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We develop and validate a high-order reconstruction (HOR) method for the
phase-resolved reconstruction of a nonlinear wave field given a set of wave
measurements. HOR optimizes the amplitude and phase of L free wave components
of the wave field, accounting for nonlinear wave interactions up to order M in the
evolution, to obtain a wave field that minimizes the reconstruction error between
the reconstructed wave field and the given measurements. For a given reconstruction
tolerance, L and M are provided in the HOR scheme itself. To demonstrate the
validity and efficacy of HOR, we perform extensive tests of general two- and
three-dimensional wave fields specified by theoretical Stokes waves, nonlinear
simulations and physical wave fields in tank experiments which we conduct. The
necessary L, for general broad-banded wave fields, is shown to be substantially less
than the free and locked modes needed for the nonlinear evolution. We find that,
even for relatively small wave steepness, the inclusion of high-order effects in HOR
is important for prediction of wave kinematics not in the measurements. For all the
cases we consider, HOR converges to the underlying wave field within a nonlinear
spatial-temporal predictable zone PNL which depends on the measurements and wave
nonlinearity. For infinitesimal waves, PNL matches the linear predictable zone PL,
verifying the analytic solution presented in Qi et al. (Wave Motion, vol. 77, 2018,
pp. 195–213). With increasing wave nonlinearity, we find that PNL contains and is
generally greater than PL. Thus PL provides a (conservative) estimate of PNL when
the underlying wave field is not known.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction
An important open problem in ocean engineering both in the field and in wave

basins, is the ability to reconstruct the phase-resolved wave field that matches a
given set of spatial/temporal measurements, in some space–time domain M, of an
underlying, generally nonlinear, wave field. For an underlying wave field represented
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by, say, velocity potential Φ̃(x, z, t), the objective is to obtain the phase-resolved
‘reconstructed’ wave field Φ(x, z, t) that predicts Φ̃ in some ‘predictable zone’ P in
space–time. Generally P is greater than M (P ⊃M), so that one is able to forecast
into later times or larger domains beyond the measurements in M.

In a related work, Qi et al. (2018) developed a theoretical approach, valid for
different measurements M, to obtain the linear predictable zone, hereafter referred to
as PL, in the context of linearized wave theory. However, they do not address how
the reconstructed wave field can actually be obtained in the predictable zone. The
main focus of this work is to develop and test an approach for the reconstruction of
a general nonlinear wave field.

Assuming linearized theory, any set of measurements in a given M can in theory
be matched by sufficiently large number of (independent) free wave modes. For
example, if the wave elevation ζ (t) of a unidirectional wave field is measured at
some location x = ξ over a period of time T , a Fourier series with sufficient terms
could match ζ (t ∈ T) to any precision in M, regardless of whether ζ measures a
linear or nonlinear wave. However, for waves with even relatively small steepnesses
commonly encountered in practice, the wave field described by these components
would not in general describe accurately other quantities such as velocity or pressure
under this surface, nor even the surface elevation (far) outside of the measurement
M. We illustrate this later by comparing linear versus nonlinear reconstructed wave
fields against synthetic waves (cf. § 3.1.1) and tank measurements (cf. § 3.1.3).

A general nonlinear wave field contains free propagating wave components as
well as ‘locked’ components due to nonlinear wave–wave interactions. A nonlinear
reconstruction must account for all these components in matching the measurements.
There are relatively small number of studies that include nonlinearity in reconstruction,
for example, Stansberg (1993) and Zhang et al. (1996, 1999), which include up to
second-order wave nonlinearity. Since the wave field can be represented in closed
form up to second order, the reconstruction is still relatively simple. However, it
is not straightforward to extend such approaches to higher order. In this study
(§§ 3 and 2.5), we show that inclusion of the higher-order nonlinear effects is very
important in the reconstruction of steeper wave fields. Recently, Simanesew et al.
(2017) considered reconstruction/prediction of sufficiently narrow-banded waves using
a third-order modified nonlinear Schrödinger equation (MNLS) as the model equation.
For long-crested narrow-banded waves, they obtain correct predictions over certain
distances, which they show is strongly reduced for short-crested waves with increasing
directional spread. The range of applicability of MNLS reconstruction for general
broad-banded wave fields is difficult to assess due to the assumptions inherent
in the MNLS. Significantly, none of the existing work provides the predictable
zone P , for a given set of measurements M, within which the linear or nonlinear
reconstructed wave-field prediction can be assumed correct without actual knowledge
of the underlying wave field.

In this work, we address the problem of nonlinear phase-resolved reconstruction of
general two- and three-dimensional wave fields. We assume that the measurements are
of sufficient duration and resolution to resolve the frequencies and directions of the
wave components in M. To make the problem well defined (and solvable), we assume
that wave components that pass through M, and are measured, propagate unchanged
from M, i.e. there are no (unknown) disturbances, forcing or dissipation of these
measured wave components between M and the predicted zone P . The problem is
non-trivial in that we do not assume the same anywhere else in the wave field, outside
of M and the domain where the measured components propagate.

For a given set of measurements M, the reconstruction problem is a nonlinear
inverse problem, in which we aim to reconstruct a (theoretically) continuous nonlinear
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system using a representation with a finite number of model parameters. Due to data
insufficiency, it is strictly impossible to uniquely determine all the details of the
original system. For linear inverse problems, however, it has been shown that certain
properties, such as local estimation, of the original system can be obtained from the
reconstructed model (Backus & Gilbert 1968). For nonlinear inverse problems (Snieder
1998), the model reconstruction becomes much more difficult. For strongly nonlinear
problems, there is no systematic way to reconstruct the model and the inverse Monte
Carlo sampling method (Mosegaard 1998) is probably the only available way to
estimate the model.

In this work, we restrict our attention to nonlinear waves which can be uniquely
expressed as regular perturbation series of arbitrary high order in wave steepness.
Under this restriction, it has been shown (Snieder 1991) that a high-order model
can be reconstructed to obtain an optimal and unique local estimation of the
original nonlinear system. Our objective is to develop this high-order phase-resolved
reconstruction and to assess its feasibility, validity and efficacy by applying it to a
broad ranges of wave-field conditions and measurements, including nonlinear wave
fields generated numerically and in physical wave experiments. Specifically, we
develop an iterative high-order reconstruction (HOR) method which accounts for
nonlinear wave interactions up to some order M in wave steepness. HOR optimizes
the amplitude and phase of a number (L) of free wave components, based on which all
high-order locked wave components can be determined by solving the Euler equations.
By iteratively increasing M and L, HOR obtains a wave field that minimizes the
reconstruction error between the reconstructed field and given measurements. HOR
provides the phase-resolved whole field description of the nonlinear waves including
wave elevation, velocity and pressure, which we use to compare and evaluate against
the larger underlying wave field from which the measurements are taken (beyond M).

HOR requires a computationally efficient general phase-resolved ‘nonlinear
evolution engine’ which is ‘evaluated’ repeatedly in minimizing the reconstruction
error in M (cf. figure 1). To achieve this, we implement the high-order spectral
(HOS) method (Dommermuth & Yue 1987) in HOR. Given an initial field defined by
the HOR model parameters, HOS solves the Euler equations using N spectral modes
up to a specified nonlinear order M in wave steepness. HOS obtains exponential
convergence with N and M, and has operation count that scales linearly with N and
M. In terms of the requirements of the present HOR scheme, HOS is, in many ways,
an ideal evolution engine.

We evaluate the validity and performance of HOR. We also address a number of
theoretical and practical issues associated with HOR which include: (i) convergence
of the HOR scheme to a unique solution Φ close to the underlying wave field
Φ̃ in some nonlinear predictable zone PNL beyond the measurements M; (ii) the
space–time extent of PNL and its relationship to the linear predictable zone PL

which can be theoretically obtained given M (Qi et al. 2018); (iii) importance
of high-order nonlinear effects in the reconstruction in predicting Φ̃; and (iv) the
computational efficacy of HOR, related to the number of HOS ‘evaluations’ Neval,
which depends on the number of HOR wave-field model parameters L, and the
nonlinear order M required. To address these, we apply HOR systematically to
general two- and three-dimensional wave fields, including theoretical Stokes waves
(§ 2.5), synthetic wave fields generated computationally (§§ 3.1.1–3.2.2), and measured
uni- and multidirectional irregular wave fields in wave tank experiments we conduct
(§§ 3.1.3 and 3.2.3).
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FIGURE 1. The flow chart for the nonlinear reconstruction scheme using HOR.

We find that, under the conditions/assumptions of HOR, the reconstructed Φ always
converges to a unique wave field. Within some nonlinear predictable zone PNL, Φ
approaches the underlying Φ̃, bounded by tolerance E∗ for the reconstruction error.
Comparing PNL with the theoretically obtained PL for the given M, we find that
for relatively small wave steepness, PL is close to PNL. As wave steepness increases,
PNL contains and is generally greater than PL. For general applications where Φ̃

is unknown and thus PNL cannot be obtained, PL provides a generally conservative
estimate for PNL.

