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In this paper, we study the zero dissipation limit of the initial boundary-value
problem of the multi-dimensional Boussinesq equations with viscosity and heat
conductivity. Such equations are used as models for the motion of multi-dimensional
incompressible fluids in atmospheric and oceanographic turbulence. In particular,
they describe the thermal convection of an incompressible flow, and constitute the
relations between the velocity field, the pressure and the local temperature. Under
the Navier slip boundary condition in the velocity field and the thermal isolation
boundary condition for the temperature, we prove the existence of weak amplitude
characteristic boundary layers. Then, by a standard energy method, we prove the L2
convergence of the solutions when both the viscosity and the heat conductivity
coefficients tend to 0.

1. Introduction and main results

In theoretical hydrodynamics, the inviscid Euler equations are used to describe the
motion of an ideal fluid but, except for some special cases, such equations can-
not describe the motion of actual fluids. Great difficulties of a mathematical nature
may arise in connection with this. In fact, for fluids with small viscosity, only a very
thin region adjacent to the solid boundary is affected by the viscosity, and thus the
Navier—Stokes equations describing viscous flows were introduced along with a small
parameter as a coefficient of the highest order derivatives (see [15,22]). This thin
region is called the boundary layer. Most of the initial boundary-value problems for
fluid dynamics systems arise in various domains and the boundary conditions for
these problems are chosen according to the physical properties of each situation.
Compared with the viscous models, there is in general a loss of boundary condi-
tions when the viscosity € goes to 0 (and hence a boundary layer appears). Thus, it
is commonly believed that solutions for the viscous parabolic equations cannot be
uniformly close to those for the inviscid hyperbolic equations. There is an immense
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literature on this aspect of theory; see [20,25,29] and references therein. The in-flow
and out-flow boundary conditions cause the boundary to be non-characteristic and,
in this case, there are boundary layers of size € that are stable when the amplitude
is small (see [18,23,25,27]). The no-slip boundary condition states that at a solid
boundary the fluid will have zero velocity, which means that particles close to a
surface do not move along with a flow. For the Navier—Stokes equations, such a
boundary condition always makes the boundary be characteristic. It is pointed out
in Prandtl’s theory that such a boundary condition will cause the so-called charac-
teristic boundary layers, of thickness O(y/€), to develop, and many nonlinear phe-
nomena may occur in the layers. In this case, the leading boundary layer functions
appear in the O(1)-term of the asymptotic approximate solution and they satisfy
a set of nonlinear Prandtl-type equations (for details, see [19,28]). For the case of
analytic data and linearized problems, the reader is referred to [20,21, 24, 26, 29].
However, as with most engineering approximations, the no-slip condition does not
always hold in reality. A common approximation for fluid slip is given by the slip
boundary conditions (1.4)—(1.5), which were first proposed by Navier. The slip
boundary conditions allow the fluid to slip at the boundary and have important
applications in aerodynamics, weather forecasts and haemodynamics (see [1]). The
inviscid limit of the Leray solutions of the incompressible Navier—Stokes equations
with such boundary conditions was studied in [8], where they carried out a descrip-
tive method to describe the error in two and three dimensions and then proved that
the boundary layer has a linear behaviour and that its thickness is of order O(+/¢),
as in Prandtl’s theory of no-slip boundary conditions.

From a thermodynamical point of view, heat will be generated in any motion, and
thus there must be transformations among the temperature, the velocity and the
pressure. The following n-dimensional Boussinesq model with heat conductivity
is a simplified approximation for the motion of incompressible viscous and heat-
conductive fluids [3,9]:

Ou® +uf - Vu® + Vp® = cAu® + 0y (1.1)

divu® = 0;

0:0° +u® - VO° = kA,

where u = (uf,...,us)T denotes the velocity vector field, p is the scalar pres-
sure, 6° is the absolute temperature, €, x > 0 are the viscosity and the diffusivity
coefficients, respectively, and e,, = (0,...,1)T. This model plays an important role

in atmospheric and oceanographic sciences (see [13,16]). Furthermore, because of
its close connection to the incompressible Euler and Navier—Stokes equations, it
has received significant attention in the mathematical fluid dynamics community
(see [2,3,9,10,12,17]). As is stated in [14], problems related to the vanishing viscos-
ity limit (¢ — 0 and x > 0), vanishing diffusivity limit (x — 0 and € > 0) or zero
dissipation limit (¢,x — 0) are important and challenging for (1.1)—(1.3). For the
Cauchy problem, the vanishing viscosity limit and the vanishing diffusivity limit
in the two-dimensional case are established in [3]. For the initial boundary-value
problem, the vanishing diffusivity limit for (1.1)—(1.3) in a half plane is investigated
in [10], where the existence of a boundary layer for the temperature is proved.
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In this paper, we consider the Boussinesq model (1.1)—(1.3) in {2 x [0, T], where
2 CR" (n =2 or 3) is a bounded domain with smooth boundary 952. To specify
the boundary condition, we introduce (as in [8]) a smooth distance function ¢ €
C*°(R™,R) for z in a neighbourhood V of 9f2. One has that 2NV = {¢ >0} NV,
2°NYVY ={p <0} NV and 92 := {p = 0} N V. Furthermore, we normalize it such
that |[Vp(z)| = 1 for all x € V. We define a smooth extension of the normal unit
vector n inside {2 by taking n := V(z). For a vector field @ defined on (2, we define
the tangential part of @ to be tgan(z) = x(x)[@ — (@ - n)n], where x(x) is a cut-off
function such that supp x C V and x = 1 in a neighbourhood of the boundary 9f2.
Now, for the Boussinesq equations (1.1)—(1.2), we add the following Navier slip
boundary conditions for the velocity, and the Neumann boundary condition for the
temperature on 92:

u®-n=0; (1.4)

[D(u®) - n + aulian = 0; (1.5)
06¢

o = 0, (1.6)

where € > 0 is the coefficient of kinematic viscosity, n stands for the outward unit
normal to 2, « is a scalar friction function of class C? and D(u) is the rate-of-strain
tensor defined by D;;u = (0;u; + 0ju;)/2.
The initial conditions are taken as
u®(0,-) = ug(z) in £2, (1.7)
6°(0,-) = 6p(x) in £2, (1.8)

which satisfy the compatibility conditions

u0~n|ag 20, (1.9)

divaug =0, (1.10)

UL — (1.11)
on |50

It has been shown that the two-dimensional (2D) Cauchy problem of (1.1)—(1.3) has
a unique global solution in various function spaces (see [2,3]; the initial boundary-
value problem of (1.1)—(1.3) in the 2D case is investigated in [30]). The local
existence of three-dimensional (3D) smooth solutions, the blow-up criteria to the
Cauchy problem of (1.1)—(1.3) and the initial boundary-value problem are studied
in [6,12,17]. To isolate the effect of the boundaries, we consider the solutions before
the development of singularities. By retracing a similar argument to that found
in [6], we prove the following proposition.

