sheared granular fluid for
a range of densities and its magnitude increases with increasing dissipation. Detailed
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FIGURE 1. Variation of the first normal stress difference N1=2(Pxx−Pyy)/(Pxx+Pyy) (see
(4.21)) with area fraction of particles for different values of the restitution coefficient e.
Data (symbols) correspond to event-driven simulations (Alam & Luding 2003a,b) for a
sheared system of smooth inelastic hard disks with Lees–Edward boundary condition (see
§ 5.2 for details); lines are drawn to guide the eye.

simulations in two dimensions, i.e. for disks (Alam & Luding 2003a,b), and three
dimensions, i.e. for spheres (Alam & Luding 2005a,b), have uncovered the following
distinguishing features of normal stresses in a sheared granular fluid: (i) the first
normal stress difference is positive in the dilute limit and undergoes a sign reversal
at a finite density near the freezing point (depending on dissipation) in the dense
limit; and (ii) the second normal stress difference is negative in the dilute limit and
becomes positive beyond a moderate density. Both theory and simulation suggest
that the magnitudes of the first and second normal stress differences increase with
increasing dissipation.

Large normal stresses, such as those in figure 1, must be taken into account to
correctly model a dissipative granular fluid in the rapid shear regime. Jenkins &
Richman (1988) have incorporated normal stresses in their study of steady uniform
shear flow (USF) of inelastic disks, following earlier kinetic theory work of Goldreich
& Tremaine (1978) and Araki & Tremaine (1986) that used the anisotropic Gaussian
as a reference state. They solved the second-moment balance equation in the two
extreme limits of density, and derived analytical results for the stress tensor in dilute
and dense flows, but the solutions for the full range of densities remain unexplored
for the shear flow of inelastic disks. Chou & Richman (1998) analysed the USF of
inelastic spheres and provided numerical solutions for the stress tensor for the full
range of densities. More recently, Lutsko (2004) used an arbitrary Gaussian as a
reference to solve the Enskog equation for a polydisperse mixture of inelastic hard
spheres via the Hermite expansion (Grad 1949) around the anisotropic reference
state, and the related kinetic integrals were simplified using a generating function
technique. Focusing attention on the uniform shear state, he evaluated the stress tensor
numerically and confirmed the previous numerical results of Chou & Richman (1998).
It was further shown that the moment theory predictions for normal stress differences
agree well with those obtained from the direct simulation Monte Carlo (DSMC)
solution of the Enskog equation for a range of densities but can differ considerably
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from molecular dynamics simulations of the same system for moderately dense binary
mixtures. The reason for the latter disagreement remains unclear. It would greatly
help our understanding of the nonlinear and non-Newtonian rheology of particulate
media if such higher-order theories could be tackled analytically or semi-analytically
to obtain closed-form constitutive relations – this forms the primary motivation of the
present work.

In this paper, we derive closed-form analytical expressions for all components of
the stress tensor as well as the collisional dissipation rate of steady USF for the whole
range of densities by considering terms up to super-Burnett order (i.e. third order
in shear rate and temperature anisotropy). To achieve the above goal, we follow the
anisotropic version of Grad’s moment method (Jenkins & Richman 1988) and solve
the balance equation for the second-moment of velocity fluctuations semi-analytically
for the USF of smooth inelastic hard disks. In addition, we generalize this method
for the non-uniform shear state and derive an explicit constitutive relation for heat
flux. Our primary focus is to decipher an analytical understanding of how all the
transport coefficients (shear viscosity, pressure and first normal stress difference)
depend on different control parameters (e.g. density, restitution coefficient, shear rate,
etc.) when one goes beyond the ‘linear’ NS regime via Grad’s moment equations. Our
second goal is to check whether the resulting moment theory can yield quantitative
predictions for normal stress differences and other transport coefficients for the whole
range of densities and restitution coefficients (e.g. at small values of the restitution
coefficient). Both goals are achieved successfully from our super-Burnett-order
constitutive relations as demonstrated in § 4. Furthermore, the validation of the
derived nonlinear constitutive relations, via a comparison with molecular dynamics
simulations (§ 5), at different densities confirms the appropriateness of the Enskog
kinetic equation to describe the dense shear flow of inelastic hard disks.

The rest of this paper is organized as follows. Section 2 provides a brief overview of
the kinetic theory, the Grad-level (second or higher order in gradients) hydrodynamic
equations and the anisotropic Gaussian distribution function. The construction of the
second-moment tensor and its anisotropy in the USF, and the formulation of the
second-moment equation in a rotated coordinate frame, are described in § 3. The
collision integrals in the moment equations are approximated by an infinite series
as outlined in § 4, followed by the explicit forms of resulting moment equations
at Burnett and super-Burnett orders. An exact analytical solution for ‘leading-order’
moment equations is derived in § 4.1. The super-Burnett-order expressions for all
components of the stress tensor, along with shear viscosity, pressure and first normal
stress difference, are discussed in § 4.2. That the Grad-level dissipation rate depends
on both the shear rate and the temperature anisotropy is discussed in § 4.3. The
degenerate nature of the uniform shear state is discussed in § 4.4 in terms of
its inherent ‘non-Newtonian’ rheology. The accuracy of our super-Burnett-order
constitutive relations is verified in § 5.1 via a comparison with the full numerical
solution. In addition to comparing with the molecular dynamics simulation data, § 5.2
establishes the superior predictions of the present moment theory with respect to
an NS-order constitutive model (Lutsko 2005; Garzo, Santos & Montanero 2007).
A comparative discussion of our results with another Grad-level theory (Kremer &
Marques 2011; Garzo 2012) as well as with a Chapman–Enskog-based Burnett-order
theory (Sela, Goldhirsch & Noskowicz 1996) for a dilute system is made in § 5.3.
In § 6 we consider the non-uniform shear state and outline a procedure to derive the
constitutive relation for the ‘non-Fourier’ heat flux. The conclusions are given in § 7.
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2. Overview of Enskog kinetic theory and Grad-level moment equations
Let us consider a dense granular gas consisting of N randomly moving smooth

inelastic hard disks of diameter σ and mass m. Let c1 and c2 be the velocities of
two disks before a collision, with c′1 and c′2 being their post-collisional velocities,
respectively. The collision dynamics for instantaneous and binary collisions is
governed by

(g′ · k)=−e(g · k), (2.1)

where g ≡ g12 = c1 − c2 and g′ = c′1 − c′2 are the pre- and post-collisional relative
velocities, respectively, and k ≡ k12 = (x2 − x1)/|x2 − x1| is the unit contact vector
joining the centre of disk 1 to that of disk 2 at collision. In (2.1), e is the coefficient of
normal restitution, with e=1 and 0 referring to perfectly elastic and sticking collisions,
respectively. Since the disks are assumed to be smooth, there is no change in their
tangential component of relative velocity (i.e. k× g′ = k× g).

At the mesoscopic level, this system is described by the Liouville equation for an
N-particle distribution function, which can be reduced to an infinite hierarchy of
evolution equations of distribution functions (one-body, two-body, three-body, etc.),
known as the BBGKY (for Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy
(Chapman & Cowling 1970). The first member of this hierarchy deals with the
evolution of the single-particle distribution function f (c, x, t), which, in the absence
of any body force, reads (

∂

∂t
+ c · ∇

)
f = J( f (2)), (2.2)

where ∇ is the gradient operator in the configuration space and J( f (2)) is the
collision integral, which that depends on the two-particle distribution function
f (2)(c1, x1, c2, x2, t). The transition from the mesoscopic to the macroscopic level
is made via the hydrodynamic or coarse-grained fields, which are nothing but the
moments of f (c, x, t) of various orders. In addition to (i) the mass density

ρ(x, t)≡m n(x, t)=m
∫

f (c, x, t) dc, (2.3)

where n(x, t) = N/V is the number density of particles, and (ii) the coarse-grained
velocity

u(x, t)≡ 〈c〉 = 1
n(x, t)

∫
c f (c, x, t) dc, (2.4)

we choose (iii) the full second-moment tensor

M(x, t)≡ 〈CC〉 = 1
n(x, t)

∫
CC f (c, x, t) dc, (2.5)

where C≡ c− u is the peculiar or fluctuation velocity of the particles, as a separate
hydrodynamic field. The trace of (2.5) is the granular temperature

T(x, t)≡
〈

1
2

C ·C
〉
= 1

2n(x, t)

∫
C2f (c, x, t) dc, (2.6)

which constitutes a hydrodynamic field at the NS order. Note that this definition of
temperature (2.6) is commonly used in the granular mechanics community (Savage
& Jeffrey 1981; Jenkins & Richman 1985a,b; Goldhirsch 2003; Rao & Nott 2008),
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although the usual definition (Chapman & Cowling 1970) incorporating the mass m
and the Boltzmann constant kB has also been adopted by many (Brilliantov & Pöschel
2004; Santos et al. 2004; Lutsko 2005). In either case, it must be noted that the
granular temperature is not a thermodynamic temperature (Goldhirsch 2003).

The evolution equations for hydrodynamic fields are obtained from the kinetic
equation (2.2) by multiplying it by a particle property ψ = ψ(c) and integrating it
over the velocity space, resulting in the following master balance equation:

∂

∂t
〈nψ〉 =−∇ · 〈ncψ〉 + C[ψ]. (2.7)

Here

C[ψ] =
∫∫∫

g·k>0
(ψ ′2 −ψ2) f (2)(c1, x− σk, c2, x, t) σ (k · g) dk dc1 dc2

=
∫∫∫

g·k>0
(ψ ′1 −ψ1) f (2)(c1, x, c2, x+ σk, t) σ (k · g) dk dc1 dc2

 (2.8)

is the collisional rate of production of ψ per unit area, with g · k> 0 referring to the
constraint of impending collisions. It is straightforward to decompose (2.8) into the
form (Jenkins & Richman 1985a,b; Rao & Nott 2008)

C[ψ] = ℵ[ψ] −∇ ·Θ[ψ] −Θ

[
∂ψ

∂C

]
: ∇u, (2.9)

where Θ[ψ] and ℵ[ψ] are the collisional flux and production or source terms,
respectively, whose integral expressions are given in §§ A.1 and A.2, respectively.
Note that the origin of the collisional flux Θ[ψ] is tied to the excluded volume of
the ‘macroscopic’ particles and hence this term vanishes for a ‘dilute’ system of
point particles. Combining (2.9) and (2.7), the master balance equation simplifies to
(Jenkins & Richman 1985a,b, 1988)

∂

∂t
〈nψ〉=−

〈
n
(
∂

∂t
+ c · ∇

)
uα
∂ψ

∂Cα

〉
−∇ · (〈ncψ〉+Θ[ψ])−Θ

[
∂ψ

∂C

]
: ∇u+ℵ[ψ].

(2.10)
Substituting ψ = 1, cα and CαCβ into (2.10), we obtain the balance equations

Dρ
Dt
= −ρuα,α, (2.11)

ρ
Duα
Dt
= −Pαβ,α, (2.12)

ρ
DMαβ

Dt
= −Qγαβ,γ − Pδβuα,δ − Pδαuβ,δ +ℵαβ, (2.13)

for the mass, momentum and second moment, respectively. In the above, D/Dt =
∂/∂t+uα(∂/∂xα) is the convective derivative, the subscript following a comma denotes
a partial derivative (i.e. uα,α ≡ ∂uα/∂xα) with Einstein’s summation convention over
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repeated indices, and

Pαβ = ρ〈CαCβ〉 +Θα[mCβ] ≡ ρMαβ +Θαβ, (2.14)
Qγαβ = ρ〈CγCαCβ〉 +Θγ [mCαCβ] ≡ ρMγαβ +Θγαβ, (2.15)

ℵαβ =ℵ[mCαCβ] (2.16)

are the total stress tensor (momentum flux), the flux of the second moment, and
the collisional source of the second moment (dissipation), respectively. In (2.14) and
(2.15), the first term represents the kinetic contribution and the second term is its
collisional contribution.

The trace of (2.13) yields the well-known balance equation for granular energy,

ρ
DT
Dt
=−qα,α − Pαβuβ,α −D, (2.17)

where
D ≡− 1

2ℵββ =− 1
2ℵ[mC2] (2.18)

is the rate of dissipation of energy per unit area (i.e. in two dimensions) and

qα ≡ 1
2 Qαββ = 1

2ρMαββ + 1
2Θαββ (2.19)

is the heat-flux vector. In (2.13), we assume that the deviatoric part of Qγαβ , i.e.

Q̂γαβ =Qγαβ − 1
4(Qγ ξξδαβ +Qαξξδγβ +Qβξξδαγ ), (2.20)

is zero, thus leaving only the contracted third moment Mαββ = 〈CαCβCβ〉 as the
relevant hydrodynamic variable at third order.

In summary, the balance equations (2.11), (2.12) and (2.13), along with the
constraint Q̂γαβ = 0, constitute the minimal Grad-level description of a fluidized
granular matter in terms of moment equations that incorporates normal stress
difference. The second-moment balance equation (2.13) can be replaced by its
deviatoric part and the standard granular energy equation (2.17); the former equation
is identically satisfied at the NS-level description. To close the balance equations
(2.11)–(2.13), we need constitutive relations for the stress tensor (2.14), the collisional
dissipation rate D (or the second-moment source term ℵαβ , (2.16)) and the heat flux
(2.19). While the expressions for the first two constitutive quantities are derived
for the uniform shear state as discussed in §§ 3 and 4, the heat flux requires a
consideration of the non-uniform shear flow since the temperature gradient vanishes
in the USF, which is dealt in § 6.

