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We combine the sub- and supersolution method and perturbation arguments to
obtain positive solutions of singular quasi-monotone (p, q)-Laplacian systems.

1. Introduction

Consider the (p, q)-Laplacian system

−∆pu = f(x, u, v) in Ω,

−∆qv = g(x, u, v) in Ω

u, v > 0 in Ω,

u, v = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where Ω is a smooth bounded domain in R
n, n � 1, ∆pu = div(|∇u|p−2∇u) is

the p-Laplacian of u, 1 < p, q < ∞, and f and g are Carathéodory functions on
Ω × (0,∞)× (0,∞), i.e. f(x, s, t) and g(x, s, t) are measurable in x for all (s, t) and
continuous in (s, t) for almost all x. We assume the following:

(A1) (1.1) is quasi-monotone, i.e. f(x, s, t) is increasing in t for almost all x and all
s, and g(x, s, t) is increasing in s for almost all x and all t,

(A2) for all 0 < s0 � s1 and 0 < t0 � t1, f is bounded from above on Ω × [s0, s1]×
(0, t1], g is bounded from above on Ω×(0, s1]×[t0, t1] and f and g are bounded
on Ω × [s0, s1] × [t0, t1].

We allow f and g to be singular as s → 0 or t → 0, and seek solutions (u, v) ∈
W 1,p

loc (Ω) × W 1,q
loc (Ω) with u, v ∈ C(Ω̄), that satisfy the first two equations in the
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sense of distributions, i.e.∫
Ω

|∇u|p−2∇u · ∇ϕ =
∫

Ω

f(x, u, v)ϕ,

∫
Ω

|∇v|q−2∇v · ∇ψ =
∫

Ω

g(x, u, v)ψ for all ϕ, ψ ∈ C∞
0 (Ω).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.2)

Then f(x, u(x), v(x)), g(x, u(x), v(x)) ∈ L∞
loc(Ω) by (A2) and hence u, v ∈ C1,α

loc (Ω)
by the local regularity results of DiBenedetto [1]. We will combine the sub- and
supersolution method and perturbation arguments to obtain such solutions of (1.1).

For example, our results give a positive solution of

−∆pu = u−α1 + µvα2 in Ω,

−∆qv = v−β1 + µuβ2 in Ω,

u, v = 0 on ∂Ω

⎫⎪⎬
⎪⎭ (1.3)

for all α1, β1 > 0, α2, β2 � 0, and sufficiently small µ � 0, and a positive solution
of

−∆pu = −u−α1 + vα2 + λ in Ω,

−∆qv = −v−β1 + uβ2 + λ in Ω,

u, v = 0 on ∂Ω

⎫⎪⎪⎬
⎪⎪⎭ (1.4)

for 0 < α1, β1 < 1, α2, β2 � 0 with α2β2 < (p − 1)(q − 1), and sufficiently large
λ > 0.

We refer the reader to [2, 3] for related results on singular semipositone systems
with nonlinearities that satisfy a combined sublinear condition at infinity.

2. Preliminaries

Consider the problem
−∆pu = f(x, u) in Ω,

u = 0 on ∂Ω,

}
(2.1)

where f is a Carathéodory function on Ω × [0,∞). Denoting by λ1,p > 0 the first
Dirichlet eigenvalue of −∆p on Ω, we have the following well-known result.

Proposition 2.1. If there are positive constants C1 < λ1,p and C2 such that

0 � f(x, s) � C1s
p−1 + C2 for all (x, s) ∈ Ω × [0,∞) (2.2)

and f(x, 0) is non-trivial, then (2.1) has a weak solution u > 0 in C1,α
0 (Ω̄) for some

α ∈ (0, 1).

For the case when f is defined only on Ω × (0,∞) (and possibly singular as
s → 0), the following estimate was proved in [5].

Proposition 2.2. If p � n and there are ε > 0, positive constants C1 and C2, and
1 < r < np/(n − p) such that

f(x, s) � C1s
r−1 + C2 for all (x, s) ∈ Ω × [ε, ∞) (2.3)
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and u > 0 in W 1,p
0 (Ω) is a solution of (2.1), then u ∈ L∞(Ω) and

‖u‖∞ � C (2.4)

for some C > 0 depending only on Ω, ε, C1, C2, and ‖(u − ε)+‖1,p.