PROPOSITION 1.1. If (ug(z),00(z)) € H3(R2) satisfies the compatibility condition
(1.9)—(1.11), then there exist Ty > 0 and &g, k0 > 0 such that, for any e € (0, &0
and k € (0, ko], the initial boundary-value problem (1.1)—(1.8) admits a unique weak
solution

(uf,60°) € C(0,Ty; H3(2)) N L2(0, Ty; H'(2)). (1.12)
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For the limiting case in which ¢ = 0 and k = 0, we have the following inviscid

equations:
O’ +u’ - Vul + Vp? = 0%,,; (1.13)
divu® = 0; (1.14)
0:0° +u” - Ve° = 0. (1.15)

We impose the same initial conditions (1.7)-(1.8). Since the inviscid system is of
first order, only the normal component of the velocity

u -n=0 (1.16)

survives on the boundary. The local existence of the solutions to the inviscid prob-
lem is guaranteed by the following proposition.

PROPOSITION 1.2. If (ug(z),00(x)) € H3(£2) and ug(x) satisfies the divergence-
free condition, then there exists To > 0 such that the inviscid problem (1.13)—(1.16)
admits a unique solution

(u®, 6% € C(0,Ty; H*(£2)) N CH(0, Ty; H(2)). (1.17)

The proof of proposition 1.2 is due to the argument in [4] and the hyperbolic
theory [11]. The aim of this paper is to study the asymptotic equivalence between
(1.1)—(1.6) and (1.13)—(1.16) with the same initial data. Noticing that condition
(1.16) causes the boundary to be characteristic and comparing with the boundary
conditions (1.4)—(1.6), there is a reduction in the number of boundary conditions,
and such a reduction leads to the formation of characteristic boundary layers in
the limiting process when ¢ — 0 and ¥ — 0. Assume that x = he with uniform
constant h > 0. We introduce a fast variable z = ¢(x)/+/€ and, for m,p € N, the
anisotropic Sobolev space

H™P = {4(z,2) € L*(2 xR) | 000y € L*(2 x R ) V]a| <m, 0< 3 < p}
with 0 being an integer. We now give a precise statement of our main theorem.

THEOREM 1.3. Let T = min (T1,T2) > 0. There then exists a unique solution
(u®,0%)(t,z) of (1.1)(1.3) such that

T
sup_ [l — 7|22 + a/ = 7|2 g dt < CE? (1.18)
ot<T 0
and
- T —_
sup (0% = 8 gy + = [ 167 = Iy dt < O, (1.19)
0<t<T 0

where u° = u®(t,x) + Veui(t,x, z), 05 = 0°(t,x) + /0L (t,,2) with u}, 6} being
the boundary layer profiles such that

(up, ) (1,2, 2) € L0, T; HO(2 x RY)) N L*(0, T; H>' (2 x RY))  (1.20)
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and
(0,up,0.00)(t,x,2) € L=([0,T] x 2 x R). (1.21)

In particular, u® — u® and 65 — 6° tend to 0 in L>=(0,T; L?*(£2)) as € tends to 0.

REMARK 1.4. Theorem 1.3 tells us that in the inviscid limit the solution (u®, 6°)
can be seen as the sum of the inviscid solution (u°,6°) and a boundary layer of
width O(y/€), which is of the same thickness as Prandtl’s boundary layer in the
setting of the no-slip boundary conditions. The underlying reason for this is the
Navier slip boundary condition (1.5) and the Neumann boundary condition (1.6),
which will be clear in our analysis.

The proof of our theorem has two parts. First, we use the method of multi-scale
analysis to construct an approximate solution to the initial boundary-value problem
(1.1)—(1.8). This approximate solution is close to the inviscid solution away from the
boundary and possesses a boundary layer profile of width O(y/€). The construction
of the approximate solution is carried out rigorously in the next section. Due to the
transformations between the velocity, the temperature and the pressure, we define
the following approximate solutions, which are different from those in [8]:

ug(t,x) = uO(t, x) +ud(t,x, 2) + Veup(t,z, 2) + ew(t, =, 2); (1.22)
05 (t, ) = 0°(t, ) + 00 (t, , 2) + Vb (t, x, 2); (1.23)
pa(t,w) = p°(t, w) + py (t, @, 2) + Vepy (t, @, 2) + eq(t, x, 2), (1.24)

where (u°,0°,p°) satisfies the inviscid problem (1.13)—(1.16) and z = ¢(z)/+/% is a
fast variable. Thus, we have to determine the first order boundary layer profiles u)
and 09, which are shown to satisfy the nonlinear Prandtl equations (2.9) and (2.12).
In contrast to the case of the no-slip boundary, the boundary layers are much weaker
for the Navier slip condition. It will be clear from our analysis that the O(1)-term
boundary layer functions ug and 02 are identically 0 by the boundary conditions
and the orthogonality property of u%. Consequently, ué as a leading boundary layer
profile at order /¢ satisfies a linear equation, which is in sharp contrast to Prandtl’s
boundary layer equations in no-slip boundary conditions. In §§ 2.3 and 2.4 we carry
out an H™, m = 0,1, 2, estimate similar to that in [8] for the system of u; and 9;
to verify (1.20). In comparison with [8], here we additionally need the L> bound of
9,0}, which is carried out by using the structure of the boundary layer equations
in §2.5.

