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Bedload particle hops are defined as successive motions of a particle from start to stop,
characterizing one of the most fundamental processes of bedload sediment transport in
rivers. Although two transport regimes have been recently identified for short and long
hops, respectively, there is still the lack of a theory explaining the mean hop distance–travel
time scaling for particles performing short hops, which dominate the transport and may
cover over 80 % of the total hop events. In this paper, we propose a velocity-variation-based
formulation, the governing equation of which is intrinsically identical to that of Taylor
dispersion for solute transport within shear flows. The key parameter, namely the diffusion
coefficient, can be determined by hop distances and travel times, which are easier to
measure and more accurate than particle accelerations. For the first time, we obtain an
analytical solution for the mean hop distance–travel time relation valid for the entire range
of travel times, which agrees well with the measured data. Regarding travel times, we
identify three distinct regimes in terms of different scaling exponents: respectively, ∼1.5
for the initial regime and ∼5/3 for the transition regime, which define the short hops, and
1 for the Taylor dispersion regime defining long hops. The corresponding distribution of
the hop distance is analytically obtained and experimentally verified. We also show that
the conventionally used exponential distribution, as proposed by Einstein, is solely for long
hops. Further validation of the present formulation is provided by comparing the simulated
accelerations with measurements.
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1. Introduction

Studying the transport of bedload sediment particles ranging from coarse sands to
gravels can be a challenge due to complex fluid–particle and particle–particle interactions
(Gonzalez et al. 2017). Depending on the temporal–spatial scale focused on, the underlying
mechanisms dominating the bedload transport process can be very different. The
pioneering work of Einstein (1937) considered the transport of bedload particles at a
relatively large scale, which involves many entrainment and deposition events experienced
by each single particle. He conceptualized this complex transport process as composed of
fundamental elements of rests for static particles and hops (or steps) for moving particles.
During rests, a particle can stay either on top of the riverbed or buried under the surface.
The term ‘hop’ can be formally defined as the successive motions of a particle from the
start to the end of its motion, or motions between a pair of adjacent entrainment and
deposition events by the same particle. The random variable of hop distance (or step
length) with its probability density function (p.d.f.) has since been extensively studied for
probabilistic formulations of bedload sediment transport (Paintal 1971; Hassan, Church &
Schick 1991; Parker, Paola & Leclair 2000; Ancey et al. 2008; Ancey 2010; Bradley &
Tucker 2012; Hassan et al. 2013; Yager, Kenworthy & Monsalve 2015; Wilson 2018). For
example, focusing on the exchange of bedload particles between those in motion and those
staying in the riverbed, the streamwise transport of tracer particles has been intensively
explored recently, with the aim of understanding the problem of anomalous diffusion.
This progress has mostly involved the assumption of a thin-tailed p.d.f. of hop-distances
during the implementation of theoretical (Ganti et al. 2010; Lajeunesse, Devauchelle &
James 2018; Wu et al. 2019a,b), numerical (Fan et al. 2014, 2016; Pelosi et al. 2016) and
experimental (Martin, Jerolmack & Schumer 2012; Bradley 2017; Liu, Pelosi & Guala
2019) approaches.

At the relatively small scale of bedload particle transport, especially focusing on particle
hops, the motions of the entrained particles are complicated and can include rolling, sliding
and saltating on top of the riverbed (Charru, Mouilleron & Eiff 2004; Lajeunesse, Malverti
& Charru 2010; Roseberry, Schmeeckle & Furbish 2012; Seizilles et al. 2014; Fathel,
Furbish & Schmeeckle 2015; Ballio et al. 2019; Hosseini-Sadabadi, Radice & Ballio 2019).
To better characterize the hop distance as well as other kinematic quantities, detailed
information regarding the motions of sediment particles during transport is required,
which has led to several high-resolution bedload particle-tracking experiments in the past
decade, capturing the trajectories of every moving particle (Charru et al. 2004; Lajeunesse
et al. 2010; Martin et al. 2012; Roseberry et al. 2012; Ancey & Heyman 2014; Seizilles
et al. 2014; Campagnol et al. 2015; Liu et al. 2019). The probability distributions for
various kinematic quantities were then obtained empirically, including those of velocities,
accelerations, hop distances, and travel times (time spent during a hop, denoted as τ in this
paper). These results are key for understanding the underlying physics of hop processes,
as well as assisting in theoretical formulations and numerical simulation, and serving as
additional means of validation for the modelling of bedload sediment transport (Ancey &
Heyman 2014; Fan et al. 2014).

Based on numerical simulations and experimental measurements, Wu, Furbish &
Foufoula-Georgiou (2020) identified two distinct transport regimes for short and long
hops, the mean hop distances (Lh) of which scale with their travel times (τ ) quadratically

912 A33-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
26

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1126


Velocity-variation formulation for bedload particle hops

(Lh ∼ τ 2) and linearly (Lh ∼ τ ), respectively. This observation was critical to unify
disparate views on particle velocity statistics (exponential versus Gaussian) reported
in the literature, demonstrating that long hops alone contribute to the Gaussian type
of particle velocity p.d.f., while a mixture of both short and long hops leads to
the exponential distribution, commonly observed at low transport rates. Under the
well-accepted assumption of an exponential travel-time distribution (Lajeunesse et al.
2010; Martin et al. 2012; Fathel et al. 2015; Liu et al. 2019), the linear scaling relation for
long hops was linked to the empirical evidence of thin-tailed hop-distance distribution.
However, since the governing equation can only be solved numerically, no analytical
arguments were made to provide a theoretical basis for such scaling regimes in the
mean hop distance–travel time relation (Lh–τ ) (Wu et al. 2020). Consequently, a previous
formulation of a mean-reverting process (Ancey & Heyman 2014) was resorted to in order
to understand the motion of the long-hop particles (Wu et al. 2020). For short hops,
however, which may cover over 80 % of the overall hops, there is still the lack of a theory
that explains the hop distance–travel time scaling, leading to ambiguity in the scaling
exponent reported in the literature (Roseberry et al. 2012; Fathel et al. 2015; Wu et al.
2020). Given the statistical persistence of short hops, such information is deemed critical
for correctly estimating sediment transport rate.

Regarding the governing equation for bedload particle motions adopted by Wu
et al. (2020), some unknown functions must first be determined before numerical
simulations can be performed for particle hops. This is, however, not trivial, and
requires high-precision measurements of particle motions enabling the correct estimate
of Lagrangian or total acceleration. For example, acceleration estimates from the second
derivative of particle positions require an order-of-magnitude higher frequency (250
frames per second) in video capturing (Roseberry et al. 2012; Liu et al. 2019), as
compared to that in similar studies focusing on particle hop distances and waiting times
(Martin et al. 2012). Data acquisition on particles’ travel times and hop distances is
thus less experimentally demanding: those data are easier to obtain (require much lower
sampling frequency), more accurate and more likely to be statistically converged given
that measurement duration is typically inversely related to the acquisition frame rate. We
expect that a theoretical model that can be parametrized with such data would be more
reliable and feasible to apply.