2.1. Anisotropic Gaussian distribution function
The constitutive relations require an evaluation of the collision integrals (see
appendix A), which involve the two-particle distribution function. We adopt
Boltzmann’s stosszahlansatz (molecular chaos assumption) for which

f (2)(c1, x− σk, c2, x, t)= g0(ν) f (c1, x− σk, t) f (c2, x, t). (2.21)
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Here g0(ν) is the contact value of the radial distribution function whose functional
form is taken to be (Verlet & Levesque 1982)

g0(ν)= (1− 7ν/16)
(1− ν)2 , (2.22)

with ν (= nπσ 2/4) being the area fraction (density) of particles. As in the work of
Jenkins & Richman (1988), we assume that the single-particle velocity distribution is
an ‘anisotropic’ Gaussian

f (c, x, t)= n
2π|M|1/2 exp

(
−1

2
C ·M−1

·C
)
, (2.23)

where |M| = det(M) is the determinant of the second moment, which reduces to
the standard Maxwellian or Gaussian distribution function for the case of isotropic
Mαβ =Tδαβ . The ansatz of (2.23) as a solution for the homogeneous sheared system is
tantamount to choosing an extended set of hydrodynamic fields, since the anisotropic
Gaussian is a function of all components of the second moment, M = 〈CC〉, of the
fluctuation velocity. Such an approach of choosing the generalized or anisotropic
Gaussian as the reference state for a non-equilibrium system has been pioneered
in the planetary physics community (Goldreich & Tremaine 1978; Shukhman 1984;
Araki & Tremaine 1986; Schmidt et al. 2001; Latter & Ogilvie 2006) dealing with
the modelling of Saturn’s ring (Esposito 2006). This formalism has also been adopted
by the granular matter community (Jenkins & Richman 1988; Chou & Richman
1998; Lutsko 2004) and can be applied to study the rheology of an arbitrary sheared
state (as a perturbation of the homogeneous sheared system) via the well-known
Hermite expansion (Lutsko 2004). This differs from Grad’s original moment method
(Grad 1949; Jenkins & Richman 1985a,b; Torrilhon & Struchtrup 2004; Vega Reyes,
Santos & Garzo 2013) in which the reference state is a Gaussian representing the
rest state of thermal equilibrium, and the deviations from the ‘local’ equilibrium are
modelled via a Hermite expansion with unknown coefficients. In § 6, we will discuss
an orthonormal expansion around (2.23) to derive the constitutive relation for the
heat flux.

3. Steady uniform shear and the second-moment tensor
Let us focus on the two-dimensional coordinate system (since we are dealing with

an assembly of disks) as depicted in figure 2, with x and y denoting the flow and
gradient directions, respectively. The USF is described by the velocity-gradient tensor

∇u =
[

0 2γ̇
0 0

]
≡ D +W , (3.1)

such that the velocity field is u= (u, v)= (2γ̇ y, 0), where 2γ̇ = du/dy is the uniform
(constant) shear rate. The shear and spin tensors are given by

D =
[

0 γ̇

γ̇ 0

]
and W =

[
0 γ̇

−γ̇ 0

]
. (3.2a,b)

The eigenvalues of D are ±γ̇ with respective eigenvectors

|D1〉 =
[

cos 1
4π

sin 1
4π

]
and |D2〉 =

[
−sin 1

4π

cos 1
4π

]
. (3.3a,b)
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y k

x

FIGURE 2. A sketch of the coordinate frame: |D1〉 and |D2〉 are the eigen-directions of
the shear tensor D, and |M1〉 and |M2〉 are the eigen-directions of the second-moment
tensor M .

These eigen-directions are sketched in figure 2. To formulate the anisotropic moment
theory for the USF in two dimensions, we follow the work of Jenkins & Richman
(1988) in §§ 3.1 and 3.2. Next we simplify our analysis of the second-moment balance
by working in a rotated coordinate frame as discussed in § 3.3.

3.1. Anisotropy in the second-moment tensor
Here we analyse the second-moment tensor M in terms of its eigenvalues and
eigenvectors. Let M1 and M2 be the eigenvalues of M , with associated eigenvectors
|M1〉 and |M2〉, respectively. We assume that the eigenvector |M1〉 makes an angle φ
with the eigenvector |D1〉 of the shear tensor D (see (3.3)). Since |M1〉 and |M2〉 are
orthogonal, the eigenvector |M2〉 makes the same angle φ with |D2〉; this is illustrated
in figure 2. The expression for the second-moment tensor M is

M = M1

[
cos(φ + 1

4π)

sin(φ + 1
4π)

] [
cos(φ + 1

4π) sin(φ + 1
4π)
]

+M2

[
−sin(φ + 1

4π)

cos(φ + 1
4π)

] [−sin(φ + 1
4π) cos(φ + 1

4π)
]

≡ T
[

1+ η sin 2φ −η cos 2φ
−η cos 2φ 1− η sin 2φ

]
= T[δαβ] + M̂, (3.4)

where we have defined the following variables:

2T ≡ Mαα =M1 +M2, (3.5)
η ≡ (M2 −M1)/2T, (3.6)

and M̂ is the deviatoric part of the second moment,

M̂ = ηT
[

sin 2φ −cos 2φ
−cos 2φ −sin 2φ

]
. (3.7)

It is clear from (3.4) that the diagonal elements of M are not equal, and η is a measure
of the anisotropy of the second-moment tensor. Moreover, the angle φ (see figure 2)
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measures the rotation that makes M diagonal (see § 3.3). It is straightforward to verify
that

|M| = T2(1− η2), (3.8)

M1 = T(1− η) and M2 = T(1+ η), (3.9a,b)

with M2 >M1.
Let us introduce the ‘Savage–Jeffrey’ number (Savage & Jeffrey 1981)

R= σ γ̇

4
√

T
≡ γ̇

4
√

T/σ 2
, (3.10)

which can be interpreted as the scaled or dimensionless shear rate and also as the
inverse of the square root of the dimensionless temperature. It is evident from (3.4)
and (3.10) that R, η and φ are three unknown parameters that completely characterize
the anisotropic second-moment tensor M in USF. Recall that the stress tensor (2.14)
is P ≡ ρM in the dilute limit. Hence the anisotropy of M is responsible for the first
normal stress difference (Pxx−Pyy∼η sin 2φ) in the dilute limit, which is one signature
of the stress tensor being non-Newtonian.

3.2. The second-moment balance equation in uniform shear flow
For the steady USF, the number density n, velocity gradient ∇u, granular temperature
T and the components of M are constant, and therefore the mass and momentum
balance equations are identically satisfied. The balance equation for the second-
moment tensor (2.13) reduces to

Pδβuα,δ + Pδαuβ,δ =ℵαβ, (3.11)

where
Pαβ = ρMαβ +Θαβ (3.12)

is the total stress tensor. The kinetic stress ρMαβ is calculated from (3.4), and the
collisional stress can be written as (see § A.1)

Θαβ = 2(1+ e)ρνg0(ν)

π3/2

∫
kαkβ(k ·M · k)G(χ) dk. (3.13)

The collisional source of second moment ℵαβ in (3.11) can be decomposed as (Jenkins
& Richman 1988)

ℵαβ = Aαβ + B̂αβ = Aαβ + Êαβ + Ĝαβ +ΘαγWβγ +ΘβγWαγ , (3.14)

where

Aαβ =−4(1− e2)ρνg0(ν)

σπ3/2

∫
kαkβ(k ·M · k)3/2F(χ) dk, (3.15)

and B̂αβ , Êαβ and Ĝαβ represent traceless tensors, which also possess similar integral
expressions as detailed in § A.2. The contact vector k over which the above
integrations have to be performed and its unit normal j can be expressed as

k=
[

cos(θ + φ + 1
4π)

sin(θ + φ + 1
4π)

]
and j=

[
sin(θ + φ + 1

4π)

−cos(θ + φ + 1
4π)

]
. (3.16a,b)
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We have assumed that θ is the angle between k and |M1〉 (the eigenvector
corresponding to the smaller eigenvalue of M , (3.9)) as illustrated in figure 2. It
is straightforward to verify that

k ·M · k≡ T + k · M̂ · k= T(1− η cos 2θ) and j ·M · k=−Tη sin 2θ. (3.17a,b)

In (3.13) and (3.15) and related collision integrals, the integrands are expressed in
terms of two analytic functions F(χ) and G(χ) defined as (Araki & Tremaine 1986;
Jenkins & Richman 1988):

F(χ) ≡ −√π( 3
2χ + χ 3) erfc(χ)+ (1+ χ 2) exp(−χ 2), (3.18)

G(χ) ≡ √π( 1
2 + χ 2) erfc(χ)− χ exp(−χ 2), (3.19)

where

χ = σ(k · ∇u · k)
2
√

k ·M · k
= 2R cos 2(θ + φ)
(1− η cos 2θ)1/2

≡ χ(η, R, φ, θ). (3.20)

It is clear from (3.16), (3.17) and (3.20) that the integrations over k in (3.13)–(3.15)
are to be carried out over θ via dk= dθ , with θ ∈ (0, 2π). It is worth pointing out that
χ = 0 in the dilute limit, since the origin of this term is tied to the excluded-volume
effects of macroscopic particles.

With the aid of (3.12) and (3.14), the balance of second moment (3.11) finally
reduces to

ρMδβ(Dαδ +Wαδ)+ΘδβDαδ + ρMδα(Dβδ +Wβδ)+ΘδαDβδ = Aαβ + Êαβ + Ĝαβ . (3.21)

This is the central equation that must be solved to obtain the rheological quantities
(shear viscosity, pressure and first normal stress difference) of USF for the whole
range of densities ν. Furthermore, the Grad-level collisional dissipation rate is
calculated from (3.14).

3.3. Reduced second-moment equations in rotated coordinate frame

Equation (3.21) is significantly simplified if M is made diagonal. This is achieved by
using

R =
[

cos(φ + 1
4π) −sin(φ + 1

4π)

sin(φ + 1
4π) cos(φ + 1

4π)

]
(3.22)

as the rotation matrix with respect to the coordinate frame x′y′, with x′ and y′ being
directed along |M1〉 and |M2〉, respectively (see figure 2). In the rotated x′y′ frame, the
second-moment tensor is diagonal,

M ′ = T
[

1− η 0
0 1+ η

]
, (3.23)
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with the prime indicating that the quantity is evaluated in this new frame, and

k′ =
[

cos θ
sin θ

]
, j′ =

[
sin θ
−cos θ

]
, (3.24a,b)

u′ = 2γ̇ [x′ sin(φ + 1
4π)+ y′ cos(φ + 1

4π)]
[

cos(φ + 1
4π)−sin(φ + 1
4π)

]
, (3.25)

and

D′ = γ̇
[

cos 2φ −sin 2φ
−sin 2φ −cos 2φ

]
, W ′ = γ̇

[
0 1
−1 0

]
. (3.26a,b)

It is clear from (3.23) that the anisotropy of M is characterized solely by the
temperature difference η as defined in (3.6). Note that the non-zero component of
vorticity is in the direction orthogonal to the plane of the motion, and hence the spin
tensor is invariant under the planar rotation (3.22).

In the rotated coordinate frame, the components of (3.21) are its trace

− 2ηρT γ̇ cos 2φ + γ̇ (Θx′x′ −Θy′y′) cos 2φ − 2γ̇ Θx′y′ sin 2φ = 1
2(Ax′x′ + Ay′y′), (3.27)

the deviatoric component

2ρT γ̇ cos 2φ + γ̇ (Θx′x′ +Θy′y′) cos 2φ = 1
2(Ax′x′ − Ay′y′)+ Êx′x′ + Ĝx′x′, (3.28)

and the off-diagonal component

2ρT γ̇ (η− sin 2φ)− γ̇ (Θx′x′ +Θy′y′) sin 2φ = Ax′y′ + Êx′y′ + Ĝx′y′ . (3.29)

The integral terms appearing in (3.27)–(3.29) can be expressed as

Ax′x′ + Ay′y′ = −4ρνg0(1− e2)T3/2

σπ3/2
H003(η, R, φ),

Ax′x′ − Ay′y′ = −4ρνg0(1− e2)T3/2

σπ3/2
H103(η, R, φ),

Ax′y′ = −2ρνg0(1− e2)T3/2

σπ3/2
H013(η, R, φ),

Êx′x′ = 4ρνg0(1+ e)T3/2η

σπ3/2
H021(η, R, φ),

Êx′y′ = −4ρνg0(1+ e)T3/2η

σπ3/2
H111(η, R, φ),



(3.30)

Ĝx′x′ = 2ρνg0(1+ e)T γ̇
π3/2

[cos 2φJ020(η, R, φ)

+ sin 2φJ110(η, R, φ)− η sin 2φJ010(η, R, φ)],

Ĝx′y′ = −2ρνg0(1+ e)T γ̇
π3/2

[cos 2φJ110(η, R, φ)

+ sin 2φJ200(η, R, φ)− η sin 2φJ100(η, R, φ)],
Θx′x′ +Θy′y′ = 2ρνg0(1+ e)T

π3/2
J002(η, R, φ),

Θx′x′ −Θy′y′ = 2ρνg0(1+ e)T
π3/2

J102(η, R, φ),

Θx′y′ = ρνg0(1+ e)T
π3/2

J012(η, R, φ).