The main part of the proof is an energy estimate of the error equations given
in §3, where we have to estimate both R® and S°. Since the approximate solution
u® does not satisfy the divergence free condition exactly and it is not tangent to
the boundary, the error term R° has the same properties. So it is difficult to carry
out the standard energy estimate directly on the error equations because there is
no further information for the pressure term. Here we adapt the strategy of the
L? estimate of PR in [8], where P denotes the Leray projector [8], that is, the L?
orthogonal projection on the space of divergence free vector fields tangent to the
boundary. Then, together with the basic L? estimate of the error term S¢, we can
finally verify the regularity results of the error terms, and we thus verify the L2
equivalence between the viscous solutions and the inviscid solutions.
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2. Construction of the approximate solutions

In this section, we discuss how we can obtain the approximate solutions given by
(1.22)—(1.24) through different scaling and asymptotic expansions. The approximate
solutions to the Boussinesq equations (uf, %) are expected to approximate the
inviscid solution (u°,#%) away from the boundary and possess a sharp change near
the boundary. The introduction of a multi-scale method, typical in perturbation
theory [7], is formally necessary to describe different regions of the flow: the inviscid
region and the viscous region. The inner functions u°, #° and p° in (1.22)—(1.24)
are exactly the solutions to the inviscid equations (1.13)—(1.15) with the boundary
condition (1.16) and the initial data (1.7)—(1.8). In the following, we will determine

the boundary layer functions term by term.

2.1. Boundary layer functions u) and 6}

Substituting (1.22) into the divergence free condition (1.2) yields

O(1/+/2) : n-d,ul =0, (2.1)
O(1): divyu) +n-0,u; =0, (2.2)
O(We): diveui +n-0.w=0. (2.3)

The boundary condition (1.4) gives that, for any ¢ € [0, 7] and x € 2, the boundary
layer functions satisfy

(1) :
O(Ve): (uy-n)|:=0 = 0.
It follows from (2.1) and (2.4) that

—
N
—
S
=
3
=
=
I
o
\
=

up - n=0 VY(tz2) €[0,T]x2xRf. (2.6)

Putting (1.22)—(1.24) into (1.1), using (2.6) and comparing the terms of order
O(1/+/¢) give that

n-9,p) = 0. (2.7)
Notice that p) — 0 as z — +oo for any ¢ € [0,7] and x € 2. We then have
ph(t,z,2) =0 Y(t,x,2) €[0,T] x 2 x RY. (2.8)
Thus, the O(1) terms of (1.1) can be reduced to
Opuf) + b(t, 2)20,uf + uVuh + u)Vul + u)Vou) — 09 - e, +n-0.pp = 02uf) (2.9)

with
(8zu2)|2:0 =0, ug(t, x,+00) =0 (2.10)

and
u2(07x, Z) = 07
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where the boundary condition on z = 0 in (2.10) is derived from (1.4) and (2.6).
Furthermore, by (1.17) and [8, lemma 4], we have

0.
b(t,z) € C(0,T; HX(2)) N CH0,T; H (), blt,z) = %.
Putting (1.22)—(1.24) into (1.3) and using the boundary condition (1.16), we have
the equation of the boundary layer function 6},

010y + uPV .00 + b(t, 2)20,0) + u)Ve°® + u)V .0y = 026 (2.12)

(2.11)

with the boundary condition
9.09(t,2,0) =0,  60)(t,,+00) =0 (2.13)

and initial data 6?(0,¢,z,2) = 0. Next, we carry out the L? estimate of the above
nonlinear problem to prove

ud(t,z,z) = 09 (t,z,2) = 0. (2.14)

In view of the orthogonality property u; -n = 0, which will be proved in the next
subsection, it follows from (2.3) that

div, ud = 0. (2.15)

Then, together with the divergence free condition (1.14) and the fact that u° and
u) are both tangent to the boundary, we have

// uOVu - ul) dedz = // u) V) - ud dedz = 0,
OxRT OxRT
// n-0.pp - uy dedz = 0.
2xRT

Then, multiplying (2.9) by Y, integrating over 2 x R{ and using the boundary
condition (2.10) yield

L R X
2%
=—= // b(t, z)20,u) - uf) dv dz — // upVau - uf) dz dz
2 OxRT OxRT
Jr// ) - e, - uy dadz
OxRT

CH%”

and

2(QxRY) + ”9 ||L2(QxR+)’

where we have used integration by parts in z and the property that b and Vu® are
uniformly bounded. Similarly, multiplying (2.12) by 67, integrating over §2 x Rf
and using the boundary condition (2.13) yield

OO 72 o mr |a Op1* dz dz < ClwpllZa gupry + CIOBIT (gms
(axef) (@x&]) (@x&})
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Thus,

(||“b||L2 oxr) T ||00||L2(Q><R+ + // (|0-ug|® + 10.65)*) dz d=
OxRY
< Clu2 gty + CIO2 e ot

Set £(t) = ||ub|\L2(Qle+) + 1169113, (gt = 0- Then from the above inequality we
get

9E(t) — C&(t) <0
which implies that e~“*¢(#) is decreasing in ¢. Thus,
E(t) e () <E(0) =0 VE=0
where we have used u8|t:0 = 90|t:0 = 0. It then follows that

11172 sy + 100172 mry = O (2.16)

which leads to (2.14). Now we come to determine the next order of boundary layer
functions.

2.2. The orthogonal property of u},
It follows from (2.6), (2.8) and the inviscid equation (1.13) that

Opup + upVul +uVoui + udVaui + up Vau) + b(t, x)20.ui + up - nd,ug
= 0%up + Open — Vap, —n - 0.q,

which is derived from the O(y/€) terms. Instead of studying this equation directly,
we turn to the following problem, which consists of

up -n =0, (2.17)

8tu; + (uéVuO + uovxué + ugvxué + uévxug - Géen)tan + b(t, x)z@zué = 8?1@%,
(2.18)

(up Vu® + uVoui + udVaui +ui Vaeu) — 0ten)normal = —1 - 0.q¢ — Vapp. (2.19)
Taking the scalar product of (2.18) with n implies that
Or(up - n) + b(t, )20 (up - n) — 0%(ug - n) = 0. (2.20)

It then follows from (2.11) that

Ol %y 21008 3y = [ Bt o
1

< ||b(t x)”LN([O,T]XQ)”ui : n”iﬁ(ﬂfo)
< C”ub n||L2(Q><R+)
Since
up(0,2,2) =0 V(z,2) € 2 x R+, (2.21)
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similar to (2.16) we have

luy (2) - <0. (2.22)