In this paper we mainly aim at theoretically analysing the relation between mean
hop distances and travel times (Lh–τ relationship) during bedload particle hops, which
provides insights into the shift of scaling regimes as observed by the numerical and
experimental investigation of Wu et al. (2020). To achieve such a goal, we will characterize
the velocity variations during bedload particle hops, embedding the information of
accelerations into the derived governing equation. However, we emphasize that we do not
attempt a physical interpretation of the velocity variations. The main novelties of the paper
are the following. First, we propose a nonlinear transformation of the particle velocity
resulting in a velocity difference Δζ that can be approximated by a Gaussian random
walk process and leads to the governing equation for particle hops (§ 2). Second, we show
that the deduced governing equation is intrinsically identical to that describing a Taylor
dispersion process for solute transport in shear flows (Taylor 1953; Wu & Chen 2014).
Borrowing the analytical technique of concentration moments (Aris 1956) employed to
study Taylor dispersion, we derive analytical solutions of the p.d.f.s of particles’ travel
times and hop distances, and a relation between the mean hop distances and the travel times
valid across the whole range of scales involved, both excellently supported by experimental
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data (Fathel et al. 2015). We then show that the estimation of the required parameters (e.g.
the diffusion coefficient) in the particle motion governing equation can be made based on
measurements of hop distances and travel times, with no need for the acceleration data. As
a further validation, we confirm that the acceleration distribution obtained from numerical
simulations of the proposed particle motion governing equation is consistent with that
obtained from experimental measurements (§ 3). Finally, concluding remarks are provided
in § 4.

2. Formulation

In this paper we analyse the one-dimensional (streamwise) transport of bedload sediment
particles, which are of uniform size and in equilibrium transport conditions. This idealized
theoretical set-up is in accordance with recent studies (Lajeunesse et al. 2010; Roseberry
et al. 2012; Fathel et al. 2015) on the statistics of particle motions, specifically focusing on
events of particle hops. Hops are defined as the successive motions of a sediment particle
measured from its start (entrainment) to stop (deposition). The corresponding times spent
during the hops are termed as travel times (τ ). For comparison, and validation of our
analytical solutions in this study, we used the experimental data presented in Fathel et al.
(2015), which rely on the experimental measurements of Roseberry et al. (2012). We note
that, based on this specific experimental dataset, our approach is relevant for bedload
transport under conditions of low transport rates. However, the theoretical findings of this
work may have broader implications, e.g. on the scaling relations for particle motions (see
also Wu et al. 2020), which requires further evaluation with different experimental datasets
in the future.

2.1. Random walk for particles’ velocity variation Δu
We are interested in understanding how a bedload particle’s velocity can change with
time during a hop. In figure 1 we display an example of the velocity trajectory during the
hop of a single bedload particle, which is randomly selected from the high-resolution
experimental measurements of Fathel et al. (2015). At first glance, it is reasonable to
speculate that the particle’s velocity could be described by a random walk process during
the hop:

Δu = u(t + Δt) − u(t) = R
√

2D∗Δt, (2.1)

where u is the particle’s velocity (m s−1 ), t is time (s), Δu is the change in velocity over an
observed time step Δt (in this case an experimental sampling time step as seen in figure 1),
D∗ is a constant diffusion coefficient (m2 s−3 ) and R is a random variable with zero mean
and unit variance. Note that the requirement of unit variance for R here is in accordance
with that of a finite second-order moment for the distribution of Δu, which guarantees that
the random walk process (2.1) will asymptotically approach a diffusion process.

It is easy to check, by putting together all the records of velocity variations Δu obtained
by taking the difference between successive particle velocities for the observed trajectories,
that these fluctuations have zero mean. In addition, the p.d.f.s of Δu based on different
sample sizes can be approximated by a stationary distribution, which ensures the unit
variance for R and a constant diffusion coefficient D∗ (not shown here).

In the case when the random variable R follows a Gaussian distribution (on top of zero
mean and unit variance as stated above), (2.1) would describe a Gaussian random walk
process. This would be particularly interesting because one could immediately infer the
form of the governing equation for the particle’s velocity variations, since the Gaussian
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Figure 1. An example of velocity trajectory during the hop of a single bedload particle, which is randomly
selected from the high-resolution experimental measurements (Fathel et al. 2015).

random walk is equivalent to a diffusion equation (e.g. see Li et al. 2017). Accordingly,
(2.1) leads to

∂PN(u, t)
∂t

= D∗ ∂2PN

∂u2 , (2.2)

where PN is the p.d.f. of the particle’s velocity under the above assumptions. Note that the
form of the distribution for the random variable R can be obtained from the acceleration
data, which is calculated from Δu/Δt (which gives the left-hand side of (2.1) and thus
specifies the distribution of R on the right-hand side of (2.1)).

However, experimental results have already rejected the hypothesis of a Gaussian
p.d.f. for R, by showing that the acceleration p.d.f. of particle motions is Laplace-like
or double-exponential-like (Fathel et al. 2015; Liu et al. 2019). In figure 2, we provide
the calculated statistics of particle velocity variations for the experimentally measured
hops. It is obvious from figure 2(a) that the p.d.f. of the velocity variations can be well
approximated by a Laplace distribution. Figure 2(b) presents a quantile–quantile (QQ) plot
to quantify how the distribution of Δu deviates from a normal distribution. Notice that in
figure 2 we have scaled the velocity variation Δu by a characteristic maximum velocity
u0 = Umax. We now infer that the velocity variations of bedload particle hops measured
along the u-axis may possibly follow a random walk, but not a Gaussian random walk
process.

2.2. Gaussian random walk for the transformed velocity variation Δζ

Since the p.d.f. of measured velocity variations does not support a diffusion process
describing the variation of particle velocity u as shown in (2.2), we hypothesize and
rigorously test that a nonlinear transformation exists for mapping the velocity u into a
different, scaled velocity ζ ∈ [0, 1],

u → ζ, (2.3)
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Figure 2. Bedload particle velocity variation statistics for the experimentally measured hops (Fathel et al.
2015). (a) The p.d.f. of the experimentally measured velocity variations. Notice that we have scaled the velocity
variation Δu by a characteristic maximum velocity u0 = Umax. (b) QQ plot illustrates the deviation of the
measured p.d.f. of velocity variation Δu from a normal distribution, suggesting a non-Gaussian distribution for
the random variable R in (2.1).

with respect to which the variation of velocity can be governed by a diffusion process:

∂PN(ζ, t)
∂t

= D
∂2PN

∂ζ 2 , (2.4)

where D is the corresponding diffusion coefficient (s−1) and the transformed velocity ζ

is dimensionless. Qualitatively, as sketched by figure 3, this envisioned transformation
nonlinearly maps the velocity u-axis into a ζ -axis in such a way that, for example, the
part of the axis close to u = 0 is stretched and the part close to u = Umax is compressed.
Hence, the velocity u in the resulting ζ -axis increases nonlinearly (as ζ increases from 0
to 1), slower in the vicinity of ζ = 0 but faster when it gets close to ζ = 1.