From extensive tests, we show that, even for relatively small wave nonlinearity, the
linear reconstructed wave field Φ(1), using wave elevation measurements, say, does not
adequately predict underlying quantities such as velocities and pressure. This reflects
the significance of locked waves not accounted for in the linear theory. Finally we
show that even for somewhat complicated multidirectional wave field, the required
L is much less than the number of modes N used in HOS. Since the number of
wave evolution evaluations Neval is typically linearly proportional to L (and M), the
computational efficiency of HOR is sufficient for realistic practical applications using
high-performance computing.

2. Nonlinear reconstruction of irregular waves
2.1. Problem description

Our objective is to develop a general procedure for nonlinear reconstruction of a
phase-resolved wave field Φ(x, z, t), given a set of wave measurements in space–time
domain M of the original (unknown) wave field of velocity potential Φ̃(x, z, t). The
reconstructed Φ must satisfy the Euler equations with nonlinear boundary conditions,
and is required to match Φ̃ for (x, t)∈M to within some specified small tolerance E∗.
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Given an irregular wave field Φ̃, we assume that we have measurements in specific
space–time domain M = ∪jMj, j = 1, 2, . . . , J. In the context of linearized wave
theory, Qi et al. (2018) find that, for any given set of measurements in M, there
exists a (linear) predictable zone PL, generally a superset of M, inside which the
underlying wave field can be fully predicted. They develop a general theoretical
procedure to obtain closed-form solutions of PL, and provide examples of these for
various measurement combinations including moving point probes, combinations of
probes, and whole-area measurements. However, the actual method to reconstruct the
wave field given M has not been discussed.

We consider the reconstruction of a general nonlinear wave field. Without loss of
generality, we assume that the energy of the wave field is concentrated within some
(finite) frequency band Ω = [ωa, ωb] (corresponding to wavenumber band [ka, kb]).
For simplicity, we assume waves in deep water. Standing modes are excluded in this
work to avoid the indeterminacy associated with all the measurements at the nodal
points/lines (as discussed in appendix A). For the situation where waves of same
frequency can incident from opposite directions, there is, in general, no predictability.
We thus consider general propagating wave field with propagation direction within
some range Θ = [θa, θb] ⊂ (−π/2, π/2). We focus on nonlinear waves which can be
represented as a regular perturbation series in wave steepness.

In terms of measurements used for the reconstruction, we assume that they are of
sufficient duration and resolution to obtain the amplitudes and phases of the wave
components of Φ̃, in the assumed range of wave frequencies Ω = [ωa, ωb], passing
through the measurement zone M.

For definiteness and without loss of generality, we assume hereafter that the
measured quantity are wave elevations measured at fixed locations over some (finite)
durations, i.e. ζ (ξj, t)≡ η̃(x= ξj, t), t ∈ Tj, j= 1, . . . , J, where η̃ is the elevation of the
underlying wave field, and ξj and Tj are the measurement location and duration of
each record. The measurement domain M is simply the union of all (x= ξj, t ∈ Tj),
j= 1, . . . , J.

The analysis and approach can be easily extended to more complicated M, say
involving moving probes, measurements over a whole area at specific time instants
and/or combinations of such measurements (Qi et al. 2018). We remark here that
biased/unbiased measurement errors are not considered in the present development.
Using direct evaluations with Monte Carlo simulations, it is shown that the errors
in wave reconstruction are generally bounded by the measurement errors, see Wu
(2004). In the present work, we show satisfactory performance of reconstruction using
physical tank data (§§ 3.1.3 and 3.2.3), which clearly also contain measurement errors.

We emphasize again that the objective of this paper is not to show that the full
spectrum of the original wave field can be reconstructed (in which case, the entire
original wave field is known everywhere in space–time), but rather that in some
space–time predictable zone P only, based on the measurements, the underlying
wave can be reconstructed to prescribed accuracy. We do not assume a uniform wave
field in the whole domain wherein the amplitudes and phases of all wave components
are not changing in space and time (say specified by some given spectrum). In
particular, we do not preclude unknown (time-changing) disturbances, wind forcing
and breaking dissipation on the overall field. To make the reconstruction problem
meaningful (and feasible), however, we assume that the measured wave components
propagate without change (unaffected by forcing or disturbances) after passing through
M towards/through a region where the phase-resolved wave field can be reconstructed.
To the extent that the underlying phase-resolved simulations account for nonlinear
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evolution, and other known effects such as bottom variation, wind forcing, breaking
dissipation, currents etc. on the measured components, these effects could, in principle,
also be included in the HOR reconstruction. In the present work, for simplicity, all
of the latter effects (except nonlinear wave–wave interactions) are assumed absent.
An example of this application would be in the context of predicting the wave field
in a wave basin, with wave making on one end, where the paddles perform complex
time-changing motions while the ‘transfer functions’ are unknown, say due to wave
breaking near the wavemaker but upwave of the measurements.

2.2. An iterative high-order reconstruction (HOR) method
We consider irrotational gravity waves so that the flow can be described by a velocity
potential Φ(x, z, t) satisfying Laplace equation within the fluid. We assume that
Φ (and therefore all related quantities such as surface elevation η(x, t)) can be
represented as a (regular) perturbation series in some small parameter ε, which
measures the wave steepness. Up to some (arbitrary) order M, we have:

Φ(x, z, t)=Φ(M)(x, z, t)=
M∑

p=1

Φ(p)(x, z, t), (2.1)

where (·)(p) denotes a quantity of O(εp). We further represent each Φ(p) as an
eigenfunction expansion which satisfies all but the nonlinear boundary conditions on
the free surface. Thus we write

Φ(p)(x, z, t)=
∞∑

q=1

Φ(p)
q (t)Ψq(x, z), (2.2)

where, in practice, we truncate (2.2) at a sufficiently large N to represent all the free
and locked modes in Φ. For the purpose of reconstruction, we seek to determine
model parameters given in terms of the amplitudes and phases of L free wave
components. A key issue is the number of free modes (L) required to obtain
satisfactory predictions for general wave-field reconstruction. As we show in the
results, for a wide range of synthetic and physical uni- and multidirectional irregular
wave fields, L is typically much smaller than N (see e.g. figures 2, 11 and 14).
Hereafter we denote these 2L model parameters as the vector Υ .

Nonlinear wave-field reconstruction based on given measurement data is an
optimization problem. The objective is to find a (reconstructed) wave field Φ

which satisfies the Euler equations with nonlinear free-surface boundary conditions
and minimizes the reconstruction error E , i.e. the difference between Φ and
the measurements of the underlying wave field Φ̃ in M. The definition of the
reconstruction error E depends on the measurement data provided which can be quite
general. In the present context where the data are assumed to be point measurements
of the wave elevation η̃ at fixed locations ξj, over durations t ∈ Tj, j= 1, . . . , J, the
reconstruction error for Φ(M)(Υ ) obtained with model parameters Υ up to order M
is defined as:

E(Υ ;M)≡
[∑

j

∫
Tj

[η(M)(Υ )− η̃]
2 dt

/∑
j

∫
Tj

η̃2 dt

]1/2

. (2.3)
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Here we develop an iterative high-order reconstruction (HOR) method, which can
properly determine L and M and obtain a reconstructed wave field with reconstruction
error E satisfying a prescribed tolerance E∗ (E < E∗). Given a predetermined N, we
start with a small initial value for L, e.g. N/32, and iteratively increase L until E <E∗.
The proceeding of HOR can be described by three main procedure blocks.

(I) Given L, iterate with increasing M until E converges. We always start with
M = 1 to proceed with procedure block (II) and iteratively increase M until E
converges with increasing M, i.e. 1E(M) ≡ |E(Υ (M)

opt ) − E(Υ (M−1)
opt )| < Ẽ , where

E(Υ (M)
opt ) is the reconstruction error obtained by the optimized model parameters Υ (M)

opt

at corresponding order M and Ẽ is the prescribed tolerance.
(II) Given L, M, obtain optimal Υ (M)

opt . We initialize Υ (M) with Υ (M−1)
opt and proceed

with procedure block (III), the nonlinear evolution engine, to obtain all high-order
locked waves and thus the reconstructed wave field and evaluate E . Then we optimize
Υ (M) using an efficient optimization scheme, such as the quasi-Newton optimization
method (e.g. Broyden 1965; Gill, Murray & Wright 1981), until the optimization
converges and E is minimized. Specially, Υ (0)

opt is obtained directly from the Fourier
transform of the measurement data.

(III) Nonlinear evolution engine. Given L, M and Υ (M), we implement an efficient
nonlinear evolution engine to solve the high-order evolution of the wave field, so that
the wave elevation η(M)(x, t) for (x, t)∈M can be used to evaluate the reconstruction
error using (2.3).