(3.31)
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Here Hαβγ and Jαβγ possess the integral expressions

Hαβγ (η, R, φ)≡
∫ 2π

0
cosα 2θ sinβ 2θ (1− η cos 2θ)γ /2F(χ [η, R, φ, θ]) dθ, (3.32)

Jαβγ (η, R, φ)≡
∫ 2π

0
cosα 2θ sinβ 2θ (1− η cos 2θ)γ /2G(χ [η, R, φ, θ]) dθ, (3.33)

with F(χ) and G(χ) given by (3.18) and (3.19).
Equations (3.27)–(3.29) represent a system of nonlinear integro-algebraic equations,

which we solve using two different methods: (i) semi-analytical method and
(ii) numerical method. In § 4 we outline a semi-analytical series solution (which
reduces to the solution of Jenkins & Richman (1988) in the dense limit) and verify
a posteriori, via a comparison with the full numerical solution (see § 5.1), that
the adopted power-series representation of integrals (3.32) and (3.33) holds for the
whole range of densities. More importantly, this helps to achieve our primary goal
of deriving closed-form analytical expressions for nonlinear transport coefficients as
well as for the dissipation rate that are valid from dilute to dense flows as we show
in §§ 4.2 and 4.3, respectively.

4. Non-Newtonian stress tensor and dissipation rate: constitutive relations

The solution of (3.27)–(3.29) involves evaluating the integrals in (3.32) and (3.33)
whose integrands are functions of F(χ) and G(χ) as defined in (3.18) and (3.19),
respectively, with χ being given by (3.20). Using the power-series representation for
the complementary error function and the exponential, the two functions F(χ) and
G(χ) can be compactly expressed as

F(η, R, φ, θ) = −√π

[
3
2

2R cos(2φ + 2θ)
(1− η cos 2θ)1/2

+
(

2R cos(2φ + 2θ)
(1− η cos 2θ)1/2

)3
]

+
∞∑

m=0

(−1)m

m!
3

(2m− 1)(2m− 3)

[
2R cos(2φ + 2θ)
(1− η cos 2θ)1/2

]2m

, (4.1)

G(η, R, φ, θ) = √π

[
1
2
+ 4R2 cos2 (2φ + 2θ)

(1− η cos 2θ)

]

+
∞∑

m=0

(−1)m

m!
2

4m2 − 1

[
2R cos(2φ + 2θ)
(1− η cos 2θ)1/2

]2m+1

. (4.2)

Substituting (4.1) and (4.2) into (3.32) and (3.33) and carrying out term-by-term
integrations over θ ∈ (0, 2π) results in an infinite series in η and R for each integral
in (3.32) and (3.33) (see appendix B). To progress further, we need to truncate each
series after a finite number of terms.

Retaining terms up to second order in η and R (i.e. O(η2), O(ηR) and O(R2)) in the
integral expressions for Hαβγ ((3.32) and (B 6) in appendix B) and for Jαβγ ((3.33)
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and (B 7) and (B 8) in appendix B), (3.27)–(3.29) simplify to

4π3/2ηR cos 2φ + (1+ e)νg0R(16πR+ 2π3/2η cos 2φ)

= νg0(1− e2)(3π3/2ηR cos 2φ + 2π+ 3
8πη

2 + 12πR2),

4π3/2R cos 2φ − (1+ e)νg0(2πη− 1
16πη

3 − 2π3/2R cos 2φ − 12π3/2R3 cos 2φ

− 4πηR2 + 8πηR2 sin2 2φ)

= νg0(1− e2)[3π3/2R cos 2φ + 3
2πη],

4π3/2R(η− sin 2φ)− (1+ e)νg0R(2π3/2 sin 2φ + 12π3/2R2 sin 2φ + 4πηR sin 4φ)

=−3π3/2νg0(1− e2)R sin 2φ.


(4.3)

At the third order in η and R (i.e. up to O(η3),O(η2R),O(ηR2) and O(R3)) they are

4π3/2ηR cos 2φ + (1+ e)νg0R(16πR+ 16πR3 + 2π3/2η cos 2φ − 1
2πη

2R

−πRη2 cos2 2φ)

= νg0(1− e2)(3π3/2ηR cos 2φ + 2π+ 3
8πη

2 + 12πR2),

4π3/2R cos 2φ − (1+ e)νg0(2πη− 1
16πη

3 − 2π3/2R cos 2φ − 12π3/2R3 cos 2φ

+ 8πηR2 sin2 2φ − 4πR2η)

= νg0(1− e2)[3Rπ3/2 cos 2φ + 6π3/2R3 cos 2φ + 3
2πη+ 3

2πηR2(2+ cos 4φ)],
4π3/2R(η− sin 2φ)− (1+ e)νg0R

(
2π3/2 sin 2φ + 12π3/2R2 sin 2φ + 4πηR sin 4φ

)
=−νg0(1− e2)(3π3/2R sin 2φ + 6π3/2R3 sin 2φ + 3

2πηR2 sin 4φ).


(4.4)

It is clear that we have three unknowns η, R and φ to solve for at each order, provided
the restitution coefficient e and the area fraction ν are specified. Both sets of coupled
algebraic equations, (4.3) and (4.4), can be easily solved using the Newton–Raphson
method.

Equations (4.3) and (4.4) can be thought of as analogues of the Burnett-order
(quadratic in shear rate) and super-Burnett-order (cubic in shear rate) equations,
respectively, and this will become evident in § 4.1, where we show that η ∼ O(R)
to leading order. In principle we can retain further higher-order terms to solve the
above three equations but stop at the cubic order as they provide adequate accuracy
to recover the exact numerical solution, as we shall demonstrate in § 5.1.

4.1. Exact solution at leading order: scaling relations
Before moving to numerical solution of (4.3) and (4.4), it is illuminating to consider
the leading-order moment equations that admit an exact solution, which helps to
understand the scaling relations for the three unknowns η, R and φ in terms of
the restitution coefficient e. Retaining only the zeroth-order terms in η and R in
the integral expressions for Hαβγ and Jαβγ (see (B 6)–(B 8) in appendix B), the
following equations for the second-moment balance are obtained:

2
√

πηR cos 2φ − (1− e2)νg0 = 0,
2
√

πR cos 2φ − (1+ e)νg0η+√π(1+ e)νg0R cos 2φ = 0,
2(η− sin 2φ)− (1+ e)νg0 sin 2φ = 0.

 (4.5)
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These equations are amenable to analytical solution, and yield

η =
√
(1− e)(1+ 1

2(1+ e)νg0)∼ (1− e)1/2,

R =
√
(1− e2)(1+ e) νg0√

2π(2e+ (1+ e)νg0)
∼ (1− e)1/2,

sin 2φ =
√

2(1− e)
2+ (1+ e)νg0

∼ (1− e)1/2,

cos 2φ =
√

2e+ (1+ e)νg0

2+ (1+ e)νg0
,

η

R
=
√

π(2+ (1+ e)νg0)(2e+ (1+ e)νg0)

(1+ e)νg0
,



(4.6)

with each quantity being a function of e and ν only. Note further that

η

R
cos 2φ =√π

(
1+ 2e

(1+ e)νg0

)
. (4.7)

It is clear from (4.6) that the temperature anisotropy η, the shear rate R and sin 2φ
scale as ε ≡ (1 − e)1/2 (a measure of the inelasticity of particle collisions). More
importantly, that both η and R are of the same order lends credence to the adopted
power-series expansion of the collision integrals (3.32) and (3.33) in terms of η and
R (see appendix B). The leading-order scaling of R and η with ε implies that the
NS-, Burnett- and super-Burnett-order terms in the USF are of order O(ε), O(ε2)
and O(ε3), respectively, although we have not attempted to establish this connection
at higher orders (see the discussion in § 4.4). In the rest of this paper, the second-
and third-order terms in R and η are referred to as Burnett and super-Burnett order,
respectively.

4.2. Non-Newtonian stress tensor: analytical expressions for transport coefficients
The dimensionless stress tensor can be written as

P∗ = P

ρpU2
R
=
(

P∗xx P∗xy
P∗yx P∗yy

)
≡
(

p∗ 0
0 p∗

)
−
(−N ∗

1/2 µ∗

µ∗ N ∗
1/2

)
, (4.8)

where p∗ = (P∗xx + P∗yy)/2 is the pressure, µ∗ =−P∗xy is the shear viscosity and N ∗
1 =

P∗xx−P∗yy is the first normal stress difference. Here ρp is the material (intrinsic) density
of particles and UR= 2γ̇ σ is the reference velocity scale. We will express constitutive
relations in terms of the dimensionless temperature, which is defined as

T∗ = T
U2

R
≡ 1

64R2
. (4.9)

The power series (4.2) for G(η, R, φ) is inserted into (3.13) to evaluate the
collisional stress, and the total stress tensor is subsequently obtained from (3.12). In
the following we present only the final analytical expressions for the components of
the stress tensor, thus leaving the related algebraic details to appendix C.
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4.2.1. Shear viscosity: up to super-Burnett order
Retaining terms up to the third order in temperature anisotropy η and shear rate R,

the dimensionless shear stress takes the following form (see appendix C):

P∗xy

νT∗
= −η cos 2φ − 4νg0(1+ e)√

π

[
R
(

1+
√

π

8
η

R
cos 2φ

)
+ R3

(
1− η2

32R2
(1+ 2 cos2 2φ)

)
︸ ︷︷ ︸

]
+O(ηmRn,m+ n > 4). (4.10)

The first term on the right-hand side represents its kinetic contribution and the
remaining part its collisional contribution. Recall from (4.7) that (η/R) cos 2φ∼O(1),
and hence the underbraced terms in (4.10) are of super-Burnett (O(R3)) order.

The expression for the dimensionless shear viscosity, µ∗=µ/ρpσUR≡−Pxy/ρpU2
R=−P∗xy, follows from (4.10):

µ∗ = ν
√

T∗

8

[
η

R
cos 2φ + 4νg0(1+ e)√

π

(
1+
√

π

8
η

R
cos 2φ + R2 − η

2

32
(1+ 2 cos2 2φ)︸ ︷︷ ︸

)]
+O(ηmRn,m+ n > 4). (4.11)

The nonlinear dependence of viscosity on the shear rate R and the temperature
anisotropy η is evident from the underbraced terms in (4.11).

For a check, we consider the NS-order shear viscosity

µ∗ = ν
√

T∗

8

[
η

R
cos 2φ + 4νg0(1+ e)√

π

(
1+
√

π

8
η

R
cos 2φ

)]
+O(R2), (4.12)

which follows from (4.11) by neglecting the nonlinear terms. Substituting the
leading-order solution (4.7) into (4.12), we obtain the expressions for the kinetic
and collisional parts of the shear viscosity as

µ∗k ≡
ν
√

T∗

8

(η
R

cos 2φ
)
= ν
√

T∗

8
√

π

(
1+ 2e

(1+ e)νg0

)
, (4.13)

µ∗c =
ν2g0(1+ e)

√
T∗

2
√

π

[
1+ π

8

(
1+ 2e

(1+ e)νg0

)]
, (4.14)

respectively, at NS order. These expressions (4.13) and (4.14) with e = 1 agree
perfectly with the known results for the shear viscosity (Jenkins & Richman 1985a)
of an elastic hard-disk system.

4.2.2. Pressure: up to super-Burnett order
At the third-order approximation in η and R, the diagonal components of the stress

tensor are

P∗xx

νT∗
= (1+ η sin 2φ)+ νg0(1+ e)

(
1+ 1

2
η sin 2φ + 4R2 + 2√

π
ηR cos 2φ

− 1
4
√

π
Rη2 sin 2φ cos 2φ

)
+O(ηmRn,m+ n > 4), (4.15)
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P∗yy

νT∗
= (1− η sin 2φ)+ νg0(1+ e)

(
1− 1

2
η sin 2φ + 4R2 + 2√

π
ηR cos 2φ

+ 1
4
√

π
Rη2 sin 2φ cos 2φ

)
+O(ηmRn,m+ n > 4). (4.16)

Note that both contain odd-order terms in η and R having opposite signs, and hence
they cancel each other, resulting in the following expression for the mean pressure:

p∗= νT∗

1+ νg0(1+ e)

1+ 4R2 + 2√
π
ηR cos 2φ︸ ︷︷ ︸

+O(ηmRn,m+ n> 4). (4.17)

This expression holds at both second and third order of approximation in η and R. In
any case, it is clear that the collisional part of the pressure depends on the shear rate
R and the temperature anisotropy η, revealing the nonlinear dependence of pressure
at the Burnett order O(R2) and beyond. Neglecting the ‘underbraced’ terms in (4.17),
we arrive at the textbook expression for pressure,

p∗ = νT∗(1+ νg0(1+ e)), (4.18)

which holds at NS order.

4.2.3. First normal stress difference
Subtracting (4.16) from (4.15), we obtain an expression for the first normal stress

difference:

P∗xx−P∗yy= 2η sin(2φ)νT∗+ ν2g0(1+ e)T∗
(
η sin 2φ − 1

2
√

π
Rη2 sin 2φ cos 2φ

)
+ h.o.t.

(4.19)

The leading term in (4.19) is of order O(R2), since η sin 2φ = O(1 − e) = O(R2)
following (4.6), and the terms of order O(R) in (4.15) and (4.16) do not contribute
to the normal stress difference. The leading correction in (4.19) comes from the
collisional part of the stress tensor,

Rη2 sin 2φ cos 2φ ≡ R2(η sin 2φ)
(η

R
cos 2φ

)
=O(R4), (4.20)

which is fourth order in the shear rate.
Retaining terms up to O(R4) in (4.19), the scaled first normal stress difference is

given by

N1 = Pxx − Pyy

p
=
η sin 2φ

(
2+ νg0(1+ e)

(
1− 1

2
√

π
Rη cos 2φ

))
1+ νg0(1+ e)

(
1+ 4R2 + 2√

π
ηR cos 2φ

) , (4.21)

which is a measure of the normal stress with respect to the mean/isotropic pressure
(4.17). Focusing on the dilute limit (ν→ 0), (4.21) becomes

N1 = 2η sin 2φ = 2(1− e)∼ R2 ∼ γ̇ 2, (4.22)
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which scales quadratically with the shear rate. This confirms that the normal stress
difference is a Burnett-order effect (Sela & Goldhirsch 1998). Note from (4.21)
that N1 ∼ η sin 2φ at any density and it approaches zero for η→ 0 and/or φ→ 0.
The origin of the normal stress difference is, therefore, tied to (i) the temperature
anisotropy η and (ii) the angle φ between the eigen-directions of the shear tensor D
and the second-moment tensor M – both are shear-induced effects.