We can then transform (2.4) back with respect to the u-axis:

∂PN(u, t)
∂t

= DA2 ∂2PN

∂u2 + DA
∂A
∂u

∂PN

∂u
, (2.5)
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0

u = u

u = Umax

u = u(ζ)

u
u-axis ζ-axis

ζ = 1

ζ

0

Velocity mapping
(b)(a)

Figure 3. Schematic representation of the nonlinear transformation that maps the velocity u to a scaled velocity
ζ . (a) The velocity increases linearly as u increases from 0 to Umax in the u-axis. (b) After the transformation,
the velocity increases in a nonlinear manner as ζ increase from 0 to 1: slower when ζ is closer to 0 while faster
when ζ is closer to 1.

where

A = ∂u
∂ζ

(2.6)

is the mathematical definition of the transformation (2.3), which is a centrepiece of our
approach giving the mapping rule for velocity from u to ζ :

ζ(u) =
∫ u

0

1
A

du. (2.7)

Note that the specific form of the proposed nonlinear transformation, which is not known
a priori, is represented by an explicit expression of the key function A, or the mapping
rule ζ(u). In order to find out the key function A in (2.6) and (2.7), we compare (2.5)
to the Fokker–Planck equation, which has recently been shown to be able to describe
statistically the transport process of an ensemble of bedload particles (Furbish, Roseberry
& Schmeeckle 2012b):

∂PN(u, t)
∂t

= − ∂

∂u
[μ(u)PN] + ∂2

∂u2 [k(u)PN]. (2.8)

In the above equation μ (m s−2) and k (m2 s−3) are, respectively, known as the ‘drift
velocity’ and the ‘diffusivity’ with respect to the velocity u. We expand and rewrite (2.8)
in the following form:

∂PN(u, t)
∂t

= k
∂2PN

∂u2 + c1μ
∂PN

∂u
−
[
∂μ

∂u
PN + (1 + c1)μ

∂PN

∂u

]

+
(

∂2k
∂u2 PN + 2

∂k
∂u

∂PN

∂u

)
, (2.9)

where c1 is a constant.
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For the equilibrium transport condition, the velocity p.d.f. does not change with time,
under which circumstance (2.5) and (2.9) become

0 = DA2 ∂2fp
∂u2 + DA

∂A
∂u

∂fp
∂u

, (2.10a)

0 = k
∂2fp
∂u2 + c1μ

∂fp
∂u

−
[
∂μ

∂u
fp + (1 + c1)μ

∂fp
∂u

]
+
(

∂2k
∂u2 fp + 2

∂k
∂u

∂fp
∂u

)
, (2.10b)

where fp is the temporally stationary p.d.f. of the particle velocity (i.e. the p.d.f. fp(u) does
not change with time).

One possible set of relations for both equations in (2.10) describing the same process
can be written as follows:

k = DA2, (2.11a)

c1μ = DA
∂A
∂u

, (2.11b)

∂μ

∂u
fp + (1 + c1)μ

∂fp
∂u

= 0, (2.11c)

∂2k
∂u2 fp + 2

∂k
∂u

∂fp
∂u

= 0. (2.11d)

This set of equations can be solved to give

c1 = 1, k =
∫

c2

fp2 du, μ = c2

2fp2 , (2.12a–c)

and the important result

A2 = c2

D

∫
f −2
p du, (2.13)

relating the key function A to the temporally stationary particle velocity p.d.f. fp, which
is in accordance with the equilibrium transport conditions as assumed in previous studies
(Fathel et al. 2015; Liu et al. 2019).

We take advantage of recent experimental measurements (Lajeunesse et al. 2010;
Roseberry et al. 2012; Fathel et al. 2015) and theoretical analyses (Furbish & Schmeeckle
2013; Fan et al. 2014) that have documented an exponential-like form for the particle
velocity p.d.f. fp(u). Hence, we assume that the velocity p.d.f. follows an exponential
distribution

fp(u) = 1
U

exp
(
− u

U

)
, (2.14)

where U is the mean velocity. A value Umax for the velocity maximum can be adopted
in accordance with the near-bed flow velocity, representing a physical constraint on the
maximum particle velocity. As demonstrated by Wu et al. (2020), Umax can be set as
30 cm s−1 for the dataset of Fathel et al. (2015), and the particle hop processes are not
sensitive to this value.
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Substituting (2.14) into (2.13), we obtain an explicit expression for the function A:

A =
√

c2

D

∫
fp−2 du = eu/U

√
U3c2

2D
, (2.15)

which can be used to determine the rule for mapping the velocity u into ζ according to
(2.7):

ζ(u) =
∫ u

0

1
A

du =
√

2D
Uc2

(
1 − e−u/U

)
. (2.16)

Recall that we define ζ as a scaled quantity in the range of [0, 1], meaning that

ζ(u)|u=0 = 0, and ζ(u)|u=∞ = 1. (2.17a,b)

The former part of (2.17a,b) is automatically satisfied according to (2.16), while the latter
implies that √

2D
Uc2

= 1, (2.18)

further simplifying (2.16) to

ζ(u) = 1 − e−u/U. (2.19)

With the above obtained explicit expression for the velocity transformation, we
can verify the hypothesis posed at the beginning of this subsection, i.e. a nonlinear
transformation exists for the mapped velocity variations governed by a diffusion equation.
Specifically, we mapped the experimentally measured particle velocity series into the
ζ -axis system according to (2.19), which were then used to calculate the transformed
particle velocity variations Δζ by taking the difference between successive velocities in
the ζ -axis. We illustrate in figure 4 that, as opposed to the results expressed in the u-axis
(figure 2b), the transformed velocity variation Δζ can be relatively well approximated by
a Gaussian distribution, verifying our hypothesis of modelling the velocity variation with
respect to the ζ -axis by the diffusion equation (2.4).

In figure 5 we display the p.d.f. of the measured velocity variation expressed in the
ζ -axis. The Gaussian distribution reproducing the measurements, with fitted parameters
of zero mean and standard deviation σ ≈ 0.18, is superimposed in the figure. This allows
us to determine the diffusion coefficient in (2.4) by

σ 2 = 2DΔt, (2.20)

which gives

D = 4 s−1 (2.21)

based on the time step of experimental measurements of Δt = 1/250 s (the standard
deviation is dimensionless, the same as the scaled velocity ζ ). Note that we determined
the parameter D using the transformed acceleration data (with respect to ζ ); however, D
can be alternatively estimated with measured hop distances and travel times, as we will
demonstrate later in § 3.2.

