
Accession information: DOI: 10.1017/S1462399403006082; Vol. 5; 7 April 2003
 ©2003 Cambridge University Press

http://www.expertreviews.org/

Tr
an

sg
en

ic
 m

ic
e 

ca
rr

yi
n

g
 y

ea
st

 a
rt

if
ic

ia
l c

h
ro

m
o

so
m

es

1

expert reviews
in molecular medicine

Transgenic mice carrying yeast

artificial chromosomes

Kenneth R. Peterson

Kenneth R. Peterson
Associate Professor, Department of Biochemistry and Molecular Biology (and Department of
Anatomy and Cell Biology), 3901 Rainbow Blvd, University of Kansas Medical Center, Kansas City,
KS 66160, USA. Tel: +1 913 588 6907; Fax: +1 913 588 7440; E-mail: kpeterson@kumc.edu

University of Kansas Medical Center website: http://www.kumc.edu/

The generation of transgenic mice with yeast artificial chromosomes (YACs)
has proven to be a valuable system to: (1) study gene structure–function
relationships; (2) produce mouse models of human disease; (3) complement
mouse mutants; (4) generate mice bioreactors; and (5) screen YAC libraries in
vivo. Continued refinement of current techniques and development of new
protocols should encourage widespread adaptation of this strategy for these
and other applications. Use of whole loci as transgenes is an important
improvement in murine transgenesis because it results in a more realistic
pattern and level of gene expression during ontogeny. Application of this
technology to develop human artificial chromosomes (HACs) might provide
the next generation of gene therapy vectors that will overcome most of the
problems and barriers associated with current vector systems.

Until the advent of transgenic mouse technology,
studies of mammalian gene expression and
regulation were largely confined to cell lines
transfected with constructs containing limited
genetic information. Developmental studies were
not possible because cell lines are generally locked
into one ontogenic stage by virtue of having been
immortalised at whatever developmental stage
they had reached. By contrast, the establishment
of transgenic mouse technology as a routine
method in many laboratories facilitated the study
of gene function during development and in
disease (Refs 1, 2, 3, 4, 5). Transgene expression in
mice allowed complementation of existing murine
mutants and assessment of other phenotypic
effects. In addition, gene expression could be
studied throughout development and tissue-
specific regulatory elements could be analysed.

Despite the huge importance of transgenic
technology, expression of transgenes could be
erratic owing to position effects and copy-
number-independent expression (Ref. 6). In part,
these problems were a consequence of the nature
of the transgene constructs: typically, constructs
had to be limited in size because of constraints on
how large a DNA fragment could be stably cloned
into plasmid or cosmid vectors and isolated
without degradation before introduction into the
mouse. Thus, genes with exons spanning several
hundred kilobases, or loci containing multiple
genes, could not be used as transgenes, nor could
potentially important or unidentified cis-acting
sequences be included. cDNAs were often
substituted for large genes, or individual genes
from a multigene cluster were utilised. However,
expression from these constructs was subject to
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the effects of the surrounding chromatin into
which they were integrated (Ref. 6). Some
improvement was achieved when additional
cis elements were included, such as enhancers,
introns and polyadenylation signals (Refs 7, 8, 9,
10). Although these extra sequences boosted the
level and reproducibility of transgene expression,
the truncated constructs lacked their natural
regulatory elements, and thus developmental
studies did not necessarily indicate how the native
gene might be regulated.

Full-size, intact genes or entire loci used as
transgenes might improve the utility of transgenic
studies, and inclusion of distal regulatory
elements as part of the native locus might
validate developmental studies and insulate the
construct from position effects. By recreating
more-native genetic conditions, mouse models
of human disease might better recreate the
pathogenic phenotype observed in patients. With
this in mind, in 1993 several research groups
successfully implemented the use of yeast
artificial chromosomes (YACs) as transgenes
(Refs 11, 12, 13, 14, 15, 16, 17, 18, 19). A number
of techniques have been described that are
suitable for introducing YACs into transgenic
mice (reviewed in Refs 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31). This review discusses the
development of YAC-transgenic technology,
examples of transgenic mouse models and the
types of information that can be obtained from
them, and also the development of human
artificial chromosomes (HACs) and their potential
use in gene therapy.

Cloning and maintenance of
large DNA sequences

Although YAC vectors are the primary focus
of this review, alternative vector systems are
available that can accommodate large DNA
fragments. Bacteriophage λ  clones can contain
up to 22 kb, and cosmid clones up to 40 kb; DNAs
of this size are routinely introduced in the
production of transgenic animals. Other large-
capacity cloning vectors include bacteriophage
P1 (Ref. 32), P1 artificial chromosomes (PACs;
Ref. 33), fosmids (based on the Escherichia coli F
factor replicon; Ref. 34) and bacterial artificial
chromosomes (BACs; Ref. 35).

YACs have several distinct advantages over
other large-capacity cloning vectors. First, the
maximum insert size that can be contained in
YACs is ~2 Mb (Ref. 36) – regions too large to be

cloned intact using traditional bacterial cloning
systems. By contrast, P1 can maintain only up to
100 kb, and PACs and BACs have cloning
capacities up to 350 kb. Using YACs, intact genes,
multigenic loci, distant regulatory sequences and
higher-order genomic structure can be studied in
the context of native sequences. Because extensive
sequences, including coding regions and flanking
genomic DNA, can be maintained in an inert state
in YAC clones, all sequences having potential
regulatory relevance, as well as distances between
genes and control elements, are maintained.
Second, site-specific mutagenesis can be readily
and efficiently performed in vivo using the
homologous recombination system of the yeast
host instead of recombinant DNA technology
(Refs 37, 38, 39, 40). Point mutations, deletions,
insertions and replacements can be easily
introduced into a YAC without leaving behind
foreign DNA, such as selectable marker cassettes,
or without producing unwanted alterations.
These mutant YACs can then be used to generate
transgenic mice in order to study the effect of the
mutation on transgene expression.

Although not the focus of this review,
mention should also be made of new and diverse
methodologies that have been developed to
modify BACs accurately in a manner similar to
YACs (Refs 41, 42, 43, 44, 45, 46, 47). The most
widely used technique is called ‘ET-cloning’ and
several modified versions of this method have
appeared (Refs 44, 45, 46, 47).

