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‘We combine the sub- and supersolution method and perturbation arguments to
obtain positive solutions of singular quasi-monotone (p, q)-Laplacian systems.

1. Introduction
Consider the (p, ¢)-Laplacian system

—Apu = f(z,u,v) in {2,
—Agv =g(z,u,v) in 2 (L1)

u,v >0 in £2,
u,v =10 on 012,

where (2 is a smooth bounded domain in R", n > 1, Ayu = div(|Vu[P~2Vu) is
the p-Laplacian of u, 1 < p,q < oo, and f and g are Carathéodory functions on
2% (0,00) x (0,00), i.e. f(x,s,t)and g(x,s,t) are measurable in z for all (s,t) and
continuous in (s,t) for almost all 2. We assume the following:

(A1) (1.1) is quasi-monotone, i.e. f(x,s,t) is increasing in ¢ for almost all 2 and all
s, and g(z, s,t) is increasing in s for almost all z and all ¢,

(Ag) forall 0 < 59 < 81 and 0 < g < t1, f is bounded from above on §2 X [sg, s1] X
(0,%1], g is bounded from above on §2x (0, s1] X [tg, t1] and f and g are bounded
on {2 X [80,81} X [to,tl].

We allow f and g to be singular as s — 0 or ¢ — 0, and seek solutions (u,v) €
WLP(02) x W,h9(2) with u,v € O(£2), that satisfy the first two equations in the
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sense of distributions, i.e.

/ VUl ?Vu - Vi = / Fu, o),
(9] 0
(1.2)

/ V|92V - Vi = / g(@,u,v)y  for all p, ¢ € CF°(12).
2 2

Then f(z,u(z),v(z)), g(z,u(z),v(z)) € LiS.(£2) by (A2) and hence u,v € Cllof((?)
by the local regularity results of DiBenedetto [1]. We will combine the sub- and
supersolution method and perturbation arguments to obtain such solutions of (1.1).

For example, our results give a positive solution of

—Apu=u"" + pv** in £,

~Ap=v"" 4 in (1.3)
u,v =0 on 02
for all ay,01 > 0, ag, B2 = 0, and sufficiently small p > 0, and a positive solution
of —“Apu=—u"" +0v*2+ X in £,
A =—v 4+ u2 LN in 0, (1.4)

u,v =10 on 0f2
for 0 < 1,01 < 1, ag, B2 = 0 with asf2 < (p — 1)(¢ — 1), and sufficiently large
A>0.

We refer the reader to [2,3] for related results on singular semipositone systems
with nonlinearities that satisfy a combined sublinear condition at infinity.
2. Preliminaries
Consider the problem

—Apu = f(z,u) in 2, } 2.1)

u=20 on 9f2,

where f is a Carathéodory function on {2 x [0, c0). Denoting by A, > 0 the first
Dirichlet eigenvalue of —A, on {2, we have the following well-known result.

PROPOSITION 2.1. If there are positive constants C1 < A1, and Co such that
0< f(x,8) <C1sP 14 Cy  for all (z,5) € £2 % [0,00) (2.2)

and f(x,0) is non-trivial, then (2.1) has a weak solution u > 0 in Cy*(£2) for some
a € (0,1).

For the case when f is defined only on {2 x (0,00) (and possibly singular as
s — 0), the following estimate was proved in [5].

PROPOSITION 2.2. Ifp < n and there are € > 0, positive constants C1 and Cy, and
1<r<np/(n—p) such that

f(z,8) <Ci1s" 14+ Cy  for all (x,s) € 2 x [g,00) (2.3)
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and u > 0 in Wy P(2) is a solution of (2.1), then u € L>®(£2) and
ulls <C (2.4)
for some C > 0 depending only on 2, ¢, C1, Ca, and ||(u — &) ¥ |1 .
Now consider the system
—Apu = f(z,u,v) in {2,
—Agv =g(z,u,v) in £, (2.5)
u,v =10 on 012,
where f and g are Carathéodory functions on {2 x R x R satisfying the following:

(As3) f(z,s,t) is increasing in ¢ for almost all z and all s, and g(z, s, t) is increasing
in s for almost all  and all ¢.

Recall that (u,v) € WP (02) x Wh4(£2) is a subsolution of (2.5) if f(x,u,v) €
LP () and g(x,u,v) € L9 (£2), where p’ = p/(p — 1) is the Holder conjugate of p,

and
—Apu < f(z,u,v) in £2,
—Agv < g(z,u,v) in £, (2.6)
u, v <0 on 0f2.