Now consider the system

−∆pu = f(x, u, v) in Ω,

−∆qv = g(x, u, v) in Ω,

u, v = 0 on ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (2.5)

where f and g are Carathéodory functions on Ω × R × R satisfying the following:

(A3) f(x, s, t) is increasing in t for almost all x and all s, and g(x, s, t) is increasing
in s for almost all x and all t.

Recall that (u
¯
, v
¯
) ∈ W 1,p(Ω) × W 1,q(Ω) is a subsolution of (2.5) if f(x, u

¯
, v
¯
) ∈

Lp′
(Ω) and g(x, u

¯
, v
¯
) ∈ Lq′

(Ω), where p′ = p/(p − 1) is the Hölder conjugate of p,
and

−∆pu¯
� f(x, u

¯
, v
¯
) in Ω,

−∆qv¯
� g(x, u

¯
, v
¯
) in Ω,

u
¯
, v
¯

� 0 on ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

A supersolution (ū, v̄) is defined similarly by reversing all inequalities in (2.6). We
write (u

¯
, v
¯
) � (ū, v̄) if u

¯
� ū and v

¯
� v̄ a.e. The following result is well known (see,

for example, [4]).

Proposition 2.3. Assume that (A3) holds and (2.5) has a subsolution (u
¯

, v
¯

) and a
supersolution (ū, v̄) in W 1,p(Ω) × W 1,q(Ω) such that (u

¯
, v
¯

) � (ū, v̄) and, for almost
all x, all s ∈ [u

¯
(x), ū(x)], and all t ∈ [v

¯
(x), v̄(x)],

|f(x, s, t)|, |g(x, s, t)| � C (2.7)

for some C > 0. Then (2.5) has a solution (u, v) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω) between
(u
¯

, v
¯

) and (ū, v̄), with u, v ∈ C1,α
0 (Ω̄) for some α ∈ (0, 1).

3. Regularization

To obtain a solution of the system (1.1) using proposition 2.3, first we regularize
it. Writing s ∧ t = min{s, t} and s ∨ t = max{s, t}, define Carathéodory functions
fj and gj on Ω × R × R such that fj → f and gj → g on Ω × (0,∞) × (0,∞) by

fj(x, s, t) = f(x, s ∨ εj , t ∨ εj), gj(x, s, t) = g(x, s ∨ εj , t ∨ εj), (3.1)

where εj ↘ 0, and consider the sequence of systems

−∆pu = fj(x, u, v) in Ω,

−∆qv = gj(x, u, v) in Ω,

u, v = 0 on ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (3.2)
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Theorem 3.1. Assume that (A1) and (A2) hold and that, for each j, (3.2) has a
subsolution (u

¯ j , v¯ j) and a supersolution (ūj , v̄j) in W 1,p(Ω) × W 1,q(Ω) such that
(u
¯ j , v¯ j) � (ūj , v̄j),

inf
j

ess inf
Ω′

(u
¯ j ∧ v

¯ j) > 0 for all Ω′ ⊂⊂ Ω (3.3)

and
sup

j
ess sup

Ω
(ūj ∨ v̄j) < ∞. (3.4)

Then (1.1) has a solution (u, v) with u, v ∈ C1,α
loc (Ω) ∩ C(Ω̄).

Under the assumptions of theorem 3.1, (3.2) has a solution

(uj , vj) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω)

such that
εΩ′ := inf

j
ess inf

Ω′
(uj ∧ vj) > 0 for all Ω′ ⊂⊂ Ω (3.5)

and
M := sup

j
ess sup

Ω
(uj ∨ vj) < ∞ (3.6)

by proposition 2.3, so it suffices to prove the following compactness result.

Proposition 3.2. Assume that (A1) and (A2) hold and that, for each j, (3.2)
has a solution (uj , vj) ∈ W 1,p

0 (Ω) × W 1,q
0 (Ω) such that (3.5) and (3.6) hold. Then

a subsequence of (uj , vj) converges a.e. to a solution (u, v) of (1.1), with u, v ∈
C1,α

loc (Ω) ∩ C(Ω̄).