YAC vectors
Use of YACs for maintenance of exogenous
genomic sequences was first described by Burke
and colleagues in 1987 (Ref. 36). Since then, a
large variety of vector derivatives have been
synthesised that are optimised for specific
applications, many of which have been catalogued
(Refs 21, 31). All YAC clones share several
common elements (Fig. 1), consisting of two
‘arms’ flanking a unique restriction enzyme
cloning site for insertion of genomic DNA. The
arms contain yeast chromosome sequences
essential for vector maintenance such as a
centromere (CEN), two telomere (TEL) regions
and an autonomous replication sequence (ARS).
One yeast gene that allows prototrophic selection
for yeast containing the YAC is carried on each
vector arm; this is usually TRP1 (necessary for
tryptophan synthesis) and URA3 (necessary for
uracil synthesis).
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Figure 1. Schematic representation of a YAC clone. The yeast chromosomal elements on the YAC (yeast
artificial chromosome) vector arms are displayed as variously coloured boxes or arrows, based on the pYAC4
vector (11.5 kb). Although there is no minimum fragment size and the maximum size is constrained by limitations
of current methodology, reported cloned insert sizes range from 23 kb to over 2 Mb. The centromere, telomere
and origin of replication elements are the minimal sequences required to form a chromosome, and are essential
for the function of artificial chromosomes in yeast. Abbreviations: ARS1, autonomous replicating sequence;
CEN4, centromere; TEL, telomere; TRP1, yeast selectable marker for tryptophan prototrophy; URA3, yeast
selectable marker for uracil prototrophy (fig001kpk).
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Figure 2. Retrofitting of the pYAC4 vector. (a) An unmodified YAC (yeast artificial chromosome) clone can
be ‘retrofitted’ to increase its versatility by homologous recombination with ‘retrofitting fragments’. (b) This
generates a new vector with improved utility with respect to mutagenesis, structural analysis of inserts and
vector selection: it contains the LYS2 gene instead of URA3, rare-cutting I-PpoI restriction enzyme sites near
the vector–insert junction, and a PGKneo cassette to select transfected embryonic stem (ES) cells (see
Ref. 49 for further details). The use of LYS2 as a selectable marker on the YAC arm instead of URA3 frees
URA3 for use in yeast-integrating plasmid (YIP)-mediated ‘pop-in, pop-out' mutagenesis (Fig. 3) Dashed lines
indicate boundaries of homologous recombination. Abbreviations: ARS1, autonomous replicating sequence;
CEN4, centromere; I-PpoI, rare-cutting restriction enzyme sites introduced into the YAC vector arms for YAC
transgene structural analysis; LYS2, yeast selectable marker for lysine prototrophy; PGKneo, mammalian
selectable marker for resistance to G418; TEL, telomere; TRP1, yeast selectable marker for tryptophan
prototrophy; URA3, yeast selectable marker for uracil prototrophy (fig002kpk).
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Optimisation of YAC vectors for use in
generating YAC-transgenic mice
Many YAC clones have been constructed in YAC
vectors such as pYAC4, which has the selectable
markers TRP1 and URA3 (Refs 21, 31, 48). These
clones can be used directly to generate transgenic
mice, but their versatility is limited for production
of transgenics containing mutant YACs. To
enhance their utility, three problems must be
rectified by modification of the YAC vector
arms – a process called ‘retrofitting’ (Fig. 2).
First, although mutagenesis by homologous
recombination in yeast has been well documented
using the URA3 marker in a two-step differential
selection process (Refs 37, 38, 39, 40), the presence
of the URA3 gene on the arm of the YAC vector
precludes its use for this purpose and it must be
deleted from the vector. Second, owing to the
lack of unique rare-cutting restriction enzyme
sites in the YAC vector, structural analysis to
determine the integrity of YAC transgenes is
difficult without a comprehensive restriction map
of the cloned insert. Third, although YACs can
also be introduced into embryonic stem (ES) cells
for the generation of chimaeric mice, or into
other established cell lines, a selectable marker
such as the gene encoding neomycin resistance is
necessary to select YAC-bearing cell clones.

Retrofitting YAC vectors to incorporate
sequence motifs that increase the utility of
the vectors is accomplished by homologous

recombination. The details of this process have
been described elsewhere and many constructs
are available for retrofitting YACs (Refs 20, 21, 26,
31, 48, 49). For example, one series of retrofitting
constructs alters the YAC vector such that the three
problems just described are solved (Fig. 2) (Ref.
49). The TRP1 gene on the left arm of the YAC is
replaced with the yeast LYS2 gene (necessary for
lysine synthesis) and a rare-cutting I-PpoI
restriction enzyme site is introduced near the
insert–vector junction. The URA3 gene on the
right arm of the yeast vector is replaced with the
yeast TRP1 gene, a PGKneo gene and another
I-PpoI site near the insert–vector junction. The
YAC vector is selected for by growing yeast in
the absence of tryptophan and lysine. The
PGKneo cassette provides a selectable marker for
transfected ES cells, and the I-PpoI sites allow
structural analysis of intact YAC inserts without
the need for a restriction enzyme map of the
cloned insert.

Mutagenesis and segregation of YACs
A major advantage to using YACs as transgenes
is the ease of site-specific mutagenesis of a target
gene or cis-regulatory sequence. Homologous
recombination in the yeast host can be used to
introduce almost any mutation into the YAC DNA
prior to transgenesis. Two methods for this type
of manipulation have been described in detail
elsewhere (Refs 26, 39, 40). The ‘pop-in, pop-out’

Figure 3. Introducing mutations into YAC vectors (legend; see next page for figure). (a) The ‘pop-in, pop-
out’ method. In the first step (‘pop-in’) of this method of homologous recombination in yeast, a yeast-integrating
plasmid (YIP) made linear by digestion with a restriction enzyme is transformed into yeast where it recombines
with the YAC (yeast artificial chromosome) vector (solid lines indicate crossover regions). The recombinant
vector carrying the URA3 gene is selected using uracil prototrophy. The intermediate construct contains a
duplication of the target sequence, one wild-type and one mutant, with the YIP vector sequences, including the
URA3 cassette, in between. In the second step (‘pop-out’), uracil is added back to the medium so that the
URA3 gene is no longer required for viability. At a frequency of 10−4 to 10−5, spontaneous recombination events
occur between the duplicated target sequence resulting in either reversion to wild-type sequence or retention
of the mutant sequence. These events can be selected for using 5-fluororotic acid (5-FOA): URA3 metabolises
5-FOA into a toxic compound. Yeast that maintain URA3+ YACs are killed, whereas yeast lacking URA3 are
resistant to 5-FOA (5-FOAR). Thus, YIP integration into the YAC involves only a single crossover event, as
does the excision of YIP sequences, and both steps can be selected. For further details of this method, see
Refs 39 and 40. (b) The ‘sequence-replacement’ method. In the first step of this method of homologous
recombination in yeast, the targeting fragment contains the desired mutation and is interrupted by the URA3
cassette. Selection is for uracil prototrophy. In the second step, the targeting fragment also contains the mutation,
but lacks the URA3 cassette. The URA3 gene is lost following recombination and the mutant target sequence
is recreated without interruption. Selection is for 5-FOA resistance. Note that whereas the ‘pop-in, pop-out’
method uses a single YIP vector that recombines via a single crossover event following only one transformation
of YAC-bearing yeast, the ‘sequence-replacement’ method uses two DNA fragments requiring two yeast
transformations, both of which recombine through a double crossover event. For further details of the ‘sequence-
replacement’ method, see Ref. 39 (fig003kpk).
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Figure 3. Introducing mutations into YAC vectors (see previous page for legend) (fig003kpk).