2
L2(2xRT)
Consequently,

up -n=0 Y(tz,z2)€[0,T]x 2 xR . (2.23)

2.3. Basic L? estimate of the boundary layer functions u} and 6}

For k,m,p € N, we introduce the following weighted anisotropic semi-norm of a
function v(t, z, z) (z is a fast variable):

1/2
V]lkmp = ( > // (1 +z2k)8§‘8§v|2dxdz>
lal<m 2xRT
and the weighted anisotropic Sobolev space with norm given by

p
e = > MolF s = > (14 2°7)[8302v[* d dz.
= O2xRF

ler|<m,j<p
In view of (2.14), (2.18) can be reduced to
Opup 4 (up Vu® + u®Voup — 0len)ian + b(t, ©)20ui = 02ui. (2.24)

Substituting (1.22) into the boundary condition (1.4) gives

D) -1+ @]y = D) -1+ @ty + 2[00 +

N | =

tan 28%()0 : an(P:|
-7
+0(Ve)

1 1
= [D(uo) "N+ auo]tan + i[azulﬂtan + D) Z 81190 : aivj(p : Ti:| T
-7

+ O0(Ve),

where T denotes the tangent vector of the boundary 92 at x. Notice that n = Vi,

S0
[Z@xigp-&wpn}' =0.
J

It then follows from (1.4) that

[0.up]tan(t, ,0) = =2[D(u’(t, ) - n + au®(t, z)]tan = f(t,x2) V(t,z) € [0,T] x 12,

(2.25)
that is,
(Ozup)|:=0 = f(t,2) V(t,z) €[0,T] x 2 (2.26)
due to (2.23). By [8, lemma 4], we have
f(t,x) € C(0,T; H*(2)) N C*0,T; H'(£2)). (2.27)
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On the other hand, we derive from the O(/¢) terms that

O10p +uV L0 +b(t, 2)20.0} +up Vo° = ho*6; (2.28)
with the boundary conditions
0,04 (t,x,0) = =V -n = g(t,x), 0;(t,z,+00) =0 (2.29)
and the initial data 6} (t = 0,z,2) = 0. It is easy to obtain
g(t,z) € C(0,T; H*(2)) N CH0,T; H' (12)). (2.30)

Next we carry out the energy estimate of the equations of u} and 6} given in (2.24)
and (2.28). We multiply by (1 + 22*)u}, integrate in = and z and remember that
uj -n =0 to obtain

16t‘|ub||k00+// (1+ 2%)uy - VO - uj do dz

+ // (1+ z%)@g epup drdz + // (z + 225THb(t, 2)0,up - up dedz
OxRf

OxRT

— // (1+ 2202} - uf dzdz = 0.
OxRF

Because u' is divergence free and tangent to the boundary, we have

//Q R+(1—|—z2k)ui-Vuo-uédxdz:o.
xRy

Integrating by parts in z and using the condition (2.23), (2.26) and (2.27) yield
that

O

= —2// (1 + 22M)up -Vl i dzdz
OxRf

22k z) - |up|?dedz — up (x z)dz
+//!2ij(1+(2]€+1) Vb(t, x) - |up|”dad 2/9 »(2,0)f(t,x)d

— 4k // 228719 uf - up dedz — 2 // (1+ 2°%)0} - eup dzdz
QxR 2xRT

< C|Vu°| Lo // (1+ 2%%)|ul|? dz dz + 4k(2k — 1) // 2272l 2 da dz
OxRY

2xRT

—|—2// o,up - f tx)dxdz+C|btx|Loo// (1 + 2%%)|ui|? dz dz
OxRT

Ollup % 0.0 + s k0,011 +22) 72| 2

CHUI%H%,O,O + ||U1§||%,0,1 + ||9;}||i7070 +C, (2.31)
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where we have used that Vu? is uniformly bounded. Similarly, multiplying (2.28)
by (14 22%)6} we obtain

6 oo+ [[ (14 29009.6 - 0 do s
+// (1+z2’f)u;-v90.9; dxdz+// (z + 22K NYb(t,2)0.0; - 0} dw dz
QxR 2xRY
—// (1+ 225026} - 6} dzdz = 0.
OxRY

Since 1Y is divergence free and tangent to the boundary, we have

// (1+ 22")u’V,0; - 0} dvdz = 0.
OxRT

Integrating by parts in z, and using the boundary condition (2.29) give that

3:6”‘9;”%,0,0"‘2”9}%”;0,1
= 142 t,x u rdz — 142 zdz
21y 2dxd yup - v -0l dxd
OxRT (2><]RJr

—/ 9§(t,:r,0)g(t,z)dm+// (1 + 22%)0.6}|? da d=
) 2xRT

+ 2k // 2267190} - 0} dz d»
OxRT

< CHU;Hi,O,o + CH%H%,O,O + H%Hi,og +C, (2.32)

2k)—1/2

9HL2(Qfo)

where we have used (2.30) and V#° is uniformly bounded. Adding (2.31) to (2.32),
we have

or( i 0) T (HUI%H%Ol + ||911||i70,1) < OH”I%”%,O,O + CH%”%,QO +C.

Set ((t) = llupllzo0 + 10411700 We then obtain from the above inequality that
e~Ct((t) — Ct is decreasing in t. It follows from u}|;—o = 0}|;—0 = 0 that

C(t) < Cte®t < C, telo,T].