Proof. Take a sequence (Ωk) of subdomains of Ω such that Ωk ⊂⊂ Ωk+1 and⋃
k Ωk = Ω. For all j so large that εj � εΩ1 , taking

ϕ = (uj − εΩ1)
+, ψ = (vj − εΩ1)

+

as the test functions in∫
Ω

|∇uj |p−2∇uj · ∇ϕ =
∫

Ω

fj(x, uj , vj)ϕ,

∫
Ω

|∇vj |q−2∇vj · ∇ψ =
∫

Ω

gj(x, uj , vj)ψ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

gives∫
Ω1

|∇uj |p �
∫

uj>εΩ1

|∇uj |p =
∫

uj>εΩ1

f(x, uj , vj ∨ εj)(uj − εΩ1),

∫
Ω1

|∇vj |q �
∫

vj>εΩ1

|∇vj |q =
∫

vj>εΩ1

g(x, uj ∨ εj , vj)(vj − εΩ1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.8)

since uj , vj � εΩ1 a.e. in Ω1. The far right-hand sides are bounded from above by
(A2) since uj and vj are essentially bounded, so (uj , vj) is bounded in W 1,p(Ω1) ×
W 1,q(Ω1). Hence, a subsequence (u1

j , v
1
j ) converges to some (u1, v1) weakly in
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W 1,p(Ω1)×W 1,q(Ω1), strongly in Lp(Ω1)×Lq(Ω1), and a.e. in Ω1 ×Ω1. Repeating
with further and further subsequences, for each k we get a subsequence (uk

j , vk
j ) that

converges to some (uk, vk) weakly in W 1,p(Ωk) × W 1,q(Ωk), strongly in Lp(Ωk) ×
Lq(Ωk), and a.e. in Ωk × Ωk such that (uk+1

j , vk+1
j ) is a subsequence of (uk

j , vk
j ).

Then (uk+1, vk+1)|Ωk×Ωk
= (uk, vk), so

(u, v) :=

⎧⎨
⎩

(u1, v1) on Ω1 × Ω1,

(uk+1, vk+1) on (Ωk+1 \ Ωk) × (Ωk+1 \ Ωk), k � 1
(3.9)

is a well-defined function in W 1,p
loc (Ω) × W 1,q

loc (Ω) with 0 < u, v � M a.e., to which
the diagonal subsequence (uk

k, vk
k) converges a.e.

For any ϕ, ψ ∈ C∞
0 (Ω),

∫
Ωk

|∇uk
j |p−2∇uk

j · ∇ϕ =
∫

Ωk

f(x, uk
j , vk

j )ϕ,

∫
Ωk

|∇vk
j |q−2∇vk

j · ∇ψ =
∫

Ωk

g(x, uk
j , vk

j )ψ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

for a fixed k so large that Ωk ⊃ suppϕ, suppψ and all j so large that εk
j � εΩk

,
where (εk

j ) is the subsequence of (εj) that corresponds to (uk
j , vk

j ). Passing to the
limit in j gives

∫
Ωk

|∇uk|p−2∇uk · ∇ϕ =
∫

Ωk

f(x, uk, vk)ϕ,

∫
Ωk

|∇vk|q−2∇vk · ∇ψ =
∫

Ωk

g(x, uk, vk)ψ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

which reduces to (1.2) since (uk, vk) = (u, v)|Ωk×Ωk
and ϕ, ψ = 0 outside Ωk. Then

u, v ∈ C1,α
loc (Ω) since f(x, u(x), v(x)), g(x, u(x), v(x)) ∈ L∞

loc(Ω), so u, v > 0.
To prove that u, v ∈ C(Ω̄) with u, v = 0 on ∂Ω, we will show that, given any

ε ∈ (0, 2M ], there is a neighbourhood U of ∂Ω such that u, v < ε in U ∩ Ω. We
only give the proof for u as the argument for v is similar. By (A2), there is a C > 0
such that f � C on Ω × [ 12ε, M ] × (0, M ]. Let uε > 0 in C1,α

0 (Ω̄) be the solution of
the problem

−∆pu = C in Ω,

u = 0 on ∂Ω

}
(3.12)

given by proposition 2.1. Taking ϕ = (uk
j − uε − 1

2ε)+ in

∫
Ω

|∇uk
j |p−2∇uk

j · ∇ϕ =
∫

Ω

f(x, uk
j ∨ εk

j , vk
j ∨ εk

j )ϕ,

∫
Ω

|∇uε|p−2∇uε · ∇ϕ =
∫

Ω

Cϕ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)
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gives ∫
uk

j >uε+ε/2
|∇uk

j |p−2∇uk
j · ∇(uk

j − uε − 1
2ε)

�
∫

uk
j >uε+ε/2

C(uk
j − uε − 1

2ε)

=
∫

uk
j >uε+ε/2

|∇uε|p−2∇uε · ∇(uk
j − uε − 1

2ε),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

which reduces to∫
uk

j >uε+ε/2
(|∇uk

j |p−2∇uk
j −|∇(uε+ 1

2ε)|p−2∇(uε+ 1
2ε))·∇(uk

j −uε− 1
2ε) � 0. (3.15)

This implies that uk
j � uε + 1

2ε and hence u � uε + 1
2ε. Since uε is continuous up to

the boundary, there is a neighbourhood U of ∂Ω such that uε < 1
2ε in U ∩ Ω.