method has been used most extensively and
requires the production of only one construct in a
yeast-integrating plasmid (YIP; Fig. 3a) (Refs 39,
40). YIP integration into the YAC involves only a
single crossover event, as does the excision of YIP
sequences, and both steps can  be selected. The
‘sequence-replacement’ method is advantageous
for the introduction of large deletions, but is also
applicable for recombining point mutations,
small deletions or insertions into the target YAC

sequence (Fig. 3b) (Ref. 39). The ‘sequence-
replacement’ method has the disadvantage of
needing two constructs. Thus, two transformations
of yeast are required to produce a mutant YAC.
However, this approach can be used to introduce
mutations into the YACs when a convenient
scheme cannot be devised using the YIP-mediated
‘pop-in, pop-out’ method of mutagenesis.

The presence of both mutant and wild-type
YACs are frequently observed in the same yeast

Expert Reviews in Molecular Medicine C 2003 Cambridge University Press
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isolate after mutagenesis (Ref. 50). YACs are not
replicated and meiotically segregated in strict
concordance with yeast chromosomes. Over
time, even under selection, daughter cells arise
that carry one or more YAC copies. During
mutagenesis by recombination, the targeting
vector needs to integrate in only one of these YAC
copies to establish selection through the marker
on the vector. Thus, in a single yeast cell, mutant
and normal YACs might co-exist. These YACs
should be segregated from one another to avoid
co-injection of the normal and modified YACs.
One of two schemes is normally used for this: the
mutant and wild-type YACs can be meiotically
segregated (Ref. 39) or, alternatively, the ‘kar-
crossing’ method can be utilised (Refs 51, 52, 53).
In the latter approach, a YAC-containing strain
is mated with a kar1 mutant strain, which is
defective in nuclear fusion. Karyogamy does
not occur and a heterokaryon is formed with
two nuclei. Haploid progeny derived from a
heterokaryon share parental cytoplasm, but
contain the nucleus from one parent or the other.
At very low frequencies, a YAC will be transferred
from one nucleus to the other in a heterokaryon.
Selection is for the YAC and against the donor
nucleus; thus, multiple copies of the YAC can
be segregated from one another. A third method
is to grow the yeast host in the absence of
selection and to allow the YACs to partition
asymmetrically into daughter cells during cell
divisions [P.A. Navas (Division of Medical
Genetics, University of Washington, WA, USA),
pers. commun.]. Selection is re-applied and yeast
colonies are screened for mutant or wild-type
YACs. This approach is less cumbersome and can
be performed in parallel to the aforementioned
methodologies.

Generation of YAC-transgenic mice
Three basic methods have been described for
the production of YAC-transgenic mice (Fig. 4):
(1) fusion of yeast spheroplasts with ES-cell
protoplasts (Refs 11, 19); (2) lipofection of purified
YAC DNA into ES cells (Refs 13, 14, 17, 18); and
(3) direct microinjection of purified YAC DNA into
mouse oocyte pronuclei (Refs 12, 15, 16). Usually
a yeast clone containing the YAC transgene of
interest is isolated prior to transgenesis, but some
applications described below utilise whole YAC
libraries. The first two of these methods introduce
YACs into ES cells, which are subsequently used
for injection of blastocysts to produce YAC-

bearing mice; in the third method, the DNA is
instead injected directly into mouse oocyte nuclei
to produce YAC-bearing mice. The salient features
of each method are outlined below and their
advantages and disadvantages are summarised
in Table 1. Details of these methods are reviewed
elsewhere (Refs 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30). Table 2 provides a comprehensive list of YAC-
transgenic mice and the method by which they
were produced.

Yeast–ES-cell fusion
YACs are first retrofitted with a PGKneo gene
cassette by homologous recombination in yeast
(see above). Yeast spheroplasts are enzymatically
generated and then fused to ES cells using
polyethylene glycol (PEG). Selection for G418
resistance (encoded by the neo gene) results in up
to 40% of the ES cells retaining single or multiple
YAC copies that contain most of the YAC,
including both vector arms (Ref. 22). Chimaeric
mice are generated from the ES cells; these
mice are capable of germline transmission of
the YAC DNA (Ref. 11). This method does not
require purification of the YAC DNA, which
could produce some fragmentation of the YAC,
especially as the YAC size increases. In fact, yeast
genomic DNA is also transferred by this method
and has been found in ES cells after fusion;
however, yeast DNA does not appear to inhibit
ES cells from generating chimaeric mice, nor does
it prevent germline transmission (Ref. 11). Because
of the size constraints on insert size imparted by
the other two methodologies, yeast–ES-cell fusion
might be the only method available for transfer
of megabase size YAC DNAs such as the 2.3 Mb
Duchenne muscular dystrophy gene (Refs 54, 55).

Lipofection of ES cells
Purified YAC DNA is complexed with a lipid
reagent and transfected into ES cells. Selection in
G418 for retrofitted YAC transductants carrying
the neo gene is performed as described for
spheroplast fusion, or by cotransfection of YAC
DNA and PGKneo-cassette-containing plasmids.
Approximately 10% of G418-resistant ES cells
contain an intact copy of the retrofitted YAC DNA
(Refs 13, 17); the level drops to 1% for YACs
cotransfected with a PGKneo plasmid (Refs 14, 18).