From a Lagrangian perspective, (2.4) describes how the velocity of the particle changes
with time (i.e. follows the Gaussian random walk with respect to ζ ), while the streamwise
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theoretical distribution in the figure has a zero mean and a standard deviation of σ ≈ 0.18.

position of the particle is controlled by the corresponding velocity variations, which can
simply be expressed by the following stochastic differential equation:

dx = u(ζ ) dt, (2.22)

where x (m) is the streamwise position of the particle. To map the transformed velocity ζ

back into u, we only need to solve the inverse function of (2.19):

u(ζ ) = −U log(1 − ζ ). (2.23)

Notice that (2.4) and (2.22) describe a non-stop transport process for the bedload particle
(i.e. the particle is travelling with velocity variations and does not stop). This point is
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straightforward if we write down the discrete forms of (2.4) and (2.22), respectively, as

ζ(t + Δt) = ζ(t) + R
√

2DΔt, (2.24a)

x(t + Δt) = x(t) − U log(1 − ζ )Δt, (2.24b)

the form of which is commonly used in numerically simulating motions of a single particle
in the Lagrangian perspective (i.e. Monte Carlo simulation). In (2.24) the time step Δt
needs to be small enough, R is a normally distributed random variable with unit variance,
and the overall number of runs of the simulation needs to be large enough. Each run
of the simulation provides the trajectory of a single particle, and the ensemble of runs
provides statistical information on the motions of bedload particles. It is seen that, without
specifying a condition for the cessation of the particle motion for (2.24), a simulated
particle is always travelling and does not stop, which we refer to as a ‘non-stop transport
process’.

The Lagrangian form of (2.24) is more intuitive in describing the physical process of
bedload particle transport. However, for convenience in obtaining analytical solutions, we
can switch back to the Eulerian description for (2.24), which turns out to be (Dimou 1989;
Ancey & Heyman 2014; Li et al. 2017)

∂PN(x, ζ, t)
∂t

= U log(1 − ζ )
∂PN

∂x
+ D

∂2PN

∂ζ 2 , (2.25)

where PN(x, ζ, t) is now the joint p.d.f. of the streamwise position x, the velocity (with
respect to ζ ) and the time t. The subscript N further stands for the non-stop process.

Obtaining 〈PN〉 with respect to ζ gives the joint p.d.f. of streamwise position and time,
where the angle brackets are defined as

〈 · 〉 =
∫ 1

0
( · ) dζ. (2.26)

2.3. Description of the bedload particle hops by the obtained governing equation
As noted above, without additional constraints, (2.25) represents a non-stop process (the
particle never stops its motion during the transport). However, particles move through a
sequence of hops during which they must start and stop their motions with zero velocity.
To perform a hop, a particle first starts its motion from a stationary position, which can be
used to set the initial condition for (2.25) as

P|t=0 = δ(x)δ(ζ − ζ0), (2.27)

where δ( · ) is the Dirac delta function. In this section (§ 2.3), we are imposing constraints
aimed at connecting the previously discussed non-stop transport process to the particle
hop. To distinguish between the two processes, hereafter we use the notation of P(x, ζ, t)
for the particle hop that is delimited by two resting periods, compared with that of
PN(x, ζ, t) for the non-stop process.

Equation (2.27) implies that we ignore when and where particles are performing these
hops (Wu et al. 2020), under which circumstance we can virtually move the starting
position of all hops to the same place and allow particles to move at the same time.
Specifically, (2.27) states that particles start to move at the time t = 0, from the streamwise
location x = 0, and with a velocity of u = u(ζ0); additionally, applying ζ0 → 0 gives
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the initial velocity of u = 0, defining the transition between rest and motion regimes,
consistent with the phenomenology of particle hops during the entrainment phase.

During travelling, particles’ velocities are confined between the minimum and
maximum values:

∂P
∂ζ

∣∣∣∣
ζ=0

= ∂P
∂ζ

∣∣∣∣
ζ=1

= 0. (2.28)

A moving particle must stop its motion to complete a hop. Experimental studies have
suggested that the time for a bedload particle to remain in motion (i.e. the travel time τ )
follows an exponential distribution (Martin et al. 2012; Roseberry et al. 2012; Fathel et al.
2015; Liu et al. 2019), implying a memoryless process for the termination of the particle
hop (Martin et al. 2012). To incorporate such a memoryless process into the governing
equation, we can add a sink term with the particle deposition rate ka (s−1 ) for the non-stop
transport process (2.25):

∂P(x, ζ, t)
∂t

= U log(1 − ζ )
∂P
∂x

+ D
∂2P
∂ζ 2 − kaP. (2.29)

Again, we note that we have dropped the subscript N and use P(x, ζ, t) for particle hops
as first introduced in (2.27). The sink term in (2.29) indicates that the cessation of a
particle’s motion (thus completing the hop) is an independent, random event, resulting
in an exponential distribution for the travel times (Zeng & Chen 2011).

It is easy to perform numerical simulations to extract particle hops using (2.24), based
on the above discussed constraints. However, from an Eulerian perspective, we note that
the solution of (2.29), P(x, ζ, t), does not directly correspond to the hop events. We
emphasize the fact that P(x, ζ, t) describes the spatial–temporal (and velocity) evolution
for the active particles. Such particles have started from zero velocity by considering the
initial condition (2.27) but have not yet stopped their motions; because, once they stop,
they will no longer be represented by P. Thus, the deduced mean travel distance L(t) based
on P(x, ζ, t) does not represent the mean hop distance of particles (denoted as Lh(τ ) and
conditional on particles that have ceased their motions at the time τ ), since these particles
are still moving and have not stopped at time t.

In order to bridge the gap between the two processes so as to use the solution of (2.29) to
obtain the mean hop distance–travel time relation (Lh–τ ), we consider an in-between time
t0 during a particle hop (0 ≤ t0 ≤ τ ), as sketched in figure 6(a). Consequently, the mean
distance travelled by the active particles L(t0) can be obtained as the solution of (2.29)
with respect to t0. A further relation between t0 and τ , and between L(t0) and Lh(τ ), may
enable us to ‘translate (or extend)’ the result of L(t0) to obtain Lh(τ ).