4. Positone-type singular systems

Now we apply theorem 3.1 to obtain a solution of the system

−∆pu = f1(x, u, v) + µf2(x, u, v) in Ω,

−∆qv = g1(x, u, v) + µg2(x, u, v) in Ω,

u, v > 0 in Ω,

u, v = 0 on ∂Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.1)

where f1, f2, g1 and g2 are Carathéodory functions on Ω×(0,∞)×(0,∞) satisfying

(B1) f1(x, s, t) and f2(x, s, t) are increasing in t for almost all x and all s, and
g1(x, s, t) and g2(x, s, t) are increasing in s for almost all x and all t,

(B2) for all 0 < s0 � s1 and 0 < t0 � t1, f1 is bounded from above on Ω× [s0, s1]×
(0, t1], g1 is bounded from above on Ω×(0, s1]×[t0, t1], f1 and g1 are bounded
on Ω × [s0, s1] × [t0, t1], and f2 and g2 are bounded on Ω × (0, s1] × (0, t1],

(B3) there are s1, t1 > 0 and non-trivial functions a, b � 0 in L∞(Ω) such that
f1 � a, g1 � b, and f2, g2 � 0 on Ω × (0, s1] × (0, t1],

(B4) for each s0 > 0, there are positive constants C1 < λ1,p and C2 such that

f1(x, s, t) � C1s
p−1 + C2 for all (x, s, t) ∈ Ω × [s0,∞) × (0,∞), (4.2)

and, for each t0 > 0, there are positive constants D1 < λ1,q and D2 such that

g1(x, s, t) � D1t
q−1 + D2 for all (x, s, t) ∈ Ω × (0,∞) × [t0,∞) (4.3)

and µ � 0 is a parameter.

Theorem 4.1. Assume that (B1)–(B4) hold. Then there is a µ0 > 0 such that (4.1)
has a solution (u, v) with u, v ∈ C1,α

loc (Ω) ∩ C(Ω̄) for each µ ∈ [0, µ0).
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Proof. We apply theorem 3.1 with f = f1 + µf2 and g = g1 + µg2. Define f1j , f2j ,
g1j , and g2j as in (3.1). We may assume that each εj � s1 ∧ t1, so f1j � a, g1j � b,
and f2j , g2j � 0 on Ω × (0, s1] × (0, t1].

First we construct a subsolution (u
¯j , v¯j) of (3.2) satisfying (3.3). Let u, v > 0 in

C1,α
0 (Ω̄) be the solutions of the problems

−∆pu = a(x) in Ω,

−∆qv = b(x) in Ω,

u = 0 on ∂Ω,

v = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

given by proposition 2.1, let c = 1∧(s1/ max u), d = 1∧(t1/ max v), and let u
¯j = cu,

v
¯j = dv. Then 0 < c, d � 1 and 0 < u

¯j � s1, 0 < v
¯j � t1, so

−∆pu¯j = cp−1a(x) � a(x) � f1j(x, u
¯j , v¯j) + µf2j(x, u

¯j , v¯j), (4.5)

and similarly −∆qv¯j � g1j(x, u
¯j , v¯j) + µg2j(x, u

¯j , v¯j).
Now we construct a supersolution (ūj , v̄j) � (u

¯j , v¯j) of (3.2) satisfying (3.4) for
sufficiently small µ. Let C1j , D1j , C2j and D2j be the constants in (B4) that cor-
respond to s0, t0 = εj . Then

f1j(x, s, t) � C1js
p−1 + C ′

2j , g1j(x, s, t) � D1jt
q−1 + D′

2j

for all (x, s, t) ∈ Ω × (0,∞) × (0,∞), (4.6)

where C ′
2j = C1jε

p−1
j + C2j , D

′
2j = D1jε

q−1
j + D2j . By proposition 2.1, the prob-

lems
−∆pu = C1ju

p−1 + C ′
2j + 1 in Ω, u = 0 on ∂Ω,

−∆qv = D1jv
q−1 + D′

2j + 1 in Ω, v = 0 on ∂Ω

}
(4.7)

have solutions u, v > 0 in C1,α
0 (Ω̄). By (4.6), (u, v) is a supersolution of the system