This entire process involving these procedures is illustrated in figure 1. Outside (II),
we first check the convergence of E with increasing M. If E is not converged, the
nonlinear order of the wave model is not sufficient and thus we increase M by 1 and
repeat (II), otherwise further increasing M is not effective and we proceed outside
(I) to check if the reconstruction tolerance E∗ is reached. If not, we increase L by
appropriate amount and repeat (I), otherwise the reconstruction is completed and we
obtain a reconstructed wave field of nonlinear order M. Because of the relatively large
computational burden of L compared to that associated with the total mode numbers N
in the nonlinear simulation (using an O(N) code such as HOS), in practice, we always
use N much larger than L (clearly N > L). To ensure convergence, we generally also
increase N to make sure that the HOR final results are unaffected.

The final result of HOR is a nonlinear (up to order M) wave field Φ which
minimizes the reconstruction error E against the given set of measurements in M.
Although Φ extends beyond M and can be used as the initial condition to forecast
the evolution to later times, in principle, HOR does not provide the predictable
zone PNL. PNL is the spatial-temporal domain within which Φ can be expected to
predict the underlying wave field Φ̃ from which the original measurements (in M)
are obtained. As we shall show in this work, there is a (nonlinear) predictable zone
PNL, which depends on M, within which the difference between the prediction of
Φ and Φ̃ is bounded by E < E∗. As might be expected heuristically, PNL should be
related to the linear predictable zone PL that can be obtained theoretically from M
(Qi et al. 2018). Significantly, we find that generally PNL ⊇PL so that PL provides a
conservative estimate of the space–time domain over which Φ predicts or can forecast
the underlying field Φ̃.

2.3. Choice of number of model parameters
One of the key parameters in HOR is the number L (and choice) of the free
propagating wave components whose amplitude and phase are the model parameters
in the optimization. Sufficient number of free wave components are needed in order
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to represent the underlying wave field Φ̃ as specified by the measurement. Strictly
speaking, L is related to the measurements and not necessarily related to, and could
be much smaller than, the total number N of free and locked modes used in the wave
evolution model. In HOR, we start with a relatively small L= L0, which is iteratively
increased. In this approach, it is useful to estimate an upper bound Lmax for L.

We assume that the reconstructed wave field Φ can be specified by L= LωLθ free
propagating wave components, containing Lω frequencies ωn, n = 1, . . . , Lω and Lθ
propagation directions, θm, m= 1, . . . , Lθ . Given the mnth free wave component with
wave elevation amplitude Amn and phase ψmn≡ kmn · x−ωnt+αmn, the first-order wave
elevation can be represented as:

η(1)(x, t)=Re
Lθ∑

m=1

Lω∑
n=1

Amneiψmn . (2.4)

At any order M, η(M), which contains both free and bound waves, is specified by the
model parameters: ωn, θm, Amn and αmn, n= 1, . . . , Lω, m= 1, . . . , Lθ , which are to
be optimized.

For simplicity, in HOR, we specify ωn and θm to uniformly span respectively the
frequency range, [ωa, ωb], and directional spreading range, [θa, θb], estimated from the
given measurement data ζ (ξj, t), j= 1, . . . , J. In general, these can be obtained using
Fourier transform or maximum likelihood estimation (Young 1994). For measurements
over total duration T , the smallest frequency that can be resolved is 1ω∗= 2π/T , and
we specify the upper bound value of Lω as Lωmax = (ωb −ωa)/1ω

∗.
For Lθ , we set the upper bound number Lθmax equal the number of (evenly spaced)

directions θm that can be uniquely determined from the specified measurements. Given
the measurement locations ξj, j = 1, . . . , J, this can be obtained by considering the
rank of phase function matrices (cf. (A 4)) involving the permissible wavenumbers kmn
(given θm and ωn) and the measurement positions ξj. Details are given in appendix A.

In HOR implementation, we generally start with relatively small values of Lω
and Lθ , and increase these iteratively until Lω = Lωmax, Lθ = Lθmax or when the
reconstruction tolerance is reached.

2.4. Nonlinear evolution engine
HOR requires a nonlinear evolution engine (procedure block (III) in figure 1) to
solve the high-order evolution of a wave field Φ(M) for any given set of model
parameters Υ (M). As expected, the number of such ‘evaluation’ Neval in the HOR
procedure increases with L (and M), and a relatively large Neval is required for
realistic applications.

In principle, any nonlinear phase-resolved evolution model can be used in HOR. Up
to second order M = 2, Φ(2) is given in closed form (e.g. Zhang et al. 1996), and
a computational evolution model is not required. For general M > 2, we implement
here a high-order spectral (HOS) method (Dommermuth & Yue 1987) as the evolution
engine. HOS is a modal-decomposition pseudo-spectral method that solves the Euler
equations up to arbitrary high order M. HOS obtains exponential convergence with
respect to the number of wave modes, N, and order M; and obtains an operation
count that is nearly linearly proportional to N and M. In some regards, given the HOR
requirements for efficiency and accuracy, HOS is perfectly suited.

In the HOR optimization procedure, HOS is evoked with initial conditions for the
wave elevation η(x, t = 0) and velocity potential ΦS(x, t = 0) ≡ Φ(x, z = η, t = 0)
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on the surface, given in terms of the optimization parameters Υ consisting of the
amplitude Amn and phase αmn of LωLθ free wave components. Specifically, the initial
conditions η(x, t= 0) and ΦS(x, t= 0) in HOS computations with M> 2 are calculated
from second-order Stokes formula for LωLθ free wave components. The computational
domain A used by HOS must contain the measurements M, and is generally chosen
to be much larger to cover the anticipated useful predictions in a larger domain and to
mitigate the periodic computational boundary effects of HOS. The number of modes N
in HOS is likewise much greater than the number of HOR model modes L to resolve
the maximum wavenumber kb contained in the measurements, over the computational
domain A. Finally when the HOR nonlinear reconstructed Φ is obtained, HOS can
be simply continued in time (beyond M), to predict in forecasting mode.

The computational effort of HOR using HOS can be estimated. For the reconstruct-
ion of an irregular wave field in a time interval T , containing Nd dominant wave
period Td, we typically end up using Lω = κNd with κ = 3 ∼ 5 and Lθ ∼ J after a
few (ν 6 10) iterations on Lω and Lθ . In the HOS simulations, we use N = µLω or
N = (µLω)2 for two- or three-dimensional waves where µ∼ O(10) in order to cover
the range of wave frequencies that we need to optimize. The computational effort per
HOS simulation is O(NdNM). Given the number of HOS evaluations Nh at each M and
L, the total number of HOS evaluations Neval=O(νMNh) and the total requisite effort
in nonlinear wave-field reconstruction is O(NevalNdNM). In the present HOR using the
quasi-Newton optimization scheme, we find that Nh typically scales linearly with L.
Therefore in this case the total computational effort is O(νNdLNM2).

2.5. Validation of HOR using Stokes waves
To validate the performance of HOR, we first perform tests to high order M using a
theoretical exact Stokes wave as the test wave, from which the elevation at a single
spatial point is obtained over some sufficiently large duration T . HOR does not assume
this is a Stokes wave or any property of that wave. In particular, the fact that the
underlying wave has a nonlinear fundamental wavelength is not assumed, nor any
information about the value of that wavelength used.

For the solution of the deep-water Stokes wave, we follow the example used
in Dommermuth & Yue (1987) and solve the nonlinear equations associated with
the mapping function (Schwartz’ equations (2.6) (Schwartz 1974)) directly using
Newton iteration rather than high-order perturbation. The final results are exact to
14 significant figures. Since the wave record is periodic in time, we simply set the
measurement time T as that period (ignoring additional/redundant data). Given this
Stokes wave measurement, the theoretical predictable zone is the entire space–time
domain as the Stokes wave is periodic and propagates with permanent form.

We define the wave steepness as ka≡ k(ηmax−ηmin)/2 and we conduct reconstruction
for different values of ka. We set the reconstruction tolerance E∗ = 10−3 and
convergence tolerance with order M, Ẽ = E∗/2 (cf. figure 1). The wave frequencies
for Lω free wave components in HOR are set as ωn = 2πn/T , n = 1, 2, . . . , Lω.
We use a large HOS computational domain (say compared to the linear wavelength
λ0≡gT2/(2π) where g is the gravitational acceleration), with sufficiently large number
N of spectral modes so that the numerical error associated with N is negligibly small.

We define a prediction error ED, similar to (2.3) for the reconstruction error, except
that the integration domain is changed from M to a general space–time domain D.
Specifically if D is the predictable zone P , we obtain EP . For the present test, without
loss of generality, we consider a space–time domain D: {x ∈ [0, λ0], t/T = 2} to
examine the prediction accuracy and discuss the convergence of prediction.
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FIGURE 2. (Colour online) (a) Reconstruction error E , prediction error ED and (b) 1E
as function of M in HOR for the reconstruction of Stokes wave with steepness ka= 0.20
using different Lω, and (c) ED as function of M in HOR for the reconstruction of Stokes
waves of different steepness ka using Lω = 4. For the results shown, E∗ = 10−3 and Ẽ =
E∗/2, D = {x ∈ [0, λ0], t/T = 2} and M = {x = 0, t/T ∈ [0, 1]}. For M = 1, 2, analytic
wave models are used while for M > 3, HOS model with computational domain x/λ0 ∈

[−3.5, 3, 5] and N = 512 (corresponding to 1024 data points in space) is used, where
λ0 ≡ gT2/(2π).