Motivated by the intuitive understanding of ‘symmetry’ for the trajectory of particle
hops in an ensemble average sense (i.e. at the initial stage the particle generally accelerates,
and before the cessation of motion it generally decelerates), we expect that, for hops with
the same travel time: by the ‘half travel time’ t0 = τ/2, on average they travel half of the
mean hop distance,

Lh(τ ) = 2L(t0)|t0≡τ/2. (2.30)

We used empirical data to verify the assumption of (2.30). Using the time interval of
0.04 s (i.e. 10Δt) and setting nine successive time intervals of [0.04(i − 1), 0.04i] (s),
where i = 1, 2, 3, . . . , 9, we divided particle hops into different groups according to their
travel times τ . For every group of particle hops, we calculated the mean hop distance Lh(τ )

and the mean travel distance L(t0) (i.e. found the distance travelled during half of the travel
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Figure 6. (a) Sketch for particle hops with the same travel time τ . Note that the hop/travel distance is an
average for an ensemble of particle hops. (b)Mean hop/travel distances calculated based on travel times of
particle hops for 0.04 s increments, up to 0.36 s. It is seen that the assumption of Lh(τ ) = 2L(t0) is well
supported by empirical data for hops under different travel times, which is critical to ‘translate’ the solution of
(2.29) to obtain the mean hop distance–travel time relation (Lh–τ ).

time for every hop, and then calculated the mean over the group of hops). Note that only
fewer than 5 % of particle hops travel longer than 10Δt = 0.36 s, too few to guarantee
the convergence for the mean hop distances at longer travel-time intervals. Those hops
were not included in the analysis. We display the results in figure 6(b), demonstrating an
excellent support to the assumption of (2.30) for either short or long hops. In § 3 we will
analytically solve (2.29) for the mean travel distance L(t0), and then ‘translate’ the results
based on (2.30) to obtain the mean hop distance–travel time relation (Lh–τ ).

3. Results and discussion

We note that the advection–diffusion equation, (2.25), is exactly in the form of the
governing equation for a Taylor dispersion process (Taylor 1953), which describes the
transport of a solute substance in laminar shear flows. We recall that the flow shear,
imposing a spatial difference of streamwise velocities, contributes to the streamwise
separation (scattering) of solute molecules (Wu & Chen 2014). The original concept of
Taylor dispersion describes the solute molecules performing a Gaussian random walk in
a real spatial dimension (e.g. vertically, across the water depth) where they experience
different streamwise flow velocities. As a comparison, with (2.25) we envision a virtual
velocity dimension ζ for the bedload particle to perform the Gaussian random walk, during
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which its streamwise velocity varies by continuously sampling the ‘shear flow profile’
represented by (2.23). Analytical techniques for studying Taylor dispersion can thus be
applied to further analyse the bedload transport process.

3.1. Analytical solutions
For the advection–diffusion equation (2.29) with a sink term, it is known that its solution
can be expressed as the product of an exponential decay term and the solution of a
corresponding non-stop transport process as given by (2.25) (Zeng & Chen 2011):

P(x, ζ, t0) = PN(x, ζ, t0) exp(−kat0). (3.1)

From a particle-tracking perspective, (3.1) indicates that, while the motion of the particle
is governed by a non-stop process (i.e. PN), the probability for this particle to continue its
motion after each time step is determined by an exponential function exp(−kaΔt0) until
the particle stops.

Based on the knowledge of Taylor dispersion, we understand that (2.25) cannot be
analytically solved for PN , but, instead, that statistical information regarding the bedload
particle hops can be obtained through solving the corresponding moment equations (Aris
1956). In fact, (3.1) allows us to define the pth-order moment of P(x, ζ, t0) as Mp(ζ, t0):

Mp(ζ, t0) = mp(ζ, t0) exp(−kat0), (3.2)

where

mp(ζ, t0) =
∫ +∞

−∞
PN(x, ζ, t0)xp dx (3.3)

is the pth-order moment for the non-stop bedload transport (p = 0, 1, 2, . . .).
In this work, we consider only the first two statistical moments (i.e. p = 0 and 1), which

are sufficient for studying the bedload particle hops. As we are going to demonstrate
below, the zeroth-order moment M0(ζ, t0) is associated with the travel-time distribution of
particle hops; and the first-order moment M1(ζ, t0) specifies the mean hop distance–travel
time relation (Lh–τ ). Currently, there is only one undetermined parameter (ka), i.e. the
deposition rate in (2.29), which can be fitted to the measured data of travel-time p.d.f. when
we solve for the zeroth-order moment M0(ζ, t0). Although the diffusion coefficient D is
already obtained in (2.21) by considering the p.d.f. of the transformed velocity variation
Δζ , we will demonstrate below how it can be determined alternatively by experimental
measurements of travel times and mean hop distances, as a further validation of our
theoretical framework.

Applying the operation
∫ +∞
−∞ ( · )xp dx to (2.27)–(2.29), we can obtain the zeroth- and

first-order moment equations (i.e. p = 0 and 1), respectively, as

∂m0(ζ, t0)
∂t0

= D
∂2m0

∂ζ 2 , (3.4a)

∂m1(ζ, t0)
∂t0

= D
∂2m1

∂ζ 2 − U log(1 − ζ )m0(ζ, t0), (3.4b)

with their initial conditions

mp(ζ, t0)|t0=0 =
{

δ(ζ − ζ0), p = 0,

0, p = 1,
(3.5)
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and corresponding boundary conditions

∂mp

∂ζ

∣∣∣∣
ζ=0

= ∂mp

∂ζ

∣∣∣∣
ζ=1

= 0. (3.6)

Considering ζ0 → 0 (bedload particles start their motions with a velocity of u = 0), the
zeroth-order moment in (3.4) can be solved as

m0(ζ, t0) = 1 + 2
∞∑

n=1

cos(βnζ )e−Dβ2
n t0, (3.7)

where βn = nπ, n = 1, 2, 3, . . . .
It is obvious that

〈m0(ζ, t0)〉 = 1 and 〈M0(ζ, t0)〉 = e−kat0, (3.8a,b)

indicating that the number of bedload particles in motion remains the same for non-stop
bedload transport, but decays exponentially due to deposition which terminates particle
hops. Note that (1 − 〈M0(ζ, t0)〉) gives the temporal evolution of the probability that
the particle has ceased its motion, which is precisely the definition of the cumulative
distribution function (c.d.f.) of the travel time for particle hops. Thus, the corresponding
p.d.f. can be analytically determined by differentiating it with respect to the time variable
t0:

fT(t0) = d
dt0

(1 − 〈M0(ζ, t0)〉) = kae−kat0 . (3.9)

Recall that t0 stands for only half of the travel time (i.e. t0 = τ/2) based on (2.30). When
considering the p.d.f. for the entire travel period, (3.9) should be modified as

fT(τ ) = (ka/2)e−kaτ/2, (3.10)

which is an exponential distribution, agreeing with the form observed in experiments
(Martin et al. 2012; Fathel et al. 2015; Liu et al. 2019). The mean travel time of the
above p.d.f. is 2/ka, where the parameter ka can be determined based on the experimental
measurements. For example, Fathel et al. (2015) calculated the mean travel time for the
particle-tracking experiment as 0.12 s, giving ka = 16.67 s−1. Equation (3.10) will be used
later to determine the analytical solution for the hop-distance distribution.