Therefore, for t € [0,T], it follows that

b io,l(T) + CH%H%,OJ(T)) dr <C, keN. (2.33)

t
(k12 0.0+ 16812 0.0) + |
0

2.4. H*, m = 1,2 estimates for the boundary layer functions

For a vector field v and a multi-index «, we define

Dy (v) = {Dg(v), |a| = mj}.
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Thus,

0% (Vtan) = 0¥{x(z)[v — (v-n)n]} = x()[0% — (0% - n)n] + Q = (0%V)tan + 9,
(2.34)

where Q is the linear combination of DY (v), || < |a| — 1. We first look at the tem-
perature equation (2.28) for |a| = m, m = 1,2. Applying 9% to (2.28), multiplying
by (1 + 22%)026} and integrating over 2 x Rf give that

s, // (1+ 225)[0°0L 2 da =
2 OxRT
=— // (1 + 22%)02 (u°V ,0}) - 026} dx d=
2xRY
- // (14 22%)02(b20,0;)020} dx dz
2xRT
- // (1 + 22%)0% (up - 6°)026} dx dz
OxRT

+ // (14 2292026} - 026} dx d=
OxRT

4
i=1

Now, we treat I;, i = 1,2, 3,4, term by term. First, for m = 1, we have

11| < ‘ // (1+ 2*")D, (u°)D,6} - D,0; dz dz
O2xRT
+ ‘ // (1 + 22M)u'V,(026}) - 990} dw dz|.
OxRY
Since u® is divergence free and tangent to the boundary, we have
// (1+ 22"’V ,(826}) - 026} dx dz
2xRT
-1 // (1 + 2%%) div, (u® - |0964 %) da dz
2 OxRY
1

-3 //Q R+(1 + 22F) div, u® - 026} dz dz
xRy
=0.

Therefore,

B D em [ 0+ 0,0 drdz < Ol s
xRy
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For m = 2, we have
I = // (1+ 2*)D*(u®)D,6} - D26} dz dz
O2xRT
+// (1 + 22"V, D26} - D26} dz dz
OxRY
+// (1 + 22M)D,(u*)D26} - D26} dx dz,
OxRf

where the second the term vanishes after integration by parts and by using (1.14)
and (1.16). The last term satisfies

J[ 0+ D,0026, - D26} dsd < 16} 2
xRy

In view of the regularity of the inviscid solution (1.17), the first term on the right
hand side can be treated as

‘// (1+ 2°)D*(u®)D,0} - D26} dz dz
2xRY
< /W(l + 2D (1) L2y - Dby |l L2(o) - D205 220 d2
1

1/4 3/4 1/4
<C [ (42D ) ooy - 1Dy - D281 ()
1

3/4
D8 1350y - D201 22y d

1/4 3/4 1/4
<C [ A+ o) - ID* WO o) - D03 )
1

3/4
D203 13 ) - D26} | 122 dz

<UD |1+ =210} o

+
Rl

< C||6;]

2
k2,0

Consequently, for m = 1,2, we have
1L < ClO 7 m.0- (2.35)

We now come to I>. For m = 1, we have

I = / / (z + 22K NYb(t, 2)0,020} - 0260} dx dz
OxRT

+ // (2 4+ 224100 . 9,0} - 926} da dz.
O2xRT
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The first term can be controlled by C||6; |7 ; o due to (2.11). We can estimate the
second term as follows:

// (z + 22*1H9%b - 0.6} - 920} dx dz
2xRY

< [ G 08bl s - 10:03 e 10263 ooy

1

1/2 1/2
< Clbt, 2) |2 / 1L+ 2241 20.0 115 ) - 11+ 225)V20.00 17 o)

Rf
1+ 222020, || 120y dz
1/2 1/2
< CHengizm |9g‘|k,/1,1 |9§ |k,1,07

where we have used the Sobolev interpolation inequalities (see [5])

l9(@)llLa(2) < Cllg(@) |11 (02)
with 2 < ¢ < +oo for £2 C R? and ¢ = 6 for 2 C R3, and

1/2 1/2
lg(@) 122 < Cllg@) ooy l9(@) 15 ).

For the case in which m = 2, I5 is the sum of
Jy = // 2(14 2202 f - 0.6} - 026} dx dz,
OxRY
Jo = // 2(14 22D, f - 9.D,0} - 026} dx dz
OxRY
and
Jy = // 2(1+ 22K)f - 020,06} - 996} dzdz.
O2xRT
Obviously, J3 is bounded by C/|6} Hi,z,o Using the interpolation inequality we obtain
< [f s 08 e 106} eco - 1056 120 d
2xRT

<Cllas [ N0+ 249 20,0005 - 10+ 2900011

1

I+ 22520260, )1 120 d2

1/2 1/2
< C\|9§\|k/+2,1,1 ’ H%Hk,/z,l ’ Heé

|k,2,0

and

| J2| < /+ 2(1+ 2°M) Do fllze - 10:Dabpllzs - 103652 dadz
R

1

1/2 1/2
< C|fllae / @+ 225 20.D,05 g - 11+ 2! 20.D.03 311

1

1+ 22020 | 2 da
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1/4
< C(/ ||(1 + 22k+4)1/26ZD595||%2(Q) dZ>
R+

1

1/4
. (AJr ||(1 + Z%)l/z@ZDmQ;H%l(Q) dZ)
1

1/2
(1202020 gy )

1

1/2 1/2
< ClO I 1 2103135168 e 20
Consequently, for m = 1,2 we obtain, by using Young’s inequality,

1/2 1/2
ClOZ o+ CUO e NOR 2 11010

ClOs 117 m.0 + ClO IR 42,11 + 1017 .2 (2.36)

|I5| <
<

with 7 > 0. We now look at the term I3. For m =1,

//MR+ (14 22%)9%u;, - V6° - 920} de dz < C|l64 1310 + Cllut ]| 1.0,
1

where we have used that V#° is uniformly bounded. It follows from the interpolation
inequality and (1.17) that

// L+ 22MVui 02 (Ve°) - 026} | dx dz
2xRY

< /W(l + 229 lupllLace) - 1D*(6°) o) - 10504 || 20 dz

1

< Cl6° 520 /W(l + 22 Jug || oo - 10204 2 () dz

< [ o 1056 120 0z
1

< CHUll)”z,l,o + CH%H%,LW

For m = 2, I3 can be written as the sum of J;, i = 1,2, 3, with
J = // (14 22902} - V6° - 920} dx dz,
O2xRF
Jo = // (1 + 2°%)D, (up)D2(0°) - 926} dx dz
O2xRF
and

ng// (14 2*)uj - VD3(6°) - 020 dw dz.
OxRY

It is easy to show that

1] < Cllugll3 2,0 + ClIOIF 2,0-
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The interpolation inequality gives that

7l < [ D ey - ID2O e - 10963 ooy 0=

1

< 0Ny [ (1 )b - 10203 o 2

1

< C’||ull,||i’170 + CH@;HZLO
and
| Js] < /W(l + 22 gl (o) - 1D?(0°)|L2(02) - 10564 L2 (02) dz
1

