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In this paper, we study the zero dissipation limit of the initial boundary-value
problem of the multi-dimensional Boussinesq equations with viscosity and heat
conductivity. Such equations are used as models for the motion of multi-dimensional
incompressible fluids in atmospheric and oceanographic turbulence. In particular,
they describe the thermal convection of an incompressible flow, and constitute the
relations between the velocity field, the pressure and the local temperature. Under
the Navier slip boundary condition in the velocity field and the thermal isolation
boundary condition for the temperature, we prove the existence of weak amplitude
characteristic boundary layers. Then, by a standard energy method, we prove the L2

convergence of the solutions when both the viscosity and the heat conductivity
coefficients tend to 0.

1. Introduction and main results

In theoretical hydrodynamics, the inviscid Euler equations are used to describe the
motion of an ideal fluid but, except for some special cases, such equations can-
not describe the motion of actual fluids. Great difficulties of a mathematical nature
may arise in connection with this. In fact, for fluids with small viscosity, only a very
thin region adjacent to the solid boundary is affected by the viscosity, and thus the
Navier–Stokes equations describing viscous flows were introduced along with a small
parameter as a coefficient of the highest order derivatives (see [15, 22]). This thin
region is called the boundary layer. Most of the initial boundary-value problems for
fluid dynamics systems arise in various domains and the boundary conditions for
these problems are chosen according to the physical properties of each situation.
Compared with the viscous models, there is in general a loss of boundary condi-
tions when the viscosity ε goes to 0 (and hence a boundary layer appears). Thus, it
is commonly believed that solutions for the viscous parabolic equations cannot be
uniformly close to those for the inviscid hyperbolic equations. There is an immense

611
c© 2015 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210513000875 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513000875


612 J. Wang and F. Xie

literature on this aspect of theory; see [20,25,29] and references therein. The in-flow
and out-flow boundary conditions cause the boundary to be non-characteristic and,
in this case, there are boundary layers of size ε that are stable when the amplitude
is small (see [18, 23, 25, 27]). The no-slip boundary condition states that at a solid
boundary the fluid will have zero velocity, which means that particles close to a
surface do not move along with a flow. For the Navier–Stokes equations, such a
boundary condition always makes the boundary be characteristic. It is pointed out
in Prandtl’s theory that such a boundary condition will cause the so-called charac-
teristic boundary layers, of thickness O(

√
ε), to develop, and many nonlinear phe-

nomena may occur in the layers. In this case, the leading boundary layer functions
appear in the O(1)-term of the asymptotic approximate solution and they satisfy
a set of nonlinear Prandtl-type equations (for details, see [19, 28]). For the case of
analytic data and linearized problems, the reader is referred to [20, 21, 24, 26, 29].
However, as with most engineering approximations, the no-slip condition does not
always hold in reality. A common approximation for fluid slip is given by the slip
boundary conditions (1.4)–(1.5), which were first proposed by Navier. The slip
boundary conditions allow the fluid to slip at the boundary and have important
applications in aerodynamics, weather forecasts and haemodynamics (see [1]). The
inviscid limit of the Leray solutions of the incompressible Navier–Stokes equations
with such boundary conditions was studied in [8], where they carried out a descrip-
tive method to describe the error in two and three dimensions and then proved that
the boundary layer has a linear behaviour and that its thickness is of order O(

√
ε),

as in Prandtl’s theory of no-slip boundary conditions.
From a thermodynamical point of view, heat will be generated in any motion, and

thus there must be transformations among the temperature, the velocity and the
pressure. The following n-dimensional Boussinesq model with heat conductivity
is a simplified approximation for the motion of incompressible viscous and heat-
conductive fluids [3, 9]:

∂tu
ε + uε · ∇uε + ∇pε = εΔuε + θεen; (1.1)

div uε = 0; (1.2)
∂tθ

ε + uε · ∇θε = κΔθε, (1.3)

where uε = (uε
1, . . . , u

ε
n)T denotes the velocity vector field, p is the scalar pres-

sure, θε is the absolute temperature, ε, κ > 0 are the viscosity and the diffusivity
coefficients, respectively, and en = (0, . . . , 1)T. This model plays an important role
in atmospheric and oceanographic sciences (see [13, 16]). Furthermore, because of
its close connection to the incompressible Euler and Navier–Stokes equations, it
has received significant attention in the mathematical fluid dynamics community
(see [2,3,9,10,12,17]). As is stated in [14], problems related to the vanishing viscos-
ity limit (ε → 0 and κ > 0), vanishing diffusivity limit (κ → 0 and ε > 0) or zero
dissipation limit (ε, κ → 0) are important and challenging for (1.1)–(1.3). For the
Cauchy problem, the vanishing viscosity limit and the vanishing diffusivity limit
in the two-dimensional case are established in [3]. For the initial boundary-value
problem, the vanishing diffusivity limit for (1.1)–(1.3) in a half plane is investigated
in [10], where the existence of a boundary layer for the temperature is proved.
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In this paper, we consider the Boussinesq model (1.1)–(1.3) in Ω × [0, T ], where
Ω ⊆ R

n (n = 2 or 3) is a bounded domain with smooth boundary ∂Ω. To specify
the boundary condition, we introduce (as in [8]) a smooth distance function ϕ ∈
C∞(Rn, R) for x in a neighbourhood V of ∂Ω. One has that Ω ∩ V = {ϕ > 0} ∩ V,
Ωc ∩ V = {ϕ < 0} ∩ V and ∂Ω := {ϕ = 0} ∩ V. Furthermore, we normalize it such
that |∇ϕ(x)| = 1 for all x ∈ V. We define a smooth extension of the normal unit
vector n inside Ω by taking n := ∇ϕ(x). For a vector field ũ defined on Ω, we define
the tangential part of ũ to be ũtan(x) = χ(x)[ũ − (ũ · n)n], where χ(x) is a cut-off
function such that suppχ ⊂ V and χ = 1 in a neighbourhood of the boundary ∂Ω.
Now, for the Boussinesq equations (1.1)–(1.2), we add the following Navier slip
boundary conditions for the velocity, and the Neumann boundary condition for the
temperature on ∂Ω:

uε · n = 0; (1.4)

[D(uε) · n + αuε]tan = 0; (1.5)
∂θε

∂n
= 0, (1.6)

where ε > 0 is the coefficient of kinematic viscosity, n stands for the outward unit
normal to Ω, α is a scalar friction function of class C2 and D(u) is the rate-of-strain
tensor defined by Diju = (∂iuj + ∂jui)/2.

The initial conditions are taken as

uε(0, ·) = u0(x) in Ω, (1.7)
θε(0, ·) = θ0(x) in Ω, (1.8)

which satisfy the compatibility conditions

u0 · n|∂Ω = 0, (1.9)

div u0 = 0, (1.10)

∂θ0

∂n

∣∣∣∣
∂Ω

= 0. (1.11)

It has been shown that the two-dimensional (2D) Cauchy problem of (1.1)–(1.3) has
a unique global solution in various function spaces (see [2,3]; the initial boundary-
value problem of (1.1)–(1.3) in the 2D case is investigated in [30]). The local
existence of three-dimensional (3D) smooth solutions, the blow-up criteria to the
Cauchy problem of (1.1)–(1.3) and the initial boundary-value problem are studied
in [6,12,17]. To isolate the effect of the boundaries, we consider the solutions before
the development of singularities. By retracing a similar argument to that found
in [6], we prove the following proposition.

Proposition 1.1. If (u0(x), θ0(x)) ∈ H3(Ω) satisfies the compatibility condition
(1.9)–(1.11), then there exist T1 > 0 and ε0, κ0 > 0 such that, for any ε ∈ (0, ε0]
and κ ∈ (0, κ0], the initial boundary-value problem (1.1)–(1.8) admits a unique weak
solution

(uε, θε) ∈ C(0, T1; H3(Ω)) ∩ L2(0, T1; H1(Ω)). (1.12)
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For the limiting case in which ε = 0 and κ = 0, we have the following inviscid
equations:

∂tu
0 + u0 · ∇u0 + ∇p0 = θ0en; (1.13)

div u0 = 0; (1.14)

∂tθ
0 + u0 · ∇θ0 = 0. (1.15)

We impose the same initial conditions (1.7)–(1.8). Since the inviscid system is of
first order, only the normal component of the velocity

u0 · n = 0 (1.16)

survives on the boundary. The local existence of the solutions to the inviscid prob-
lem is guaranteed by the following proposition.