It should be noted that the elastic limit (e→ 1) remains non-singular even though
the temperature diverges (T ∼ R−2→∞ as e→ 1). The latter divergence is due to
the absence of any mechanism to compensate the shear work, but this can be fixed
by using a thermostat. Therefore, the normal stress difference is finite for perfectly
elastic collisions (Sela et al. 1996; Alam & Luding 2003a,b):

N1 = 0.679
γ̇ 2l2

f

T
, (4.23)

where lf is the mean free path. Note, however, that N1 ∼ O(10−20) in a sheared
molecular gas at standard temperature and pressure with γ̇ = O(1) and hence is
negligible. The expression (4.23) can be understood from (4.22) by tying the in-built
mechanism of energy replenishment in a granular gas with a thermostat in its
molecular counterpart.

4.3. Dissipation rate: dependence on shear rate and normal stress
Employing the series solution for integrals, the collisional dissipation rate in the
energy balance equation can be calculated from (3.14) as

D ≡ −1
2
ℵββ =−1

2
(Aββ + B̂ββ)=−1

2
(Ax′x′ + Ay′y′)

= 2ρνg0(1− e2)T3/2

σπ3/2
H003(η, R, φ)

= 4ρνg0(1− e2)T3/2

σ
√

π

(
1+ 6R2

(
1+
√

π

4
η

R
cos 2φ

)
+ 3

16
η2 + h.o.t.

)
. (4.24)

The neglected terms in (4.24) are of order O(ηmRn) with m+ n> 4: the leading-order
corrections are second order in both R and η but the odd-order terms (m+n=1,3, . . .)
are zero. Hence the expression (4.24) is exact up to the super-Burnett order. In the
isotropic limit of zero normal stress difference (η→ 0 and φ→ 0), (4.24) reduces to

D =D (0)(1+ 6R2 +O(R4)), (4.25)

which contains a rate-dependent correction term at the leading order. The origin of
this correction is tied to the excluded-volume effects (3.20) of a dense gas. In (4.25),

D (0) = 4ρpν
2g0(1− e2)T3/2

σ
√

π
(4.26)

is the dissipation rate for a system of inelastic hard disks (Jenkins & Richman
1985a), which holds at both Euler and NS orders. Equation (4.26), however, differs
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from related NS-order theories (Lutsko 2005; Garzo et al. 2007) that are built around
the homogeneous cooling state as a reference.

Returning to (4.24), we note that the correction terms beyond the NS order
depend quadratically on both (i) the shear rate (γ̇ ∼ R ∼ ε ≡ (1 − e)1/2) and (ii) the
temperature anisotropy η (∼ ε). The latter finding uncovers a novel dependence of the
collisional dissipation rate on the normal stress difference since η∼N1. As clarified
in § 4.1, the above quadratic-order corrections in (4.24) can also be translated into an
effective correction of O(ε2), which agrees qualitatively with the related Burnett-order
expression for D derived by Sela & Goldhirsch (1998) and Brilliantov & Pöschel
(2003), who used the Chapman–Enskog method to solve the Boltzmann equation in
three dimensions up to the Burnett order (i.e. the second order in the gradients of
hydrodynamic fields). Note that the latter work analysed the homogeneous cooling
state of a granular gas of viscoelastic particles by incorporating the second-order
gradient terms in the two-particle distribution function.

4.4. Inherent non-Newtonian rheology of uniform shear flow
Let us now remark on the dependence of various transport coefficients on (i) the shear
rate R, (ii) the temperature anisotropy η, (iii) the non-coaxiality angle φ, (iv) the
restitution coefficient e and (v) the density or area fraction ν that we uncovered in
§§ 4.2 and 4.3. It is clear from (4.6) that there is an intertwined relationship among R,
η and φ via their dependence on e and ν in the uniform shear state, and this survives
at any order. For example, (4.4) can be solved perturbatively by using (4.6) as the
zeroth-order solution, leading to an approximate solution for η, R and φ as a function
of ε= (1− e)1/2 for the whole range of densities. Substituting these values into (4.11)
results in an expression for the shear viscosity as a function of e and ν. This implies
that specifying ν and e with Lees–Edward boundary condition (Alam & Luding
2003a,b, 2005a,b; Gayen & Alam 2008) sets the granular temperature and the shear
rate simultaneously, which is a consequence of the ‘in-built’ thermostat of collisional
dissipation that balances the shear work. Therefore, it would not be possible to isolate
the shear-rate dependence of viscosity (and other transport coefficients) from its
dependence on inelasticity if we were to measure shear viscosity from the molecular
dynamics simulation (§ 5.2) of a granular fluid under uniform shear.

What is measured in simulations is nothing but the non-Newtonian viscosity, since
the shear rate is always finite, and hence the rheology of the uniform shear state
of a granular fluid is inherently non-Newtonian (Santos et al. 2004) unlike in its
elastic counterpart. The comparisons of transport coefficients in § 5.2 will validate
their dependence on the density and the restitution coefficient at any arbitrary shear
rate. On the other hand, the explicit rate dependence of transport coefficients can
be checked in future with simulations of boundary-driven shear (with imposed
temperature gradient) where the shear rate and the restitution coefficient can be
independently varied (Vega Reyes et al. 2013).

5. Validation of constitutive relations and comparison with particle simulation
5.1. Validation of constitutive relations: are super-Burnett terms required?

Here we validate the constitutive relations for all transport coefficients as detailed in
§ 4.2. This is done by carrying out a comparison between the transport coefficients
obtained from (i) the full numerical solution of moment equations and (ii) those
obtained from their analytical expressions at Burnett (i.e. quadratic order in R and η)
and super-Burnett (i.e. cubic order in R and η) orders. The goal is to check whether
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we need to go beyond the Burnett order for an accurate representation of transport
coefficients at any restitution coefficient for the whole range of densities.

For the complete numerical solution of the moment equations, we evaluate the
integrals in A, Ê, Ĝ and Θ in (3.27)–(3.29) using the standard quadrature rule.
Next we solve the resulting system of three nonlinear algebraic equations by the
Newton–Raphson method, yielding values of η, R and φ for specified values of
the area fraction ν and the restitution coefficient e. This helps to determine (see
appendix C) the pressure p, the shear viscosity µ and the first normal stress difference
N1 as functions of ν and e.

The comparison between the full moment theory and the series solutions at second
and third orders is given in figure 3: panels (a)–(d), respectively, display the variations
of pressure, shear viscosity, granular temperature and first normal stress difference
with area fraction, for four values of the restitution coefficient (e= 0.99, 0.9, 0.6 and
0.3). In each panel, the continuous (black) and dashed (red online) lines represent
the series solution at third- and second-order approximation, respectively, and the
symbols denote the exact solution (full numerical solution) of the moment equations.
We observe excellent agreement between the third-order series solution and the
exact solution even at a strong dissipation of e = 0.3. In contrast, the second-order
series solution does well only up to e = 0.6 for the normal stress difference (see
panel (d)), although the pressure, viscosity and temperature are well predicted by the
second-order solution even at e= 0.3.

On the whole, figure 3 confirms that, while the Burnett-order expressions yield
accurate transport coefficients in the dilute limit, the super-Burnett-order terms are
required to reproduce the correct behaviour of all transport coefficients at higher
densities (ν > 0.2) for the whole range of restitution coefficients (0 6 e 6 1).

To see why the adopted series expansion (4.1) and (4.2) works well, we plot the
variations of η, R and φ in figure 4(a–c), respectively. Again, we observe excellent
agreement between the exact solution (symbols) and the third-order series solution
(solid line) for the whole range of densities up to a restitution coefficient of e= 0.3.
However, the second-order solution (dashed line) for η in panel (a) is seen to deviate
significantly from its exact solution at e= 0.6 beyond a moderate density of ν ∼ 0.35,
and this disagreement occurs at a much lower density (ν∼ 0.2) for e= 0.3. It is clear
that both R and η are small in the dilute and dense limits, respectively, but they tend
to become of order one in opposite limits. Nevertheless, the series representation (4.1)
and (4.2) and the resulting power-series expansion of integrals (3.32) and (3.33) in
terms of η and R (appendix B) works excellently for the whole range of densities
even at strong dissipations, as illustrated in figure 4, if we retain the third-order terms
as in (4.4).

5.2. Comparison of anisotropic moment theory with simulation and Navier–Stokes
model

In this section we make a detailed comparison for all transport coefficients of the non-
Newtonian stress tensor as obtained in § 4.2 from the moment theory with (i) particle
simulations and (ii) an NS order model. The NS-order transport coefficients are taken
from those of Lutsko (2005) as detailed in appendix D. Note that Lutsko’s model
holds for both disks and spheres; Garzo et al. (2007) also derived NS-level transport
coefficients in arbitrary dimension using a modified Sonine expansion, and confirmed
that the viscosity, pressure and dissipation rate are hardly affected in both approaches.
It may be noted that both works carry out a Chapman–Enskog expansion around
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FIGURE 3. (Colour online) Comparison of the numerical solution for the moment theory
(symbols) with approximate series solution: second-order (red dashed lines) and third-order
(black solid line) series solutions for the (a) pressure, (b) shear viscosity, (c) granular
temperature and (d) first normal stress difference.

the homogeneous cooling state, and the NS-level transport coefficients thus obtained
are assumed to hold for all values of the restitution coefficient, since they made no
assumption about the smallness of inelasticity or dissipation.

The event-driven simulation of the USF of inelastic hard disks (i.e. in two
dimensions) has been carried out by Alam & Luding (2003a,b) and we take their data
to compare with the present theory. The disks interact via the standard binary collision
rule of smooth particles, (2.1), for a specified value of the restitution coefficient. The
state of uniform shear is achieved by employing the Lees–Edward boundary condition
(Lees & Edwards 1972). All simulations have been carried out in a square box with
N = 1024 disks for two values of the restitution coefficient, e = 0.9 and 0.7, for a
range of densities (area fractions) ν ∈ (0.01, 0.8) spanning from the dilute to the
dense regime.

Figure 5 shows a comparison for the pressure field between (i) the exact moment
theory (solid line, numerical solution), (ii) the NS-order model (dashed line) and
(iii) simulation data (symbols). Panels (a)–(c), respectively, correspond to the total
pressure (p = pk + pc), and its kinetic (pk) and collisional (pc) components; the data
for e= 0.9 and 0.7 are marked in each panel. The analogue of figure 5 for the shear
viscosity is displayed in figure 6. For both pressure and viscosity, we observe that the
NS model overpredicts the simulation data, and the degree of discrepancy increases
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FIGURE 4. (Colour online) Comparison between the ‘exact’ (numerical solution) moment
theory and the approximate series solution for a range of densities: variations of (a) η,
(b) R and (c) φ (degrees) with area fraction. The symbols, dashed (red) and solid (black)
lines represent the full numerical solution, second-order and third-order series solutions,
respectively.

with decreasing value of e (i.e. with increasing dissipation). It is noteworthy that the
deviation between the NS model and the simulation is more prominent for dilute
flows at any restitution coefficient. In contrast, the predictions of the moment theory
agree excellently with simulation even at e = 0.7 for a large range of densities –
up to ν ∼ 0.65, which is close to the freezing point density νf ≈ 0.69 (see figures 5
and 6). A possible reason for quantitative discrepancies at large densities could be the
breakdown of the molecular chaos assumption (§ 2.1), especially beyond the freezing
density (Mitarai & Nakanishi 2007).

Figures 7 and 8 show the variations of the scaled pressure p/T and the scaled
viscosity µ/

√
T , respectively. In each figure, panels (a) and (b) correspond to e =

0.9 and 0.7, respectively, with the solid line, dashed line and symbols denoting the
moment theory, NS theory and simulation data, respectively. Recall that both these
scaled quantities (p/T = f1(ν, e, . . .) and µ/

√
T = f2(ν, e, . . .)) are functions solely

of the density and restitution coefficient in the NS-level theory; however, they have
additional dependence on the shear rate (γ̇ ∼ R) as well as on the normal stress
difference (N1 ∼ η). Figure 7 indicates that the dependence of f1 on R and η is
negligible in dilute to moderately dense flows even at e= 0.7, but a slight deviation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.489


Stress, dissipation and heat flux in shear flow of inelastic disks 273

100

101

102

100

101

100

10–1

101

102

0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8

(a) (b)

(c)

p pk

pc

FIGURE 5. Comparison among the full moment theory (solid line, present work), the
NS model (dashed line, Lutsko 2005) and simulation data (symbols) for the variation of
pressure with area fraction: (a) total pressure p = pk + pc, (b) kinetic pressure pk and
(c) collisional pressure pc. Results for two values of the restitution coefficient (e = 0.9
and 0.7) are shown.

(between the moment theory and the NS-level theory) is noticeable in the dense limit,
which becomes more prominent with increasing dissipation. On the other hand, the
viscosity function f2 deviates strongly from its NS prediction in the dilute limit even
at e= 0.9.