Microinjection of murine pronuclei
Production of transgenic mice by pronuclear
injection requires highly purified DNA (Refs 12,
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15, 16). A minor problem to be overcome during
development of this protocol was cleaning of the
DNA solution to avoid clogging of the injection
needle. Undigested agarose or insoluble particles
are removed from the DNA solution by filtration

(Refs 15, 56), dialysis (Refs 12, 16) or centrifugation
just prior to injection (Refs 15, 57). The efficiency
of transgenesis obtained by injecting a 248 kb
human β-globin locus YAC using this protocol
was 10–14%, a level similar to that achieved with

Figure 4. Generation of YAC-transgenic mice. A YAC (yeast artificial chromosome) library is constructed
using target genomic DNA, yeast are transformed and desired YAC clones are isolated using standard techniques
for library screening. YAC clones can also be identified in existing YAC libraries available commercially or
through different laboratories. In some instances, entire libraries are used to produce transgenic mice when
the goal is to identify a YAC clone by complementation of a mouse mutation or through a predicated phenotype
in mice (see Table 2 for examples). For most applications individual clones are utilised. Three alternative
methods can be used for the production of YAC-transgenic mice. (a) YAC-containing yeast spheroplasts can
be enzymatically generated and fused to embryonic stem (ES) cells using polyethylene glycol (PEG). Selection
for G418 resistance (G418R; encoded by the neo gene carried by the YAC vectors) results in up to 40% of the
ES cells retaining single or multiple YAC copies that contain most of the YAC, including both vector arms.
(b) Purified YAC DNA can be complexed with a lipid reagent and introduced into ES cells by lipofection.
Selection in G418 results in approximately 1–10% (depending on the method of selection, see main article) of
G418-resistant ES cells containing an intact copy of the retrofitted YAC DNA. (c) Purified YAC DNA can be
directly microinjected into fertilised mouse oocyte pronuclei. The efficiency of transgenesis obtained using this
protocol has been reported as 10–14%, but only 2–4% contained intact YAC transgenes. In the first two of
these methods, ES cells carrying the YAC vector are used for injection of blastocysts to produce YAC-bearing
mice (which are chimaeric because they develop from a mixture of recombinant and their own ES cells). In the
third method, because the YAC DNA is introduced directly into the oocyte, a transgenic mouse is generated.
For further details of these methods, see Refs 11, 12, 13, 14, 15, 16, 17, 18 and 19 (fig004kpk).
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injection of smaller plasmid or cosmid constructs
(Ref. 15), but only 2–4% contained intact YAC
transgenes. Schedl et al. (Ref. 12) reported a
1% yield of transgenic mice containing intact YAC
DNA following injection of a 250 kb mouse
tyrosinase YAC. Furthermore, for transgenesis
by microinjection, the number of mice containing
intact YAC copies drops as the YAC vector size
exceeds the 500–650 kb range. Larger YAC
DNAs will not pass through the bore of the
microinjection needle without a high probability
of mechanical shearing.

Purification of YAC DNA
Both lipofection of ES cells to produce chimaeric
mice and microinjection of murine pronuclei to
produce transgenic mice require purified YAC
DNA. However, in vitro manipulation of DNA
causes physical damage to DNA molecules larger
than 40–50 kb, such as deletions of the 5' and 3'
ends of YAC clones, and in early studies the major
technical difficulty was stabilising the YAC DNA
in vitro to minimise shear and denaturation.
Gnirke et al. found that solutions of high ionic
strength could be used as a protective agent such
that intact YAC DNA could be obtained (Ref. 57);
other groups found that polyamines or high salt
plus polyamines had a similar effect (Refs 12, 58).
The second problem that had to be overcome in

early studies was the concentration of DNA
solutions within a useful range for lipofection or
microinjection. Current protocols circumvent this
problem by using a final concentration step.

Briefly, the steps used currently in YAC
DNA preparation are as follows: (1) preparative
pulsed-field gel electrophoresis (PFGE) to
fractionate the yeast chromosomes and YAC;
(2) enzymatic digestion of the agarose gel slice
containing the YAC using agarase or gelase
(Ref. 58) in the presence of high salt and/or
polyamines to protect against shearing (Ref. 59);
and (3) concentration by low-speed ultrafiltration
(Refs 15, 17, 57) or dialysis with sucrose (Ref. 12).
In some cases, the first step includes a second
electrophoresis carried out perpendicular to the
first separation, to pre-concentrate the YAC
DNA before enzymatic digestion of the gel slice
(Refs 12, 60, 61, 62).

Identification and structural analysis of
YAC-transgenic mice

Demonstration of YAC integrity in transgenic
mice is necessary since fragmentation of YACs
can occur during in vitro manipulation and
microinjection, as described above. Incomplete
YAC copies could affect spatial and temporal
patterns of transgene expression as a result of loss
of gene structural or regulatory sequences,

Table 1. Comparison of YAC transgenesis methods (tab001kpk)

Method Advantages Disadvantages

Yeast–ES-cell YAC DNA purification not required Effect of yeast genomic DNA
fusion High percentage of cells harbour on ES cells and transgenic mice

intact YAC copies is unknown
Structural analysis possible in cells Process to obtain germline-
before generation of chimaeric mice; transmitting chimaeric mice
functional analysis using ES cells is time-consuming
also possible

Lipofection of ES cells Yeast genomic DNA not transferred Difficult to isolate intact YAC DNA
Transgene structure–function studies Cells usually contain single or
possible in cells before generation multiple fragmented YAC copies
of mice in addition to intact copies

Lengthy process to generate
chimaeric mice with ES cells

Pronuclear Rapid production of transgenic mice Difficult to isolate intact YAC DNA
microinjection relative to ES-cell-generated Potential for shear and fragmentation

chimaeric mice of YAC DNA during microinjection
Yeast genomic DNA not transferred

Abbreviations: ES cell, embryonic stem cell; YAC, yeast artificial chromosome.
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Table 2. Transgenic or chimaeric mice produced with YACsa (tab001kpk)

Gene/locus: Transfer Size (kb),
disease model/goal method structure Expression Refsb

Human hypoxanthine Spheroplast– 670, Tissue-specific, 11
phosphoribosyltransferase ES-cell fusion probably intact endogenous level
(HPRT) locus:
complementation of mutation

Mouse tyrosinase gene: Pronuclear 35, 250, Position-independent, 12, 92
rescue of albino phenotype, injection intact endogenous level
structure–function studies

Mouse α1(I) collagen Lipofection 150, Endogenous level 13
(Col1a1) locus: of ES cells probably intact
complementation of mutation

Human heavy chain Ig gene: Lipofection 85 Low level 14, 93
human antibody production of ES cells

Human β-globin locus: Pronuclear 248, 150, Tissue-specific, 15, 16, 56, 66,
sickle cell disease, injection intact position-independent, 72, 73, 94, 95,
β-thalassemias, endogenous level 96, 97, 98, 99,
structure–function studies 100, 101, 102,

103, 104, 105,
106, 107, 108,
109, 110, 111,
112

Human β-amyloid precursor Lipofection of 400, 650, Tissue-specific, 17, 18, 113,
protein (APP) gene: ES cells might be intact endogenous level 114, 115
Alzheimer’s disease,
Down syndrome

Human Ig light chain: Spheroplast– 300, 1300, –c 19
human antibody production ES-cell fusion probably intact