We note that the physical meaning of the normalized first-order moment (by the
proportion of moving particles, here 〈M0〉) is the mean streamwise displacement of
bedload particles at a given time, i.e. the mean travel distance of particles with the same
half travel time t0. Thus, 〈M1〉/〈M0〉 eventually gives the mean hop distance–travel time
relation (Lh–τ ) according to (2.30). Applying the average operator defined in (2.26) on
both sides of the first-order moment equation, (3.4b), we obtain

∂〈m1〉
∂t0

= −U〈log(1 − ζ )m0(ζ, t0)〉, (3.11)

which can be solved based on the solution of m0 in (3.7), leading to

L(t0) = 〈M1〉/〈M0〉 = 〈m1〉/〈m0〉

= Ut0 + 2U
∞∑

n=1

1 − e−Dβ2
n t0

Dβ3
n

cos(βn)Si(βn), (3.12)
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where Si( · ) is the sine integral function

Si(βn) =
∫ βn

0
(sin(z)/z) dz. (3.13)

Again, we note that t0 is only half of the travel time (i.e. t0 = τ/2); for the entire particle
hop, according to (2.30) we have

Lh(τ ) = 2L(t0) = 2L(τ/2)

= Uτ + 4U
∞∑

n=1

1 − e−Dβ2
n τ/2

Dβ3
n

cos(βn)Si(βn), (3.14)

which gives the analytical solution for the mean hop distance of an ensemble of particles
(Lh) as a function of the travel time (τ ).

3.2. Mean hop distance–travel time scaling for short and long particle hops
One observation regarding (3.14) is that for long-hop bedload particles (τ → ∞), the mean
hop distance scales linearly with the travel time:

Lh(τ )|τ→∞ = Uτ + 4U
∞∑

n=1

cos(βn)Si(βn)

Dβ3
n

∼ τ. (3.15)

This asymptotic regime was discovered recently (Wu et al. 2020) as a correction to
previous studies proposing a single regime for the hop-distance scaling (with an exponent
of ∼ 2 or ∼ 5/3) of bedload particle motions (Roseberry et al. 2012; Fathel et al.
2015). The scaling regime of Lh ∼ τ was physically explained by resorting to the earlier
formulation by Ancey & Heyman (2014) based on the mean-reverting process, which
is valid for the description of long-hop particles (Wu et al. 2020). Under the present
formulation invoking Taylor dispersion theory, this linear scaling regime is simply known
as the Taylor dispersion regime, when the particle has sampled many times possible
velocities within the ‘shear velocity profile’, (2.23). The quote marks represent that it is
only mathematically in the same form of the Taylor dispersion process. This understanding
indicates that the mean velocity of particle hops converges to a constant U by the time scale
1/D, where the constant 1 is brought by the normalized velocity ζ . By merely examining
the asymptotic regime of the particle hops, i.e. computing the mean velocity of long hops
and estimating the starting time of this asymptotic regime, we can roughly estimate the
necessary parameters for the governing equation. This point will be further elaborated in
later discussion.

As also noted by Wu et al. (2020), so far there exists no theory to explain the scaling
regime for the short-hop particles, though intuitively it may be attributed to the large
proportion of acceleration and deceleration (entrainment and deposition) periods over
the entire travel time (of the hop). Owing to the lack of theoretical guidance, and the
complicated patterns of short hops, different exponents for the initial scaling regime have
been estimated in the literature, and no consensus has been reached for a possibly unified
constant. For example, the exponent of 5/3 first appeared in the analysis of a portion of
the experimental data by Roseberry et al. (2012) (figure 13 in their paper), most of which
are now seen for short hops. With much larger datasets used in a reanalysis, Fathel et al.
(2015) proposed a new exponent of 2 based on a first estimate of the hop distance–travel
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time plot (figure 10 in their paper). And this exponent was followed for short hops in the
recent study (Wu et al. 2020) focusing on scaling regime shifts for particle motions.

While (3.14) does not seem to offer an explicit scaling exponent for the short hops, this
analytical solution gives us much more detailed and consistent information compared with
numerical simulations (Wu et al. 2020). In figure 7(a) we present results of (3.14) using
three different values of the diffusion coefficient D, respectively, 100, 10 and 1 s−1. The
first observation is that different values of D do not affect the long-time asymptotic regime,
which agrees with the theoretical expectation of (3.15). However, the time needed for such
a transition to the long-time approximation increases as D decreases, which is related
to the characteristic time scale 1/D by Taylor dispersion theory. Taking the blue curve
as an example (for D = 100 s−1), we can see that one more scaling transition occurred
for travel times shorter than 1/D, as indicated by the two blue solid reference lines with
different slopes, which can be used to estimate the scaling exponents as ∼ 1.5 and ∼ 5/3,
respectively. We can argue that the time scale of 0.1/D sets the upper limit of travel times
for the initial regime with the scaling exponent of 1.5. This means that particles have a slow
mean velocity when starting the hop, which can increase as ∼ τ 0.5 if the particle is able to
travel longer during a hop. The time scales in between (0.1/D, 1/D) suggest a transition
regime. Particle hops with duration falling within the initial and transition regimes can
all be defined as short hops, since the mean velocity of these hops has not reached a
constant. We note that these scaling regimes could not be identified without the help of
the analytical solution of (3.14), given fluctuations and uncertainties observed in numerical
and experimental results as shown by figure 4(b) in the paper of Wu et al. (2020).
The effect of U is more straightforward, as it sets the mean velocity for the long-hop
particles (and can thus be determined by the experimental measurements), according
to (3.15).

The above discussion provides guidelines for estimating the parameters necessary for
particle motions in the governing equation (2.29) using measurements of hop distances
and travel times. Based on the experimental data (Fathel et al. 2015) for long hops, we
can estimate U = 5.56 cm s−1. It can also be observed from the experimental data that
the Taylor dispersion regime for particle hops starts approximately between 0.2 and 0.3
s (Wu et al. 2020), which gives an estimation of the diffusion coefficient D in the range
from 3.33 to 5 s−1. Additionally, fitting (3.14) to measured data of the mean hop distances
at different travel times, we can determine the diffusion coefficient D. Note also that our
first estimated value of D = 4 s−1 in (2.21) based on the p.d.f. of the transformed velocity
variation Δζ falls right in the 3.33 to 5 s−1 range, corresponding to the average of 0.2
and 0.3 s for 1/D. The effect of the diffusion coefficient D on the particle motions can
be phenomenologically interpreted by considering D as a measure of how fast the particle
can change its velocity during the transport. Thus, the faster the particle samples different
velocities from the ‘shear velocity profile’ of (2.23) in a Gaussian random walk manner
(measured by the standard deviation of the p.d.f. of Δζ ), the shorter time it needs to
experience these velocities many times to approach the Taylor dispersion regime for long
hops.