To illustrate the HOR procedure, figure 2(a,b) shows the results of E , 1E and ED as
function of Lω and M for the reconstruction of Stokes wave with ka= 0.20. Note that
in HOR for each Lω and M, once Υ (M) is optimized, HOS is simply continued in time
to calculate ED. We see that for Lω= 2, as M increases, both E and ED decrease and
at M= 6, 1E is below Ẽ , but E is still larger than E∗, which means further increasing
M is not effective as the number of free wave components Lω is too small. Thus we
increase Lω to 4 and repeat the iteration on M. At M= 5, both 1E < Ẽ and E <E∗ are
satisfied and the reconstruction is regarded finished. The results of M = 6 are shown
just for comparison. The results of Lω = 8 are used to confirm Lω = 4 is sufficient for
this case, as the results of E and ED are quite close for Lω=4 and 8. With sufficiently
large N which we use, convergence of HOR reconstruction is obtained with increasing
Lω and M.

Figure 2(a) also shows the relationship between E and ED. We see that for Lω =
2, E decreases relatively slowly as M increases until 1E is less than Ẽ , while for
sufficient Lω = 4, E decreases rapidly as M increases until E reaches the prescribed
tolerance. It also shows that especially for small value of M, ED is much larger than E .
Thus nonlinear effects are especially important in order to forecast the wave field
well. For Lω = 4, ED also decreases rapidly as M increases until E < E∗ and ED is
constrained by E .

To examine the behaviour of ED as M increases for different ka, figure 2(c) shows
the detailed results of ED for each case. We see that for all cases with sufficiently
large Lω = 4, ED decreases exponentially as M increases until it is constrained by
E . For given M, ED grows rapidly as ka increases. As the wave becomes steeper,
higher order of nonlinearity is needed in order for ED to reach the same level of
reconstruction accuracy. For example, for ka= 0.30, we need M= 7 (not shown). Note
that HOR can reconstruct Stokes wave with steepness up to the limit of HOS, which is
close to 80 % of limited Stokes steepness. We remark again that the Stokes wavelength
is unknown, and Lω=1 would not in general be sufficient in HOR reconstruction. This
is different from classical Stokes expansion where a wave of given fundamental length
is expanded to increasingly high order.
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FIGURE 3. Point-to-point prediction error e(x, t) for an unidirectional wave field
reconstructed by HOR with Lω = 32, M = 1 and N = 512 based on a single point
measurement, ζ (x = 0, t/Tp ∈ [0, 4.17]) (with peak period Tp = 12 s, peak wavelength
λp = 227.72 m and effective wave steepness (ka)e = 0.04). The region enclosed by the
white solid line is the linear predictable zone PL with maximum x–t point given by
x/λp = 1.57 and t/Tp = 6.42 and the dashed line indicates the measurement duration and
location.

3. Results
We illustrate HOR using both synthetic wave fields and laboratory measurements.

We consider uni- and multidirectional irregular waves without restrictions on frequency
and directional band width. These tests demonstrate the performance of HOR, address
the importance of including higher-order nonlinearity in the reconstruction, and assess
the usefulness of such nonlinear reconstruction in terms of the space–time domain in
which the underlying wave fields can be predicted.

3.1. Reconstruction of unidirectional waves
3.1.1. Synthetic waves with a single point measurement

We consider here reconstruction of unidirectional waves based on a single point
measurement. The original wave elevation η̃(x, t) is generated by HOS simulation
(with M = 3) from a JONSWAP wave spectrum S(ω) with peak-enhancement
parameter γ = 3.3 and peak frequency ωp = 0.52 rad s−1, propagating in the +x
direction. We define the effective wave steepness of the irregular waves to be
(ka)e ≡ 4πσ/λp, where σ is the root-mean-square of elevation and λp is the peak
wave length. For this example, we choose the wave field with energy being within
the frequency band [ωa= 0.7, ωb= 2.0]ωp. Note that in this example, as well as later
cases, with γ = 3.3, the wave field is not narrow banded. We use ζ (t)≡ η̃(x= 0, t),
for t/Tp ∈ [0, 4.17] as the measurement.

As an initial test, we consider a very small (ka)e = 0.04. Figure 3 displays the
point-to-point prediction error e(x, t)≡ |η(x, t)− η̃(x, t)|/σ in the x–t domain obtained
with HOR which converges with M = 1, Lω = 32 (with HOS N = 512). The contour
of e(x, t), say defined by e(x, t)6 E∗ = 0.01, indicates the region(s) of predictability
P . In this case, the wave field is approximately linear, and P is close to the linear
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FIGURE 4. (a) Comparison of the wave elevation histories at the measurement location
(x = 0) from the reconstructed wave fields using HOR with M = 1 (— · — (blue)),
M= 2 (· · · · · · (green)) and M= 3 (– – – (red)) and the measurement data of the synthetic
nonlinear wave field (——), where σ is the root-mean-square of the measurement
elevation. (b) Close up of the comparison around t/Tp= 2.55 (enlarged view of the dashed
square in (a)). (The effective wave steepness (ka)e = 0.11).
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FIGURE 5. Point-to-point prediction error e(M)(x, t) for the reconstructed wave fields using
HOR with (a) M= 1, (b) M= 2 and (c) M= 3. Parallelogram region enclosed by the solid
line is the linear predictable zone PL. The parallelogram region enclosed by the red dash
line in (c) is the nonlinear predictable zone PS obtained by use of the second-order wave
group velocity.

predictable zone PL indicated by the parallelogram in figure 3. In this case, PL is
given by a simple closed-form formula in terms of measurement duration and the
wave group velocities at frequencies ωa and ωb, which is presented in Qi et al. (2018).
Outside P ≈PL, the point-to-point prediction error e(x, t) is continuous but increases
to O(1) within a distance/time of x/λp, t/Tp ≈O(1) from PL.

We now consider a realistic case of moderate (ka)e=0.11. The JONSWAP spectrum
used to generate the high-order (M = 3) HOS wave field is otherwise the same as
before, and the location/duration of the single point elevation measurement M is the
same as before.

We apply nonlinear HOR reconstruction with N=512 in HOS, obtaining convergent
HOR parameters of Lω=32 and M=3 for specified reconstruction tolerance E∗=0.01.
Figure 4 plots the direct comparison of the wave elevation history at the measurement
location between the given data and those of the reconstructed wave fields with M=
1, 2, 3. Figure 5 shows the point-to-point prediction error e(M)(x, t) ≡ |η(M)(x, t) −
η̃(x, t)|/σ for M = 1, 2, 3 in the x–t domain. As a reference, the linear predictable
zone PL is also indicated. Note that for this case HOR converges with M = 3. We
confirm (not shown) that point-to-point prediction errors e(3) and e(4) are graphically
indistinguishable.
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From figure 4, we see that the reconstructed wave elevation with M = 1, 2, 3 all
recover the original data well for most of the measurement time except at wave crests
and troughs, where reconstruction with M = 1 and 2 have an error of up to 18 and
5 % respectively. Figure 5 further shows that point-to-point prediction error e(3) within
PL is much smaller than e(1) and e(2). Specifically, for this example, the maximum
e(3) inside PL is less than 3 % while e(1) and e(2) can be as large as 20 %. EPL for
M = 1, 2, 3 are 8.5, 7.9 and 1.3 %, respectively. These results indicate that inclusion
of high-order wave effects is of importance in the reconstruction of the nonlinear wave
field within the whole predictable zone.

Note that in figure 5(c) where the reconstruction converges, the actual (nonlinear)
predictable zone PNL, which corresponds to approximately the blue region where point-
to-point prediction error e(x, t) 6 e0 = 0.01, is actually larger than PL due to the
nonlinear effects. Since there is no closed-form expression for the wave field based
on fully nonlinear wave theory, it is hard to derive the closed-form expression for
PNL. We provide an estimate of PNL by simply extending the linear predictable zone
theory to include nonlinear wave effects on the wave group velocity. In nonlinear
wave-field evolution, the wave dispersion relation can be affected by resonant wave–
wave interactions, wave group interactions, and bound wave effects depending on the
time/space scale of the problem considered. For short-time phase-resolved wave-field
reconstruction, the second-order bound wave effects are of importance.

The group velocity of each wave component calculated from the second-order
nonlinear dispersion relation (Longuet-Higgins 1962; Hogan, Gruman & Stiassnie
1988) (see details in appendix B) is generally larger than the linear one. In
this example, the linear dispersion relation gives the minimum (maximum) group
velocity of 4.62 m s−1 (13.61 m s−1), while the second-order dispersion relation
gives 5.15 m s−1 (13.93 m s−1). As a result, the size of predictable zone becomes
larger when second-order effects are accounted for, as shown in figure 5(c) where
a quantitative comparison between the linear and second-order predictable zones is
made. Hereafter we use PS to denote the nonlinear predictable zone considering
the second-order effects. We can see that in this example PS estimates PNL better
than PL.