Figure 9 shows the variation of the scaled first normal stress difference N1 =
(Pxx − Pyy)/p with density for three values of e = 0.95, 0.9 and 0.7. The lines
correspond to the moment theory and the symbols to simulation data. Recall that
N1 = 0 for all NS-order constitutive models. The prediction of the moment theory
agrees well with simulation data for e = 0.95 and 0.9, but there are quantitative
differences between theory and simulation that increase with increasing dissipation.
Although the theoretical prediction remains good in the dilute limit (ν → 0) even
at e = 0.7 (see also § 5.3 and figure 10), increasing the density leads to an
underprediction of simulation data – this might be related to enhanced density
correlations at finite densities. The latter assertion is supported by additional
simulations at e= 0.5 (with other simulation parameters being fixed at finite densities)
that show the emergence of particle clusters spanning over the whole system. Another
noteworthy point in figure 9 is that the theory predicts N1→ 0 in the dense limit, but
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FIGURE 6. Same as figure 5 but for the variation of shear viscosity with area fraction:
(a) total viscosity µ=µk +µc, (b) kinetic viscosity µk and (c) collisional viscosity µc.

the simulation shows a sign reversal of N1 at some critical density (near the freezing
density). This sign reversal of N1 is, in fact, tied to changes in the microstructure
(Alam & Luding 2003a,b), i.e. changes in the pair correlation function and its
relaxation under shear. The latter effect is not incorporated in the present theory,
which is likely to be responsible for the disagreement between theory and simulation
in the dense regime.

On the whole, we find that the Grad-level moment theory with anisotropic Gaussian
can quantitatively predict the pressure and shear viscosity for a range of densities
up to the freezing point at very strong dissipations (e = 0.3). In contrast the NS
model (Lutsko 2005; Garzo et al. 2007), which is assumed to hold at any dissipation,
shows quantitative discrepancies even at moderate dissipations (e = 0.9) and the
degree of disagreement increases with decreasing restitution coefficient e. Last but
not least, the missing ingredient of any NS-order constitutive model, the normal
stress difference (N1, figure 9), is well predicted by our anisotropic moment theory,
although quantitative discrepancy remains at finite densities for large dissipations.

5.3. Comparison with another Grad-level theory in the dilute limit
In this section we compare our analytical transport coefficients (§ 4.2) with those
derived from another variant of Grad’s method (Kremer & Marques 2011; Garzo
2012). In the latter two works, the moment theory was developed using a Hermite
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FIGURE 7. Variation of p/T (dimensionless) with area fraction for (a) e = 0.9 and
(b) e = 0.7. The solid and dashed lines represent the exact moment theory (i.e. the full
numerical solution) and the NS-order model (Lutsko 2005), respectively, and the symbols
denote simulation data.
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FIGURE 8. Variation of µ/
√

T (dimensionless) with area fraction for (a) e = 0.9 and
(b) e = 0.7. The solid and dashed lines represent the exact moment theory (i.e. the full
numerical solution) and the NS-order model (Lutsko 2005), respectively, and the symbols
denote simulation data.

expansion around an isotropic Gaussian state, in contrast to the anisotropic Gaussian
reference in our work. Leaving aside the mathematical details, we note that the
balance equation for the second moment in the steady uniform shear state is the
same as (3.11) as elaborated in § 3.2. An approximate expression for the source term
has been determined for hard disks (Garzo 2012):

ℵαβ =−ϕµP̂αβ − ζpδαβ, (5.1)

where P̂αβ = Pαβ − pδαβ is the pressure deviator. The equation of state is p ≡
(Pxx + Pyy)/2 = ρT , and the expressions for the cooling rate ζ , collision frequency
ϕµ (related to shear viscosity) and the coefficient of the fourth velocity cumulant α2
(= 〈C4〉/〈C4〉(0)− 1, with the superscript ‘0’ denoting its evaluation for a Gaussian or
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FIGURE 9. (Colour online) Variation of the scaled first normal stress difference N1 with
area fraction. The symbols and lines represent the molecular dynamics simulation data and
the present moment theory, respectively.

Maxwellian) are given by

ζ = 4ν
σ
√

π
(1− e2)

(
1+ 3α2

16

)√
T,

ϕµ = ν

σ
√

π
(7− 3e)(1+ e)

(
1− α2

32

)√
T,

α2 ≡
( 〈C4〉
〈C4〉(0) − 1

)
= 16(1− e)(1− 2e2)

57− 25e+ 30(1− e)e2
.


(5.2)

Note that α2 = 0 for a Maxwellian distribution function.
With the aid of (5.1) and taking the overall shear rate in the USF as du/dy= 2γ̇

(defined in (3.1)), (3.11) can be decomposed into its component forms:

ϕµPxy = −2γ̇Pyy,

(ϕµ − ζ )Pxx = (ϕµ + ζ )Pyy,

8γ̇Pxy = −(ϕµ + ζ )Pxx + (ϕµ − ζ )Pyy.

 (5.3)

The solution of (5.3) yields the diagonal components of the stress tensor,

Pxx

4ρpγ̇ 2σ 2
= ν

64R2

(
ϕµ + ζ
ϕµ

)
and

Pyy

4ρpγ̇ 2σ 2
= ν

64R2

(
ϕµ − ζ
ϕµ

)
, (5.4a,b)

and the dimensionless shear rate R is

R2 = γ̇
2σ 2

16T
= ν

2(7− 3e)2(1+ e)2(1− e)(1− 1
32α2)

2(1+ 3
16α2)

16π(3+ e− 1
32α2(31− 27e))

. (5.5)

The expression for the first normal stress difference is

N1 = 2(Pxx − Pyy)

(Pxx + Pyy)
= 2ζ
ϕµ
= 8(1− e)(1+ 3

16α2)

(7− 3e)(1− 1
32α2)

∼ (1− e)∼ R2, (5.6)
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FIGURE 10. (Colour online) Comparison of the first normal stress difference obtained
from simulation (symbols) with the present anisotropic Gaussian theory (blue solid line),
the Grad-level theory of Garzo (thick red dashed line, (5.6)) and the Burnett-order theory
of Sela & Goldhirsch (magenta dot-dashed line). The ‘thin’ black dashed line corresponds
to (5.6) with α2= 0 (see the text in § 5.3 for details). The area fraction is set to ν= 0.01.

which scales quadratically with the shear rate and hence is a Burnett-order effect as
confirmed in § 4.2.3.

The comparison of (5.6) with the present theory and the particle simulation data
is shown in figure 10, marked by the red dashed line, the blue solid line and the
circles, respectively; the simulations were carried out for an average area fraction
of ν = 0.01. The Burnett-order expression of Sela et al. (1996), obtained from the
Chapman–Enskog expansion, is also displayed on the same figure (magenta dot-dashed
line). We observe that the simulation data agree uniformly with the present anisotropic
Gaussian theory for a large range of restitution coefficients e ∈ (0.3, 0.99), but the
Grad-level expression (5.6) of Garzo underpredicts the simulation results for e< 0.8.
On the other hand, the Burnett theory of Sela et al. agrees well with simulation and
present theory up to e= 0.5 and underpredicts N1 for e< 0.5. To ascertain the relative
importance of the fourth velocity cumulant α2 for a quantitative prediction of N1, we
set α2= 0 in (5.6) and plot the resulting expression as the ‘thin’ black dashed line in
figure 10. It is clear that the fourth velocity cumulant does not affect N1 noticeably
up to a restitution coefficient of e≈ 0.6 but underpredicts it slightly for smaller e.

From (5.3) and (5.4), the expressions for shear viscosity µ=−Pxy/2γ̇ and pressure
p= (Pxx + Pyy)/2 can be obtained as

µ

2ρpγ̇ σ 2
= ν

2(1− e2)(1+ 3
16α2)

128
√

πR3
and

p
4ρpγ̇ 2σ 2

= ν

64R2
, (5.7a,b)

with R being given by (5.5). These two expressions (5.7) are compared in figure 11,
denoted by the red dashed lines, with (i) the particle simulation (denoted by
symbols) and (ii) the present anisotropic Gaussian theory (blue solid lines). The
curves for two variants of the NS-level theory (Lutsko 2005, green dot-dashed lines;
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100

101
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p

FIGURE 11. (Colour online) Comparison for dimensionless pressure and shear viscosity
obtained from molecular dynamics simulation (symbols) with the present anisotropic
Gaussian theory (blue solid lines), the Grad-level theory of Garzo (red dashed lines, (5.7)),
the NS-level theory of Lutsko (2005, green dot-dashed lines) and the NS-level theory of
Jenkins & Richman (1985a, magenta starred lines). Other parameters are as in figure 10.

and Jenkins & Richman 1985a, magenta starred lines) are also displayed. We see
excellent agreement of simulation data with the present theory, but the isotropic
version of the moment theory slightly overpredicts both p and µ for e < 0.5. In
contrast, both the NS-level theories overpredict the simulation data even at e = 0.9,
and the quantitative disagreement worsens significantly with further decrease of
restitution coefficient. It is surprising that the NS theory of Jenkins & Richman
provides a better quantitative prediction for p and µ in comparison to Garzo and
Lutsko’s theory, since the latter theory incorporates the fourth velocity cumulant α2
and makes no assumption about the smallness of the restitution coefficient.

On the whole, figures 10 and 11 confirm that the present anisotropic Gaussian
theory provides better prediction for all transport coefficients (N1, µ and p) for the
whole range of restitution coefficients in comparison to two existing theories (in the
dilute limit) that are based on (i) the Chapman–Enskog expansion (Sela et al. 1996)
and (ii) the isotropic version of Grad’s moment expansion (Kremer & Marques 2011;
Garzo 2012).

6. Constitutive relation for granular heat flux in the dilute limit
Lastly, we outline a procedure to derive the constitutive relation for granular heat

flux focusing on the dilute limit of granular shear flow. Note that the heat flux
vanishes in the uniform shear state since ∇T = 0, and hence we need to consider
non-uniform shear flow (‘non-USF’) in which the gradients of hydrodynamic fields
are non-zero, i.e. ∇(n, T, γ̇ ) 6= 0. Carrying out an orthonormal expansion around the
anisotropic Gaussian state, we will show that the heat-flux vector depends on the
gradients of temperature and the second-moment tensor, and the thermal conductivity
is characterized by an anisotropic second-rank tensor.
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6.1. Distribution function for non-uniform shear flow: expansion around the
anisotropic Gaussian

Following Grad (1949), we choose (1, Cx, Cy, C2
x , CxCy, C2

y , C2Cx, C2Cy) as the basis
set that incorporates the third-degree polynomials. Let us define an inner product,

〈χ, ψ〉 = 1
2π|M|1/2

∫
χψ exp

(
−1

2
C ·M−1

·C
)

dC, (6.1)

with respect to the anisotropic Gaussian as the weight function. The related
orthonormal basis (1, ξx, ξy, ξ

2
x , ξxξy, ξ

2
y , ξ

2ξx, ξ
2ξy) is obtained by applying the

Gram–Schmidt orthogonalization procedure.
We assume that the single-particle distribution function for the non-uniform shear

flow (non-USF) can be expanded as

f = f0(a+ aiξi + aijξiξj + biξ
2ξi), (6.2)

where the anisotropic Gaussian

f0 = n
2π|M|1/2 exp

(
−1

2
CαM−1

αβ Cβ

)
(6.3)

is the zeroth state representing the USF. The coefficients a, ai, aij and bi in (6.2) are
to be chosen such that the basic hydrodynamic fields

(n, u, 〈CC〉) (6.4)

are recovered at any order. This implies that the following ‘compatibility’ conditions
must be satisfied:

n(x, t)=
∫

f (c, x, t) dc=
∫

f0(c, x, t) dc,∫
C f (c, x, t) dc= 0=

∫
C f0(c, x, t) dc,

Mαβ =
∫

CαCβ f (c, x, t) dc=
∫

CαCβ f0(c, x, t) dc=M(0)
αβ .


(6.5)

This yields a= 1, ai = 0, aij = 0 and bi 6= 0. Therefore, the distribution function for
non-USF is given by

f = n
2π|M|1/2 exp

(
−1

2
CαM−1

αβ Cβ

) [
1+ qx{C3

x +CxC2
y − (3Mxx +Myy)Cx − 2MxyCy}

ρ{Mxx(3M2
xx + 6M2

xy +M2
yy)+ 2M2

xyMyy}

+ qy{Mxx(3M2
xx + 6M2

xy +M2
yy)+2M2

xyMyy} − qxMxy(3M2
xx+2MxxMyy+4M2

xy+3M2
yy)

ρ(MxxMyy−M2
xy){M2

xx(3M2
xx+12M2

xy+10M2
yy)−4M2

xy(2MxxMyy−4M2
xy−3M2

yy)+3M4
yy}

×
{

C2
x Cy +C3

y +
3Mxy(Mxx +Myy)

3

Mxx(3M2
xx + 6M2

xy +M2
yy)+ 2M2

xyMyy
Cx

− M2
xx(3M2

xx + 9MyyMxx +M2
yy)+MxxMyy(3M2

yy + 16M2
xy)− 8M4

xy

Mxx(3M2
xx + 6M2

xy +M2
yy)+ 2M2

xyMyy
Cy

−Mxy(4M2
xy + 3M2

xx + 3M2
yy + 2MxxMyy)

Mxx(3M2
xx + 6M2

xy +M2
yy)+ 2M2

xyMyy
(C3

x +CxC2
y)

}]
, (6.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

48
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.489


280 S. Saha and M. Alam

where
qα = m

2

∫
C2Cα f (c, x, t) dc (6.7)

is the ‘kinetic’ heat-flux vector.