Proposition 1.2. If (u0(x), θ0(x)) ∈ H3(Ω) and u0(x) satisfies the divergence-
free condition, then there exists T2 > 0 such that the inviscid problem (1.13)–(1.16)
admits a unique solution

(u0, θ0) ∈ C(0, T2; H3(Ω)) ∩ C1(0, T2; H2(Ω)). (1.17)

The proof of proposition 1.2 is due to the argument in [4] and the hyperbolic
theory [11]. The aim of this paper is to study the asymptotic equivalence between
(1.1)–(1.6) and (1.13)–(1.16) with the same initial data. Noticing that condition
(1.16) causes the boundary to be characteristic and comparing with the boundary
conditions (1.4)–(1.6), there is a reduction in the number of boundary conditions,
and such a reduction leads to the formation of characteristic boundary layers in
the limiting process when ε → 0 and κ → 0. Assume that κ = hε with uniform
constant h > 0. We introduce a fast variable z = ϕ(x)/

√
ε and, for m, p ∈ N, the

anisotropic Sobolev space

Hm,p = {ψ(x, z) ∈ L2(Ω × R
+
1 ) | ∂α

x ∂β
z ψ ∈ L2(Ω × R

+
1 ) ∀|α| � m, 0 � β � p}

with β being an integer. We now give a precise statement of our main theorem.

Theorem 1.3. Let T = min (T1, T2) > 0. There then exists a unique solution
(uε, θε)(t, x) of (1.1)–(1.3) such that

sup
0�t�T

‖uε − ūε‖2
L2(Ω) + ε

∫ T

0
‖uε − ūε‖2

H1(Ω) dt � Cε2 (1.18)

and

sup
0�t�T

‖θε − θ̄ε‖2
L2(Ω) + ε

∫ T

0
‖θε − θ̄ε‖2

H1(Ω) dt � Cε2, (1.19)

where ūε = u0(t, x) +
√

εu1
b(t, x, z), θ̄ε = θ0(t, x) +

√
εθ1

b (t, x, z) with u1
b , θ1

b being
the boundary layer profiles such that

(u1
b , θ

1
b )(t, x, z) ∈ L∞(0, T ; H2,0(Ω × R

+
1 )) ∩ L2(0, T ; H2,1(Ω × R

+
1 )) (1.20)
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and
(∂zu

1
b , ∂zθ

1
b )(t, x, z) ∈ L∞([0, T ] × Ω × R

+
1 ). (1.21)

In particular, uε − u0 and θε − θ0 tend to 0 in L∞(0, T ; L2(Ω)) as ε tends to 0.

Remark 1.4. Theorem 1.3 tells us that in the inviscid limit the solution (uε, θε)
can be seen as the sum of the inviscid solution (u0, θ0) and a boundary layer of
width O(

√
ε), which is of the same thickness as Prandtl’s boundary layer in the

setting of the no-slip boundary conditions. The underlying reason for this is the
Navier slip boundary condition (1.5) and the Neumann boundary condition (1.6),
which will be clear in our analysis.

The proof of our theorem has two parts. First, we use the method of multi-scale
analysis to construct an approximate solution to the initial boundary-value problem
(1.1)–(1.8). This approximate solution is close to the inviscid solution away from the
boundary and possesses a boundary layer profile of width O(

√
ε). The construction

of the approximate solution is carried out rigorously in the next section. Due to the
transformations between the velocity, the temperature and the pressure, we define
the following approximate solutions, which are different from those in [8]:

uε
a(t, x) = u0(t, x) + u0

b(t, x, z) +
√

εu1
b(t, x, z) + εω(t, x, z); (1.22)

θε
a(t, x) = θ0(t, x) + θ0

b (t, x, z) +
√

εθ1
b (t, x, z); (1.23)

pε
a(t, x) = p0(t, x) + p0

b(t, x, z) +
√

εp1
b(t, x, z) + εq(t, x, z), (1.24)

where (u0, θ0, p0) satisfies the inviscid problem (1.13)–(1.16) and z = ϕ(x)/
√

ε is a
fast variable. Thus, we have to determine the first order boundary layer profiles u0

b

and θ0
b , which are shown to satisfy the nonlinear Prandtl equations (2.9) and (2.12).

In contrast to the case of the no-slip boundary, the boundary layers are much weaker
for the Navier slip condition. It will be clear from our analysis that the O(1)-term
boundary layer functions u0

b and θ0
b are identically 0 by the boundary conditions

and the orthogonality property of u1
b . Consequently, u1

b as a leading boundary layer
profile at order

√
ε satisfies a linear equation, which is in sharp contrast to Prandtl’s

boundary layer equations in no-slip boundary conditions. In §§ 2.3 and 2.4 we carry
out an Hm

x , m = 0, 1, 2, estimate similar to that in [8] for the system of u1
b and θ1

b

to verify (1.20). In comparison with [8], here we additionally need the L∞ bound of
∂zθ

1
b , which is carried out by using the structure of the boundary layer equations

in § 2.5.
The main part of the proof is an energy estimate of the error equations given

in § 3, where we have to estimate both Rε and Sε. Since the approximate solution
ua does not satisfy the divergence free condition exactly and it is not tangent to
the boundary, the error term Rε has the same properties. So it is difficult to carry
out the standard energy estimate directly on the error equations because there is
no further information for the pressure term. Here we adapt the strategy of the
L2 estimate of PRε in [8], where P denotes the Leray projector [8], that is, the L2

orthogonal projection on the space of divergence free vector fields tangent to the
boundary. Then, together with the basic L2 estimate of the error term Sε, we can
finally verify the regularity results of the error terms, and we thus verify the L2

equivalence between the viscous solutions and the inviscid solutions.
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2. Construction of the approximate solutions

In this section, we discuss how we can obtain the approximate solutions given by
(1.22)–(1.24) through different scaling and asymptotic expansions. The approximate
solutions to the Boussinesq equations (uε

a, θε
a) are expected to approximate the

inviscid solution (u0, θ0) away from the boundary and possess a sharp change near
the boundary. The introduction of a multi-scale method, typical in perturbation
theory [7], is formally necessary to describe different regions of the flow: the inviscid
region and the viscous region. The inner functions u0, θ0 and p0 in (1.22)–(1.24)
are exactly the solutions to the inviscid equations (1.13)–(1.15) with the boundary
condition (1.16) and the initial data (1.7)–(1.8). In the following, we will determine
the boundary layer functions term by term.

2.1. Boundary layer functions u0
b and θ0

b

Substituting (1.22) into the divergence free condition (1.2) yields

O(1/
√

ε) : n · ∂zu
0
b = 0, (2.1)

O(1) : divx u0
b + n · ∂zu

1
b = 0, (2.2)

O(
√

ε) : divx u1
b + n · ∂zω = 0. (2.3)

The boundary condition (1.4) gives that, for any t ∈ [0, T ] and x ∈ Ω, the boundary
layer functions satisfy

O(1) : (u0
b · n)|z=0 = 0, (2.4)

O(
√

ε) : (u1
b · n)|z=0 = 0. (2.5)

It follows from (2.1) and (2.4) that

u0
b · n = 0 ∀(t, x, z) ∈ [0, T ] × Ω × R

+
1 . (2.6)

Putting (1.22)–(1.24) into (1.1), using (2.6) and comparing the terms of order
O(1/

√
ε) give that

n · ∂zp
0
b = 0. (2.7)

Notice that p0
b → 0 as z → +∞ for any t ∈ [0, T ] and x ∈ Ω. We then have

p0
b(t, x, z) ≡ 0 ∀(t, x, z) ∈ [0, T ] × Ω × R

+
1 . (2.8)

Thus, the O(1) terms of (1.1) can be reduced to

∂tu
0
b + b(t, x)z∂zu

0
b + u0∇xu0

b + u0
b∇u0 + u0

b∇xu0
b − θ0

b · en + n · ∂zp
1
b = ∂2

zu0
b (2.9)

with
(∂zu

0
b)|z=0 = 0, u0

b(t, x,+∞) = 0 (2.10)

and
u0

b(0, x, z) = 0,

https://doi.org/10.1017/S0308210513000875 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513000875


Zero dissipation limit and stability of boundary layers 617

where the boundary condition on z = 0 in (2.10) is derived from (1.4) and (2.6).
Furthermore, by (1.17) and [8, lemma 4], we have

b(t, x) ∈ C(0, T ; H2(Ω)) ∩ C1(0, T ; H1(Ω)), b(t, x) =
u0 · n

ϕ(x)
. (2.11)

Putting (1.22)–(1.24) into (1.3) and using the boundary condition (1.16), we have
the equation of the boundary layer function θ0

b ,

∂tθ
0
b + u0∇xθ0

b + b(t, x)z∂zθ
0
b + u0

b∇θ0 + u0
b∇xθ0

b = ∂2
zθ0

b (2.12)

with the boundary condition

∂zθ
0
b (t, x, 0) = 0, θ0

b (t, x,+∞) = 0 (2.13)

and initial data θ0
b (0, t, x, z) = 0. Next, we carry out the L2 estimate of the above

nonlinear problem to prove

u0
b(t, x, z) = θ0

b (t, x, z) = 0. (2.14)

In view of the orthogonality property u1
b · n = 0, which will be proved in the next

subsection, it follows from (2.3) that

divx u0
b = 0. (2.15)

Then, together with the divergence free condition (1.14) and the fact that u0 and
u0

b are both tangent to the boundary, we have∫∫
Ω×R

+
1

u0∇xu0
b · u0

b dxdz =
∫∫

Ω×R
+
1

u0
b∇xu0

b · u0
b dxdz = 0,

and ∫∫
Ω×R

+
1

n · ∂zp
1
b · u0

b dxdz = 0.