A supersolution (u,v) is defined similarly by reversing all inequalities in (2.6). We
write (u,v) < (@,v) if u < u and v < v a.e. The following result is well known (see,
for example, [4]).

PROPOSITION 2.3. Assume that (Ag) holds and (2.5) has a subsolution (u,v) and a
supersolution (,v) in WHP(£2) x WH4(Q) such that (u,v) < (4,9) and, for almost
all z, all s € [u(z),u(x)], and all t € [v(z), v(x)],

[f (@, 5,)],|g(x,5,0)| < C (2.7)
for some C > 0. Then (2.5) has a solution (u,v) € Wy (£2) x Wy 9(£2) between
(u,v) and (@, ), with u,v € Cy*(2) for some a € (0,)

3. Regularization

To obtain a solution of the system (1.1) using proposition 2.3, first we regularize
it. Writing s At = min{s, ¢t} and sVt = max{s, ¢}, define Carathéodory functions
f;j and g; on £2 x R x R such that f; — f and g; — g on £2 x (0,00) x (0,00) by

filz,s,t) = f(z,sVe;, tVej), g;(z,s,t) = g(xz,sVej;,tVe;), (3.1)
where ; N\, 0, and consider the sequence of systems
—Apu = fj(z,u,v) in £,
—Agv = gj(z,u,v) in 2, (3.2)
u,v =0 on 0f2.
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THEOREM 3.1. Assume that (A1) and (As) hold and that, for each j, (3.2) has a
subsolution (u;,v;) and a supersolution (tj,v;) in WHP(2) x WH4(02) such that
(ujvyj) < (ﬂj’ﬂj)}
irj;fessgjnf(uj Aw;) >0 forall 2" CC 2 (3.3)
and
supess sup(u; V v;) < 0. (3.4)
j 7}

Then (1.1) has a solution (u,v) with u,v € CL%(2) N C(2).

loc

Under the assumptions of theorem 3.1, (3.2) has a solution
(uj,v;) € Wy P(02) x Wy 9(92)

such that
eqr = infessginf(uj Awvj) >0 forall ' CC 2 (3.5)
J ’

and
M :=supess sup(u; V v;j) < 0o (3.6)
i 0

by proposition 2.3, so it suffices to prove the following compactness result.

PROPOSITION 3.2. Assume that (A1) and (As) hold and that, for each j, (5.2)
has a solution (u;,v;) € Wy (82) x Wy 9(82) such that (3.5) and (3.6) hold. Then
a subsequence of (uj,v;) converges a.e. to a solution (u,v) of (1.1), with u,v €

ch(2)nC(Q).

loc

Proof. Take a sequence ({2;) of subdomains of {2 such that 2, CC (241 and
U 2 = £2. For all j so large that ; < e, , taking

Y= (uj - 591)+’ Y= (Uj - €91)+

as the test functions in

/|Vuj|P‘2Vuj-V<p:/fj(x,uj,vj)%
2 2

[ 19010729096 = [ gy(ou5.0)0
2 2

gives

/ |Vug|? </ |vuj|f':/ f@ug,v5 Ve (u; —ea),
(P21 uj; >0, uj >0,

/ |V, |7 </ |V, |? =/ g(x,u; Vej,v)(vy; —en,)
2 v >0, v >0,

since u;,v; > €, a.e. in f21. The far right-hand sides are bounded from above by

(Ag) since u; and v; are essentially bcl)unlded, so (uj,v;) is bounde(ll in WHP () x

Wha(2;). Hence, a subsequence (uj,vj) converges to some (u',v') weakly in

(3.8)
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WLP(£21) x Wha(£2y), strongly in LP(£21) x LI(£21), and a.e. in 21 x 2;. Repeating
with further and further subsequences for each k we get a subsequence (uJ vj k) that
converges to some (u¥,v*) weakly in W1P(§2;,) x Wh4(§2;,), strongly in Lp(Qk)
L1((2;), and a.e. in 2 X §2; such that (u k“,vf“) is a subsequence of (uJ,Uf)
Then (u**1,v*+1)| g, w0, = (uF,v*), so

(ut,vl) on 1 x {2,
(u,v) := (3.9)
(ukH,ka) on (Qk+1 \ Q}C) X (Qk+1 \ Qk), k 2 1

is a well-defined function in W, (£2) x WL(£2) with 0 < u,v < M a.e., to which
the diagonal subsequence (uf,vF) converges a.e.