6.2. Generalized Fourier law from the balance of contracted third moment
In the dilute limit, the collisional fluxes (Θ(·) = 0) are neglected and hence the
balance equation for the contracted third moment Mαββ = 〈CαCβCβ〉 is obtained from
(2.10) as

ρ
DMαββ

Dt
+Qnαββ,n − 3M(αβPβ)n,n + 3Qn(αβuβ),n =ℵαββ, (6.8)

where Qnαβ ≡ ρMnαβ and the second term on the left-hand side is a contracted fourth-
order moment,

Qnαββ =m
∫

CnCαC2f (x, c, t) dc, (6.9)

and the subscript under (. . .) on the third and fourth terms is defined such that

Qn(αβuβ),n = 1
3(2Qnαβuβ,n +Qnββuα,n), (6.10)

M(αβPβ)n,n = 1
3(2MαβPβn,n +MββPαn,n), (6.11)

with the comma on the subscript denoting a partial derivative. The source term in (6.8)
has the following integral expression:

ℵαββ ≡ℵ[CαCβCβ] = mσ
2

∫∫∫
g·k>0

1(C2Cα)f (c1, x)f (c2, x)(g · k) dk dc1 dc2, (6.12)

where 1(C2Cα) is defined in § A.3.
Inserting the distribution function (6.6) into (6.12), changing to new integration

variables (c1, c2)→ (g, G), and evaluating the integrals over G, g and k (see § A.3),
we obtain

ℵαββ =−ρ(1+ e)
√

T
32ρpσ

√
π

Qαγ qγ , (6.13)

where q = (qx, qy) is the heat-flux vector. Note that we have neglected quadratic
nonlinear terms in qγ to derive (6.13). The elements of Q= [Qαγ ] are

Q= [Qαγ ] = 1
1+ η2 + η4

[
Q11 Q12

Q21 Q22

]
, (6.14)

where

Q11 = 608+ 714η2 + 831η4 + 82η6 − e(480+ 594η2 + 606η4 − 33η6)

+ η sin 2φ(160+ 124η2 + 148η4 + 105η6 + e(−96+ 63η2 − 84η4)),

Q12 = −η cos 2φ(160+ 124η2 + 148η4 + 105η6 + e(−96+ 63η2 − 84η4))

= Q21

Q22 = 608+ 714η2 + 831η4 + 82η6 − e(480+ 594η2 + 606η4 − 33η6)

− η sin 2φ(160+ 124η2 + 148η4 + 105η6 + e(−96+ 63η2 − 84η4)).


(6.15)

It is clear from (6.13) that the source term ℵαββ is a combination of qx and qy and
depends on the restitution coefficient e, the temperature anisotropy η and the non-
coaxiality angle φ.
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6.2.1. Heat flux from Maxwell iteration: thermal conductivity tensor
Now we apply the well-known Maxwell iteration scheme (Truesdell & Muncaster

1980) to the contracted third-moment equation (6.8) to obtain the constitutive relation
for heat flux. For this purpose, we rewrite (6.8) as

ℵαββ = 2
Dqα
Dt
+ 2qα

∂uβ
∂xβ
+ ∂Qnαββ

∂xn
− 2(Mαβ + Tδαβ)

∂Pβn

∂xn
+ 2(Qnαβ + qnδαβ)

∂uβ
∂xn

, (6.16)

where qα is defined in (6.7). In the Maxwell iteration scheme, the terms on the right-
hand side of (6.16) are replaced by their zeroth-order values obtained by using the
anisotropic Gaussian (6.3) as the distribution function. For the USF (i.e. at the zeroth
order), it is straightforward to verify that

P(0)αβ = ρM(0)
αβ ≡ ρMαβ,

q(0)α = 0=Q(0)
αβγ ,

Q(0)
nαββ = 2ρ(Tδαβ +Mαβ)Mnβ,

 (6.17)

and hence

M(0)
αβ P(0)βn,n =

∂ρ

∂xn
MαβMβn + ρMαβ

∂Mβn

∂xn
,

1
2

Q(0)
nαββ,n =

∂ρ

∂xn
TMnα + ρ ∂T

∂xn
Mnα + ρT

∂Mnα

∂xn

+ ∂ρ

∂xn
MnβMαβ + ρ ∂Mnβ

∂xn
Mαβ + ρMnβ

∂Mαβ

∂xn
.


(6.18)

Inserting (6.17) and (6.18) into the right-hand side of (6.16) and equating the resulting
expression with (6.13), we obtain the desired constitutive relation for the heat flux:

qγ =− 64ρpσ
√

π

(1+ e)
√

T
Q−1
γα

(
2Mαn

∂T
∂xn
+Mβn

∂M̂αβ

∂xn

)
, (6.19)

where M̂αβ is the deviatoric part of the second-moment tensor Mαβ =Tδαβ + M̂αβ , with
Qγα being given by (6.14) and (6.15). (A similar expression for the heat flux was
used by Simon & Jenkins (1994) in the context of modelling planetary rings, made
of inelastic spheres (i.e. in three dimensions), but they did not present the related
derivation.) Equation (6.19) should be treated as a generalized Fourier law, since the
gradient of the deviatoric part of the second moment (or the kinetic stress) also creates
a heat flux, in addition to the standard Fourier contribution due to the temperature
gradient. This indicates that there could be a heat flux even in the absence of a
temperature gradient, driven solely by the gradient of the deviatoric stress M̂αβ . Such
a stress-gradient-driven heat flux is well known in rarefied gases (Grad 1949; Kogan
1969; Chapman & Cowling 1970); in fact, applying the Maxwell iteration scheme to
equation (5.38) of Grad (1949) leads to a similar constitutive relation for the heat
flux as in (6.19). In any case, identifying the coefficient of the temperature gradient
in (6.19) with the thermal conductivity, we find that the thermal conductivity,

κγ n = 128ρpσ
√

π

(1+ e)
√

T
Q−1
γαMαn, (6.20)
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is a second-rank tensor that is anisotropic (κxx 6= κyy and κxy 6= 0). The anisotropy
of (6.20) is a consequence of the imposed shear field, since the ‘cross’ thermal
conductivity coefficient κxy is proportional to η ∼ γ̇ . Therefore, (6.20) can aptly be
dubbed the ‘shear-induced’ anisotropic thermal conductivity tensor. One consequence
of this anisotropy is the well-known rarefaction effect of heat flow along a direction
orthogonal to the temperature gradient (Kogan 1969).

6.2.2. Thermal conductivity at Navier–Stokes order: verification
As a check, we consider the limit of vanishing temperature anisotropy, η→ 0, for

which the following relations hold:

Mαβ = Tδαβ, M̂αβ = 0 and Q−1
γα =

−1
32(15e− 19)

δγα. (6.21a–c)

Inserting these into (6.19) and (6.20), we obtain

qγ =− 16m
√

T√
πσ(19+ 4e− 15e2)

∂T
∂xγ
≡−κ ∂T

∂xγ
, (6.22)

where

κ = 16m
√

T√
πσ(19+ 4e− 15e2)

. (6.23)

Equation (6.23) agrees exactly with the expression for thermal conductivity for a dilute
system of inelastic hard disks at NS order (Jenkins & Richman 1985a).

To summarize this section, we have found a generalized Fourier law (6.19) and
determined the explicit expressions for the elements of the thermal conductivity tensor
(6.20) in terms of e, η and φ for a sheared system of a dilute granular gas in two
dimensions. This should be extended to a dense granular gas to obtain an expression
for the thermal conductivity tensor for the whole range of densities.

7. Conclusions and outlook
We analysed the Grad-level moment equations (Grad 1949; Jenkins & Richman

1988) for the plane shear flow of smooth inelastic disks, with a goal to obtain
closed-form expressions for the non-Newtonian stress tensor, the collisional dissipation
rate and the granular heat flux. In this moment approach, an anisotropic Gaussian
(Goldreich & Tremaine 1978; Araki & Tremaine 1986), which is a function of
all components of the second moment of the fluctuation velocity (M = 〈CC〉),
was taken as the single-particle distribution function representing the base state
of USF. The mass and momentum balance equations are identically satisfied for USF,
and the equation for the second-moment tensor of velocity fluctuations was solved
semi-analytically via a series expansion of certain collision integrals.

We derived closed-form expressions for all the transport coefficients (shear viscosity
µ, pressure p and first normal stress difference N1) and the collisional dissipation rate
D in terms of five parameters: (i) density or area fraction ν, (ii) restitution coefficient
e, (iii) shear rate R (see (3.10)), (iv) temperature anisotropy η (see (3.6)) and (v) angle
φ between the principal eigenvectors of the shear tensor D = (∇u + (∇u)T)/2 and
the second-moment tensor M . The last two parameters (η and φ) are zero at the NS
order (i.e. at the linear order in the shear rate) and are, therefore, a measure of the
non-Newtonian rheology of the medium. In the uniform shear state, we found that R, η
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and sin 2φ scale with inelasticity ε = (1 − e)1/2 at the leading order (see (4.6) and
discussion in § 4.4), and therefore the shear-rate dependence of transport coefficients
can be translated into their dependence on ε in USF. The nonlinear nature of the
rheology was analysed by retaining terms up to the super-Burnett order (i.e. third order
in R and η) in the transport coefficients, and our analytical expressions for transport
coefficients reduced to known exact expressions for the Newtonian rheology when they
were truncated at the NS order. The origin of the first normal stress difference was
shown to be tied to (i) the non-coaxiality (φ 6= 0) of the principal directions of the
shear and second-moment tensors and (ii) the temperature anisotropy (η 6= 0). Both
are shear-induced effects and appear at the Burnett-order approximation of transport
coefficients. In particular, both sin 2φ and η are finite and are of the same order in
the dilute limit, leading to N1 6= 0 as ν→ 0.

From a comparison of analytically derived constitutive relations with those obtained
from the full numerical solution of moment equations (see figure 3), we showed
that, while the Burnett-order terms (i.e. second order in R and η) are sufficient for
accurate predictions of all transport coefficients (µ, p and N1) in the dilute limit,
the super-Burnett-order terms must be retained to achieve similar accuracy for dense
flows, especially at large dissipations. The resulting super-Burnett-order transport
coefficients were further validated via a comparison with the event-driven simulation
data for the USF of an inelastic hard-disk system. We found good agreement between
simulation and moment theory for p, µ and N1 (figures 5–9) for a range of densities
spanning from the dilute to close to the freezing point. In contrast, the transport
coefficients obtained from an NS-order constitutive model (which is assumed to
hold at any dissipation (Lutsko 2005; Garzo et al. 2007)) were shown to deviate
significantly from both simulation and the moment theory even at moderate values of
the restitution coefficient (e∼ 0.9). The success of the anisotropic Gaussian to predict
transport coefficients in the uniform shear state seems to be tied to the fact that the
terms of all orders in the shear rate and the temperature anisotropy are implicitly
incorporated in the anisotropic Gaussian distribution function.

Going beyond the uniform shear state, we derived a constitutive relation for the
granular heat flux in the dilute limit (§ 6) using a perturbation expansion around the
anisotropic Gaussian and subsequently employing the Maxwell iteration scheme on
the balance equation for the contracted third moment (Mαββ = 〈CαC2〉) of fluctuation
velocity. We found that the granular heat flux follows a generalized Fourier law (6.19)
in which the gradients of the deviatoric part of the second-moment tensor drive a
heat current in addition to the standard Fourier conduction driven by the temperature
gradient. This non-Fourier contribution is a rarefaction effect, which appears at the
Grad-level (second order in gradients) description of the granular shear flow, and has
an analogue in rarefied molecular gases too (Grad 1949). The thermal conductivity
is found to be characterized by an anisotropic second-rank tensor (6.20), for which
we derived an explicit expression in terms of the restitution coefficient e, temperature
anisotropy η and non-coaxiality angle φ. In the limits of η → 0 and φ → 0, we
recovered the expression for the scalar thermal conductivity that holds at the NS order.