Then, multiplying (2.9) by u0
b , integrating over Ω × R

+
1 and using the boundary

condition (2.10) yield

1
2∂t‖u0

b‖2
L2(Ω×R

+
1 ) +

∫∫
Ω×R

+
1

|∂zu
0
b |2 dxdz

= −1
2

∫∫
Ω×R

+
1

b(t, x)z∂zu
0
b · u0

b dxdz −
∫∫

Ω×R
+
1

u0
b∇u0 · u0

b dxdz

+
∫∫

Ω×R
+
1

θ0
b · en · u0

b dxdz

� C‖u0
b‖2

L2(Ω×R
+
1 ) + ‖θ0

b‖2
L2(Ω×R

+
1 ),

where we have used integration by parts in z and the property that b and ∇u0 are
uniformly bounded. Similarly, multiplying (2.12) by θ0

b , integrating over Ω × R
+
1

and using the boundary condition (2.13) yield

1
2∂t‖θ0

b‖2
L2(Ω×R

+
1 ) +

∫∫
Ω×R

+
1

|∂zθ
0
b |2 dxdz � C‖u0

b‖2
L2(Ω×R

+
1 ) + C‖θ0

b‖2
L2(Ω×R

+
1 ).
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Thus,

∂t(‖u0
b‖2

L2(Ω×R
+
1 ) + ‖θ0

b‖2
L2(Ω×R

+
1 )) +

∫∫
Ω×R

+
1

(|∂zu
0
b |2 + |∂zθ

0
b |2) dxdz

� C‖u0
b‖2

L2(Ω×R
+
1 ) + C‖θ0

b‖2
L2(Ω×R

+
1 ).

Set ξ(t) = ‖u0
b‖2

L2(Ω×R
+
1 )

+ ‖θ0
b‖2

L2(Ω×R
+
1 )

� 0. Then from the above inequality we
get

∂tξ(t) − Cξ(t) � 0,

which implies that e−Ctξ(t) is decreasing in t. Thus,

ξ(t) � e−Ctξ(t) � ξ(0) = 0 ∀t � 0,

where we have used u0
b |t=0 = θ0

b |t=0 = 0. It then follows that

‖u0
b‖2

L2(Ω×R
+
1 ) + ‖θ0

b‖2
L2(Ω×R

+
1 ) = 0, (2.16)

which leads to (2.14). Now we come to determine the next order of boundary layer
functions.

2.2. The orthogonal property of u1
b

It follows from (2.6), (2.8) and the inviscid equation (1.13) that

∂tu
1
b + u1

b∇u0 + u0∇xu1
b + u0

b∇xu1
b + u1

b∇xu0
b + b(t, x)z∂zu

1
b + u1

b · n∂zu
1
b

= ∂2
zu1

b + θ1
ben − ∇xp1

b − n · ∂zq,

which is derived from the O(
√

ε) terms. Instead of studying this equation directly,
we turn to the following problem, which consists of

u1
b · n = 0, (2.17)

∂tu
1
b + (u1

b∇u0 + u0∇xu1
b + u0

b∇xu1
b + u1

b∇xu0
b − θ1

ben)tan + b(t, x)z∂zu
1
b = ∂2

zu1
b ,

(2.18)

(u1
b∇u0 + u0∇xu1

b + u0
b∇xu1

b + u1
b∇xu0

b − θ1
ben)normal = −n · ∂zq − ∇xp1

b . (2.19)

Taking the scalar product of (2.18) with n implies that

∂t(u1
b · n) + b(t, x)z∂z(u1

b · n) − ∂2
z (u1

b · n) = 0. (2.20)

It then follows from (2.11) that

∂t‖u1
b · n‖2

L2(Ω×R
+
1 ) + 2‖∂z(u1

b · n)‖2
L2(Ω×R

+
1 ) =

∫∫
Ω×R

+
1

b(t, x)|u1
b · n|2 dxdz

� ‖b(t, x)‖L∞([0,T ]×Ω)‖u1
b · n‖2

L2(Ω×R
+
1 )

� C‖u1
b · n‖2

L2(Ω×R
+
1 ).

Since
u1

b(0, x, z) = 0 ∀(x, z) ∈ Ω × R+, (2.21)
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similar to (2.16) we have

‖u1
b(t) · n‖2

L2(Ω×R
+
1 ) � 0. (2.22)

Consequently,
u1

b · n = 0 ∀(t, x, z) ∈ [0, T ] × Ω × R
+
1 . (2.23)

2.3. Basic L2 estimate of the boundary layer functions u1
b and θ1

b

For k, m, p ∈ N, we introduce the following weighted anisotropic semi-norm of a
function v(t, x, z) (z is a fast variable):

‖v‖k,m,p =
( ∑

|α|�m

∫∫
Ω×R

+
1

(1 + z2k)|∂α
x ∂p

zv|2 dxdz

)1/2

and the weighted anisotropic Sobolev space with norm given by

‖v‖2
Hk,m,p =

p∑
j=0

‖v‖2
k,m,j =

∑
|α|�m,j�p

∫∫
Ω×R

+
1

(1 + z2k)|∂α
x ∂j

zv|2 dxdz.

In view of (2.14), (2.18) can be reduced to

∂tu
1
b + (u1

b∇u0 + u0∇xu1
b − θ1

ben)tan + b(t, x)z∂zu
1
b = ∂2

zu1
b . (2.24)

Substituting (1.22) into the boundary condition (1.4) gives

[D(uε) · n + αuε]tan = [D(u0) · n + αu0]tan + 1
2
[∂zu

1
b ]tan + 1

2

[∑
j

∂xiϕ · ∂xj ϕ

]
tan

+ O(
√

ε)

= [D(u0) · n + αu0]tan + 1
2
[∂zu

1
b ]tan + 1

2

[∑
j

∂xiϕ · ∂xj ϕ · τi

]
τ

+ O(
√

ε),

where τ denotes the tangent vector of the boundary ∂Ω at x. Notice that n = ∇ϕ,
so [∑

j

∂xi
ϕ · ∂xj

ϕ · τi

]
τ = 0.

It then follows from (1.4) that

[∂zu
1
b ]tan(t, x, 0) = −2[D(u0(t, x)) · n + αu0(t, x)]tan � f(t, x) ∀(t, x) ∈ [0, T ] × Ω,

(2.25)
that is,

(∂zu
1
b)|z=0 = f(t, x) ∀(t, x) ∈ [0, T ] × Ω (2.26)

due to (2.23). By [8, lemma 4], we have

f(t, x) ∈ C(0, T ; H2(Ω)) ∩ C1(0, T ; H1(Ω)). (2.27)
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On the other hand, we derive from the O(
√

ε) terms that

∂tθ
1
b + u0∇xθ1

b + b(t, x)z∂zθ
1
b + u1

b∇θ0 = h∂2
zθ1

b (2.28)

with the boundary conditions

∂zθ
1
b (t, x, 0) = −∇θ0 · n � g(t, x), θ1

b (t, x,+∞) = 0 (2.29)

and the initial data θ1
b (t = 0, x, z) = 0. It is easy to obtain

g(t, x) ∈ C(0, T ; H2(Ω)) ∩ C1(0, T ; H1(Ω)). (2.30)

Next we carry out the energy estimate of the equations of u1
b and θ1

b given in (2.24)
and (2.28). We multiply by (1 + z2k)u1

b , integrate in x and z and remember that
u1

b · n = 0 to obtain

1
2∂t‖u1

b‖2
k,0,0 +

∫∫
Ω×R

+
1

(1 + z2k)u1
b · ∇u0 · u1

b dxdz

+
∫∫

Ω×R
+
1

(1 + z2k)θ1
b · enu1

b dxdz +
∫∫

Ω×R
+
1

(z + z2k+1)b(t, x)∂zu
1
b · u1

b dxdz

−
∫∫

Ω×R
+
1

(1 + z2k)∂2
zu1

b · u1
b dxdz = 0.

Because u0 is divergence free and tangent to the boundary, we have
∫∫

Ω×R
+
1

(1 + z2k)u1
b · ∇u0 · u1

b dxdz = 0.