Human heavy chain Ig gene Spheroplast– 220, 170, 800, High level 74, 75, 116,
and light chain κ gene: ES-cell fusion 1020 117, 118
human antibody production

Human apolipoprotein (a) gene: Pronuclear 270, 370, 270, Tissue-specific, 119, 120, 121
atherosclerosis, injection probably intact; probably position-
structure–function studies 320, not intact independent, high level

Human chromosome 21 region Pronuclear 430–1100, Position-independent 122, 123
21q22.2: Down syndrome injection intact

Human apolipoprotein B gene: Pronuclear 108, High level 124, 125
structure–function studies injection probably intact

Mouse Xist/Xic gene: Pronuclear 350, 450, Not tissue-specific in 126, 127, 128,
X chromosome inactivation injection; 460, 480 all animals, 129

lipofection of position-dependent
ES cells

Human PMP22 gene: Pronuclear 560, Tissue-specific, 76
Charcot-Marie-Tooth disease injection intact probably position-
type 1A dependent, high level

(continued on next page)
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Table 2. Transgenic or chimaeric mice produced with YACs (tab001kpk)
(continued)

Gene/locus: Transfer Size (kb),
disease model/goal method structure Expression Refs

Human membrane cofactor Pronuclear 420 Tissue-specific, 130, 131,
protein (MCP), CD59, CD46: injection position-independent, 132
xenotransplantation, copy-number-
measles virus infection, dependent, near
structure–function studies endogenous level

Human PAX6 gene: Pronuclear 420, 310, Tissue-specific, 68, 133
aniridia injection intact position-independent,

endogenous level

Human Huntingtin: Pronuclear 350, 600, Tissue-specific, 134, 135,
Huntington’s disease injection probably intact position-independent, 136, 137,

probably copy- 138
number-dependent,
2–3-times endogenous
level

Human IgH/c-myc: Spheroplast– 240, Tissue-specific 139, 140
Burkitt’s lymphoma ES-cell fusion probably intact

Human chromosome 5 Pronuclear 350–500 – 141, 142
5q31 cluster region: injection
gene discovery

Human hepatic nuclear Pronuclear 170, Tissue-specific, 143
factor 3γ (Hnf3γ)–lacZ: injection probably intact position-independent,
structure–function studies copy-number-dependent

Human CFTR: Pronuclear 310, Tissue-specific, 144, 145,
cystic fibrosis injection probably intact position-independent, 146, 147

copy-number-dependent,
low level

Human Bruton’s tyrosine Pronuclear 340, Tissue-specific, 148
kinase (Btk) gene: X-linked injection probably intact probably position-
agammaglobulinaemia (XLA) independent,

endogenous level

Mouse H19, insulin-like Pronuclear 130 – 149, 150,
growth factor 2 (Igf2) region: injection 151
genomic imprinting

Mouse insulin-like growth Pronuclear 300 Tissue-specific 152
factor receptor 2 (Igf2r) gene: injection
genomic imprinting

Mouse myogenic factor 5 Spheroplast– 680, Tissue-specific 153, 154
(Myf-5) gene, Myf-5–lacZ: ES-cell fusion; fragmentation
structure–function studies pronuclear derivatives of

injection 1000

Human androgen receptor + Pronuclear 450, No expression 155
CAG repeats: spinal-bulbar injection not intact
muscular dystrophy

(continued on next page)
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Table 2. Transgenic or chimaeric mice produced with YACs (tab001kpk)
(continued)

Gene/locus: Transfer Size (kb),
disease model/goal method structure Expression Refs

Mouse GATA-3, GATA-3–lacZ: Pronuclear 120, 540, 625, Enhanced tissue 156, 157
structure–function studies injection intact specificity as YAC size

increases, near
endogenous level with
540 and 625

Human SOX9–lacZ: Pronuclear 350, 600 Partially tissue-specific, 158
campomelic dysplasia injection enhanced as YAC size

increases

Mouse downless Pronuclear 200 – 159, 160
(TNF receptor homologue): injection
autosomal hypohidrotic
ectodermal dysplasia (HED)

Mouse inversin: Pronuclear 450 – 161
inversion of visceral injection
left–right asymmetry,
complementation of mutation

Mouse GATA-2–lacZ: Pronuclear 120, 200, 250, Tissue specificity 162
structure–function studies injection intact enhanced as YAC size

increases

Human Wilms’ tumour 1 Pronuclear 280, 470, Tissue-specific, 163, 164
(WT1)–lacZ: nephroblastomas, injection probably intact probably endogenous
structure–function studies level

Human XIST/XIC: Lipofection of 320, 460, 480 165, 166
X chromosome inactivation ES cells

Human DAZ: Pronuclear 225, Tissue-specific, 167
spermatogenic defects injection not intact low level

Human macrophage Pronuclear 180 Tissue-specific, 168
scavenger receptor injection high level
(MSR class A):
atherosclerosis

Human presenilin 1 (PS-1): Lipofection of 1000, Tissue-specific, 114
Alzheimer’s disease, ES cells probably intact probably endogenous
Down syndrome level

Human asthma QTL: Screening of 400 – 142
asthma 5q cluster YAC

mice above

Mouse olfactory receptors: Lipofection of 300, Tissue-specific, 169
allelic inactivation ES cells probably intact not position-

independent

Human carnitine transport Deficiency mice 450 Tissue-specific, 170
(OCTN2) gene: carnitine bred with endogenous level
deficiency 5q cluster YAC

mice above
(continued on next page)
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Table 2. Transgenic or chimaeric mice produced with YACs (tab001kpk)
(continued)

Gene/locus: Transfer Size (kb),
disease model/goal method structure Expression Refs

Human FMR1; Pronuclear 450 Tissue-specific, 171
fragile X syndrome, injection high level
complementation of mutation

Mouse kainate receptor Pronuclear 550 Tissue-specific 172
subunit KA1-Cre: injection
structure–function studies

Human VPAC2R receptor gene; Pronuclear 117 Tissue-specific, 173
structure–function studies injection high level

Human platelet-derived Pronuclear 380 Partially tissue- 174
growth factor receptor α injection specific, low level
(PDGFRα) gene:
complementation of mutation

Human preprotachykinin-A Pronuclear 380 Tissue-specific, 175, 176,
(PPTA) gene: injection high level 177
structure–function studies

Mouse glucocorticoid receptor: Pronuclear 290 Tissue-specific, 178
structure–function studies injection endogenous level

Mouse Smcy geneL: Pronuclear 400 Not tissue-specific 179
rescue arrest of injection
spermatogenesis

Human Friedreich’s ataxia Pronuclear 370 Tissue-specific, 180
(FRDA) gene (frataxin): injection endogenous level
complementation of mutation

Human HLA DR3-DQ2 Lipofection of 320 Tissue-specific 181
MHC haplotype region: ES cells
structure–function studies

Human MJD1 gene Pronuclear 250 Tissue-specific, 182
+/− CAG repeat (ataxin 3): injection position-independent,
spinocerebellar ataxia 3 copy-number-dependent,
(Machado-Joseph disease) near endogenous level

a YAC transgenic mice are listed chronologically, based on their first appearance in the literature.
b The first reference for each YAC is the initial report of transgenesis with that construct. After that,
references are cited alphabetically by first author, then year.
c Dashes indicate no data are available.