1/2 1/2
< C||90||H3(Q)/ (1+ ZQk)Hullzlljf/l(Q) : ||U;||f{2(g) : H@?@;Hp(m dz

RY

< Clluplliao+ Cllw,

%,2,0 + CH‘%H%Q,@
So, for m = 1,2, we have
T3] < Cllug 1m0 + ClO 7 m.0- (2.37)

The last term I, satisfies

14+// (14 22%)]0,026}| dz d=
2xRT

= —/ 0,020 (t,x,0) - 020 (t,z,0) dx—kz// 22k=19,1096} > d d=.
2 OxRY
It follows from (2.29) and (2.30) that

- / 00201 (¢, 2,0) - 0L (t, z,0) dw
(%}

= // 0%g(t,x) - 0,020} (t,z, 2) dr dz
2xRY

<17 ma + CIOTg(t, 2) |20 | (1 + 22) 712 2
< IO 1% 1 +C

with 7 > 0. Integrating by parts yields that
k// 226719, 1000 > de dz < C|162112 . 0-
2xRY o

Consequently, we have

I+ 6

ko1 < Cll6g]

i,m,o + "7”9; ”%m,l + C.

Thus, collecting all the estimates of I;, i = 1,2, 3,4, gives

30105 1% .0 + 165 11712

< Cllupll mo + ClO R mo + CllOs IR s 2,m—1.1 + 201057 1m0 + C-
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Choosing 1 > 0 sufficiently small we have
Ocll03 %m0 + 105 1% 1 < Cllugll im0 + CIOGIE o + ClO IR 2m 1.1 +C- (2:38)

Similarly, we have from (2.24) that
lat // (1 + 22%)|0%u}|? dz dz
2 OxRY
_ // (14 229)020%u} - 9%} d d=
OxRT
- // 2(1 + 22%)02 (b(t, £)d,up) - 0%up da dz
O2xRT
- // (1422902 [(up - Vu® 4+ u® - Voup + 04 - en)tan] - 0%ui dedz
O2xRT
3 ~
-3
i=1
Then, carrying out a similar analysis as above, we have for m = 1,2 that

L+ gllullima < Clglimo +C (2.39)

and
L] < Cluy|

om0+ Clup 2 m-11 + nllwg % ma (2.40)
for n > 0. In view of (2.34) one has

B[] a0V Va4 0} ) + Q.
2xRY
—[02 (up - VU +u - Voup + 0, - e,) - nln}ofuy, dz dz,

where Q, is the linear combination of D} (u} - Vu® + u® - Vyul + 6} - e,) with
|v] < m — 1. Applying 82 to n-ui = 0, we have that n - 9%u;} is equal to the linear
combination of DY(u}), |y| < m — 1. For m = 1, using (1.17) we obtain

BI<C [ W+ D)0 0
R

1

0 [ (0 b D2 ) s D )2y

1

0 [+ b9 )+ s 162200

1
Fllup L (2105 11 (2)) d

i,o,o + C||911||i,1,0~

< Cllupllz oo+ Cllug i 10 + ClIgs ]

For the case in which m = 2 it follows from the interpolation inequalities that

|I5] < CH“%”%,LO + Clluy i,z,o + C”‘%HZ,LO + C”eg”%,z,o-
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Therefore, ~
13| < Clluglzm.o + ClOG IR oy m=1,2. (2.41)
Collecting the above estimates (2.39)—(2.41) and choosing 1 > 0 sufficiently small
yield
Ocllup %m0 + llup 7 m1 < Clltg Iz mo + Cllug IR 2,m—1.1 + C- (2.42)

Adding (2.42) to (2.38) we obtain

2
k',m,l)
i,m,O) + C(””lﬁ”ijﬁ,mfl,l + ||€l%||i+2,m71,1) +C.

Gronwall’s inequality (see [5, p. 624]) then implies that

Or(luplli 0 + 105115 m.0) + (letp Iz 1 + 11651

< C(llupllf .o + 1165

(1l

t
kom0 T ||9§(T)|Ii,m,o)+/0 (Il (D% 1+ 105 (PR 1) A7

t
<Ct+0/0 (lup (D7 2,m—11 + 105 (D[ r2m—1,) dr VEE[0,T]. (2.43)

Therefore, for the case in which m = 1, (2.43) gives

(1]

t
i,l,o + ||91%||%,1,0) +/0 (Jlup (1) i,1,1 + ||9;(T)|‘i,1,1)d7

¢
<Ci+ C/o (||Uz1>(7)|‘%+2,0,1 + ||6§('r)||%+27071)d7 vt € [0,T],

where the right-hand side of the above inequality is bounded due to the L? estimate
(2.33). Consequently, (u},0)(t, x,z) € L=(0,T; H-O(2 xRI))N L0, T; HY(£2 x
R7)). Similarly, applying (2.43) to m = 2 we obtain

(uy, 0y)(t, 2, 2) € L0, T; H**(2 x RY)) N L2(0,T; H*'(2 x RY)),

which verifies (1.20) in theorem 1.3. In the next section we turn to the proof of
(1.21).

2.5. Uniform estimates for 8,uj and 9.6}

Set
B = 4[|Vl || < jo,m)x2) + 206t 2) || e (0,71x0) + 21V Lo (0. 1x2) 2 (2.44)
and

V1(t, x, 2) = Oup(t,z, z)e P,
Uo(t, x, 2) = 0,01 (t, x, 2)e PL.

It follows from (2.18), (2.28) and the orthogonality property u} - n = 0 that the
function

U(t,z,2) = [Yuf* + o]
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satisfies

) + uV ot + 2b(t, 2)¢p + b(t, 2)20:9 + 2(¥1 Vi) -
+20aen - 1 + 21 V%) -y — 029 + 2(10:401* + [0:2|) + 26y = 0.
Then (¢, x, z) can only attain its maximum on ¢t =0 or z = 0. In fact, if we assume
that 1 attains its maximum at a point (to, %o, 20) € (0,7] x 2 x R}, then at this

point
o =0, 9, =0, 9% <0.