Integrating by parts in z and using the condition (2.23), (2.26) and (2.27) yield
that

∂t‖u1
b‖2

k,0,0 + 2‖u1
b‖2

k,0,1

= −2
∫∫

Ω×R
+
1

(1 + z2k)u1
b · ∇u0 · u1

b dxdz

+
∫∫

Ω×R
+
1

(1 + (2k + 1)z2k)b(t, x) · |u1
b |2 dxdz − 2

∫
Ω

u1
b(x, 0)f(t, x) dx

− 4k

∫∫
Ω×R

+
1

z2k−1∂zu
1
b · u1

b dxdz − 2
∫∫

Ω×R
+
1

(1 + z2k)θ1
b · enu1

b dxdz

� C|∇u0|L∞

∫∫
Ω×R

+
1

(1 + z2k)|u1
b |2 dxdz + 4k(2k − 1)

∫∫
Ω×R

+
1

z2k−2|u1
b |2 dxdz

+ 2
∫∫

Ω×R
+
1

∂zu
1
b · f(t, x) dxdz + C|b(t, x)|L∞

∫∫
Ω×R

+
1

(1 + z2k)|u1
b |2 dxdz

� C‖u1
b‖2

k,0,0 + ‖u1
b‖k,0,1‖(1 + z2k)−1/2f‖L2(Ω×R

+
1 ) + ‖θ1

b · en‖2
k,0,0

� C‖u1
b‖2

k,0,0 + ‖u1
b‖2

k,0,1 + ‖θ1
b‖2

k,0,0 + C, (2.31)
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where we have used that ∇u0 is uniformly bounded. Similarly, multiplying (2.28)
by (1 + z2k)θ1

b we obtain

1
2‖θ1

b‖2
k,0,0 +

∫∫
Ω×R

+
1

(1 + z2k)u0∇xθ1
b · θ1

b dxdz

+
∫∫

Ω×R
+
1

(1 + z2k)u1
b · ∇θ0 · θ1

b dxdz +
∫∫

Ω×R
+
1

(z + z2k+1)b(t, x)∂zθ
1
b · θ1

b dxdz

−
∫∫

Ω×R
+
1

(1 + z2k)∂2
zθ1

b · θ1
b dxdz = 0.

Since u0 is divergence free and tangent to the boundary, we have
∫∫

Ω×R
+
1

(1 + z2k)u0∇xθ1
b · θ1

b dxdz = 0.

Integrating by parts in z, and using the boundary condition (2.29) give that

∂t‖θ1
b‖2

k,0,0 + 2‖θ1
b‖2

k,0,1

=
∫∫

Ω×R
+
1

(1 + z2k+1)b(t, x)|u1
b |2 dxdz −

∫∫
Ω×R

+
1

(1 + z2k)u1
b · ∇θ0 · θ1

b dxdz

−
∫

Ω

θ1
b (t, x, 0)g(t, x) dx +

∫∫
Ω×R

+
1

(1 + z2k)|∂zθ
1
b |2 dxdz

+ 2k

∫∫
Ω×R

+
1

z2k−1∂zθ
1
b · θ1

b dxdz

� C‖u1
b‖2

k,0,0 + C‖θ1
b‖2

k,0,0 + ‖θ1
b‖k,0,1‖(1 + z2k)−1/2g‖L2(Ω×R

+
1 )

� C‖u1
b‖2

k,0,0 + C‖θ1
b‖2

k,0,0 + ‖θ1
b‖2

k,0,1 + C, (2.32)

where we have used (2.30) and ∇θ0 is uniformly bounded. Adding (2.31) to (2.32),
we have

∂t(‖u1
b‖2

k,0,0 + ‖θ1
b‖2

k,0,0) + (‖u1
b‖2

k,0,1 + ‖θ1
b‖2

k,0,1) � C‖u1
b‖2

k,0,0 + C‖θ1
b‖2

k,0,0 + C.

Set ζ(t) = ‖u1
b‖2

k,0,0 + ‖θ1
b‖2

k,0,0. We then obtain from the above inequality that
e−Ctζ(t) − Ct is decreasing in t. It follows from u1

b |t=0 = θ1
b |t=0 = 0 that

ζ(t) � CteCt � C, t ∈ [0, T ].

Therefore, for t ∈ [0, T ], it follows that

(‖u1
b‖2

k,0,0 + ‖θ1
b‖2

k,0,0) +
∫ t

0
(‖u1

b‖2
k,0,1(τ) + C‖θ1

b‖2
k,0,1(τ)) dτ � C, k ∈ N. (2.33)

2.4. Hm
x , m = 1, 2 estimates for the boundary layer functions

For a vector field v and a multi-index α, we define

Dm
x (v) = {Dα

x (v), |α| = m}.
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Thus,

∂α(vtan) = ∂α{χ(x)[v − (v · n)n]} = χ(x)[∂αv − (∂αv · n)n] + Q = (∂αv)tan + Q,
(2.34)

where Q is the linear combination of Dγ
x(v), |γ| � |α| − 1. We first look at the tem-

perature equation (2.28) for |α| = m, m = 1, 2. Applying ∂α
x to (2.28), multiplying

by (1 + z2k)∂α
x θ1

b and integrating over Ω × R
+
1 give that

1
2
∂t

∫∫
Ω×R

+
1

(1 + z2k)|∂α
x θ1

b |2 dxdz

= −
∫∫

Ω×R
+
1

(1 + z2k)∂α
x (u0∇xθ1

b ) · ∂α
x θ1

b dxdz

−
∫∫

Ω×R
+
1

(1 + z2k)∂α
x (bz∂zθ

1
b )∂α

x θ1
b dxdz

−
∫∫

Ω×R
+
1

(1 + z2k)∂α
x (u1

b · θ0)∂α
x θ1

b dxdz

+
∫∫

Ω×R
+
1

(1 + z2k)∂2
z∂α

x θ1
b · ∂α

x θ1
b dxdz

:=
4∑

i=1

Ii.

Now, we treat Ii, i = 1, 2, 3, 4, term by term. First, for m = 1, we have

|I1| �
∣∣∣∣
∫∫

Ω×R
+
1

(1 + z2k)Dx(u0)Dxθ1
b · Dxθ1

b dxdz

∣∣∣∣
+

∣∣∣∣
∫∫

Ω×R
+
1

(1 + z2k)u0∇x(∂α
x θ1

b ) · ∂α
x θ1

b dxdz

∣∣∣∣.

Since u0 is divergence free and tangent to the boundary, we have
∫∫

Ω×R
+
1

(1 + z2k)u0∇x(∂α
x θ1

b ) · ∂α
x θ1

b dxdz

= −1
2

∫∫
Ω×R

+
1

(1 + z2k) divx(u0 · |∂α
x θ1

b |2) dxdz

− 1
2

∫∫
Ω×R

+
1

(1 + z2k) divx u0 · |∂α
x θ1

b |2 dxdz

= 0.

Therefore,

|I1| � |Dx(u0)|L∞

∫∫
Ω×R

+
1

(1 + z2k)|Dxθ1
b |2 dxdz � C‖θ1

b‖2
k,1,0.
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For m = 2, we have

I1 =
∫∫

Ω×R
+
1

(1 + z2k)D2(u0)Dxθ1
b · D2

xθ1
b dxdz

+
∫∫

Ω×R
+
1

(1 + z2k)u0∇xD2
xθ1

b · D2
xθ1

b dxdz

+
∫∫

Ω×R
+
1

(1 + z2k)Dx(u0)D2
xθ1

b · D2
xθ1

b dxdz,

where the second the term vanishes after integration by parts and by using (1.14)
and (1.16). The last term satisfies

∫∫
Ω×R

+
1

(1 + z2k)Dx(u0)D2
xθ1

b · D2
xθ1

b dxdz � C‖θ1
b‖2

k,2,0.

In view of the regularity of the inviscid solution (1.17), the first term on the right
hand side can be treated as

∣∣∣∣
∫∫

Ω×R
+
1

(1 + z2k)D2(u0)Dxθ1
b · D2

xθ1
b dxdz

∣∣∣∣
�

∫
R

+
1

(1 + z2k)‖D2(u0)‖L4(Ω) · ‖Dxθ1
b‖L4(Ω) · ‖D2

xθ1
b‖L2(Ω) dz

� C

∫
R

+
1

(1 + z2k)‖D2(u0)‖1/4
L2(Ω) · ‖D2(u0)‖3/4

L6(Ω) · ‖Dxθ1
b‖1/4

L2(Ω)

· ‖Dxθ1
b‖3/4

L6(Ω) · ‖D2
xθ1

b‖L2(Ω) dz

� C

∫
R

+
1

(1 + z2k)‖D2(u0)‖1/4
H1(Ω) · ‖D2(u0)‖3/4

H1(Ω) · ‖Dxθ1
b‖1/4

H1(Ω)

· ‖Dxθ1
b‖3/4

H1(Ω) · ‖D2
xθ1

b‖L2(Ω) dz

� C‖D2(u0)‖H1(Ω)

∫
R

+
1

(1 + z2k)‖θ1
b‖2

H2(Ω) dz

� C‖θ1
b‖2

k,2,0.