Abbreviations: ES cell, embryonic stem cell; YAC, yeast artificial chromosome.

resulting in inaccurate or misleading data. The
importance of detailed structural analysis of
YAC-transgenic mice cannot be overemphasised,
and only transgenic mice with intact copies of the
transgene contained within the YAC should be

utilised for functional studies to avoid drawing
incorrect conclusions about expression from
functional data.

Generally, four types of structural analysis
should be completed prior to beginning functional
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studies. These analyses include: (1) preliminary
identification of transgenic founder animals that
contain complete YACs for establishment of
transgenic lines; (2) detailed structural analysis
of individual YAC copies in each established line;
(3) determination of the site of integration in the
murine genome; and (4) determination of copy
number (see Ref. 26 for a review of these four
protocols).

Methods of detailed structural analysis
A number of methods have been applied to
determine the continuity of individual YACs
within the murine genome. Standard Southern
blot analysis of restriction-enzyme-digested
transgenic genomic DNA or polymerase chain
reaction (PCR) analysis detects the presence of
YAC sequences of limited length (~0.1–20 kb).
PCR can also be used to demonstrate the presence
of the left and right YAC insert–vector junctions
(Refs 15, 57). The detection of these two junctions
suggests that the entire YAC insert might be
integrated into the mouse genome, although YAC
vector sequences flanking the insert could still
have been lost. However, none of these methods
unambiguously demonstrates that YAC clone
sequences are contiguous on single molecules. For
example, deletions of the 5' and 3' ends of YAC
molecules occur as a result of shear. Two YACs,
one with a 5' deletion and one with a 3' deletion,
could integrate into the murine genome. The
aforementioned methods would detect all YAC
sequences, implying that an intact YAC copy
exists when in fact they are carried on two deleted
copies.

Three approaches have been described to
determine the continuity of sequence within
individual YAC transgene copies: (1) RecA-
assisted restriction endonuclease cleavage
(RARE) (Refs 63, 64); (2) fibre fluorescent in situ
hybridisation (fibre-FISH) (Ref. 65); and (3)
long-range restriction enzyme mapping (LRRM)
(Refs 26, 50). RARE allows detection of the
integrity of the entire insert cloned into the YAC
vector, whereas LRRM can be used to analyse the
entire insert as a single fragment or internal
fragments that encompass all or most of the
transgene contained in the YAC insert. RARE and
fibre-FISH are technically difficult for structural
analysis of many transgenic animals and, because
these methods have been described previously
(Refs 63, 64, 65), only LRMM is discussed further
here.

LRRM is a method for structural analysis of
individual YAC copies in transgenics generated
using a YAC vector that employs distant, rare-
cutting restriction enzymes. This technique is
useful when unique restriction enzyme sites flank
the transgene within the YAC insert or exist at the
YAC insert–vector junctions (see Refs 26, 56, 66
for further details). The approach is particularly
applicable if the YAC clone was retrofitted with
unique rare-cutting restriction enzyme sites such
as that of I-PpoI at the insert–vector junctions prior
to transgenesis (Refs 20, 21, 26, 31, 49, 67). I-PpoI
is an intron-encoded endonuclease that recognises
a 15-nucleotide sequence and is an extremely rare
cutter. Loss of one YAC arm as a result of
mechanical shear would result in the loss of one
I-PpoI site, and the juxtaposition of one nearby
in the murine genome would be unlikely. Thus,
an intact locus residing on a YAC transgene with
a deletion of one of the I-PpoI sites would not be
revealed by LRRM unless a murine site was
near enough to produce a fragment size that could
be resolved by pulsed-field gel electrophoresis.
Identification of other rare-cutting restriction
enzymes  unlikely to digest YAC clones of interest
should be a high priority when retrofitting YAC
vector arms. Choosing a restriction enzyme whose
corresponding restriction sites are more abundant
than that of I-PpoI in the mouse genome, yet that
still has a low probability of cutting within the
YAC, will facilitate structural analysis of YAC-
transgenic mice.

Site of integration and copy number
In addition to a structural analysis of individual
transgene copies, it is often of interest to determine
the site of integration of the transgenes within the
genome, as well as the transgene copy number.
FISH has been used to examine metaphase
chromosome or interphase nuclei spreads to
determine the transgene integration site (Refs 50,
68). The presence of tandemly arrayed multiple
copies of YACs at a single integration site can also
be detected using FISH. Interphase nuclei
preparations from transgenic livers are hybridised
with a cosmid containing sequence homologous
to the centre of the YAC insert. If the cosmid probe
is small relative to the YAC and hybridises close
to the centre of the YAC, individual copies of the
YAC can be discriminated when the chromatin is
stretched in interphase nuclei preparations. In
addition, by using an ordered array of cosmid
probes spanning the YAC from the 5' end to the 3'
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end, the spatial order of each copy with regard to
one another (head-to-tail, head-to-head, etc.) and
their integrity (presence of all probes within a
transgene copy) can be ascertained (Ref. 68).

Determination of transgene copy number is
important to assess accurately the per-copy
levels of transgene expression. Although FISH
analysis of interphase nuclei allows a gross
estimate of copy number (see above), the most
accurate method is hybridisation intensity.
Fragments from the interior of the YAC should
be assessed by Southern blot analysis since these
will be the same size from all copies of the YAC
regardless of the loss of the YAC vector arms in
some copies. This information, coupled with
LRRM of individual copies and FISH, allows an
accurate assessment of numbers of complete and
incomplete copies.

Gene expression studies in
YAC-transgenic mice

Transgenic mice containing YAC DNA can be
used to study intact genes surrounded by large
regions of native flanking DNA sequence in all
tissues of the mouse at any developmental stage.
Several transgenic mice have been produced using
both human and murine YACs by the methods
described above, and the level and control of
expression has been analysed (summarised in
Table 2). The remainder of this review highlights
the types of studies that can be performed with
YAC transgenics. Examples are presented of
how YAC-transgenic mice can be used to: (1)
study cis regulation of gene expression by YAC
mutagenesis; (2) produce mice that function as
bioreactors; and (3) generate mouse models of
human disease.