For any ¢, € C5°(®2),

/ﬂ Vil rvug Vo= [ g e

’ (3.10)
/Q VORIVl -V = [ g(z,uf, of )y

k

2

for a fixed k so large that 2 D supp,supp® and all j so large that s] < e,
¥) is the subsequence of (¢;) that corresponds to (u¥,v%). Passing to the

where (&7 U5, Y5
limit in j gives

J

/ VuF P2V - Ve = | f(x,u", "),
2 (o
(3.11)

/\Vvk|q 2ok vy = g(m,uk,vk)w,
Q%

Q2

which reduces to (1.2) since (u*, v¥) = (u,v)|o,x 0, and ¢, = 0 outside £2;.. Then
u,v € Ch(2) since f(z,u(x),v(x)), g(z, u(x),v(z)) € LS, (2), so u,v > 0.

To prove that u,v € C(£2) with u,v = 0 on 92, we will show that, given any
e € (0,2M], there is a neighbourhood U of 912 such that u,v < e in U N 2. We
only give the proof for u as the argument for v is similar. By (Asg), thereisa C > 0
such that f < C on £2 x [3&, M] x (0, M]. Let u. > 0 in Cy*(£2) be the solution of

the problem

—Apu=C in {2,
(3.12)
u=0 on 0
given by proposition 2.1. Taking ¢ = (u;C — Ue — %5)Jr in
/ |Vu§|p_2Vu§~V<p:/ f(z, u \/sj,vj = e,
Q 0
(3.13)

/|Vu5|p*2VUs'V<P:/C¢)
(9] [P
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gives

/ Vb P2Vt V(- L)
u_];>u5+€/2

< Cluf —u. — Le
/u§>us+6/2 ( j e — 56) (3.14)

—2 k 1
= / [Vue|P~*Vu, - V(uj — ue — 3¢),
u§>u5+8/2
which reduces to

/ (|Vu§f\p_2Vu§f—|V(ua+%e)|p_2V(u5+%s))-V(uf—ua—%5) <0. (3.15)
u§>u5+e/2

This implies that uf < Ue + %5 and hence u < ue + %5. Since u, is continuous up to
the boundary, there is a neighbourhood U of 0f2 such that u. < %5 inUNR. 0O
4. Positone-type singular systems
Now we apply theorem 3.1 to obtain a solution of the system
—Apu = f1(z,u,v) + pfo(z,u,v) in §2,
—Agv = g1(z,u,v) + pge(z,u,v) in L2,
u,v >0 in £2, 1)
u,v =0 on 912,
where f1, fo, g1 and go are Carathéodory functions on 2 x (0, c0) x (0, 00) satisfying

(B1) fi(z,s,t) and fa(z,s,t) are increasing in ¢ for almost all z and all s, and
g1(z, s,t) and go(x, s,t) are increasing in s for almost all z and all ¢,

(By) for all 0 < 59 < 81 and 0 < tg < #1, f1 is bounded from above on 2 X [sg, $1] X
(0, 1], g1 is bounded from above on 2 x (0, s1] X [to, t1], f1 and g are bounded
on {2 x [sp, s1] X [to,t1], and fo and go are bounded on 2 x (0, s1] x (0, t1],

(B3) there are s1,t; > 0 and non-trivial functions a,b > 0 in L°°({2) such that
f1 = a, g = b, and f2,gg > 0on 2 x (0,81] X (O,tl],

(B4) for each sy > 0, there are positive constants C; < A1, and C5 such that
fi(z,s,t) < C1sP™F + Cy  for all (z,s,t) € 2 x [s0,00) x (0,00),  (4.2)
and, for each ¢y > 0, there are positive constants D; < A; 4 and Dy such that

g1(z,5,t) < D7t + Dy for all (z,s,t) € 2 x (0,00) X [tg,00)  (4.3)

and p > 0 is a parameter.