If xg € £2, then V¢ = 0. If g € 012, then
uovaﬂl) = uo(vaﬂ/})tan

since u? is tangent to the boundary 2. As a consequence, we obtain by (2.44) that

20 < =21 Vu®) -y — 2(p1 V) - Yy — 2gey, - Py — 2b(t, )0
2|VU’| Lo (0.1 x 2) |17 + ¥ + VO | oo (0,715 2) ¥ + 2[b] Loe (0,71 x 2) ¥
2|Vl | oo (0,11 2)% + ¥ + V0| Lo (0,17 x. 2) ¥ + 20bl Lo (0,11 2) ¥
8. (2.45)
0

Since ¥ > 0, (2.44) implies that ¢» = 0, and therefore ¥; = 13 = 0, which is not
true. Thus, ¥ can only attain its maximum on ¢ = 0 or z = 0, that is,

/

NN N

V1t x,2), e (t,z,2) € L([0,T] x 2 x RY).
Consequently, we have
D.up € L=([0,T] x 2 x RY) (2.46)

and B
0.0 € L>=([0,T] x 2 x R). (2.47)

2.6. Higher-order boundary layer functions

We now determine the next order functions w and ¢ in the solution expansions
given in (1.22) and (1.24). Let

w(t,z,z)=n-w

be a scalar function. Then (2.3) gives

+oo
w(t,z,z) = / div, up(t, z,y) dy, (2.48)

where w vanishes for x € 2\ V. In view of (2.9) and (2.14), we have
pe(t,z,2) =0 Y(t,x,2) €[0,T] x 2 x RY. (2.49)
Then, together with (2.8), the associated pressure has the form

p(t,x) = p°(t, ) + eq(t, z, ), (2.50)
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where q(t, z, z) satisfies

(up Vu® + uVoup — 0ien)normal = —n - 0.q Y(t,z,2) € [0,T] x 2 x Rf. (2.51)
Then,

Vst 2loioy < [ bl ds

1

1/2 1/2
<([aeaa) ([ aso2luleae)
R R *

1

1/2
< c( [ 10+ 2 o dz)
R

< Cllug 12,0 (2.52)

Furthermore, ¢ vanishes for x € 2\ V.

3. Estimates of the error terms

In this section we first derive the initial boundary-value problem of the error terms
and then, by an energy estimate, we show the L? estimate of the error terms, which
readily yields the stability result. Let R°(¢, ), S¢(¢, ) and w° (¢, x) be the remainder
terms. In our context, the function w(¢,z,z) is only a part of the O(e) boundary
layer functions, so (R%, 5S¢, 7¢) and q(t, z, z) are of the order of . That is,

uf (t, ) = ud(t, 2) + Veup (t, x, 2) + ew(t, x, 2) + eR*(t, x),
0% (t,x) = 0°(t, ) + /20, (t, =, 2) + eS°(t, z),

pe(t,x) = p°(t,x) + eq(t, x, 2) + en®(t, ).
Then R® and S° satisfy

ORE — eAR® +u*VR® + R° - Vu® + R° - nd,u}
— 5% e, +VER® - nd,w+ VeR® - Vup = K, (3.1)
div R = —div, w, (3.2)
0S¢ — eAS® +uVS® + R -V’ + R -nd.0p +eR* V.0, =Ky  (3.3)

with the boundary conditions

R*-n=—-w(tz0) - n, xecdfl (3.4)
[D(R)n+ iVa(n-w) + aRpn = ((t,z), €042, (3.5)

0S¢ 1 06}

EAM 0 .

o JE on (t,2,0), x€df, (3.6)
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where
K, = —dw+ Au’ + 2n - Vmﬁzui —uf Vew—w-Vu' —w- nazu; — u; . Vzu;
+ Apd.up — b(t, 2)20,w + VEAup — Vew - nd,w — Vew - Vaup +eAyw
+2vVen - V0w + VeApd,w + 02w + Vauq + V,r°,
Ky =A% + 21 - Vwazeé + Agp@zeg —wVe° — uévzeg
—w-n0.0} + VEALO — ewV 0}

and
((t,x) = |—w(t,z,0)D(n)n — aw(t,z,0)

1
- &u},(t,x,O) — —=D,ui(t,z,0n| , x€.

\E \/g tan
Furthermore, the error terms satisfy the initial condition that
RE(t=0,z)=5°(t=0,2) =0, z¢€. (3.7)

We now carry out the estimate of the remainder terms R® and S¢ in L®°(0,7T; L?)N
L?(0,T; H'). We decompose R® as

R =PER° + (I — P)R® = PR + Vp,

where P denotes the Leray projector (see [8]). We adapt the estimate in [8] so that
for some dg > 0 there holds

t
me@m+méwww%mw

t t
<C+ [ FOIR O dr+ [ 15Ol dr veb T, 65

where f£ is bounded and independent of € in L(0,T). The Leray projector P
satisfies
(I-P)RF=Vp

with p being the solution of the following problem:

Ap=—divyw in 2,
o _
on

Thus, a standard elliptic estimate gives that

—@(t,x,0) on 012

IVl < Clldive wllzz + Cll(t, 2,0)[[ a1 < Clluglli20 < C.
This implies that

(I =P)R*(8)]| > < C. (3.9)
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On the other hand, we multiply (3.3) by S¢ and integrate over §2 x [0, 7] to obtain

t 5
SRy = [ [ As7-stazar <3 an
LY i=1
where
t
Q= / / EVS - S dedr,
0 Jo
t
ng/ R°VE° - S¢dadr,
0 Jo
t
ngﬁ/ /REVﬁ;-SdedT,
0 Jn
t
Q4:/ /RE-nVZO;-SEdde,
0 Jn

t
Q5:/ / KQSEdLCdT.
0 J

It follows from the divergence theorem and the boundary condition (3.6) that

t t
—s/ / AS® - S*dadr = \ﬁ/ </ (V203 (x,0) -n)S® ds) dr
0o Jo 0 o9

t
+5/(; ||Vss||%2(9) dr

t 1
=\/Z:/O /Qdivm(vme;.Sf)dxdTH/o IVS272 () dr.
(3.10)

For some n > 0, we have

t
\/E/ /divm(vzag.sa)dxdf
0 2
t t t
<c / 1612 5 dr + C / 159102 dr -+ ne / 1520 gy dr. (3:11)