From the HOR reconstructed wave fields with different (ka)e, and by looking at
the converged e(x, t) we estimate that PNL − PL increases approximately linearly
with increasing (ka)e. This can be shown more clearly by using PS to estimate PNL.
Figure 6(a) plots the ratio of the volume of PS and PL, denoted as VS and VL
respectively, as a function of (ka)e. It shows VS/VL increases approximately linearly
as (ka)e increases. We point out that for an irregular wave field with effective wave
steepness of 0.19, the local wave steepness in the wave field can be as large as 1.0
in many places. In this case, VS is greater than VL by about 20 %. Figure 6(b) further
shows the distribution of point-to-point prediction error e(x, t) at time t/Tp = 2.08
(the midpoint of measurement duration) for the case of (ka)e = 0.19, when the
reconstruction converges using HOR with M = 4. At this time, PS is larger than
PL for approximately 14 %. This difference is most significant near the starting and
ending time of the predictable zone, which leads to a total volume difference of 20 %.

Based on these results, we see that for (very) small wave steepness (ka)e → 0,
PNL→PL. As wave steepness increases, PNL contains and is greater than PL (PNL ⊇

PL), with PNL −PL increasing approximately linearly with increasing (ka)e. We note
that PNL depends on the value of the acceptable error e0, within which the point-to-
point error in the predicted wave field e(x, t)6 e0. These are seen in the contour plots
of e(x, t) (figures 5 and 6b). As e0 (and reconstruction error E∗ 6 e0) decreases, PNL
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FIGURE 6. (Colour online) (a) The ratio of the volume VS/VL of second-order and linear
predictable zones as a function of the effective wave steepness (ka)e (other spectrum
parameters are kept the same in the generation of synthetic high-order (M = 5) HOS
wave fields). (b) Distribution of point-to-point prediction error e(x, t) at t/Tp = 2.08 for
wave field with (ka)e = 0.19 when the reconstruction converges using HOR with M = 4,
where PL and PS indicate the linearized and nonlinear (considering second-order effects)
predictable zones.

decreases as expected, but our results show that PNL remains greater than PL. This
is partly due to the greater group velocity with increasing nonlinearity as discussed
above.

We note that HOR/HOS provides not only wave elevation for comparison to
measurements, but all other wave kinematics such as velocities. We will discuss the
importance of including higher-order effects in the reconstruction of wave kinematics
in § 3.1.3.

As further illustration, we use synthetic high-order (M = 5) HOS wave fields of
different wave steepness, which are generated by the same JONSWAP spectrum
as above, to validate HOR and examine the convergence of reconstruction. The
location/duration of the single point elevation measurement M is the same as before.
Table 1 shows the prediction error EP as a function of M in HOR for different wave
steepness, where PS is used as an estimate for actual P . It further confirms that as
the wave steepness increases, higher order of reconstruction is needed in order for
the prediction error to reach the same level of reconstruction tolerance. Based on
our tests, the reconstructed wave field always converges to the underlying wave field
within the predictable zone for wave steepness up to the limit of HOS simulation.

3.1.2. Synthetic waves with multiple point measurements
We now consider reconstruction of synthetic unidirectional wave fields based

on multiple point measurements. The wave fields with (ka)e = 0.03 and 0.12 are
generated from a JONSWAP spectrum S(ω) using the same parameters as in § 3.1.1
by HOS simulations with M = 3. Without loss of generality, we consider two point
measurements at ξ1/λp = 0 and ξ2/λp = 4.39. The data for both measurements are
taken in the duration of t/Tp ∈ [0, 25].

For the wave field of small wave steepness (ka)e = 0.03, the HOR reconstruction
with Lω= 32, M= 1, and N= 512 converges. Figure 7 shows e(x, t) in x–t, where PL
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FIGURE 7. Point-to-point prediction error e(x, t) for a unidirectional wave field ((ka)e =
0.03) reconstructed by HOR with Lω = 32, M = 1, and N = 512 based on two
point measurements (at ξ1/λp = 0 and ξ2/λp = 4.39 with time duration t/Tp ∈ [0, 25]).
Parallelogram region enclosed by the white solid lines is the linear predictable zone
PL based on the combination of two measurements. Parallelogram regions enclosed by
dashed line and dotted line are the linear predictable zones associated with each individual
measurement.

(ka)e M = 1 M = 2 M = 3 M = 4 M = 5

0.05 7.31× 10−2 9.04× 10−3 — — —
0.12 1.29× 10−1 8.47× 10−2 9.58× 10−3 — —
0.18 2.54× 10−1 1.62× 10−1 6.29× 10−2 7.05× 10−3 —
0.21 3.17× 10−1 2.54× 10−1 1.06× 10−1 5.18× 10−2 6.83× 10−3

TABLE 1. Prediction error EP as function of M in HOR for the reconstruction of the
synthetic unidirectional high-order (M= 5) HOS wave fields with different (ka)e based on
a single point measurement. Lω = 32, N = 512, E∗ = 0.01 and Ẽ = E∗/2 are used in HOR.
The symbol ‘—’ means EP(M)' EP(M − 1).

is indicated. In this multiple measurements case, PL is obtained by first calculating
the union of predictable zones from each measurement for each wave frequency
component in the wave field, then determining the intersection of the predictable
zones of all wave frequency components in the wave field (Qi et al. 2018). It
confirms again that for very small wave steepness, PL estimates the actual predictable
zone accurately, which corresponds to the dark blue region where e(x, t)6 0.01. We
see that outside PL, e(x, t) is continuous but increases to O(1) within a distance/time
of x/λp, t/Tp ≈O(1) from PL.

For the wave field of large wave steepness (ka)e=0.12, we use N=1024 and obtain
Lω = 60 and M = 3 in order for E < E∗ = 0.01. To illustrate the effect of Lω on the
prediction, figure 8 shows the prediction error EP using fixed M= 3 as a function of
Lω, where PS is used to estimate the actual P . As Lω increases, EP first decreases
abruptly, and then after a turning point Lωc

∼ 60, EP decreases slowly and converges.
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FIGURE 8. The prediction error (EP ) as a function of Lω used in HOR with fixed M= 3
for the reconstruction of synthetic nonlinear wave field ((ka)e= 0.12) based on two point
measurements.
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FIGURE 9. Point-to-point prediction error e(x, t) in the numerically reconstructed nonlinear
wave field ((ka)e = 0.12) based on two point measurements (at ξ1/λp = 0 and ξ2/λp =

4.39 with time duration t/Tp ∈ [0, 25]). Parallelogram region enclosed by solid lines is
the nonlinear predictable zone (considering second-order group velocities) PS based on
the combination of two measurements. Parallelogram regions by dashed lines are the
predictable zones associated with each individual measurement.

In this case, EP is approximately 1 % for Lω = 60 which is the same level as the
reconstruction tolerance, and Lω = 60 is selected as the optimal Lω by HOR.

Figure 9 displays point-to-point prediction error e(x, t) in x–t for the nonlinear
reconstruction. PS is also indicated to estimate the actual predictable zone, which
corresponds to the blue region where e(x, t) 6 0.01. Outside PS, e(x, t) increases to
O(1) within a distance/time of x/λp, t/Tp ≈ O(1) from PS. The results in figures 7
and 9 both confirm the theoretical result that the predictable zone based on the
combination of two point measurements (within a certain distance) is larger than the
simple union of the predictable zones associated with each individual measurement.

3.1.3. Comparison to two-dimensional wave tank experiments
So far, we have considered theoretical Stokes waves and synthetic wave fields. It is

important to demonstrate HOR and verify the predictable zone theory for realistic
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FIGURE 10. Experimental set-up in the narrow wave tank at Texas A&M University.

physical wave field which contains measurement errors. Here we first consider two-
dimensional experiments conducted in the narrow wave tank at Texas A&M University.
Later in § 3.2.3 we discuss a three-dimensional wave-basin experiment.

(i) Set-up of experiment. The glass-walled flume has a length of 36.1 m, a width of
0.91 m and a height of 1.22 m and is equipped with a permeable wave absorbing
beach at downstream. Wave generation is provided by a dry-back, hinged flap
wavemaker capable of producing regular and irregular waves with period ranging from
0.25 to 4.0 s and maximum height of 0.254 m. The set-up is shown schematically
in figure 10, where x is the horizontal coordinate positive in the direction of wave
propagation with x= 0 at the wavemaker and z positive upwards.