Consequently, for m = 1, 2, we have

|I1| � C‖θ1
b‖2

k,m,0. (2.35)

We now come to I2. For m = 1, we have

I2 =
∫∫

Ω×R
+
1

(z + z2k+1)b(t, x)∂z∂
α
x θ1

b · ∂α
x θ1

b dxdz

+
∫∫

Ω×R
+
1

(z + z2k+1)∂α
x b · ∂zθ

1
b · ∂α

x θ1
b dxdz.
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The first term can be controlled by C‖θ1
b‖2

k,1,0 due to (2.11). We can estimate the
second term as follows:∣∣∣∣

∫∫
Ω×R

+
1

(z + z2k+1)∂α
x b · ∂zθ

1
b · ∂α

x θ1
b dxdz

∣∣∣∣
�

∫
R

+
1

(z + z2k+1)‖∂α
x b‖L6(Ω) · ‖∂zθ

1
b‖L3(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

� C‖b(t, x)‖H2(Ω)

∫
R

+
1

‖(1 + z2k+4)1/2∂zθ
1
b‖1/2

L2(Ω) · ‖(1 + z2k)1/2∂zθ
1
b‖1/2

H1(Ω)

· ‖(1 + z2k)1/2∂α
x θ1

b‖L2(Ω) dz

� C‖θ1
b‖1/2

k+2,0,1‖θ1
b‖1/2

k,1,1‖θ1
b‖k,1,0,

where we have used the Sobolev interpolation inequalities (see [5])

‖g(x)‖Lq(Ω) � C‖g(x)‖H1(Ω)

with 2 � q < +∞ for Ω ⊆ R
2 and q = 6 for Ω ⊆ R

3, and

‖g(x)‖L3(Ω) � C‖g(x)‖1/2
L2(Ω)‖g(x)‖1/2

H1(Ω).

For the case in which m = 2, I2 is the sum of

J1 =
∫∫

Ω×R
+
1

z(1 + z2k)∂α
x f · ∂zθ

1
b · ∂α

x θ1
b dxdz,

J2 =
∫∫

Ω×R
+
1

z(1 + z2k)Dxf · ∂zDxθ1
b · ∂α

x θ1
b dxdz

and

J3 =
∫∫

Ω×R
+
1

z(1 + z2k)f · ∂α
x ∂zθ

1
b · ∂α

x θ1
b dxdz.

Obviously, J3 is bounded by C‖θ1
b‖2

k,2,0. Using the interpolation inequality we obtain

|J1| �
∫∫

Ω×R
+
1

z(1 + z2k)‖∂α
x f‖L2(Ω) · ‖∂zθ

1
b‖L∞(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

� C‖f‖H2

∫
R

+
1

‖(1 + z2k+4)1/2∂zθ
1
b‖1/2

H1(Ω) · ‖(1 + z2k)∂zθ
1
b‖1/2

H2(Ω)

· ‖(1 + z2k)1/2∂α
x θ1

b‖L2(Ω) dz

� C‖θ1
b‖1/2

k+2,1,1 · ‖θ1
b‖1/2

k,2,1 · ‖θ1
b‖k,2,0

and

|J2| �
∫

R
+
1

z(1 + z2k)‖Dxf‖L6 · ‖∂zDxθ1
b‖L3 · ‖∂α

x θ1
b‖L2 dxdz

� C‖f‖H2

∫
R

+
1

‖(1 + z2k+4)1/2∂zDxθ1
b‖1/2

L2(Ω) · ‖(1 + z2k)1/2∂zDxθ1
b‖1/2

H1(Ω)

· ‖(1 + z2k)1/2∂α
x θ1

b‖L2(Ω) dz
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� C

( ∫
R

+
1

‖(1 + z2k+4)1/2∂zDxθ1
b‖2

L2(Ω) dz

)1/4

·
( ∫

R
+
1

‖(1 + z2k)1/2∂zDxθ1
b‖2

H1(Ω) dz

)1/4

·
( ∫

R
+
1

‖(1 + z2k)1/2∂α
x θ1

b‖2
L2(Ω) dz

)1/2

� C‖θ1
b‖1/2

k+2,1,1‖θ1
b‖1/2

k,2,1‖θ1
b‖k,2,0.

Consequently, for m = 1, 2 we obtain, by using Young’s inequality,

|I2| � C‖θ1
b‖2

k,m,0 + C‖θ1
b‖1/2

k+2,m−1,1‖θ1
b‖1/2

k,m,1‖θ1
b‖k,m,0

� C‖θ1
b‖2

k,m,0 + C‖θ1
b‖2

k+2,m−1,1 + η‖θ1
b‖2

k,m,1 (2.36)

with η > 0. We now look at the term I3. For m = 1,∫∫
Ω×R

+
1

|(1 + z2k)∂α
x u1

b · ∇θ0 · ∂α
x θ1

b | dxdz � C‖θ1
b‖2

k,1,0 + C‖u1
b‖2

k,1,0,

where we have used that ∇θ0 is uniformly bounded. It follows from the interpolation
inequality and (1.17) that

∫∫
Ω×R

+
1

|(1 + z2k)u1
b∂

α
x (∇θ0) · ∂α

x θ1
b | dxdz

�
∫

R
+
1

(1 + z2k)‖u1
b‖L4(Ω) · ‖D2(θ0)‖L4(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

� C‖θ0‖H3(Ω)

∫
R

+
1

(1 + z2k)‖u1
b‖L4(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

�
∫

R
+
1

(1 + z2k)‖u1
b‖H1(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

� C‖u1
b‖2

k,1,0 + C‖θ1
b‖2

k,1,0.

For m = 2, I3 can be written as the sum of J̄i, i = 1, 2, 3, with

J̄1 =
∫∫

Ω×R
+
1

(1 + z2k)∂α
x u1

b · ∇θ0 · ∂α
x θ1

b dxdz,

J̄2 =
∫∫

Ω×R
+
1

(1 + z2k)Dx(u1
b)D

2
x(θ0) · ∂α

x θ1
b dxdz

and

J̄3 =
∫∫

Ω×R
+
1

(1 + z2k)u1
b · ∇D3(θ0) · ∂α

x θ1
b dxdz.

It is easy to show that

|J̄1| � C‖u1
b‖2

k,2,0 + C‖θ1
b‖2

k,2,0.
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The interpolation inequality gives that

|J̄2| �
∫

R
+
1

(1 + z2k)‖Dxu1
b‖L4(Ω) · ‖D2

x(θ0)‖L4(Ω) · ‖∂α
x θ1

b‖L2(Ω) dz

� C‖θ0‖H3(Ω)

∫
R

+
1

(1 + z2k)‖u1
b‖H3(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

� C‖u1
b‖2

k,1,0 + C‖θ1
b‖2

k,1,0

and

|J̄3| �
∫

R
+
1

(1 + z2k)‖u1
b‖L∞(Ω) · ‖D3(θ0)‖L2(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

� C‖θ0‖H3(Ω)

∫
R

+
1

(1 + z2k)‖u1
b‖

1/2
H1(Ω) · ‖u1

b‖
1/2
H2(Ω) · ‖∂α

x θ1
b‖L2(Ω) dz

� C‖u1
b‖2

k,1,0 + C‖u1
b‖2

k,2,0 + C‖θ1
b‖2

k,2,0.

So, for m = 1, 2, we have

|I3| � C‖u1
b‖2

k,m,0 + C‖θ1
b‖2

k,m,0. (2.37)

The last term I4 satisfies

I4 +
∫∫

Ω×R
+
1

(1 + z2k)|∂z∂
α
x θ1

b |2 dxdz

= −
∫

Ω

∂z∂
α
x θ1

b (t, x, 0) · ∂α
x θ1

b (t, x, 0) dx − k

∫∫
Ω×R

+
1

z2k−1∂z|∂α
x θ1

b |2 dxdz.

It follows from (2.29) and (2.30) that

−
∫

Ω

∂z∂
α
x θ1

b (t, x, 0) · ∂α
x θ1

b (t, x, 0) dx

=
∫∫

Ω×R
+
1

∂α
x g(t, x) · ∂z∂

α
x θ1

b (t, x, z) dxdz

� η‖θ1
b‖2

k,m,1 + C‖∂α
x g(t, x)‖L2(Ω)‖(1 + z2k)−1/2‖L2(Ω)

� η‖θ1
b‖2

k,m,1 + C

with η > 0. Integrating by parts yields that

k

∫∫
Ω×R

+
1

z2k−1∂z|∂α
x θ1

b |2 dxdz � C‖θ1
b‖2

k,m,0.

Consequently, we have

I4 + ‖θ1
b‖2

k,m,1 � C‖θ1
b‖2

k,m,0 + η‖θ1
b‖2

k,m,1 + C.