Furthermore, there exists d; > 0 such that

t t t
5/0 IVS®|Z2(0 dr > 515/0 15% 131 02) deC/O 15% 11222y A7 (3.12)

Because u® is divergence free and tangent to the boundary, we have @J; = 0. By
Cauchy’s inequality, we obtain

t t
Qul < C / IRE|2 ) A7 + / 1512 A7, (3.13)
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where we have used that V#° is uniformly bounded. Since for any boundary layer
function v(t, x, z) we have

+oo
oty 2,2) = — / 9.0t 2,y) dy,

for 2 < p < 400 the Sobolev embedding implies that

1/p
v(t, z, 2)||Le () </ (/ |8zv|pdx> dz
Rl Q

1
1/2 1/2
< (/ (1+z)2dz) . (/ (14 2)*|0.v]| Lo (0) dz>
R} R}
+ +
< Clollimas (3.14)
where m > 3/2 — 3/p. Similarly,
[o(t, 2, 2) || L= (@) < Cllvll1,2.1- (3.15)

It then follows for n > 0 that
t
Qal < VE / IV20 ey - 1B sy - 1% e dr
K 112 2 K 2
<cC / IVa0 200 152y d7 + € / |RE 25y dr
t t
<c / 1012 51 - [15°112 gy dr + C2 / IR 2y - 1R sy

t t t
<cC / 1012 0.1 - 15°112 ) dr + C / |R¥|2 gy dr + e / IR0y .

(3.16)
In view of (2.47), we obtain
t t
Qi < C [ 1R oy dr+C [ 151y ar (317)
Next, we estimate Q5 term by term. First, due to (1.17), we have
t t
/ / AG° - §¢ dzdr < C +/ 15220y dr- (3.18)
0 Jo 0
In view of (3.14), one has
t t t
\/E/O /QAxH;-SEda:dTgO/O 1226051172 (02) d7+/0 1551172 () A7
¢ ¢
<C [ 10 s dr + [ 157 e or
t
0
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Thanks to [8, lemma 3], for any h(z, z) in L2(R]; H1(£2)) that vanishes for = outside
the neighbourhood V), there exists a constant C' independent of € such that

Hh(LU,Z)HLz(Q) < CHhHLﬁ(Rf,Hi(Q)) (320)

Hence,
t t t
2/ /nvxazeg.smmg/ ||anazog\|%2(mdf+/ 1512 A7
0 (%} 0 0
t t
<C [ 104Easdr + [ 157 e or
t
<O+/ 1551172 () A7 (3.21)
0
and
t t
/ / A(p(’“)ZQg-SdedTgC—&—/ 15121 g 7. (3.22)
0 2 0
In view of (2.48) and (2.52), it follows that

[w(t,z, 2)|[o(0) < CHVU;”@(RT;LQ(Q)) < C/R+ HU;HHj(Q) dz < C||Ui||1,2,o,

1
(3.23)
where we used the Sobolev embedding H(§2) < L5(£2). Thus, by (1.17) and (1.20),

we have
t t
/ / wVGOSE dx dr < / ||w||L6(_Q) . ||V90||L3(Q) . ||SEHL2(Q) dr
0 J 0
t
1/2 1/2
<C [ ellinca - IV ey 19613z 157 oy
0
t
< C/ g ll2,0 - 6% m20) - 155 2y AT
0
t
< c/ 15°(172 (2 AT + C. (3.24)
0
Thanks to (3.14), we have

/Quzl) Vo - 5% dx < upllLse) - IVl o) - [19°] 20
< ClIVaby o) - 15717200y + Cllupl s ()
< C||911||%72,1||55H%2(Q) + Cllug |2 llup | ()
< COIT 21 115% 1720y + Cllug Il 2.1

Consequently,

t t
/ /ﬂ up - Vi0i - SFdadr < C/o ||9§||%7271||SE||2L2(Q) dr+C
0
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due to (1.20). Similarly, using (3.23) and (1.20) we obtain

t t
\/g/ / wvzﬁg - S¢dxdr < C/ ||W||L6(_Q) . ||V:L’0l];||L3(Q) . ||SE||L2(_Q) dr
0 (93 0
t
<C / bl 2,010 1.2, 15° 2y dr
0

t
0

Due to the uniform boundedness of 9,0} given in (2.47), it is easy to obtain
¢ t ¢
/ /w-nazeg-ssdxdrg c/ w32 dT+C/ 1551172 () A
0 Jo 0 0
t ¢
<C [ Iuilaodr+C [ 15 e or

t
0

Summing up the above estimates of Q;, i = 1,...,5, yields

t
152 + €61 / 152 g d
0
T t
< / 15 18912 0y AT + e / 15 1201y T

T t

where f5, f§ are bounded independent of € in L'(0,T) due to (1.20). Thus, together
with (3.8), we have

t
15512 0 + [PRED)|2) + 8 / (RO ) + 152 ) 7
t t t
< / 15 152 d + e / 15210 d7 + / £5 - IPRE|2: g dr

t t

+ / £5 1R — PR |24 d7 + 1 / IR I21 g
t t

4 / £ IPRE|23 g dr + / £ 1B — PRE|2a g dr

t
+/ 1S5(0)2a(oy dr +C ¥t € 0,7, (3.26)
0
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where ¢ = min{dg, 61 }. Then, for n > 0 sufficiently small, it follows from (3.26) that

t
(||IPRE||%2(Q) + H56||%2((z)) + 5/0 (”SEH%U(Q) + HRE”?{l(Q))dT
T
< / £5 - (IPE 2oy + 15120 0y) dr + €, (3.27)

where f{ is also bounded independent of € in L'(0,T). Set

¢
Q) = / i (PRENZ ) + 155112 () d-
0
Then (3.27) implies that
0:Q(t) < f1(1)Q(E) + C i (t).

According to the differential form of Gronwall’s inequality (see [5]), we have

Q) < exp{/ot deT} [Qw) +0/0t f:dr} <c

It then follows from (3.27) that

¢
(PRNZ2 (o) + 155112 (2) +€/O U157 () + 1B I () dr < C VE € [0,T].
Together with (3.9), we have finished the proof of theorem 1.3.
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