−∆pu = f1j(x, u, v) + 1 in Ω,

−∆qv = g1j(x, u, v) + 1 in Ω,

u, v = 0 on ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (4.8)

As in (4.5), (u
¯j , v¯j) is also a subsolution of (4.8). On the set where u < u

¯j ,

−∆pu � f1(x, u ∨ εj , v ∨ εj) � f1(x, u ∨ εj , εj) � a(x) � −∆pu¯j , (4.9)

so u � u
¯j , and similarly v � v

¯j . So (4.8) has a solution (ūj , v̄j) � (u
¯j , v¯j) with

ūj , v̄j ∈ C1,α
0 (Ω̄) by proposition 2.3.

Note that ūj is a solution of (2.1) with f(x, s) = f1j(x, s, v̄j(x)) + 1. Fix ε > 0
and let C1 and C2 be the constants in (B4) that correspond to s0 = ε. We may
assume that each εj � ε, so

f(x, s) = f1(x, s, v̄j(x)∨ εj)+1 � C1s
p−1 +C ′

2 for all (x, s) ∈ Ω × [ε, ∞), (4.10)

where C ′
2 = C2 + 1. Taking ϕ = (ūj − ε)+ in∫

Ω

|∇ūj |p−2∇ūj · ∇ϕ =
∫

Ω

f(x, ūj)ϕ (4.11)
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and using (4.10) gives∫
Ω

|∇(ūj − ε)+|p �
∫

Ω

(C1ū
p−1
j + C ′

2)(ūj − ε)+. (4.12)

Since

C1 < λ1,p = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|p∫
Ω

|u|p , (4.13)

this implies that ‖(ūj − ε)+‖1,p is bounded. Then ‖ūj‖∞ is bounded by proposi-
tion 2.2 if p � n and bounded by the Sobolev embedding W 1,p

0 (Ω) ↪→ L∞(Ω) if
p > n, and similarly so is ‖v̄j‖∞.

Let M be the left-hand side of (3.4) and let

µ0 =
1

supΩ×(0,M ]×(0,M ](|f2| ∨ |g2|)
� ∞. (4.14)

We may assume that each εj � M , so, for all µ ∈ [0, µ0),

−∆pūj = f1j(x, ūj , v̄j) + 1 � f1j(x, ūj , v̄j) + µf2j(x, ūj , v̄j), (4.15)

and similarly −∆q v̄j � g1j(x, ūj , v̄j) + µg2j(x, ūj , v̄j).

5. Semipositone-type singular systems

Finally, we apply theorem 3.1 to obtain a solution of

−∆pu = f1(x, u, v) + λ + µf2(x, u, v) in Ω,

−∆qv = g1(x, u, v) + λ + µg2(x, u, v) in Ω,

u, v > 0 in Ω,

u, v = 0 on ∂Ω,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.1)

where f1, f2, g1 and g2 are Carathéodory functions on Ω×(0,∞)×(0,∞) satisfying
the following:

(G1) f1(x, s, t) and f2(x, s, t) are increasing in t for almost all x and all s, and
g1(x, s, t) and g2(x, s, t) are increasing in s for almost all x and all t;

(G2) there are 0 < α1, β1 < 1, α2, β2 > 0 with α2β2 < (p − 1)(q − 1), 1 < p1 <
p, 1 < q1 < q, and positive constants C and D such that

−Cs−α1 � f1(x, s, t) � C(sp1−1 + tα2 + 1),

−Dt−β1 � g1(x, s, t) � D(tq1−1 + sβ2 + 1)

}
(5.2)

for all (x, s, t) ∈ Ω × (0,∞) × (0,∞);

(G3) for all s1, t1 > 0, f2 and g2 are bounded on Ω × (0, s1] × (0, t1]

and λ > 0 and µ � 0 are parameters.
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Theorem 5.1. Assume that (G1)–(G3) hold. Then there is a λ0 > 0 such that
for each λ � λ0 there is a µ0(λ) > 0 for which (5.1) has a solution (u, v) with
u, v ∈ C1,α

loc (Ω) ∩ C(Ω̄) whenever µ ∈ [0, µ0(λ)).