Thus, collecting all the estimates of Ii, i = 1, 2, 3, 4, gives

1
2∂t‖θ1

b‖2
k,m,0 + ‖θ1

b‖2
k,m,1

� C‖u1
b‖2

k,m,0 + C‖θ1
b‖2

k,m,0 + C‖θ1
b‖2

k+2,m−1,1 + 2η‖θ1
b‖2

k,m,1 + C.
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Choosing η > 0 sufficiently small we have

∂t‖θ1
b‖2

k,m,0 + ‖θ1
b‖2

k,m,1 � C‖u1
b‖2

k,m,0 + C‖θ1
b‖2

k,m,0 + C‖θ1
b‖2

k+2,m−1,1 + C. (2.38)

Similarly, we have from (2.24) that

1
2
∂t

∫∫
Ω×R

+
1

(1 + z2k)|∂α
x u1

b |2 dxdz

=
∫∫

Ω×R
+
1

(1 + z2k)∂2
z∂α

x u1
b · ∂α

x u1
b dxdz

−
∫∫

Ω×R
+
1

z(1 + z2k)∂α
x (b(t, x)∂zu

1
b) · ∂α

x u1
b dxdz

−
∫∫

Ω×R
+
1

(1 + z2k)∂α
x [(u1

b · ∇u0 + u0 · ∇xu1
b + θ1

b · en)tan] · ∂α
x u1

b dxdz

=
3∑

i=1

Ĩi.

Then, carrying out a similar analysis as above, we have for m = 1, 2 that

Ĩ1 + 1
2‖u1

b‖2
k,m,1 � C‖u1

b‖2
k,m,0 + C (2.39)

and
|Ĩ2| � C‖u1

b‖2
k,m,0 + C‖u1

b‖2
k+2,m−1,1 + η‖u1

b‖2
k,m,1 (2.40)

for η > 0. In view of (2.34) one has

Ĩ3 =
∫∫

Ω×R
+
1

(1 + z2k){∂α
x (u1

b · ∇u0 + u0 · ∇xu1
b + θ1

b · en) + Q∗

− [∂α
x (u1

b · ∇u0 + u0 · ∇xu1
b + θ1

b · en) · n]n}∂α
x u1

b dxdz,

where Q∗ is the linear combination of Dγ
x(u1

b · ∇u0 + u0 · ∇xu1
b + θ1

b · en) with
|γ| � m − 1. Applying ∂α

x to n · u1
b = 0, we have that n · ∂α

x u1
b is equal to the linear

combination of Dγ
x(u1

b), |γ| � m − 1. For m = 1, using (1.17) we obtain

|Ĩ3| � C

∫
R

+
1

(1 + z2k)‖Dx(u1
b)‖2

L2(Ω) dz

+ C

∫
R

+
1

(1 + z2k)‖u1
b‖L4(Ω)‖D2

x(u0)‖L4(Ω)‖Dx(u1
b)‖L2(Ω) dz

+ C

∫
R

+
1

(1 + z2k)(‖u1
b‖L2(Ω)‖θ1

b‖H1(Ω) + ‖u1
b‖H1(Ω)‖θ1

b‖L2(Ω)

+ ‖u1
b‖H1(Ω)‖θ1

b‖H1(Ω)) dz

� C‖u1
b‖2

k,0,0 + C‖u1
b‖2

k,1,0 + C‖θ1
b‖2

k,0,0 + C‖θ1
b‖2

k,1,0.

For the case in which m = 2 it follows from the interpolation inequalities that

|Ĩ3| � C‖u1
b‖2

k,1,0 + C‖u1
b‖2

k,2,0 + C‖θ1
b‖2

k,1,0 + C‖θ1
b‖2

k,2,0.
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Therefore,
|Ĩ3| � C‖u1

b‖2
k,m,0 + C‖θ1

b‖2
k,m,0, m = 1, 2. (2.41)

Collecting the above estimates (2.39)–(2.41) and choosing η > 0 sufficiently small
yield

∂t‖u1
b‖2

k,m,0 + ‖u1
b‖2

k,m,1 � C‖u1
b‖2

k,m,0 + C‖u1
b‖2

k+2,m−1,1 + C. (2.42)

Adding (2.42) to (2.38) we obtain

∂t(‖u1
b‖2

k,m,0 + ‖θ1
b‖2

k,m,0) + (‖u1
b‖2

k,m,1 + ‖θ1
b‖2

k,m,1)

� C(‖u1
b‖2

k,m,0 + ‖θ1
b‖2

k,m,0) + C(‖u1
b‖2

k+2,m−1,1 + ‖θ1
b‖2

k+2,m−1,1) + C.

Gronwall’s inequality (see [5, p. 624]) then implies that

(‖u1
b‖2

k,m,0 + ‖θ1
b (τ)‖2

k,m,0) +
∫ t

0
(‖u1

b(τ)‖2
k,m,1 + ‖θ1

b (τ)‖2
k,m,1) dτ

� Ct + C

∫ t

0
(‖u1

b(τ)‖2
k+2,m−1,1 + ‖θ1

b (τ)‖2
k+2,m−1,1) dτ ∀t ∈ [0, T ]. (2.43)

Therefore, for the case in which m = 1, (2.43) gives

(‖u1
b‖2

k,1,0 + ‖θ1
b‖2

k,1,0) +
∫ t

0
(‖u1

b(τ)‖2
k,1,1 + ‖θ1

b (τ)‖2
k,1,1) dτ

� Ct + C

∫ t

0
(‖u1

b(τ)‖2
k+2,0,1 + ‖θ1

b (τ)‖2
k+2,0,1) dτ ∀t ∈ [0, T ],

where the right-hand side of the above inequality is bounded due to the L2 estimate
(2.33). Consequently, (u1

b , θ
1
b )(t, x, z) ∈ L∞(0, T ; H1,0(Ω×R

+
1 ))∩L2(0, T ; H1,1(Ω×

R
+
1 )). Similarly, applying (2.43) to m = 2 we obtain

(u1
b , θ

1
b )(t, x, z) ∈ L∞(0, T ; H2,0(Ω × R

+
1 )) ∩ L2(0, T ; H2,1(Ω × R

+
1 )),

which verifies (1.20) in theorem 1.3. In the next section we turn to the proof of
(1.21).

2.5. Uniform estimates for ∂zu1
b and ∂zθ1

b

Set

β = 4‖∇u0‖L∞([0,T ]×Ω) + 2‖b(t, x)‖L∞([0,T ]×Ω) + 2‖∇θ0‖L∞([0,T ]×Ω) + 2 (2.44)

and

ψ1(t, x, z) = ∂zu
1
b(t, x, z)e−βt,

ψ2(t, x, z) = ∂zθ
1
b (t, x, z)e−βt.

It follows from (2.18), (2.28) and the orthogonality property u1
b · n = 0 that the

function
ψ(t, x, z) = |ψ1|2 + |ψ2|2
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satisfies

∂tψ + u0∇xψ + 2b(t, x)ψ + b(t, x)z∂zψ + 2(ψ1∇u0) · ψ1

+ 2ψ2en · ψ1 + 2(ψ1∇θ0) · ψ2 − ∂2
zψ + 2(|∂zψ1|2 + |∂zψ2|2) + 2βψ = 0.

Then ψ(t, x, z) can only attain its maximum on t = 0 or z = 0. In fact, if we assume
that ψ attains its maximum at a point (t0, x0, z0) ∈ (0, T ] × Ω̄ × R

+
1 , then at this

point
∂tψ � 0, ∂zψ = 0, ∂2

zψ � 0.

If x0 ∈ Ω, then ∇xψ = 0. If x0 ∈ ∂Ω, then

u0∇xψ = u0(∇xψ)tan

since u0 is tangent to the boundary ∂Ω. As a consequence, we obtain by (2.44) that

2βψ � −2(ψ1∇u0) · ψ1 − 2(ψ1∇θ0) · ψ2 − 2ψ2en · ψ1 − 2b(t, x)ψ

� 2|∇u0|L∞([0,T ]×Ω)|ψ1|2 + ψ + |∇θ0|L∞([0,T ]×Ω)ψ + 2|b|L∞([0,T ]×Ω)ψ

� 2|∇u0|L∞([0,T ]×Ω)ψ + ψ + |∇θ0|L∞([0,T ]×Ω)ψ + 2|b|L∞([0,T ]×Ω)ψ

� βψ. (2.45)

Since ψ � 0, (2.44) implies that ψ ≡ 0, and therefore ψ1 = ψ2 = 0, which is not
true. Thus, ψ can only attain its maximum on t = 0 or z = 0, that is,

ψ1(t, x, z), ψ2(t, x, z) ∈ L∞([0, T ] × Ω̄ × R
+
1 ).