In addition to considering the three-dimensional case of spheres, the present
anisotropic moment theory can be extended to include the full contracted fourth
moment (Mααββ = 〈C4〉) as a separate hydrodynamic field, which is likely to recover
the density-gradient-dependent term in the constitutive relation for heat flux (Saha
& Alam 2014). This will also generate additional contributions (in terms of the
fourth velocity cumulant, α2 = 〈C4〉/〈C4〉(0) − 1) to (i) the shear viscosity µ (4.11)
and (ii) the dissipation rate D (4.24) that can be checked in future work. For the
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three-dimensional case, the existing Grad-level theories that are based on an expansion
around the isotropic Gaussian state (e.g. Kremer & Marques 2011) predict that the
second normal stress difference is zero, which is in contrast to both the particle
simulation data (Alam & Luding 2005a,b) and the Burnett-order theory (Sela &
Goldhirsch 1998) based on Chapman–Enskog expansion. On the other hand, the
theories based on the anisotropic Gaussian (Chou & Richman 1998; Lutsko 2004)
predict non-zero values for both normal stress differences. Therefore, the present
semi-analytical formalism of the anisotropic moment theory should be extended
to derive closed-form constitutive relations for spheres too. Another direction of
research would be to extend the present approach: (i) to include the rotational motion
for a rough frictional granular gas (Jenkins & Richman 1985a; Mitarai, Nakanishi
& Hayakawa 2002; Rongali & Alam 2014); and (ii) to consider a sheared binary
or polydisperse granular mixture (Alam et al. 2002; Lutsko 2004; Montanero et al.
2006). The present constitutive relations for the stress tensor (§ 4.2) and the heat flux
(§ 6) along with extended hydrodynamic equations (2.11)–(2.13) can also be tested in
dynamic simulations of granular flows, including the stability analyses of shear flows
(Gayen & Alam 2006; Shukla & Alam 2009, 2011a,b).
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Appendix A. Integral expressions for collisional flux and source terms
A.1. Collisional flux of momentum (Θαβ) at second order

For a dense system of disks, the collisional flux of momentum can be expressed as
(Jenkins & Richman 1985a,b, 1988):

Θαβ = Θα[mCβ]
= m(1+ e)σ 2

4

∫∫∫
g·k>0

(g · k)2kαkβ

×
∫ 1

0
f (2)(c1, x−ωσk, c2, x+ σk−ωσk) dω dk dc1 dc2

= m(1+ e)σ 2

4

∫∫∫
g·k>0

(g · k)2kαkβ

×
∫ 1/2

−1/2
f (2)(c1, x+

(
ξ − 1

2

)
σk, c2, x+

(
ξ + 1

2

)
σk) dξ dG dk dg. (A 1)

The latter expression has been obtained via a change of variables: (c1, c2, ω) →
(g, G, ξ), with g = c1 − c2, G = (C1 + C2)/2, ξ = 1/2 − ω and dc1 dc2 = dg dG.
With the molecular chaos assumption and using the Taylor series expansion on
the single-particle distribution f (1), the two-particle distribution in (A 1) can be
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simplified to

f (2)
(

c1, x+
(
ξ − 1

2

)
σk, c2, x+

(
ξ + 1

2

)
σk
)

= n2g0

4π2|M| exp
{
−1

4
M−1
αβ [(gα + Vα)(gβ + Vβ)+ 4(Gα − ξVα)(Gβ − ξVβ)]

}
, (A 2)

where |M| ≡ det(M) and V = σk · ∇u.
Combining (A 1) and (A 2), we obtain

Θαβ = m(1+ e)n2g0σ
2

16π2|M|
∫∫

g·k>0
(g · k)2kαkβ exp

{
−1

4

[
(gα + Vα)M−1

αβ (gβ + Vβ)
]}

×
(∫ 1/2

−1/2

∫
exp{−[(Gα − ξVα)M−1

αβ (Gβ − ξVβ)]} dG dξ
)

dk dg

= ρn(1+ e)g0σ
2

16π|M|1/2
∫∫

g·k>0
(g · k)2kαkβ exp

{
−1

4
[(gα + Vα)M−1

αβ (gβ + Vβ)]
}

dk dg.

(A 3)

To arrive at (A 3), the identity
∫ ∫
(·) dG dξ = π

√|M| has been used. Carrying out
the integration over g, a compact expression for the collisional flux of momentum is
obtained as given by (3.13).

A.2. Collisional source of second moment (ℵαβ) at second order
Using the molecular chaos assumption and the Taylor series expansion of a single-
particle distribution about x, the two-particle distribution function can be written as

f (2)(c1, x− σk, c2, x)

= n2g0

4π2|M| exp
{
−1

2
M−1
αβ [(Cα + Vα)(Cβ + Vβ)+ (CαCβ)]

}
= n2g0

4π2|M| exp
{
−1

4
M−1
αβ [(gα + Vα)(gβ + Vβ)+ (2Gα + Vα)(2Gβ + Vβ)]

}
, (A 4)

where the last expression involves a change of variables (c1, c2)→ (g, G) and V =
σk · ∇u.

The collisional source of the second moment can be expressed as (Jenkins &
Richman 1985a,b, 1988)

ℵαβ ≡ ℵαβ[mCαCβ]
= mσ

2

∫∫∫
g·k>0

1(CαCβ) f (2)(c1, x− σk, c2, x)(k · g) dk dc1 dc2

= mn2g0σ

8π2|M|
∫∫

g·k>0
1(CαCβ)(g · k) exp

{
−1

4
[(gα + Vα)M−1

αβ (gβ + Vβ)]
}

×
(∫

exp
{
−1

4
[(2Gα + Vα)M−1

αβ (2Gβ + Vβ)]
}

dG
)

dk dg
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= mσn2g0

8π|M|1/2
∫∫

g·k>0
1(CαCβ)(g · k) exp

{
−1

4
[(gα + Vα)M−1

αβ (gβ + Vβ)]
}

dk dg

= ρνg0

2π2σ |M|1/2
∫∫

g·k>0
1(CαCβ)(g · k) exp

{
−1

4
[(gα + Vα)M−1

αβ (gβ + Vβ)]
}

dk dg.

(A 5)

The last expression results from
∫
(·) dG=π

√|M|. Note further that

1(CαCβ)=− 1
2(1− e2)(g · k)2kαkβ − 1

2(1+ e)(g · k)(g · j)( jαkβ + kαjβ), (A 6)

where j is a unit vector perpendicular to the contact vector k.
Inserting (A 6) into (A 5) and performing integrations over g, a compact expression

for ℵαβ is obtained,
ℵαβ = Aαβ + B̂αβ, (A 7)

where Aαβ is given by (3.15), and the traceless part, B̂αβ , can be further decomposed
into

B̂αβ = Êαβ + F̂αβ, (A 8)

where

Êαβ = −4(1+ e)ρνg0(ν)

σπ3/2

∫
( jαkβ + kαjβ)( j ·M · k)(k ·M · k)1/2F(χ) dk, (A 9)

F̂αβ = 2(1+ e)ρνg0(ν)

σπ3/2

∫
( jαkβ + kαjβ)(V ·M−1

· j)|M|G(χ) dk

= 2(1+ e)ρνg0(ν)

π3/2

∫
( jαkβ + kαjβ)(k · (W + D) ·M−1

· j)|M|G(χ) dk

= ΘαγWβγ +ΘβγWαγ + Ĝαβ, (A 10)

and

Ĝαβ = 2(1+ e)ρνg0(ν)

π3/2

∫
( jαkβ + kαjβ)kξ jγ (TDγ ξ −DδξM̂δγ )G(χ) dk, (A 11)

with M̂ being the deviatoric part of M . The expression for F(χ) is given by (3.18),
with χ as in (3.20).

A.3. Third-order source term (ℵαββ) to calculate heat flux in the dilute limit
In the dilute limit, the third-order source term in (6.8) has the following integral
expression:

ℵαββ = ℵ[mC2Cα]
= mσ

2

∫∫∫
g·k>0

1(C2Cα) f (1)(c1, x) f (1)(c2, x)(g · k) dk dc1 dc2. (A 12)

Changing the variables of integration from (c1, c2)→ (g,G), with dc1 dc2= dC1 dC2=
dg dG and

1(C2Cα) = [(1+ e)2(g · k)2Gβkβkα − 1
2(1− e2)(g · k)2Gα

− (1+ e)(g · k)Gβ(kβgα + gβkα)], (A 13)
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we can write

ℵαββ = mσn2

8π2|M|
∫∫∫

g·k>0

[
(1+ e)2(g · k)3Gβkβkα

− 1
2
(1− e2)(g · k)3Gα − (1+ e)(g · k)2Gβ(kβgα + gβkα)

]
× exp

{
−1

4
M−1

ab (4GaGb + gagb)

}
[Xf1(g,G)+ Yf2(g,G)] dG dg dk

≡ I(1)αββ + I(2)αββ + I(3)αββ, (A 14)

where
X = qx

2ρ(Mxx(3M2
xx + 6M2

xy +M2
yy)+ 2M2

xyMyy)
, (A 15)

Y = qy(Mxx(3M2
xx + 6M2

xy +M2
yy)+ 2M2

xyMyy)− qxMxy(3M2
xx + 2MxxMyy + 4M2

xy + 3M2
yy)

ρ|M|(M2
xx(3M2

xx + 12M2
xy + 10M2

yy)+ 4M2
xy(−2MxxMyy + 4M2

xy + 3M2
yy)+ 3M4

yy)

(A 16)

f1(g,G) = {3g2
xGx + g2

yGx + 4G3
x + 2gxgyGy + 4GxG2

y − 4(3Mxx +Myy)Gx − 8MxyGy},
(A 17)

f2(g,G) =
{

3
2

g2
yGy + 1

2
g2

xGy + 2G3
y + gxgyGx + 2G2

xGy

+ 6Mxy(Mxx +Myy)
3

3M3
xx + 6M2

xyMxx +MxxM2
yy + 2M2

xyMyy
Gx

− 2(3M4
xx + 9MyyM3

xx +M2
yyM

2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy
Gy

− Mxy(4M2
xy + 3M2

xx + 3M2
yy + 2MxxMyy)

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy

×
(

3
2

g2
xGx + 1

2
g2

yGx + 2G3
x + gxgyGy + 2GxG2

y

)}
. (A 18)

Now using ∫
exp{−GaM−1

ab Gb} dG=π|M|1/2, (A 19)∫
GiGj exp{−GaM−1

ab Gb} dG= π

2
|M|1/2Mij, (A 20)∫

GiGjGkGl exp{−GaM−1
ab Gb} dG= π

4
|M|1/2(MijMkl +MikMjl +MilMjk), (A 21)

we carry out the integrations over G to obtain

I(1)αββ =
mσn2(1+ e)2

8π|M|1/2
∫∫

g·k>0
exp

{
−1

4
gaM−1

ab gb

}
(g · k)3kβkα

×
[

X
(

3
2

g2
xMxβ + 1

2
g2

yMxβ + gxgyMyβ − (3Mxx +Myy)Mxβ − 2MxyMyβ

)
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+Y
{

3
4

g2
yMyβ + 1

4
g2

xMyβ + 1
2

gxgyMxβ + 1
2
(Mxx + 3Myy)Myβ +MxyMxβ

+ 3MxyMxβ(Mxx +Myy)
3

3M3
xx + 6M2

xyMxx +MxxM2
yy + 2M2

xyMyy

− (3M4
xx + 9MyyM3

xx +M2
yyM

2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy
Myβ

− 4M3
xy + 3M2

xxMxy + 3M2
yyMxy + 2MxxMyyMxy

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy

×
(

3
4

g2
xMxβ+1

4
g2

yMxβ+1
2

gxgyMyβ+1
2
(3Mxx +Myy)Mxβ +MxyMyβ

)}]
dg dk,

(A 22)

I(2)αββ = −
mσn2(1− e2)

16π|M|1/2
∫∫

g·k>0
exp

{
−1

4
gaM−1

ab gb

}
(g · k)3

×
[

X
(

3
2

g2
xMxα + 1

2
g2

yMxα + gxgyMyα − (3Mxx +Myy)Mxα − 2MxyMyα

)
+Y

{
3
4

g2
yMyα + 1

4
g2

xMyα + 1
2

gxgyMxα + 1
2
(Mxx + 3Myy)Myα +MxyMxα

+ 3MxyMxα(Mxx +Myy)
3

3M3
xx + 6M2

xyMxx +MxxM2
yy + 2M2

xyMyy

− (3M4
xx + 9MyyM3

xx +M2
yyM

2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy
Myα

− 4M3
xy + 3M2

xxMxy + 3M2
yyMxy + 2MxxMyyMxy

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy

×
(

3
4

g2
xMxα+1

4
g2

yMxα+1
2

gxgyMyα+1
2
(3Mxx +Myy)Mxα +MxyMyα

)}]
dg dk,

(A 23)

I(3)αββ = −
mσn2(1+ e)

8π|M|1/2
∫∫

g·k>0
exp
{
−1

4
gaM−1

ab gb

}
(g · k)2(kβgα + gβkα)

×
[

X
(

3
2

g2
xMxβ + 1

2
g2

yMxβ + gxgyMyβ − (3Mxx +Myy)Mxβ − 2MxyMyβ

)
+Y

{
3
4

g2
yMyβ + 1

4
g2

xMyβ + 1
2

gxgyMxβ + 1
2
(Mxx + 3Myy)Myβ +MxyMxβ

+ 3MxyMxβ(Mxx +Myy)
3

3M3
xx + 6M2

xyMxx +MxxM2
yy + 2M2

xyMyy

− (3M4
xx + 9MyyM3

xx +M2
yyM

2
xx + 3M3

yyMxx + 16M2
xyMyyMxx − 8M4

xy)

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy
Myβ
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− 4M3
xy + 3M2

xxMxy + 3M2
yyMxy + 2MxxMyyMxy

3M3
xx + 6M2

xyMxx +M2
yyMxx + 2M2

xyMyy

×
(

3
4

g2
xMxβ + 1

4
g2

yMxβ + 1
2

gxgyMyβ + 1
2
(3Mxx +Myy)Mxβ +MxyMyβ

)}]
dgdk.