Studying cis regulation of gene expression
by YAC mutagenesis
A study of transgenic mice bearing the human
β-globin locus (β-YAC) was the first report of a
multigenic YAC in which gene expression
followed the correct developmental progression
(Ref. 15). Globin transgene expression was shown
to be tissue-specific, position-independent and
copy-number-dependent. Expression of the
human β-globin genes within these transgenic
mice was found to parallel that of the endogenous
murine genes yet retain the human expression
pattern (Refs 15, 16). Thus, these transgenics
represent a good example of the type of analyses
that can be carried out using the YAC-transgenic

system, and efforts to identify the cis-acting
sequences responsible for the developmental
regulation of the human multigene locus were
undertaken.

The first demonstration that the YAC-
transgenic system could be used to study the cis
control of developmental expression was carried
out by introducing a single base-pair substitution
at position −117 relative to the mRNA start site of
the Aγ-globin gene of the human β-globin locus
(Fig. 5) to mimic a mutation in humans that causes
hereditary persistence of foetal haemoglobin
(HPFH) in adult blood (Ref. 69). Transgenic lines
containing the −117 β-YAC displayed a delayed
switch from γ- to β-globin in the foetal liver, as
well as detectable expression of γ-globin in adult
mice, thus indicating that the −117 mutation
prevents γ-globin gene silencing in adult mice, just
as in human adults (Ref. 66).

A second series of experiments using β-YACs
was undertaken to characterise the function of the
DNAse I-hypersensitive sites (HSs) 6 kb upstream
of the ε-globin gene called the locus control region
(LCR) (Ref. 56). The LCR activates the β-globin
locus chromosomal domain, insulates the globin
genes from the effects of surrounding chromatin,
restricts globin gene expression to cells of the
erythroid lineage, and acts as a powerful enhancer
directing high levels of globin production in
erythroid cells (Refs 69, 70, 71). Studies using
β-YAC transgenics with specific deletions of
individual HSs have suggested that the individual
HSs might mediate interaction between the LCR
and specific globin genes during development,
but because the effect of these deletions on globin
gene expression was minor, there appears to be
functional redundancy within the LCR. By
contrast, smaller deletions of the core HSs had
catastrophic effects on globin gene expression at
all stages of development (Refs 72, 73). The reason
for these differences is not known, but alteration
of LCR sequences might lead to strong position
effects and make studies of LCR mutants difficult
to interpret. Many other mutant β-YAC-transgenic
mice have subsequently been produced (Table 2).

Generating murine bioreactors
YAC-transgenic mice can be used as ‘bioreactors’
– essentially factories capable of producing high
levels of therapeutic proteins (Refs 19, 74, 75).
Human monoclonal antibodies to tetanus toxin
have been produced in mice deficient in mouse
immunoglobulin (Ig) production and containing
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human Ig heavy (H)- and light (L)-chain YACs
(Ref. 74). The H-chain YAC contained a 220 kb
insert comprising the µ and δ constant (C) regions,
all six functional joining (J) regions, the major
diversity (D) cluster, the intronic enhancer and
the five most-proximal variable (V) genes from
four VH families. The L-chain YAC contained a 170
kb insert comprising the κ-deleting element (κde),
the intronic and 3' enhancers, the Cκ region, all
five functional J regions and the three most-
proximal Vκ regions in the B cluster. Both YACs
had a hypoxanthine phosphoribosyltransferase
(HPRT) selectable marker on the right arm of the
YAC vector and were introduced by spheroplast
fusion of ES cells. High antibody levels were
produced, mostly made up of human H and L

chains, and the mice produced a broad repertoire
of human Igs. Similar results were obtained by
lipofection of ES cells with a 450 kb YAC
encompassing Vκ gene segments and two
plasmid construct inserts encoding the remaining
necessary H- and L-chain Ig sequence elements
(Ref. 75).

Generating mouse models of human
disease
YAC-transgenic mice can be used as models of
human disease (Table 2). Among the first models
produced were those for Charcot-Marie-Tooth
(CMT) disease type 1A (Ref. 76) and for aniridia
(Ref. 68). CMT disease type 1 is characterised by
progressive weakness of distal muscles, hand and

Figure 5. Structure of a human βββββ-globin locus YAC. The 248 kb YAC (yeast artificial chromosome) has a
230 kb insert comprising 82 kb of β-globin locus, 39 kb 5' flanking region and 109 kb 3' flanking region
(see Ref. 89 for details of construction). The YAC vector arms are shown as purple blocks with the chromosomal
elements or selectable markers (including MMTneo, the mouse mammary tumour virus promoter and neo
gene selectable marker) listed above them (see Fig. 1). Within the locus are five functional β-like globin genes
arranged 5' to 3' in the order in which they are expressed during development: ε, Gγ, Aγ, δ and β. The locus
control region (LCR) is located 6 kb upstream of the ε-globin gene; it is physically defined by the presence of
four erythroid-specific, developmentally stable DNAseI hypersensitive sites (HSs; 5' HS1–4) and one ubiquitous
developmentally stable HS (5' HS5) (Refs 90, 91). The LCR activates the β-globin locus chromosomal domain,
insulates the globin genes from the effects of surrounding chromatin, restricts globin gene expression to cells
of the erythroid lineage and acts as a powerful enhancer directing high levels of globin production in erythroid
cells (Refs 69, 70, 71). One other HS, 3' HS1, exists approximately 20 kb downstream from the β-globin
gene. Introduction a single base-pair substitution at position −117 relative to the mRNA start site of the Aγ-
globin gene of the human β-globin locus mimics a mutation in humans that causes hereditary persistence of
foetal haemoglobin (HPFH) in adult blood (Ref. 69). Other mutations have been crossed onto the YAC and
transgenic mice produced to study structure–function relationships regarding human β-like globin gene switching
(see text and Table 2) (fig005kpk).

Structure of a human β-globin locus YAC
Expert Reviews in Molecular Medicine C 2003 Cambridge University Press
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foot deformations, and severe demyelination in
the peripheral nervous system including the
presence of ‘onion bulb’ formations. The CMT
model was constructed by pronuclear injection of
a YAC carrying the 40 kb human PMP22 gene
flanked by approximately 100 kb of upstream
sequence and 300 kb of downstream sequence
(Ref. 76). One transgenic line containing eight
integrated copies strongly expressed the PMP22
gene in the appropriate tissue-specific manner.
Overexpression caused peripheral neuropathy
closely resembling the human pathology. This
mouse model, and others, can be used to analyse
the molecular defect underlying the disease, as
well as to test both pharmacological and gene
therapy regimens prior to initiation of such trials
in humans.