In figure 7(b), we show that the calculated red points for mean hop distances with
respect to travel times from the experimental data are perfectly captured by the solid
line representing the analytical solution of (3.14). Since the transition regime for the
experimental data starts around 0.1/D = 0.025 s, it can be seen that an exponent larger
than 1.5 (here 5/3) explains quite a portion of the scaling behaviour for the measured short
hops (mostly in the transition regime), providing a theoretical basis for the estimation of
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Figure 7. Scaling regimes for mean hop distances (Lh) and travel times (τ ) of bedload particle hops. (a) Effects
of diffusion coefficient D, with two characteristic times of 0.1/D and 1/D marked for the blue curve of D =
100 s−1 indicating three stages, respectively, as an initial, a transition and the Taylor dispersion regime. (b)
Comparison between the experimental data (Fathel et al. 2015) for the mean hop distances, which is the same
as that presented in figure 4(b) by Wu et al. (2020), and the analytical solution (3.14) with parameters of D = 4
s−1 and U = 5.56 cm s−1.

5/3 made by Roseberry et al. (2012). Note also that the present formulation may explain
the estimates of lower exponents (in the range 1.25–1.30) as provided from the experiments
by Liu et al. (2019) in similar transport conditions.

Along with the deposition rate of ka = 16.67 s−1 as appeared in equation (3.10), all
parameters required in the governing equation (2.29) are now determined. We highlight
that, based on the diffusion coefficient D = 4 s−1 and our demarcation on particles
performing short hops (i.e. the travel time τ < ts, with the characteristic time ts = 1/D),
for the Fathel et al. (2015) experimental dataset, the number of short hops covers over 84 %
of the entire hop events according to the travel-time distribution described by (3.10).
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3.3. Hop-distance distributions
The hop distance has long been regarded as a key random variable in the formulation
of bedload sediment transport, and the form of its distribution is thus of both theoretical
and practical importance. Conventionally, the calculation of sediment flux is based on
the mean hop distance under equilibrium transport conditions (Einstein 1950), while
the second-order moment of the hop-distance distribution comes into play for more
generalized cases (Furbish et al. 2012a). Regarding formulations on bedload tracer
transport, where an ensemble of tracer particles is followed during the course of
experimental observation, the mean of the hop-distance distribution is necessary for the
advective term of the tracer transport, whereas the variance contributes to the streamwise
diffusion of tracers (Ganti et al. 2010; Wu et al. 2019a,b).

The analytical solution of Lh(τ ) for the mean hop distance–travel time relation allows us
not only to distinguish between different transport regimes of particle motions depending
on how long the particle can travel during a single hop, but also to straightforwardly
and theoretically address the specific form of the hop-distance distribution. Based on the
work of Fathel et al. (2015) (equation (B1) in their paper) and (3.10) for the travel-time
distribution fT , we have

fL(x) =
∣∣∣∣dL−1(x)

dx

∣∣∣∣ fT
(

L−1(x)
)

=
∣∣∣∣dL−1(x)

dx

∣∣∣∣ ka

2
exp

(
−ka

2
L−1(x)

)
. (3.16)

In the above equation, L−1(x) is the inverse function of Lh(τ ), which cannot be
given explicitly, but can be calculated numerically according to (3.14). In figure 8 we
compare the theoretical result of the hop-distance distribution (3.16) with the experimental
measurements, based on the obtained parameters D, U and ka. The good agreement
serves as an excellent validation of the formulation in (2.29) for bedload particle hops.
In addition, as also pointed out by Wu et al. (2020), the emerging mixed form of the
hop-distance distribution, a Weibull-like front and an exponential-like tail, is the result
of the different transport regimes for short- and long-hop particles, respectively. That is,
the linear scaling of Lh(τ ) ∼ τ for long hops ensures that the tail of the hop-distance
p.d.f. is the same as that of the travel times, which is an exponential distribution. And the
scaling of Lh(τ ) ∼ τ 2 for short hops implies that a different form than the exponential
distribution, specifically the Weibull distribution, will emerge for small hop distances
in the p.d.f., as concluded by Fathel et al. (2015). We note that the tail characteristics
of the hop-distance p.d.f. is important in the sense that the heavy-tailed distribution of
hop distances was proposed as a possible reason for the observed anomalous diffusion of
bedload particle transport (Schumer, Meerschaert & Baeumer 2009). Thus the thin-tailed
distribution of hop distances should indicate the existence of different mechanisms leading
to the anomalous diffusion, which, for example, can be related to the heavy-tailed waiting
time distribution caused by tracer particles when they stop moving and/or get buried (Liu
et al. 2019; Wu et al. 2019a,b).

In fact, under the current formulation for an exponential distribution of travel times,
we can further obtain an explicit expression for the tail of the hop-distance distribution
according to the transport regime of the bedload particle performing long hops. Based on
the linear relation in (3.15), we have

L−1(x)|x→∞ = 1
U

x − 4
∞∑

n=1

cos(βn)Si(βn)

Dβ3
n

, (3.17)
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Figure 8. The p.d.f. of bedload particle hop distance. (a) Comparison between the experimental data (Fathel
et al. 2015) and the theoretical result of (3.16). The inset shows the same results presented in linear–log plot.
(b) Analytical solution for the hop-distance distribution of long hops, in contrast to the Weibull-like front of
the distribution for short hops. If there exist only long hops, (3.18) should shift vertically and approach (3.19),
which is the exponential p.d.f. for hop-distances conventionally adopted by Einstein (1950) and others in their
research.

which results in

fL(x)|x→∞ = ka

2U
exp

(
− ka

2U
x + 2ka

∞∑
n=1

cos(βn)Si(βn)

Dβ3
n

)
, (3.18)

indicating an exponential tail of the distribution, agreeing with our qualitative description.
According to (3.16), the linear relation of (3.17) simply tells us that the form of the tail
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of the hop-distance distribution must be the same as that of the travel-time distribution
(consistent with observations by Roseberry et al. 2012; Liu et al. 2019).

In figure 8(b) we can see that (3.18) captures well the exponential tail of the hop-distance
distribution. The Weibull distribution (blue line) in the figure is adopted from Fathel et al.
(2015): fLW(x) =

√
x−1/〈x〉/2 exp(−√

2/〈x〉 x1/2), with the measured mean hop distance
〈x〉 = 0.46 cm. The small differences for short hops between the Weibull distribution and
the results of (3.16) are due to different scaling exponents (e.g. 5/3 or 2 for the transition
regime) for the mean hop distance–travel time relation. To account for the sharp decay
of the probability density by the Weibull-like front due to the large number of particles
performing short hops, the black solid line representing (3.18) has to be shifted downwards
in the figure as compared with the following exponential p.d.f.:

fLe(x) = ka

2U
exp

(
− ka

2U
x
)

. (3.19)

Note that (3.19) is only for long hops (i.e. hops with a constant mean velocity), and
represents the classic form of hop-distance distribution as assumed by Einstein (1950) and
following studies (Paintal 1971; Wu et al. 2019a).