Consequently, we have

∂zu
1
b ∈ L∞([0, T ] × Ω̄ × R

+
1 ) (2.46)

and
∂zθ

1
b ∈ L∞([0, T ] × Ω̄ × R

+
1 ). (2.47)

2.6. Higher-order boundary layer functions

We now determine the next order functions ω and q in the solution expansions
given in (1.22) and (1.24). Let

ω̄(t, x, z) = n · ω

be a scalar function. Then (2.3) gives

ω̄(t, x, z) =
∫ +∞

z

divx u1
b(t, x, y) dy, (2.48)

where ω vanishes for x ∈ Ω \ V. In view of (2.9) and (2.14), we have

p1
b(t, x, z) = 0 ∀(t, x, z) ∈ [0, T ] × Ω × R

+
1 . (2.49)

Then, together with (2.8), the associated pressure has the form

pa(t, x) = p0(t, x) + εq(t, x, z), (2.50)
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where q(t, x, z) satisfies

(u1
b∇u0 + u0∇xu1

b − θ1
ben)normal = −n · ∂zq ∀(t, x, z) ∈ [0, T ] × Ω × R

+
1 . (2.51)

Then,

‖∇xq(t, x, z)‖L(Ω) �
∫

R
+
1

‖u1
b‖H2

x(Ω) dz

�
( ∫

R
+
1

(1 + z)−2 dz

)1/2

·
( ∫

R
+
1

(1 + z)2‖u1
b‖2

H2
x(Ω) dz

)1/2

� C

( ∫
R

+
1

‖(1 + z)u1
b‖2

H2
x(Ω) dz

)1/2

� C‖u1
b‖1,2,0. (2.52)

Furthermore, q vanishes for x ∈ Ω \ V.

3. Estimates of the error terms

In this section we first derive the initial boundary-value problem of the error terms
and then, by an energy estimate, we show the L2 estimate of the error terms, which
readily yields the stability result. Let Rε(t, x), Sε(t, x) and πε(t, x) be the remainder
terms. In our context, the function ω(t, x, z) is only a part of the O(ε) boundary
layer functions, so (Rε, Sε, πε) and q(t, x, z) are of the order of ε. That is,

uε(t, x) = u0(t, x) +
√

εu1
b(t, x, z) + εω(t, x, z) + εRε(t, x),

θε(t, x) = θ0(t, x) +
√

εθ1
b (t, x, z) + εSε(t, x),

pε(t, x) = p0(t, x) + εq(t, x, z) + επε(t, x).

Then Rε and Sε satisfy

∂tR
ε − εΔRε + uε∇Rε + Rε · ∇u0 + Rε · n∂zu

1
b

− Sε · en +
√

εRε · n∂zω +
√

εRε · ∇xu1
b = K1, (3.1)

div Rε = − divx ω, (3.2)

∂tS
ε − εΔSε + uε∇Sε + Rε · ∇θ0 + Rε · n∂zθ

1
b +

√
εRε · ∇xθ1

b = K2 (3.3)

with the boundary conditions

Rε · n = −ω(t, x, 0) · n, x ∈ ∂Ω, (3.4)

[D(Rε)n + 1
2∇x(n · ω) + αRε]tan = ζ(t, x), x ∈ ∂Ω, (3.5)

∂Sε

∂n
= − 1√

ε

∂θ1
b

∂n
(t, x, 0), x ∈ ∂Ω, (3.6)
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where

K1 = −∂tω + Δu0 + 2n · ∇x∂zu
1
b − uε · ∇xω − ω · ∇u0 − ω · n∂zu

1
b − u1

b · ∇xu1
b

+ Δϕ∂zu
1
b − b(t, x)z∂zω +

√
εΔxu1

b −
√

εω · n∂zω −
√

εω · ∇xu1
b + εΔxω

+ 2
√

εn · ∇x∂zω +
√

εΔϕ∂zω + ∂2
zω + ∇xq + ∇xπε,

K2 = Δθ0 + 2n · ∇x∂zθ
1
b + Δϕ∂zθ

1
b − ω∇θ0 − u1

b∇xθ1
b

− ω · n∂zθ
1
b +

√
εΔxθ1

b −
√

εω∇xθ1
b

and

ζ(t, x) =
[
−ω̄(t, x, 0)D(n)n − αω(t, x, 0)

− α√
ε
u1

b(t, x, 0) − 1√
ε
Dxu1

b(t, x, 0)n
]
tan

, x ∈ Ω.

Furthermore, the error terms satisfy the initial condition that

Rε(t = 0, x) = Sε(t = 0, x) = 0, x ∈ Ω. (3.7)

We now carry out the estimate of the remainder terms Rε and Sε in L∞(0, T ; L2)∩
L2(0, T ; H1). We decompose Rε as

Rε = PRε + (I − P)Rε = PRε + ∇ρ,

where P denotes the Leray projector (see [8]). We adapt the estimate in [8] so that
for some δ0 > 0 there holds

‖PRε(t)‖2
L2(Ω) + εδ0

∫ t

0
‖Rε(τ)‖2

H1(Ω) dτ

� C +
∫ t

0
fε
1 (τ)‖Rε(τ)‖2

L2(Ω) dτ +
∫ t

0
‖Sε(τ)‖2

L2(Ω) dτ ∀t ∈ [0, T ], (3.8)

where fε
1 is bounded and independent of ε in L1(0, T ). The Leray projector P

satisfies
(I − P)Rε = ∇ρ

with ρ being the solution of the following problem:

Δρ = − divx ω in Ω,

∂ρ

∂n
= −ω̄(t, x, 0) on ∂Ω.

Thus, a standard elliptic estimate gives that

‖∇ρ‖H1 � C‖divx ω‖L2 + C‖ω̄(t, x, 0)‖H1 � C‖u1
b‖1,2,0 � C.

This implies that

‖(I − P)Rε(t)‖L2 � C. (3.9)
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On the other hand, we multiply (3.3) by Sε and integrate over Ω × [0, T ] to obtain

1
2‖Sε‖2

L2(Ω) − ε

∫ t

0

∫
Ω

ΔSε · Sε dxdτ �
5∑

i=1

Qi,

where

Q1 =
∫ t

0

∫
Ω

uε∇Sε · Sε dxdτ,

Q2 =
∫ t

0

∫
Ω

Rε∇θ0 · Sε dxdτ,

Q3 =
√

ε

∫ t

0

∫
Ω

Rε∇xθ1
b · Sε dxdτ,

Q4 =
∫ t

0

∫
Ω

Rε · n∇zθ
1
b · Sε dxdτ,

Q5 =
∫ t

0

∫
Ω

K2S
ε dxdτ.

It follows from the divergence theorem and the boundary condition (3.6) that

−ε

∫ t

0

∫
Ω

ΔSε · Sε dxdτ =
√

ε

∫ t

0

( ∫
∂Ω

(∇xθ1
b (x, 0) · n)Sε ds

)
dτ

+ ε

∫ t

0
‖∇Sε‖2

L2(Ω) dτ

=
√

ε

∫ t

0

∫
Ω

divx(∇xθ1
b · Sε) dxdτ + ε

∫ t

0
‖∇Sε‖2

L2(Ω) dτ.

(3.10)

For some η > 0, we have

√
ε

∫ t

0

∫
Ω

divx(∇xθ1
b · Sε) dxdτ

� C

∫ t

0
‖θ1

b‖2
1,2,1 dτ + C

∫ t

0
‖Sε‖2

L2(Ω) dτ + ηε

∫ t

0
‖Sε‖2

H1(Ω) dτ. (3.11)

Furthermore, there exists δ1 > 0 such that

ε

∫ t

0
‖∇Sε‖2

L2(Ω) dτ � δ1ε

∫ t

0
‖Sε‖2

H1(Ω) dτ − C

∫ t

0
‖Sε‖2

L2(Ω) dτ. (3.12)

Because uε is divergence free and tangent to the boundary, we have Q1 = 0. By
Cauchy’s inequality, we obtain

|Q2| � C

∫ t

0
‖Rε‖2

L2(Ω) dτ +
∫ t

0
‖Sε‖2

L2(Ω) dτ, (3.13)
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where we have used that ∇θ0 is uniformly bounded. Since for any boundary layer
function v(t, x, z) we have

v(t, x, z) = −
∫ +∞

z

∂zv(t, x, y) dy,

for 2 � p < +∞ the Sobolev embedding implies that

‖v(t, x, z)‖Lp(Ω) �
∫

R
1
+

( ∫
Ω

|∂zv|p dx

)1/p

dz

�
( ∫

R
1
+

(1 + z)−2 dz

)1/2

·
( ∫

R
1
+

(1 + z)2‖∂zv‖Lp(Ω) dz

)1/2

� C‖v‖1,m,1, (3.14)

where m � 3/2 − 3/p. Similarly,

‖v(t, x, z)‖L∞(Ω) � C‖v‖1,2,1. (3.15)

It then follows for η > 0 that

|Q3| �
√

ε

∫ t

0
‖∇xθ1

b‖L6(Ω) · ‖Rε‖L3(Ω) · ‖Sε‖L2(Ω) dτ

� C

∫ t

0
‖∇xθ1

b‖2
L6(Ω) · ‖Sε‖2

L2(Ω) dτ + ε

∫ t

0
‖Rε‖2

L3(Ω) dτ

� C

∫ t

0
‖θ1

b‖2
1,2,1 · ‖Sε‖2

L2(Ω) dτ + Cε

∫ t

0
‖Rε‖L2(Ω) · ‖Rε‖H1(Ω) dτ

� C

∫ t

0
‖θ1

b‖2
1,2,1 · ‖Sε‖2

L2(Ω) dτ + Cε

∫ t

0
‖Rε‖2

L2(Ω) dτ + ηε

∫ t

0
‖Rε‖2

H1(Ω) dτ.