A JONSWAP spectrum with γ = 1 (Pierson–Moskowitz spectrum) and peak
wavelength λp = 1.25 m is used for the generation of irregular waves. The water
depth in the tank is h = 0.80 m. To investigate the importance of nonlinear
effects, two irregular wave trains with significant wave heights of Hs = 0.04 m
and 0.09 m are generated. The free-surface elevation is recorded using resistant-type
surface-piercing wave gauges at three locations x = 7.0, 8.0, and 9.0 m. The wave
kinematics are measured using a laser Doppler velocimeter (LDV) system at the
location x = 8.0 m for seven vertical positions below the still water level (SWL)
and two vertical positions above the SWL. The optic cable LDV measures the three
velocity components simultaneously with high spatial resolution. As a non-intrusive
measurement, the LDV measurement has been proved to be of high accuracy in other
experiments (e.g. Skjelbreia 1987; Agrawal & Aubrey 1992). For both tests, the time
series of wave elevation and velocity are recorded for about 250 s.

(ii) Wave elevation comparison. For the two irregular wave trains tested, the effective
wave steepness are (ka)e= 0.10 and 0.23. To reconstruct these wave fields, we choose
partial records at x= 8.0 m which contain the steepest local waves. Specifically, for
the case of (ka)e = 0.10, we use the elevation record in the duration of 112.24 s 6
t6 118.20 s as the given measurement. For the case of (ka)e= 0.23, the record in the
duration of 116.75 s 6 t 6 124.88 s is used. In both cases, the record contains 7–8
dominant wave periods. In wave reconstruction, we finally obtain Lω = 22, and M= 3
for E < E∗= 0.01. For the HOS simulation, we use N= 512. The computation domain
contains about 50 dominant waves and about 500 shortest waves.

Figure 11 shows the comparison of the wave elevation history at the measurement
location between the measurement and the reconstruction obtained using the linear,
second- and third-order wave models. It is seen that the reconstructed wave records
all agree well with the experimental data.
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FIGURE 11. Comparison of reconstructed versus experimental free-surface elevation at the
measurement location as a function of time for irregular wave trains with (a) (ka)e =
0.10; and (b) (ka)e=0.23. Plotted are the experimental record (——), linear reconstruction
(— · —), second-order reconstruction (· · · · · ·), and third-order reconstruction (– – –) based
on HOS simulations (with N = 512).
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FIGURE 12. (Colour online) Comparison of reconstructed versus experimental horizontal
velocity along the depth under wave crest at measurement location (x = 8.0 m):
experimental measurement (q), M = 1 prediction (— · — (blue)), M = 2 prediction
(· · · · · · (green)) and M= 3 prediction (– – – (red)) based on HOS simulation with N= 512
spectral modes. (a) Plots the time averaged errors of reconstructed velocity with different
nonlinear wave models. (b) Shows the result for the horizontal velocity profile at (a) time
t= 114.725 s for (ka)e = 0.10, and (b) t= 120.075 s for (ka)e = 0.23.

(iii) Wave kinematics comparison. Although the reconstructed wave fields with the use
of linear, second- and third-order wave models all match the wave elevation record at
the measurement location, the spatial wave profiles and detailed wave kinematics in
these wave fields should differ owing to the effects of wave nonlinearity. We here
investigate the importance of the inclusion of wave nonlinearity in the reconstruction
of wave kinematics.

Figure 12 shows the comparison of the horizontal velocity between the reconstruct-
ion and experimental data. Plotted are the instantaneous vertical variation of the
horizontal velocity at measurement location (x= 8.0 m) under the wave crest for two
different wave steepness (ka)e=0.10 and (ka)e=0.23. Note that, consistent with HOS,
the nonlinear velocities near the mean free surface are evaluated using Taylor series
expansions up to order M (for details, see Wu 2004). It is seen that the third-order
nonlinear reconstruction (M = 3) agrees well with the measurement for both cases
while the linear and second-order reconstructions largely overestimate the velocity
especially in the region near the free surface. The fourth-order reconstruction is also
obtained but not shown in the figure since they are very close to the third-order results.
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Specifically, for the small wave steepness case ((ka)e= 0.10), the second-order theory
provides a proper reconstruction while the linear theory over-predicts the velocity
by approximately 40 % near the free surface. As the wave steepness increases to
(ka)e = 0.23, the second-order theory over-predicts the velocity by approximately
25 % and the over-prediction by the linear theory increases to approximately 150 %
near the free surface. Note that the plots do not show the velocity profiles up to the
exact free surface because the experimental measurement at the free surface cannot
be reliably obtained. For (ka)e = 0.23 (or 0.10), the crest wave elevation reaches
0.061 m (or 0.022 m) at time t= 120.075 s (or 114.725 s) (cf. figure 11). From the
trend of the velocity profiles, it is seen that the linear and second-order theories will
overestimate the horizontal velocity even more at the free surface.

The overestimation of the velocity by the low-order theories depends on the time.
To account for this, we define an averaged error of the horizontal velocity as

εu(z)=
{

1
T

∫ T

0
[u(ξj, z, t)− ũ(ξj, z, t)]2 dt

}1/2

, (3.1)

where u is the horizontal velocity computed in wave reconstruction and ũ is the
experimental measurement. This is also shown in figure 12 as a function of the
vertical coordinate z. It indicates that in general the linear wave model overestimates
the horizontal velocity above the mean water level although below the mean water
level the difference is small for three different wave models.

Based on these comparisons, we see that although all three wave models can
reconstruct the wave elevation record very well, other kinematics of the reconstructed
wave fields may differ significantly depending on the wave steepness. The first- and
second-order theories obtain an appropriate reconstruction of a wave field when
the steepness is small. For moderately steep waves, the higher-order nonlinear wave
modelling needs to be applied in order to properly reconstruct both the wave elevation
and other kinematics of the wave field. One consequence of the velocity reconstruction
is for the determination of the wave dynamics that is of significance in practical
applications such as the determination of the hydrodynamic wave force on an object.

The above results indicate that although all three wave models (M = 1, 2, 3)
reconstruct the wave elevation record very well, the third-order nonlinear reconstruct-
ion regenerates the wave kinematics much better than the lower-order results,
especially for steep waves. To understand why the lower-order reconstructions cannot
properly regenerate the wave kinematics, we consider a nonlinear Stokes wave of
frequency ω. From the Fourier transform of time record of elevation, we shall obtain
non-zero amplitudes for all harmonics with frequencies ω,2ω, . . . , due to the presence
of locked waves. In linear wave reconstruction, all high harmonic components are
treated as free waves. Unlike free waves, wavenumbers and associated frequencies
of the locked waves do not satisfy the dispersion relation. Thus, the resulting
reconstructed wave kinematics are incorrect. The wave kinematics, particularly near
the free surface, are overestimated since the wavenumbers of the locked waves
are amplified when they are incorrectly treated as free waves. The second-order
reconstruction improves the accuracy of the reconstructed wave kinematics as it takes
into account the second-order locked waves. This is consistent with the findings
of Fedele et al. (2016) for ocean waves. As wave steepness increases, however, the
second-order reconstruction may not be sufficiently effective. In this case, higher-order
reconstruction is needed.
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FIGURE 13. Comparison of the wave elevation histories in the reconstructed wave field
(with (ka)e= 0.23) with experimental measurements at locations of (a) x= 8.0 m, (b) x=
9.0 m and (c) x= 7.0 m. Plotted are the experimental measurements (——) and nonlinear
(M = 3) wave reconstruction (– – –). The dashdot line (— · —) indicates the predictable
time duration at each location, predicted by the linear predictable zone theory. [τ1, τ2]

represents the measurement time duration at x = 8.0 m, where τ1 = 116.75 s and τ2 =

124.88 s. In (a), [τ1, τ2] is also the predictable time duration. In (b), wave forecast for
t ∈ [τ2, t2] is obtained, and the prediction error ED

= 10.29 %, where D corresponds to
the predictable time duration [t1, t2] at this location, with t1= 118.79 s and t2= 125.90 s.
In (c), wave hindcast for t ∈ [t1, τ1] is obtained, and the prediction error ED

= 10.95 %,
where D corresponds to [t1, t2] with t1 = 115.73 s and t2 = 122.84 s.

(iv) Forecast of the reconstructed wave field. The predictable zone theory in Qi et al.
(2018) indicates that the wave field at downstream (upstream) of the probe can be
forecasted (hindcasted). To verify this theory, the wave elevations at both downstream
and upstream of the measurement used in wave reconstruction, x= 9.0 and 7.0 m are
also measured in the experiment. We compare these measurements with the predictions
based on the single point measurement at x= 8.0 m. Figure 13 shows the comparisons
of the wave elevations at x= 8.0, 9.0 and 7.0 m for the case of (ka)e = 0.23.
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FIGURE 14. Point-to-point prediction error e(x, t) for the reconstruction of the
multidirectional nonlinear wave field based on seven point measurements at time (a)
t/Tp= 0 and (b) t/Tp= 11. The measurements are located at (x/λp, y/λp)= (0, 0), (1.2, 0),
(1.2, 0.8), (1.2, −0.8), (2.4, 0), (2.4, 1.6), (2.4, −1.6) with the same measurement time
duration t/Tp ∈ [0, 10], where λp= 25 m and Tp= 4 s. The regions encircled by red lines
are the linear predictable zones PL. The bullets denote the measurement locations.