Aniridia in humans is caused by heterozygous
mutations of PAX6, a gene that encodes a
transcriptional regulator with a DNA-binding
domain homologous to the Drosophila paired gene
(Ref. 68). This condition is characterised by a
varying degree of iris hypoplasia, corneal
opacification, cataracts and glaucoma. Mice
with the Small eye (Sey) phenotype, caused by
heterozygous mutations of the Pax6 gene, have a
similar pathology and additionally show a
reduction of external eye size. Humans with
homozygous PAX6 mutations and homozygous
Sey mice lack eyes and nasal cavities, exhibit
abnormalities of the brain, and die soon after birth.
Thus, the mouse mutant is a good model system
for studying the human disorder. Mice were
generated with a 420 kb human PAX6-YAC and
these mice were crossed onto the Sey mouse
background (Ref. 68). The YAC rescued the
mutant phenotype, demonstrating appropriate
gene regulation during murine development. In
addition, increased PAX6 gene dosage caused
abnormalities of the eye. These data, coupled with
those of the Sey mutants, suggest alterations of
the eye are sensitive to changes in protein level
outside a narrow range. Many more models of
human genetic maladies have subsequently been
generated (Table 2).

Clinical implications/applications:
human artificial chromosomes (HACs)

and gene therapy
One major block to developing successful gene
therapy strategies is the limitations of the current
generation of gene-transfer vectors (Ref. 77).
Retroviruses can stably integrate into the target

cell genome resulting in prolonged transgene
expression, but they will infect only proliferating
cells, the insert size of the transgene that can be
carried by the virus is limited, and integration
might result in deleterious mutagenic events
(Ref. 78). Adenoviruses will infect nondividing
cells, but do not stably integrate. Thus, transgene
expression is transient. Repeated administration
of a therapeutic adenovirus must be performed,
which could result in an inflammatory response
in the patient. DNA–liposome complexes are safe,
but gene transfer is inefficient and transgene
expression is transient when using small
constructs (Ref. 79). Therefore, the goal is to design
a synthetic, nonimmunogenic gene-transfer vector
that would allow long-term, tissue-specific
transgene expression. Artificial chromosomes
offer one such solution to the expression problem,
but more-effective means of delivery are still
required (Ref. 80).

The use of artificial chromosomes would
resolve many of the aforementioned limitations.
An inflammatory response would probably not
be mounted against an artificial chromosome
since it is naked DNA. In addition, a functional
artificial chromosome should exhibit mitotic
stability and would not require integration,
thereby avoiding insertional mutagenesis.
Transient expression would not be a problem
because artificial chromosomes carry large inserts
that include all of the relevant cis-acting control
elements that would insure high-level, tissue-
specific gene expression.

Although well-defined, functional, artificial
chromosomes have been produced in yeast
(Ref. 81), human artificial chromosomes (HACs)
have not been generated. Three chromosomal
elements are required for  artificial chromosomes:
an origin of replication, telomeres and a
centromere/kinetochore sequence (reviewed in
Ref. 82). The origin is required for initiation of
DNA synthesis, telomeres are required to stabilise
the chromosome ends, and the centromere/
kinetochore is required for attachment of the
chromosome to the spindle apparatus, which is
necessary for mitotic stability. YACs have each of
these chromosomal elements. The production of
HACs has been hindered by the inability to isolate
a complete centromere/kinetochore region,
although functional origins and intact telomeres
have been identified and characterised (reviewed
in Ref. 80). Despite this, a first-generation HAC
has been obtained by allowing recombination of
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various human DNA sequences to occur in
transfected cells (Ref. 83). Although mitotically
stable, the HACs were relatively undefined,
limiting their usefulness as a gene-therapy vector.
Other recent attempts utilise modification of YACs
by substituting putative human chromosome
elements for the analogous yeast chromosome
elements (Refs 84, 85). These also were mitotically
stable, but underwent frequent multimerisation
and rearrangement. However, recently, a gene
deficiency in human cells was successfully
complemented using HAC vectors (Refs 86, 87),
demonstrating their potential as therapeutic
vectors (Ref. 88).

Research in progress and outstanding
research questions

Several YACs containing murine and human
genes have been introduced into mice (Table 2),
many of which displayed correct stage- and tissue-
specific expression. These results have confirmed
the expectation that natural levels of gene
expression can be achieved with YAC transgenes
relative to truncated recombinant vectors. Current
techniques, therefore, can be implemented in
characterising the regulation of very large genes,
possibly even the human dystrophin gene, which
spans 2.3 Mb and comprises ~70 exons and five
promoters (Refs 54, 55). Mutagenesis of YACs
bearing these large genes or multigene loci can
be used to identify regulatory sequences, and
binary experiments where YAC-transgenic mice
are bred with transgenic animals producing
specific transcription factors will characterise
the role of the trans-acting factors that utilise
these sequences. YAC-transgenic mice can be
used for the functional analysis of higher-order
genomic structures, and specific mutations can be
introduced into genes so that phenotypes of
human disease can be recreated in mice.

Translation of YAC animal technology into
human gene therapy approaches offers a potential
alternative to current strategies. Although
building HACs is more difficult than anticipated,
slow, but systematic, progress has been made and
is ongoing. Ultimately, the resultant functional
vectors should solve the problems associated with
present-day gene-transfer vectors and allow
tailored solutions to overcome limitations
regarding stable transgene incorporation within
the cell, therapeutic levels of gene product
expression, and tissue-specific transcription of
transgenes.
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Features associated with this article

Figures
Figure 1. Schematic representation of a YAC clone (fig001kpk).
Figure 2. Retrofitting of the pYAC4 vector (fig002kpk).
Figure 3. Introducing mutations into YAC vectors (fig003kpk).
Figure 4. Generation of YAC-transgenic mice (fig004kpk).
Figure 5. Structure of a human β-globin locus YAC (fig005kpk).

Tables
Table 1. Comparison of YAC transgenesis methods (tab001kpk).
Table 2. Transgenic or chimaeric mice produced with YACs (tab002kpk).

Further reading, resources and contacts

The website of Dr Lluís Montoliu at the Centro Nacional de Biotecnología (Madrid, Spain) includes protocols
for plasmid and YAC transgenesis, a manual for generation of transgenic mice and a bibliographic survey
on YAC/BAC/PAC transgenesis, as well as relevant, useful links to other websites:

http://www.cnb.uam.es/~montoliu/
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http://web1.tch.harvard.edu/silverman/protocols/
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