THEOREM 4.1. Assume that (By)-(By) hold. Then there is a g > 0 such that (4.1)
has a solution (u,v) with u,v € CuS(2) N C(2) for each p € [0, po).
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Proof. We apply theorem 3.1 with f = f1 + pfe and g = g1 + puge. Define fi;, fo,
g1j, and go; as in (3.1). We may assume that each €; < s1 At1, so f1; > a, g1 > b,
and fgj,ggj >0on 2 x (0,81] X (0 tl}

First we construct a subsolution (u;,v;) of (3.2) satisfying (3.3). Let u,v > 0 in

C’O1 “(£2) be the solutions of the problems
—Apu=a(z) in £,
—Agv=>b(z) in £,
u=20 on 9f2,
v=20 on 0f2,

(4.4)

given by proposition 2.1, let ¢ = 1A(s1/ maxu), d = 1A(t;/ maxv), and let u; = cu,
yj:dv. Then0<c,d§1and0<yj <51,O<1_)j < tq1, so
—Apu; = a(r) < alw) < fijl,uy,05) + pfay(@,up,05), (4.5)
and similarly —Agv; < g1j(w,u;,v;) + g2 (@, uj, v;).
Now we construct a supersolution (i, v;) > (u;, 7_}]) of (3.2) satisfying (3.4) for

sufficiently small p. Let Cy;, D1j, Ca; and Dy; be the constants in (By4) that cor-
respond to sg, tg = ;. Then

flj((E, S,t) < C’ljsp_l + Céj? glj(‘r; S,t) < Dljtq_l =+ ‘D/2j
for all (z,s,t) € 2 x (0,00) x (0,00), (4.6)

where C’éj = C’ljeé)—l + Czj,D’Qj = Dlj g7t 4 Do;. By proposition 2.1, the prob-
lems

—Apu = CrjuP~t + Cy; +1in £, u =0 on BQ,} n
4.7

—Agv = Dljvq_l + D’2j 4+ 1in §2, v =20 on 0f2
have solutions u,v > 0 in CS’Q(Q). By (4.6), (u,v) is a supersolution of the system

—Apu = frj(z,u,v)+ 1 in L2,

—Agv = gij(x,u,v) +1 in 2, (4.8)
u,v =10 on 0f2.
As in (4.5), (u;,v;) is also a subsolution of (4.8). On the set where u < u,
—Apu > fi(z,uVejvVe;) = fi(z,uVeje;) = alr) 2 —Apu;, (4.9)
SO u = Uy and similarly v > v;. So (4.8) has a solution (u;,v;) > (u;,v;) with

uj,v; € C “(£2) by pr0p0s1t10n 2 3.

Note that u; is a solution of (2.1) with f(x,s) = fi,(x,s,v;(x)) +1. Fix e > 0
and let C1 and C5 be the constants in (B4) that correspond to sg = €. We may
assume that each €; < ¢, so

f(x,8) = fi(z,s,0;(x) Ve;)+1 < CrsP 40y for all (z,8) € 2 x [g,00), (4.10)
where C = C5 + 1. Taking ¢ = (u; — )T in

/Q Va2V, - Ve = /Q f, )0 (4.11)
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and using (4.10) gives

/ |V(ﬁj - €)+|p < / (Clﬂ;;_l + Cé)(’a] — E)+. (4.12)
2 2

Since

VulP
Cy < )\Lp = inf fQ | U|

Jol¥ U (4.13)
wewd @\ {0y [q [ulP

this implies that ||(@; —&)"|1, is bounded. Then ||%;||~ is bounded by proposi-
tion 2.2 if p < n and bounded by the Sobolev embedding W, *(£2) < L>®(£2) if
p > n, and similarly so is ||7;]]cc-

Let M be the left-hand side of (3.4) and let

1
SUP (0, 0] x (0,01 ([ 2] V [92])

We may assume that each €; < M, so, for all € [0, po),
_Apaj = flj(xvﬂjvﬁj) +1=> flj(xvﬂjvﬁj) +:U’f2j(l'7ﬂj,1_)j)v (415)

and similarly —A,0; > g1,(x, @5, 0;) + pge,(x, @5, 05). O

5. Semipositone-type singular systems
Finally, we apply theorem 3.1 to obtain a solution of
—Apu = fr(z,u,v) + A+ pfa(z,u,v) in 2,
—Agv = g1(z,u,v) + A+ pga(z,u,v) in £2, (5.1)
u,v >0 in £2,
u,v =70 on 042,

where f1, f2, g1 and go are Carathéodory functions on 2 x (0, c0) x (0, 00) satisfying
the following:

(G1) fi(z,s,t) and fa(z,s,t) are increasing in ¢ for almost all z and all s, and
g1(x, s,t) and ga(x, s,t) are increasing in s for almost all z and all ¢;

(Gz) there are 0 < aq,31 < 1, ag, B2 > 0 with asfs < (p—1)(¢g—1), 1 < p1 <
p,1 < g1 < q, and positive constants C and D such that