(A 24)

To carry out the integrations over g, we need the following results:∫
(g · k)3 exp

{
−1

4
gaM−1

ab gb

}
dg = 16π1/2|M|1/2ϑ3/2, (A 25)∫

g2
x(g · k)

3 exp
{
−1

4
gaM−1

ab gb

}
dg = 128π1/2|M|1/2ϑ1/2

[
{ϑkx +$ky}2 + 1

4
|M|k2

y

]
,

(A 26)∫
gxgy(g · k)3 exp

{
−1

4
gaM−1

ab gb

}
dg

= 128π1/2|M|1/2ϑ1/2[{ϑkx +$ky}{ϑky −$kx} − 1
4
|M|kxky], (A 27)∫

g2
y(g · k)

3 exp
{
−1

4
gaM−1

ab gb

}
dg = 128π1/2|M|1/2ϑ1/2

[
{ϑky −$kx}2 + 1

4
|M|k2

x

]
,

(A 28)∫
gx(g · k)2 exp

{
−1

4
gaM−1

ab gb

}
dg = 16π1/2|M|1/2ϑ1/2{ϑkx +$ky}, (A 29)∫

gy(g · k)2 exp
{
−1

4
gaM−1

ab gb

}
dg = 16π1/2|M|1/2ϑ1/2{ϑky −$kx}, (A 30)∫

g3
x(g · k)

2 exp
{
−1

4
gaM−1

ab gb

}
dg

= 32π1/2|M|1/2
ϑ1/2 {ϑkx +$ky}[4{ϑkx +$ky}2 + 3|M|k2

y ], (A 31)∫
g2

xgy(g · k)2 exp
{
−1

4
gaM−1

ab gb

}
dg

= 32π1/2|M|1/2
ϑ1/2 [4{ϑky −$kx}{ϑkx +$ky}2 − 2|M|kxky{ϑkx +$ky}

+ |M|k2
y{ϑky −$kx}], (A 32)∫

gxg2
y(g · k)

2 exp
{
−1

4
gaM−1

ab gb

}
dg

= 32π1/2|M|1/2
ϑ1/2

[4{ϑkx +$ky}{ϑky −$kx}2 − 2|M|kxky{ϑky −$kx}
+ |M|k2

x{ϑkx +$ky}], (A 33)∫
g3

y(g · k)
2 exp

{
−1

4
gaM−1

ab gb

}
dg

= 32π1/2|M|1/2
ϑ1/2

{ϑky −$kx}[4{ϑky −$kx}2 + 3|M|k2
x ], (A 34)
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where

ϑ = k ·M · k= T(1− η cos 2θ) and $ =−Tη sin 2θ, (A 35a,b)

and the contact vector k (cf. figure 2) is given by

k=
[

cos(θ + φ + 1
4π)

sin(θ + φ + 1
4π)

]
. (A 36)

Note that

(ϑkx +$ky) = T[cos(θ + φ + 1
4π)− η cos(θ − φ − 1

4π)], (A 37)

(ϑky −$kx) = T[sin(θ + φ + 1
4π)+ η sin(θ − φ − 1

4π)], (A 38)

and to within an error of O(η3) we have

ϑ3/2 ≈ T3/2(1− 3
2η cos 2θ + 3

8η
2 cos2 2θ), (A 39)

ϑ1/2 ≈ T1/2(1− 1
2η cos 2θ − 1

8η
2 cos2 2θ), (A 40)

ϑ−1/2 ≈ 1+ 1
2η cos 2θ + 3

8η
2 cos2 2θ

T1/2
. (A 41)

Using the above results we can carry out the integrations over g and k to yield

I(1)xββ =
3ρ(1+ e)2T1/2

32ρpσπ1/2(1+ η2 + η4)

×[{96+ 114η2 + 118η4 − 7η6 + η sin 2φ(24− 5η2 + 20η4)}qx

+{η cos 2φ(−24+ 5η2 − 20η4)}qy], (A 42)

I(1)yββ =
3ρ(1+ e)2T1/2

32ρpσπ1/2(1+ η2 + η4)
[{η cos 2φ(−24+ 5η2 − 20η4)}qx

+{96+ 114η2 + 118η4 − 7η6 − η sin 2φ(24− 5η2 + 20η4)}qy], (A 43)

I(2)xββ = −
3ρ(1− e2)T1/2

8ρpσπ1/2(1+ η2 + η4)
[{16+ 21η2 + 21η4 − η6 + 2η(1− η2)2 sin 2φ}qx

+{−2η(1− η2)2 cos 2φ}qy], (A 44)

I(2)yββ = −
3ρ(1− e2)T1/2

8ρpσπ1/2(1+ η2 + η4)
[{−2η(1− η2)2 cos 2φ}qx

+{16+ 21η2 + 21η4 − η6 − 2η(1− η2)2 sin 2φ}qy], (A 45)

I(3)xββ = −
ρ(1+ e)T1/2

32ρpσπ1/2(1+ η2 + η4)

×[{704+ 804η2 + 933η4 + 73η6 + η sin 2φ(208+ 157η2 + 184η4 + 105η6)}qx

+{−η cos 2φ(208+ 157η2 + 184η4 + 105η6)}qy], (A 46)

I(3)yββ = −
ρ(1+ e)T1/2

32ρpσπ1/2(1+ η2 + η4)
[{−η cos 2φ(208+ 157η2 + 184η4 + 105η6)}qx

+{704+ 804η2 + 933η4 + 73η6 − η sin 2φ(208+ 157η2 + 184η4 + 105η6)}qy].
(A 47)

Substituting (A 42)–(A 47) into (A 14), we obtain the final expressions (6.13)–(6.15)
for the third-order source term.
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Appendix B. Series representation for collision integrals
Recall from § 3.2 that the integration over the contact vector k is transformed into

the integration over another variable θ ∈ (0, 2π) (the angle between k and |M1〉, the
eigenvector corresponding to the smaller eigenvalue of the second-moment tensor M;
cf. figure 2). The expressions for the integrals appearing in (3.27)–(3.29) are

Hαβγ (η, R, φ) ≡
∫ 2π

0
cosα 2θ sinβ 2θ (1− η cos 2θ)γ /2F(η, R, φ, θ) dθ, (B 1)

Jαβγ (η, R, φ) ≡
∫ 2π

0
cosα 2θ sinβ 2θ (1− η cos 2θ)γ /2G(η, R, φ, θ) dθ. (B 2)

Now substituting the infinite series representation for F and G, as given in (4.1) and
(4.2), into above integrals, a term-by-term integration can be carried out for both
integrals Hαβγ and Jαβγ . For example, the series representation for H003 is

H003(η, R, φ) = 3π3/2ηR cos 2φ +
∞∑

n=0

Λ(
3
2
, 2n)π1/2η2n 2Γ (n+ 1

2)

n!

+ 12R2
∞∑

n=0

Λ

(
1
2
, 2n
)
η2n π1/2(1+ n+ n cos 4φ)Γ (n+ 1

2)

(n+ 1)!

+ 8R4

[
3
4
π+ 3

64
πη2(3+ 2 cos 4φ)+O(η4)

]
+O(R6), (B 3)

J020(η, R, φ) = 1
2
π3/2 − 4R

∞∑
n=0

Λ(2n+ 1
2
, 2n+ 1)η2n+1 π1/2 cos 2φΓ (n+ 3

2)

(n+ 2)!

+ 2πR2
∞∑

n=0

η2n {2+ n+ (n− 1) cos 4φ}Γ (n+ 1
2)

(n+ 2)!

− 8
3

R3
∞∑

n=0

Λ

(
2n+ 3

2
, 2n+ 1

)
η2n+1

π1/2 cos 2φ{6+ n+ (n− 3) cos 4φ}Γ (n+ 3
2)

(n+ 3)! +O(R5), (B 4)

where
Λ(α, β)≡ Γ (α + 1)

β!Γ (α + 1− β), (B 5)

with similar expressions for other integrals of Hαβγ and Jαβγ .
Each of the above infinite series at the third-order approximation in R and η, with

error O(Rmηn) and (m+ n)> 4, can be simplified to

H003(η, R, φ)= 2π+ 12πR2 + 3π3/2ηR cos 2φ + 3
8πη

2 +O(Rmηn),

H103(η, R, φ)=−3π3/2R cos 2φ − 3
2πη− 6π3/2R3 cos 2φ − 3

2πηR2(2+ cos 4φ︸ ︷︷ ︸),
H013(η, R, φ)= 3π3/2R sin 2φ + 6π3/2R3 sin 2φ + 3

2πηR2 sin 4φ︸ ︷︷ ︸,
H021(η, R, φ)=π− 1

32πη
2 + 3πR2(2− cos 4φ),

H111(η, R, φ)=−3πR2 sin 4φ,


(B 6)
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J020(η, R, φ)= 1
2π

3/2 − 1
2πRη cos 2φ +π3/2R2(2− cos 4φ),

J110(η, R, φ)= 1
2πRη sin 2φ −π3/2R2 sin 4φ,

J010(η, R, φ)= 4πR sin 2φ −π3/2ηR2 sin 4φ + 3
8πRη2 sin 2φ + 4πR3 sin 2φ︸ ︷︷ ︸,

J200(η, R, φ)= 1
2π

3/2 − 3
2πRη cos 2φ +π3/2R2(2+ cos 4φ),

J100(η, R, φ)=−4πR cos 2φ +π3/2ηR2(2+ cos 4φ)− 9
8πRη2 cos 2φ − 4πR3 cos 2φ︸ ︷︷ ︸,


(B 7)

J102(η, R, φ)=−4πR cos 2φ − 1
2π

3/2η+ 3
8πRη2 cos 2φ − 4πR3 cos 2φ︸ ︷︷ ︸,

J012(η, R, φ)= 4πR sin 2φ − 1
8πRη2 sin 2φ + 4πR3 sin 2φ︸ ︷︷ ︸,

J002(η, R, φ)=π3/2 + 4R2π3/2 + 2πηR cos 2φ.

 (B 8)

Removing the underbraced terms yields second-order series approximation for
the above integral expressions. Note that some of the above quantities have zero
contribution at third order, and hence they are equal at both second- and third-order
approximation.

Appendix C. Evaluation of stress tensor for uniform shear flow
Here we present explicit expressions for the transport coefficients of the USF as

obtained from series solutions. The components of the dimensionless stress tensor are

P∗xx =
Pxx

ρpUR
2

= νT∗
(
(1+ η sin 2φ)+ νg0(1+ e)

π3/2
[J002(η, R, φ)

− cos 2φJ012(η, R, φ)− sin 2φJ102(η, R, φ)]
)
, (C 1)

P∗yy =
Pyy

ρpUR
2

= νT∗
(
(1− η sin 2φ)+ νg0(1+ e)

π3/2
[J002(η, R, φ)

+ cos 2φJ012(η, R, φ)+ sin 2φJ102(η, R, φ)]
)
, (C 2)

P∗xy =
Pxy

ρpUR
2

= νT∗
(
−η cos 2φ + νg0(1+ e)

π3/2
[cos 2φJ102(η, R, φ)− sin 2φJ012(η, R, φ)]

)
,

(C 3)

where ρp is the density of particles, and the reference velocity scale for non-
dimensionalization is UR = 2γ̇ σ . Substituting the power-series expressions for
J002,J012 and J102 as given by (B 8) in appendix B, we obtain the super-Burnett-
order, O(R3), expression for the stress tensor in § 4.2.
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The pressure p = (Pxx + Pyy)/2 is calculated from the average of (C 1) and (C 2),
which can be further decomposed into its kinetic and collisional parts:

p∗ = p
ρpUR

2 = p∗k + p∗c = νT∗
[

1+ νg0(1+ e)
π3/2

J002(η, R, φ)
]
, (C 4)

p∗k = νT∗, (C 5)

p∗c =
νg0(1+ e)

π3/2
T∗J002(η, R, φ). (C 6)

The dimensionless shear viscosity and its kinetic and collisional components are given
by

µ∗ = −Pxy

ρpUR
2 =µ∗k +µ∗c

= ν

64R2

[
η cos 2φ − νg0(1+ e)

π3/2
{cos 2φJ102(η, R, φ)− sin 2φJ012(η, R, φ)}

]
,

(C 7)

µ∗k =
νη cos 2φ

64R2
, (C 8)

µ∗c = −
ν2g0(1+ e)
64π3/2R2

[cos 2φJ102(η, R, φ)− sin 2φJ012(η, R, φ)]. (C 9)

The granular temperature (3.5) is given by

T = Mxx +Myy

2
H⇒ T∗ = T

UR
2 =

1
64R2

. (C 10)

For the full numerical solution of the moment equations (3.29)–(3.31), the transport
coefficients are calculated from (C 1)–(C 9) by evaluating the integrals J002, J102 and
J012 in (B 2) by using standard quadrature rules.

On the other hand, for the series solution, (4.3) or (4.4) (at second order or third
order, respectively) are solved for η, R and φ. Next the series expressions for
J002,J102 and J012 ((B 8) from appendix B) are inserted into (C 1)–(C 9) in order
to calculate the transport coefficients.

Appendix D. Constitutive model of Navier–Stokes order (Lutsko 2005)
The constitutive model for an inelastic hard-disk system is taken from Lutsko

(2005), which is almost identical to that of Garzo et al. (2007) up to the first Sonine
approximation:

g0 = 16− 7ν
16(1− ν)2 , (D 1)

α2 = 16(1− e)(1− 2e2)

57− 25e+ 30(1− e)e2
, (D 2)

ϕ∗µ = g0(1− 1
8(1− e)(1− 3e)), (D 3)

ζ ∗ = 1
2 g0(1− e2). (D 4)
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The dimensionless pressure with its kinetic and collisional parts are given by

p∗ = νT∗(1+ (1+ e)νg0)= p∗k + p∗c, (D 5)
p∗k = νT∗, (D 6)

p∗c = (1+ e)ν2g0T∗, (D 7)

and the dimensionless viscosity is

µ∗ =µ∗k +µ∗c, (D 8)

µ∗k =
√

π

8
T∗1/2 (1− 1

4(1+ e)(1− 3e)νg0)

(ϕ∗µ − 1
2ζ
∗)

, (D 9)

µ∗c =
√

π

8
T∗1/2

[
(1+ e){1− 1

4(1+ e)(1− 3e)νg0}νg0

2(ϕ∗µ − 1
2ζ
∗)

+ 4(1+ e)(1− 1
16α2)ν

2g0

π

]
.

(D 10)

The expression for the dimensionless temperature follows from the energy balance
equation:

T∗ = π(1− 1
4(1+ e)(1− 3e)νg0)(1+ 1

2(1+ e)νg0)

32(1− e2)(1+ 3
16α2)(ϕ∗µ − 1

2ζ
∗)ν2g0

+ 1− 1
16α2

8(1− e)(1+ 3
16α2)

. (D 11)
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