Proof. We apply theorem 3.1 with f = f1 + λ + µf2 and g = g1 + λ + µg2. Define
f1j , f2j , g1j and g2j as in (3.1). We may assume that each εj � 1, so

−Cs−α1 � f1j(x, s, t) � C(sp1−1 + tα2 + 3),

−Dt−β1 � g1j(x, s, t) � D(tq1−1 + sβ2 + 3)

}
(5.3)

for all (x, s, t) ∈ Ω × (0,∞) × (0,∞).
First we construct a subsolution (u

¯j , v¯j) of (3.2) satisfying (3.3). Let 0 < ϕ1,p � 1
be an eigenfunction associated with λ1,p, let 1 < α2 < p/(p − 1 + α1), 1 < β2 <
q/(q − 1 + β1), and let u

¯j = ϕα2
1,p/α2, v¯j = ϕβ2

1,q/β2. Then

−∆pu¯j = ϕ
(α2−1)(p−1)
1,p (−∆pϕ1,p) − (α2 − 1)(p − 1)|∇ϕ1,p|p

ϕ
1−(α2−1)(p−1)
1,p

= a(x) − b(x)u
¯

−α1
j , (5.4)

where

a(x) = λ1,pϕ
α2(p−1)
1,p , b(x) =

(α2 − 1)(p − 1)|∇ϕ1,p|p

αα1
2 ϕ

p−α2(p−1+α1)
1,p

. (5.5)

Since ϕ1,p = 0 and ∇ϕ1,p �= 0 on ∂Ω, in some neighbourhood Ω′ ⊂ Ω of ∂Ω,
b(x) � C, and hence

−∆pu¯j � λ1,p − Cu
¯

−α1
j � f1j(x, u

¯j , v¯j) + λ − 1 (5.6)

for λ � λ1,p + 1 by (5.3). On Ω \ Ω′, −∆pu¯j � λ1,p and f1j(x, u
¯j , v¯j) is bounded

since ϕ1,p is uniformly positive, so −∆pu¯j � f1j(x, u
¯j , v¯j) + λ − 1 still holds for λ

sufficiently large. Now take µ so small that µf2j(x, u
¯j , v¯j) � −1. Similarly,

−∆qv¯j � g1j(x, u
¯j , v¯j) + λ + µg2j(x, u

¯j , v¯j)

for λ large and µ small.
Now we construct a supersolution (ūj , v̄j) � (u

¯j , v¯j) of (3.2) satisfying (3.4). Let
u, v > 0 in C1,α

0 (Ω̄) be the solutions of the problems

−∆pu = 1 in Ω,

−∆qv = 1 in Ω,

u = 0 on ∂Ω,

v = 0 on ∂Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.7)

given by proposition 2.1, let c > 1/(p − 1) and d > 1/(q − 1) with α2/(p − 1) <
c/d < (q − 1)/β2, and let ūj = λcu, v̄j = λdv. For λ large and µ small,

−∆pūj = λc(p−1)

� C(ūp1−1
j + v̄α2

j + 3) + λ + 1

� f1j(x, ūj , v̄j) + λ + µf2j(x, ūj , v̄j) (5.8)
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by (5.3) and ūj � u
¯j since

−∆pūj � λ1,p � −∆pu¯j . (5.9)

Similarly, −∆q v̄j � g1j(x, ūj , v̄j) + λ + µg2j(x, ūj , v̄j) and v̄j � v
¯j .

Acknowledgements

S.E.M. was supported by Al-Imam University Project no. 290101202, Riyadh, KSA.

References

1 E. DiBenedetto. C1+α local regularity of weak solutions of degenerate elliptic equations.
Nonlin. Analysis 7 (1983), 827–850.

2 E. K. Lee, R. Shivaji and J. Ye. Classes of infinite semipositone systems. Proc. R. Soc.
Edinb. A139 (2009), 853–865.

3 E. K. Lee, R. Shivaji and J. Ye. Classes of singular pq-Laplacian semipositone systems.
Discrete Contin. Dynam. Syst. A27 (2010), 1123–1132.

4 M. C. León. Existence results for quasilinear problems via ordered sub- and supersolutions.
Annales Fac. Sci. Toulouse Math. 6 (1997), 591–608.

5 K. Perera and E. A. B. Silva. On singular p-Laplacian problems. Diff. Integ. Eqns 20
(2007), 105–120.

(Issued 8 June 2012 )

https://doi.org/10.1017/S0308210510001356 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001356