(3.16)

In view of (2.47), we obtain

|Q4| � C

∫ t

0
‖Rε‖2

L2(Ω) dτ + C

∫ t

0
‖Sε‖2

L2(Ω) dτ. (3.17)

Next, we estimate Q5 term by term. First, due to (1.17), we have
∫ t

0

∫
Ω

Δθ0 · Sε dxdτ � C +
∫ t

0
‖Sε‖2

L2(Ω) dτ. (3.18)

In view of (3.14), one has

√
ε

∫ t

0

∫
Ω

Δxθ1
b · Sε dxdτ � C

∫ t

0
‖Δxθ1

b‖2
L2(Ω) dτ +

∫ t

0
‖Sε‖2

L2(Ω) dτ

� C

∫ t

0
‖θ1

b‖2
1,2,1 dτ +

∫ t

0
‖Sε‖2

L2(Ω) dτ

� C +
∫ t

0
‖Sε‖2

L2(Ω) dτ. (3.19)
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Thanks to [8, lemma 3], for any h(x, z) in L2
z(R

+
1 ; H1

x(Ω)) that vanishes for x outside
the neighbourhood V, there exists a constant C independent of ε such that

‖h(x, z)‖L2(Ω) � C‖h‖L2
z(R+

1 ;H1
x(Ω)). (3.20)

Hence,

2
∫ t

0

∫
Ω

n∇x∂zθ
1
b · Sε dxdτ �

∫ t

0
‖∂n∂zθ

1
b‖2

L2(Ω) dτ +
∫ t

0
‖Sε‖2

L2(Ω) dτ

� C

∫ t

0
‖θ1

b‖2
0,2,1 dτ +

∫ t

0
‖Sε‖2

L2(Ω) dτ

� C +
∫ t

0
‖Sε‖2

L2(Ω) dτ (3.21)

and ∫ t

0

∫
Ω

Δϕ∂zθ
1
b · Sε dxdτ � C +

∫ t

0
‖Sε‖2

L2(Ω) dτ. (3.22)

In view of (2.48) and (2.52), it follows that

‖ω(t, x, z)‖L6(Ω) � C‖∇u1
b‖L1

z(R+
1 ;L6

x(Ω)) � C

∫
R

+
1

‖u1
b‖H2

x(Ω) dz � C‖u1
b‖1,2,0,

(3.23)
where we used the Sobolev embedding H1(Ω) ↪→ L6(Ω). Thus, by (1.17) and (1.20),
we have∫ t

0

∫
Ω

ω∇θ0Sε dxdτ �
∫ t

0
‖ω‖L6(Ω) · ‖∇θ0‖L3(Ω) · ‖Sε‖L2(Ω) dτ

� C

∫ t

0
‖ω‖L6(Ω) · ‖∇θ0‖1/2

L2(Ω) · ‖∇θ0‖1/2
H1(Ω) · ‖Sε‖L2(Ω) dτ

� C

∫ t

0
‖u1

b‖1,2,0 · ‖θ0‖H2(Ω) · ‖Sε‖L2(Ω) dτ

� C

∫ t

0
‖Sε‖2

L2(Ω) dτ + C. (3.24)

Thanks to (3.14), we have∫
Ω

u1
b · ∇xθ1

b · Sε dx � ‖u1
b‖L3(Ω) · ‖∇xθ1

b‖L6(Ω) · ‖Sε‖L2(Ω)

� C‖∇xθ1
b‖2

L6(Ω) · ‖Sε‖2
L2(Ω) + C‖u1

b‖2
L3(Ω)

� C‖θ1
b‖2

1,2,1‖Sε‖2
L2(Ω) + C‖u1

b‖L2(Ω)‖u1
b‖H1(Ω)

� C‖θ1
b‖2

1,2,1‖Sε‖2
L2(Ω) + C‖u1

b‖2
1,2,1.

Consequently,
∫ t

0

∫
Ω

u1
b · ∇xθ1

b · Sε dxdτ � C

∫ t

0
‖θ1

b‖2
1,2,1‖Sε‖2

L2(Ω) dτ + C
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due to (1.20). Similarly, using (3.23) and (1.20) we obtain

√
ε

∫ t

0

∫
Ω

ω∇xθ1
b · Sε dxdτ � C

∫ t

0
‖ω‖L6(Ω) · ‖∇xθ1

b‖L3(Ω) · ‖Sε‖L2(Ω) dτ

� C

∫ t

0
‖u1

b‖1,2,0‖θ1
b‖1,2,1‖Sε‖L2(Ω) dτ

� C

∫ t

0
‖Sε‖2

L2(Ω) dτ + C.

Due to the uniform boundedness of ∂zθ
1
b given in (2.47), it is easy to obtain

∫ t

0

∫
Ω

ω · n∂zθ
1
b · Sε dxdτ � C

∫ t

0
‖ω‖2

L2 dτ + C

∫ t

0
‖Sε‖2

L2(Ω) dτ

� C

∫ t

0
‖u1

b‖2
1,2,0 dτ + C

∫ t

0
‖Sε‖2

L2(Ω) dτ

� C + C

∫ t

0
‖Sε‖2

L2(Ω) dτ. (3.25)

Summing up the above estimates of Qi, i = 1, . . . , 5, yields

‖Sε‖2
L2(Ω) + εδ1

∫ t

0
‖Sε‖2

H1(Ω) dτ

�
∫ T

0
fε
2 · ‖Sε‖2

L2(Ω) dτ + ηε

∫ t

0
‖Sε‖2

H1(Ω) dτ

+
∫ T

0
fε
3 · ‖Rε‖2

L2(Ω) dτ + ηε

∫ t

0
‖Rε‖2

H1(Ω) dτ + C,

where fε
2 , fε

3 are bounded independent of ε in L1(0, T ) due to (1.20). Thus, together
with (3.8), we have

‖Sε‖2
L2(Ω) + ‖PRε(t)‖2

L2(Ω) + δε

∫ t

0
(‖Rε(t)‖2

H1(Ω) + ‖Sε‖2
H1(Ω)) dτ

�
∫ t

0
fε
2 · ‖Sε‖2

L2(Ω) dτ + ηε

∫ t

0
‖Sε‖2

H1(Ω) dτ +
∫ t

0
fε
3 · ‖PRε‖2

L2(Ω) dτ

+
∫ t

0
fε
3 · ‖Rε − PRε‖2

L2(Ω) dτ + ηε

∫ t

0
‖Rε‖2

H1(Ω) dτ

+
∫ t

0
fε
1 · ‖PRε‖2

L2(Ω) dτ +
∫ t

0
fε
1 · ‖Rε − PRε‖2

L2(Ω) dτ

+
∫ t

0
‖Sε(τ)‖2

L2(Ω) dτ + C ∀t ∈ [0, T ], (3.26)
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where δ = min{δ0, δ1}. Then, for η > 0 sufficiently small, it follows from (3.26) that

(‖PRε‖2
L2(Ω) + ‖Sε‖2

L2(Ω)) + ε

∫ t

0
(‖Sε‖2

H1(Ω) + ‖Rε‖2
H1(Ω)) dτ

�
∫ T

0
fε
4 · (‖PRε‖2

L2(Ω) + ‖Sε‖2
L2(Ω)) dτ + C, (3.27)

where fε
4 is also bounded independent of ε in L1(0, T ). Set

Q(t) =
∫ t

0
fε
4 · (‖PRε‖2

L2(Ω) + ‖Sε‖2
L2(Ω)) dτ.

Then (3.27) implies that

∂tQ(t) � fε
4 (t)Q(t) + Cfε

4 (t).

According to the differential form of Gronwall’s inequality (see [5]), we have

Q(t) � exp
{ ∫ t

0
fε
4 dτ

}[
Q(0) + C

∫ t

0
fε
4 dτ

]
� C.

It then follows from (3.27) that

(‖PRε‖2
L2(Ω) + ‖Sε‖2

L2(Ω)) + ε

∫ t

0
(‖Sε‖2

H1(Ω) + ‖Rε‖2
H1(Ω)) dτ � C ∀t ∈ [0, T ].

Together with (3.9), we have finished the proof of theorem 1.3.
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