—Cs™ < fi(z,s,t) S O(sPr7 L 422 1),
file,s,t) < O( ) } 52)

—Dt™P L gi(w,5,t) < DA 4572 1)
for all (x,s,t) € £2 x (0,00) x (0, 00);
(G3) for all s1,t; > 0, fo and g are bounded on 2 x (0, s1] x (0,4]

and A > 0 and p > 0 are parameters.
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THEOREM 5.1. Assume that (G1)—(Gs) hold. Then there is a Ag > 0 such that
for each X = Ao there is a pio(A\) > 0 for which (5.1) has a solution (u,v) with
u,v € CLY(02) N C(2) whenever p € [0, uo(N)).

loc

Proof. We apply theorem 3.1 with f = fi + A+ ufe and g = g1 + A + pgo. Define
fij, f2j, g1; and go; as in (3.1). We may assume that each €; < 1, so

fij(z,s,t) < C(sP 714102 ?’)’} (5.3)

for all (z,s,t) € 2 x (0,00) X (0,00).
First we construct a subsolution (u;,v;) of (3.2) satisfying (3.3). Let 0 < ¢, < 1
be an eigenfunction associated with Aip, let 1 < as < p/(p—14+ a1),1 < f2 <

q/(q— 1+ B1), and let u; = 72 /az,v; = ap’ffq/ﬁg. Then
(a2 =1)(p = DI[Ve1,l”

1—(a2-1)(p—1)
Lp

= a(z) — b(x)u; ™', (5.4)

—Apu, = (pgc,ypgfl)(pfl)(_prLp) _

where
p

(2 = 1)(p = 1)|Ve1,

a;, p—az(p—1+ai)
Ay P1p

Since ¢1, = 0 and V¢, # 0 on 912, in some neighbourhood 2’ C 2 of 012,
b(x) > C, and hence

a(r) = A2V, b(x) =

(5.5)

—Apu; < A1y — Cuy ™ < frj(@,uy,v) + A =1 (5.6)

R ]
for A > A1, +1 by (5.3). On 2\ 2, —Apu; < A1 and fi;(x,u;,v;) is bounded
since 1, is uniformly positive, so —Apu; < flj(z,uj, yj) + X\ — 1 still holds for A
sufficiently large. Now take p so small that pfe;(z,u;,v;) > —1. Similarly,
—Aqu; < g15(@, 15, 1;5) + A+ pga; (T, uj,v5)

for A large and p small.
Now we construct a supersolution (u;,v;) = (u;,v,) of (3.2) satisfying (3.4). Let

u Uy, Vs
u,v >0 in Cy**(2) be the solutions of the problems
—Apu=1 in {2,
—Au=1 in £,
5.7
u=0 on 0f2, (5:7)
v=0 on 02,

given by proposition 2.1, let ¢ > 1/(p — 1) and d > 1/(q — 1) with ao/(p — 1) <
c/d < (q—1)/Ba, and let @; = X\°u,v; = A\%v. For A large and y small,

—Apﬂj — /\C(Pfl)
> O 4082 4+ 3) + A+ 1
> f1j(z,05,9;) + A+ pfo;(z, 45, 0;) (5.8)
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by (5.3) and u; > u; since

—Apﬂj > /\1)p > —Aju,. (59)

P=)

Similarly, —AqT)]‘ > glj(x,aj,ﬁj) + A+ ,uggj(x,ﬂj,@j) and (> v O

Acknowledgements

S.E.M. was supported by Al-Imam University Project no. 200101202, Riyadh, KSA.

References

1 E. DiBenedetto. C11+ local regularity of weak solutions of degenerate elliptic equations.
Nonlin. Analysis 7 (1983), 827-850.

2 E. K. Lee, R. Shivaji and J. Ye. Classes of infinite semipositone systems. Proc. R. Soc.
Edinb. A 139 (2009), 853-865.

3 E. K. Lee, R. Shivaji and J. Ye. Classes of singular pg-Laplacian semipositone systems.
Discrete Contin. Dynam. Syst. A 27 (2010), 1123-1132.

4 M. C. Ledn. Existence results for quasilinear problems via ordered sub- and supersolutions.
Annales Fac. Sci. Toulouse Math. 6 (1997), 591-608.

5 K. Perera and E. A. B. Silva. On singular p-Laplacian problems. Diff. Integ. Eqns 20

(2007), 105-120.
(Issued 8 June 2012)

https://doi.org/10.1017/50308210510001356 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210510001356