We apply Fourier analysis on the measurement data and find that the wave energy is
mainly contained in the frequency range ω∈[5,10] rad s−1. Note that for this physical
experiment, the underlying wave field is unknown and thus the actual nonlinear
predictable zone PNL cannot be obtained by comparing the converged reconstructed
field with the underlying one. In this case, PL provides a conservative estimate for PNL.
From the linear predictable zone theory, we derive that at x= 8.0 m, the predictable
time duration is the same as the measurement duration (t ∈ [116.75, 124.88] s). At
x = 9.0 m, the wave motion can be predicted for t ∈ [118.79, 125.90] s, in which
t ∈ [124.88, 125.90] s corresponds to forecast. Figure 13(b) shows that the prediction
agrees well with the measurement for a duration a little longer than [118.79, 125.90] s,
as PNL is a little larger than PL. Outside the predictable time duration, the error
increases rapidly with evolution time. These confirm the theoretical linear predictable
zone based on a single point measurement.

The linear predictable zone theory also indicates that at x= 7.0 m, the wave motion
can be predicted for t∈ [115.73, 122.84] s, in which t∈ [115.73, 116.75] s corresponds
to hindcast. The satisfactory comparison between the measurement and prediction for
a duration of a little larger than [115.73, 122.84] s, shown in figure 13(c) further
confirms the predictable zone theory.

3.2. Reconstruction of multidirectional waves
3.2.1. Synthetic waves with multiple point measurements

We consider reconstruction of a synthetic multidirectional nonlinear wave field
based on multiple point measurements. The wave field is generated by the HOS
simulation (with M = 3) from a directional JONSWAP spectrum S(ω, θ)= S(ω)D(θ)
with γ = 3.3, ωp = 1.57 rad s−1, (ka)e = 0.13, Ω = [0.32, 1.6]ωp and directional
spreading angle θ ∈ [−π/6, π/6]. The angular spreading function takes a form of
D(θ) = cos(πθ/(2Θ0))

2/Θ0, where Θ0 = π/6. Seven point measurements are placed
at fixed locations (see figure 14) with same measurement time duration t/Tp ∈ [0, 10].
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FIGURE 15. The change of prediction error ED with respect to Lθ for the reconstruction
of multidirectional nonlinear wave field based on seven point measurements, where D
represents the predictable area at t/Tp=0 shown in figure 14(a).

In the reconstruction, we use N = 1024 × 1024 (the final results are unaffected
varying these) for HOS simulations and we obtain Lω = 40, Lθ = 7 and M = 3
for E < E∗ = 0.01. Figure 14 shows point-to-point prediction error e(x, t) at two
representative time t/Tp = 0 (reconstruction) and 11 (forecast). For simplicity, PL

is also indicated as an estimate of PNL. In this multidirectional wave case, PL is
the intersection of the predictable zones in each wave propagation direction in the
wave field (Qi et al. 2018). Excellent agreement between the reconstructed and the
underlying wave field is obtained inside PL, which validates the predictable zone
theory developed in Qi et al. (2018), while outside PL, e(x, t) increases to O(1)
within a distance of O(1)λp from PL.

As an example to illustrate the effect of Lθ on the prediction, figure 15 shows
the change of prediction error ED with M = 3 as Lθ increases from 1 to 7, where
D is chosen as the predictable area at t/Tp = 0 shown in figure 14(a). It shows
that ED decreases rapidly as we increase Lθ as expected. In this example, there are
only 7 measurement locations. Further increasing Lθ will cause non-uniqueness of the
reconstruction and thus we finally choose Lθ = 7.

3.2.2. Synthetic waves with whole-area measurements
In practice, whole-area wave measurements such as remote sensing technology-

based wave elevation measurements (Nieto-Borge et al. 2004; Qi, Xiao & Yue
2016) are also commonly used. Here we consider reconstruction of a synthetic
multidirectional nonlinear wave field based on whole-area measurements. The wave
field is generated from the same directional JONSWAP spectrum as in § 3.2.1. We
assume the wave elevation in a square region A: {15.4 6 x/λp 6 25.6, 15.4 6 y/λp 6
25.6} with 256 × 256 uniform data points at time t = 0 is given as the whole-area
measurement.

Figure 16(a,b) presents the nonlinear HOR reconstruction results showing point-
to-point prediction error e(x, t) at time t/Tp = 0 (reconstruction) and t/Tp = 3
(forecast) respectively. These HOR results are obtained for E < E∗ = 0.01 which
required Lω = 40, Lθ = 11 and M = 3. Also shown are the linear predictable zones
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FIGURE 16. (a,b) Point-to-point prediction error e(x, t) between the reconstructed wave
field using HOR with M = 3 and the original wave field at (a) t/Tp = 0 and (b) t/Tp =

3. The wave reconstruction is based on elevation data (in the region marked by dashed
lines) at t = 0. The region encircled by solid lines is the linear predictable zone PL. (c)
Point-to-point prediction error e(x, t) between the linear (M= 1) reconstructed wave field
and the original wave field at t/Tp = 3.

Wave Wave

y

x

FIGURE 17. Layout of wave probes used in Bull’s Eye wave experiment: 13 probes whose
data are used for wave reconstruction (q) and 4 probes whose data are used for wave
forecast validation (E). Wavemakers are on the left and the main wave direction is from
left to right.

PL at the corresponding times. For comparison, we plot the same results obtained
using first-order (M = 1) reconstruction. These results illustrate the efficacy of HOR
application for whole-area measurements and highlight the importance of higher-order
effects in the reconstruction.

3.2.3. Comparison to three-dimensional wave-basin experiment
To further validate HOR for three-dimensional wave fields, we apply HOR to

reconstruct a steep Bull’s Eye wave field that is created in a wave basin. Bull’s Eye
wave field is formed by a group of waves, coming from different directions and
focusing at one spatial location. It is often used to study steep-wave interactions
with structures in laboratory experiments (Rainey 1995). The measurements used
here are from the experiments conducted in the Offshore Technology Research
Center (OTRC) wave basin (Liagre 1999). In the experiment, time series of wave
elevation at 17 locations around the wave-focusing centre are measured. The layout
of the measurement positions is sketched in figure 17. The specific positions of the
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measurements are given in table 2. The waves generated in the experiment have a
peak period of 1.79 s (corresponding to a wavelength of 5.0 m) and a wave height
of 0.211 m at the focusing point (corresponding to a wave steepness of 0.13). For
detailed set-up information of the experiments, see Liagre (1999).

Measurements at 13 out of 17 locations are used for wave reconstruction. The
other 4 measurements (at downstream) are used for comparisons to verify the
reconstruction scheme. For wave-field reconstruction, we use wave records of same
time duration T = 7.14 s that is about 4 dominant wave periods and we set the
record starting time as t = 0. The estimated frequency and direction bands are
[ωa, ωb] = [2.650, 4.417] rad s−1 and [θa, θb] = [−π/4, π/4]. The optimized model
parameters in HOR are: Lω = 12, Lθ = 11 and M = 3 for E < E∗ = 0.01. In the HOS
simulation, we use N = 256 × 256 (determined from convergence tests on N). The
linear predictable time range [t1, t2] at each measurement location can be obtained
according to the predictable zone theory in Qi et al. (2018). They are shown in
table 3. Note that t < 0 corresponds to hindcast while t > T corresponds to forecast.
It can be seen that at position b3, the wave field can be forecasted up to t= 9.51 s,
which corresponds to a forecast of about 1.32 dominant wave period.

Figure 18 shows the comparison of the reconstructed wave elevation (M = 3) with
the experimental data at representative measurement locations. Excellent agreement
between the predictions and the experimental data in the linear predictable zones is
obtained for all measurements used and not used in wave-field reconstruction. In this
example, the differences between M = 3 and lower-order predictions are relatively
small.

Finally we remark that for all the tests we perform, we find that the number of
HOS evaluations Neval is linearly proportional to L and M. For this three-dimensional
case with 13 point measurements each containing Nd∼4 dominant wave periods, HOR
uses Lω = 12, Lθ = 11, M = 3 and N = 256× 256. The entire process requires O(1)
hours using 16 processor cores on a Microway NumberSmasher computing cluster
(Microway 2017).

4. Conclusion
We develop an iterative high-order reconstruction (HOR) method for nonlinear

phase-resolved reconstruction of two- and three-dimensional irregular wave fields. For
a given set of measurements in space–time domain M of the wave field Φ̃, HOR
obtains a reconstructed field Φ which minimizes the reconstruction error defined as
the difference between Φ and Φ̃ within M. HOR can, in practice, be implemented
with any nonlinear evolution engine. Here we implement a high-order spectral (HOS)
method (Dommermuth & Yue 1987), which accounts for nonlinear wave interactions
up to an arbitrary order M, with computational effort nearly linearly proportional to
M and the total number of spectral modes N required.