3.4. Validation based on the acceleration distribution
As a further validation of our formulation for the bedload particle hops, we numerically
calculated the p.d.f.s of the particle accelerations by particle-tracking simulations based on
(2.25). By the algorithm of Gaussian random walk on the ζ -axis (2.24a), and the inverse
rule for mapping velocity from ζ -axis to u-axis (described by (2.23)), we can generate
a time series of velocity u for a particle in motion with the time step of Δt = 0.004 s,
which is the same as the interval used for data sampling in experimental measurements.
Note that R in (2.24a) is a normally distributed random variable with zero mean and unit
standard deviation. The initial and boundary conditions for (2.24a) during the simulations
are defined by (2.27) and (2.28), respectively. The same parameter of D = 4 s−1 is
used for the simulation. The accelerations are then obtained by Δu/Δt, and the results
of our theoretical framework agree well with the measurements by Fathel et al. (2015)
(figure 9). We note that simulated particle accelerations have not been constrained during
the formulation of bedload particle hops in this paper (i.e. (2.29)). Hence, the emerging
Laplace form of the acceleration p.d.f. is an independent validation and it is also consistent
with recent measurements by Liu et al. (2019).

We also note that the Laplace-like p.d.f. for the accelerations in figure 9 is not the result
of the exponential-like velocity distribution (as we have assumed in (2.14)). We emphasize
that, if the particle velocity is randomly drawn each time from the exponential p.d.f. of
(2.14) to construct the velocity trajectory as shown by figure 1, the resulting acceleration
p.d.f. is indeed Laplace, but with a different variance compared with the results in figure 9.
We have performed such numerical simulations to generate the acceleration p.d.f. as
demonstrated in figure 10, which is evidently different from the results in figure 9. This can
be attributed to the fact that Δζ (difference of nonlinearly transformed velocities) in our
model is generated by a normally distributed random variable R as seen in (2.24a), instead
of the difference between two velocities randomly drawn from the exponential p.d.f. of
(2.14), respectively.
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Figure 9. Comparison of acceleration p.d.f.s between the experimental data (Fathel et al. 2015) and results
of numerical simulation based on the proposed theoretical framework. The Laplace distribution in the figure
(blue line) is f (ax) = (1/2λ) exp(−|ax|/λ), where ax is the acceleration (cm s−2 ) and the parameter λ = 610
cm s−2.
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Figure 10. Demonstration that the acceleration p.d.f. in figure 9 is not the result of the exponential distribution
of (2.14). The fitted Laplace distribution (red line) to the simulated accelerations in this figure has a very
different variance compared to the Laplace p.d.f. in figure 9 (also reproduced here as the blue line). This is
because the numerically simulated accelerations were obtained by differences of two velocities each randomly
drawn from the exponential distribution of (2.14), rather than that generated by a normally distributed random
variable R as seen in (2.24a) and presented in figure 9.
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4. Conclusions

In this paper, we investigate the experimental data and find that the velocity variations
Δu during particle hops do not follow a Gaussian random walk process. Instead, by
performing a nonlinear transformation and mapping the velocity u into an opportunely
distorted velocity axis ζ , the corresponding velocity variation Δζ can be approximated
by a Gaussian random walk process, which is equivalent to a governing diffusion equation
with respect to the new variable ζ . Using an advection term describing streamwise motions
of the particle due to the velocity variations, an advection–diffusion equation is finally
deduced for the fundamental events of particle hops, which is seen to be identical with that
governing Taylor dispersion. Similar to the Taylor dispersion process describing a solute
molecule performing a transverse Gaussian random walk to sample different streamwise
flow velocities in a shear flow, in this framework bedload particles perform a Gaussian
random walk along a properly transformed velocity ζ . Particles thus sample different
velocities from a virtual velocity profile (i.e. (2.23)), which are then translated into their
streamwise motion.

Based on the governing equation and the concentration moment method, we obtain
the analytical solution for the mean hop distance–travel time relation, which for the
first time provides a theoretical basis for the variability of scaling behaviours observed
experimentally for particle hops with various travel times and under different transport
conditions. The linear hop distance–travel time scaling for long-hop particle motions can
simply be explained by the Taylor dispersion regime, with an explicit characteristic time
scale ts (= 1/D) for the mean velocity of the hops to reach a constant value. Travel times
shorter than ts thus define the short hops covering most of the observed particle hops (over
80 % for Fathel et al. (2015)), the scaling behaviour of which has not been theoretically
explained in previous studies. The solution of our model suggests a slight increase of the
scaling exponent from ∼ 1.5 at extremely short travel times (initial regime) to ∼ 5/3 at
the beginning of the transition regime, which is characterized by a time scale of 0.1ts.

According to Taylor dispersion theory, ts is closely related to the diffusion coefficient
D (= 1/ts), which characterizes how fast a particle can change its streamwise velocity,
and should depend on both flow conditions and particle size, hence on the transport
intensity. The prediction of such a key time scale from the transformed velocity variation
Δζ distribution (leading to ts = 0.25 s) agrees well with that observed in experiments
(0.2 s < ts < 0.3 s). As opposed to using acceleration data, which require high-precision
measurements of particle positions, in this paper we demonstrate that the diffusion
coefficient D can also be determined by the measured hop distances and travel times,
which are more accurate and less experimentally demanding. Future research may provide
an opportunity to interpret the diffusion coefficient D using scaling arguments for wall
turbulence, for example, as the ratio between the shear velocity and a representative length
scale.

Another step forwards is the analytical solution for the p.d.f. of the hop-distance, which
is a centrepiece of entrainment formulations for the sediment flux and the Exner equation.
Explicit expressions, including that for the tail of the hop-distance distribution, are
obtained and used to demonstrate that the conventionally adopted exponential distribution
for hop distances, like that proposed by Einstein, is valid solely for long hops (i.e. hops with
a constant mean velocity). We simulated the acceleration p.d.f. for particle motions based
on the proposed theoretical framework, and compared it with experimental measurements
as a further validation of our formulation. The Laplace-like distribution for accelerations is
demonstrated not to be the result of the exponential-like velocity distribution of particles.
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We acknowledge that the proposed model has been calibrated based on the Fathel et al.
(2015) dataset. However, we stress that the assumptions of an exponential distribution
for streamwise velocity and travel times are robust, as observed in other experimental
measurements (Lajeunesse et al. 2010; Liu et al. 2019). More importantly, the different
power-law relations for hop distances and travel times, and the Laplace-like distribution
of particle accelerations, are true emerging features of our theoretical framework, in
agreement with independent experiments (Fathel et al. 2015; Liu et al. 2019).
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