We show that, under general conditions for Φ which can be represented by
perturbation series in wave steepness, HOR converges to a unique Φ with increasing
numbers L of free wave mode optimization parameters and nonlinear order M, which
HOR iteratively determines for a given reconstruction tolerance. In some space–time
domain PNL (beyond M), the converged Φ approaches the underlying field Φ̃ with
error bounded by the reconstruction tolerance. We find that PNL always contains
and generally extends beyond the linear predictable zone PL developed in Qi et al.
(2018). The importance of high-order nonlinear effects in reconstruction is shown by
comparing the reconstructed wave fields using different order M. It is found that, even
for relatively small wave nonlinearity, linear reconstruction is generally inadequate to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

90
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.904


568 Y. Qi, G. Wu, Y. Liu, M.-H. Kim and D. K. P. Yue

Pr
ob

e
(m

)
c 1

c 2
c 3

c 4
b 1

b 2
b 3

b 4
f 1

f 2
f 3

r 1
r 2

r 3
l 1

l 2
l 3

x
0
−

0.
26

0.
13

0.
13

2.
29

2.
03

2.
41

2.
41

−
0.

76
−

1.
52
−

2.
29

0
0

0
0

0
0

y
0

0
0.

22
−

0.
22
−

1.
32
−

1.
32
−

1.
10
−

1.
54

0
0

0
0.

76
1.

52
2.

29
−

0.
76
−

1.
52
−

2.
29

TA
B

L
E

2.
C

oo
rd

in
at

es
of

th
e

m
ea

su
re

m
en

t
lo

ca
tio

ns
in

th
e

B
ul

l’s
E

ye
w

av
e

ex
pe

ri
m

en
t

(L
ia

gr
e

19
99

).

Pr
ob

e
(s

)
c 1

c 2
c 3

c 4
b 1

b 2
b 3

b 4
f 1

f 2
f 3

r 1
r 2

r 3
l 1

l 2
l 3

t 1
−

0.
06
−

0.
23
−

0.
01
−

0.
01

1.
96

1.
69

2.
05

2.
05
−

0.
50
−

0.
87
−

1.
31
−

0.
06
−

0.
06

0.
01
−

0.
06
−

0.
06

0.
01

t 2
9.

01
8.

89
8.

97
8.

97
9.

39
9.

28
9.

51
9.

35
8.

70
8.

44
8.

12
8.

70
8.

44
8.

13
8.

70
8.

44
8.

13

TA
B

L
E

3.
Pr

ed
ic

ta
bl

e
tim

e
ra

ng
e
[t

1,
t 2
]

at
ea

ch
m

ea
su

re
m

en
t

lo
ca

tio
n

de
te

rm
in

ed
by

th
e

lin
ea

r
pr

ed
ic

ta
bl

e
zo

ne
th

eo
ry

.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

90
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.904


Nonlinear reconstruction of irregular waves 569

–0.10

–0.05

0

0.05

0.10

0 2 4 6 8 10 12 14

–0.10

–0.05

0

0.05

0.10

0 2 4 6 8 10 12 14

–0.10

–0.05

0

0.05

0.10

0 2 4 6 8 10 12 14

T

T

T

t (s)

FIGURE 18. Comparisons of the reconstructed wave elevation (· · · · · ·) using HOR with
M=3 with wave-basin measurement (——) at measurement locations: r1, f2, b3. The linear
predictable time range is indicated by — · —. The measurement duration [0, T] in the
13 measurements used for reconstruction is indicated by the arrows.

predict underlying quantities such as velocities and pressure not in the measurements.
The number of optimized free wave components L in HOR is generally much less
than the number of modes N required in HOS; while the number of HOS evaluations
is typically linearly proportional to L and M. With fast evaluation engine such as
HOS using modern high-performance computing, HOR is practical for many realistic
applications. These are illustrated in extensive tests including theoretical Stokes waves
with steepness up to the limit of HOS, synthetic uni- and multidirectional irregular
wave fields generated by numerical simulations, and physical (nonlinear) wave fields
we measure in two- and three-dimensional wave tanks.

In all of the examples above, information of the underlying wave field Φ̃ outside of
the measurement domain M is used to evaluate the predictive ability of the nonlinear
HOR reconstruction and the domain PNL in which this prediction can be obtained. In
actual application, Φ̃ is generally not known outside of M, and PNL must be obtained
independent of Φ. In this case, PL (given in terms of M) provides a (conservative)
estimate of PNL. This highlights the importance of the linear predictable zone theory
developed in Qi et al. (2018).
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We have considered general nonlinear wave fields in deep water. To the extent
that the underlying nonlinear phase-resolved simulations can account for known
effects/disturbances, these can be directly incorporated into the HOR framework. In
the specific case of HOS, these can include, for example, constant and/or variable
finite depth, and internal waves (Liu & Yue 1998; Alam, Liu & Yue 2009). Unknown
effects such as wind forcing or breaking dissipation can in general be present, but
we assume that these have negligible effect on the measured wave components as
they propagate to/through the predictable zone. To the extent that adequate models
of these are available and can be incorporated into the underlying simulations, these
effects could in principle also be included.

Finally we remark that, we have not considered effects of noise and uncertainties in
measurements. From limited Monte Carlo numerical simulations (Wu 2004) and from
the present comparisons using physical wave tank data, the error in Φ is generally
expected to be bounded in terms of the measurement error.
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Appendix A. Determination of Lθmax

Consider the determination of Lθmax in the reconstruction of a multidirectional wave
field with given J measurement locations. To address this question, we consider the
linear reconstruction of a three-dimensional wave field with Lθ wave directions based
on J measurements, since the uniqueness of the nonlinear solution is assured by the
uniqueness of the linear solution.

We can write the linear solution of free-surface elevation as

η(1)(x, t)=Re
Lω∑

n=1

Lθ∑
m=1

amnei(kmn·x−ωnt), (A 1)

where amn=Amneiαmn is the complex amplitude. Assume two different solutions of amn
exist, say amn and a′mn. Let bmn= amn− a′mn. At the measurement location ξj, we must
obtain:

Re
Lω∑

n=1

Lθ∑
m=1

bmnei(kmn·ξj−ωnt)
= 0, j= 1, . . . , J for t ∈ Tj. (A 2)

From (A 2), it follows that
Lθ∑

m=1

bmneikmn·ξj = 0, j= 1, . . . , J (A 3)

for n= 1, . . . , Lω. If any of these homogeneous systems, corresponding to n= 1, . . . ,
Lω, possesses a non-trivial solution for bmn, the wave reconstruction using (A 1) is
non-unique.

Therefore, in order for the solution of reconstruction to be unique, we require that
non-trivial solution of bmn does not exist. The existence of non-trivial solution of bmn
depends on the rank of the (J × Lθ ) phase function coefficient matrices:

[C]n =

eik1n·ξ1 eik2n·ξ1 . . . eikLθ n·ξ1

...
...

...
...

eik1n·ξJ eik2n·ξJ . . . eikLθ n·ξJ

 for n= 1, . . . , Lω. (A 4)
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A necessary and sufficient condition for (A 3) to have only trivial or no solution is
[C]n has full column rank, which requires that J > Lθ . This implies that for given J,
the maximum number of wave directions that can be resolved in wave reconstruction
is at most J, i.e. Lθmax = J.

In addition, the condition that [C]n has full column rank imposes a requirement
on the spatial locations of wave probes. As an example, we consider a two-direction
wave-field reconstruction with Lθ = 2 and J = 2. It requires that:∣∣∣∣eik1n·ξ1 eik2n·ξ1

eik1n·ξ2 eik2n·ξ2

∣∣∣∣ 6= 0, ∀n, n= 1, . . . , Lω, (A 5)

which leads to the condition:

(k1n − k2n) · (ξ1 − ξ2) 6= q2π, q= 0,±1,±2, . . . , ∀n, n= 1, . . . , Lω. (A 6)

Physically, it requires that ξ1 and ξ2 cannot simultaneously be the node points of the
standing wave formed by k1n and k2n, n= 1, . . . , Lω. For Lθ > 3, no simple solution
can be written out from the condition that [C]n has full column rank. But the general
requirement still holds: for all value of n, n= 1, . . . , Lω, there should be at least Lθ
measurements that are not simultaneously located at the node points of any standing
waves that are formed by the wave components k1n, . . . , kLθn.

Appendix B. Second-order dispersion relation for deep-water waves
For a deep-water unidirectional wave field with Lω free wave components, the

second-order dispersion relation takes the form (Longuet-Higgins 1962; Hogan et al.
1988):

ωn =
√

gkn

[
1+

1
2
(knAn)

2
+

n−1∑
`=1

(
kn

k`

)1/2

(k`A`)2 +
Lω∑

`=n+1

(
kn

k`

)3/2

(k`A`)2
]
, (B 1)

where ωn, kn and An are wave frequency, wavenumber and wave amplitude respectively
for wave component n and ki < ki+1 is assumed. The corresponding wave group
velocity Cn is derived as:

Cn =
1
2

(
g
kn

)1/2
[

1+
5
2
(knAn)

2
+ 2

n−1∑
`=1

(
kn

k`

)1/2

(k`A`)2 + 4
Lω∑

`=n+1

(
kn

k`

)3/2

(k`A`)2
]
.

(B 2)
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