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Abstract

Soil carbon dioxide (CO2) emissions from the field of corn (Zea mays L.) play an important
role in global warming. This study investigated temporal variability of soil CO2 fluxes (Rs)
with soil temperature (Ts) and moisture (θ) and built DAYCENT models for predicting future
impacts of climate changes on Rs using the measured high-frequency data. Rs trend was tested
by Mann–Kendall and Sen Estimator. Predicted Rss under different climate scenarios were
compared using Parallel-line Analysis. The findings indicated that daily Rs exponentially
increased with Ts constrained by θ. During the θ of 27–31%, there was a strong exponential
relationship between Rs and Ts, but the relationship was weaker for the θ of 38–41% and 22–
26%. Soil environmental index (SEI, Ts × θ) significantly impacted Rs with linear regression
Rs
0.5 = 0.4599 + 0.002059 × SEI in 2008, 2009 and 2011. At the diurnal scale, there were differ-

ent trends in Rss and relationships among Rs and Ts and θ in different years. Predicted yearly
Rss, root Rss and corn yield in 2014–2049 increased with an increase in temperature scenarios,
but the Rss significantly increased as temperature rose by 1°C or higher. Predicted yearly Rss,
root Rss and yield reduced with precipitation scenario increase, and the root Rss and yield
significantly diminished as precipitation increased by 15 and 30%. Predicted yearly Rs from
cornfields had a significantly increasing trend. Future research is needed to explore methods
for mitigating cornfield Rs and evaluating sensitivities of different cropland Rss to temperature
changes.

Introduction

Carbon dioxide (CO2) is the principal greenhouse gas (GHG) contributing positively to global
warming potential (Reilly et al., 2003). CO2 emissions from soils have long been identified as
the largest natural source of carbon to the atmosphere in most undisturbed and unmanaged
terrestrial systems (Diaz-Diaz and Loague, 2001) and as the most significant component of
terrestrial ecosystem respiration (Duxbury, 1994; Doherty, 2010). The soil CO2 emission to
the atmosphere is a primary mechanism of carbon (C) loss from soils (Lamers et al., 2007).
The emissions come mainly from the decomposition of soil organic matter (SOM)
(GGWG, 2010). The main processes of SOM decomposition are biological oxidation by
microbes and roots, resulting in soil respiration (Andrews et al., 1999; Lamers et al., 2007;
Hernandez-Ramirez et al., 2009). Soil respiration is primarily a combination of two sources:
soil autotrophic respiration (mainly from plant roots) and soil heterotrophic respiration
(majorly from soil microbes) (Lai et al., 2017; Zheng et al., 2021). The soil CO2 emission
flux (Rs) is controlled by several factors, including soil temperature (Ts), soil moisture (θ)
(they strongly depend on air temperature and precipitation), quantity and quality of SOM,
soil pore-size distribution, wind speed (Latshaw and Miller, 1924; Linn and Doran, 1984;
Raich and Schlesinger, 1992; Lee et al., 2007, 2012), tillage and residue management
(Lewandowski et al., 2003; Glenn et al., 2012). The Rs between atmosphere and soil is an essen-
tial pathway in the C cycle. The processes that mediate these fluxes can increase the atmos-
pheric concentration of CO2 (Glenn et al., 2012), causing an increase in global mean
surface temperatures (Hofmann et al., 2019).

Corn (Zea mays L.) is one of the three major crops [wheat (Triticum aestivum L.), corn and
rice (Oryza glaberrima L. or Oryza sativa L.)] in the world. The corn area is 13.69% of the total
global cropland area, and the United States of America (USA) is the largest corn producer in
the world, with 33 270 820 ha of land reserved for corn production (FAO, 2020). The global
and USA corn acreages have been increasing since 1961 (FAO, 2020) due to the corn
multi-usage such as food, forage and bioenergy feedstock (Li et al., 2019). Soil management
practice is one of the significant factors affecting the soil–atmosphere exchange of GHG
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(Watson et al., 1996). Therefore, the CO2 emissions from soils in
the global cornfields play an essential role in global warming.

Previous studies have reported different treatment effects on
soil CO2 emissions from cornfields, such as the tillage effects on
CO2 emissions (Jackson et al., 2001; Johnson and Curtis, 2001;
Glenn et al., 2012), the impact of drainage water management
on soil CO2 fluxes (Johnson et al., 2001), the effect of in-field
management of corn cob and residue mix on soil CO2 emissions
(Hsu et al., 1985) and CO2 emissions under different fertilizer
treatments (Kanerva et al., 2007). Several studies have reported
the temporal variability of Rs at diurnal (Kiniry et al., 1999;
Gaumont-Guay et al., 2006; Riveros-Iregui et al., 2007;
Kirkham, 2011; Wang et al., 2014) and seasonal time scales
(Kiniry et al., 1999; Kutsch et al., 2009; Liu et al., 2009;
Kuzyakov and Gavrichkova, 2010; Martin et al., 2012; Wang
et al., 2014). However, in the north-central region of the USA, lit-
tle is known about the daily, seasonal and annual variabilities of
Rs from cornfields.

The correlations between Rs and Ts or θ are different depend-
ing on various local conditions such as temperature and precipi-
tation. The strong relationship between Rs and Ts was reported by
several previous studies (Borken et al., 2006; Arevalo et al., 2010).
CO2 fluxes increase with an increase in temperature, which stimu-
lates microbial activity (Winkler et al., 1996) and enhances root
respiration (Rochette and Flanagan, 1997; Arevalo et al., 2010).
It is impossible to measure the accurate Ts response of Rs and
the confounding effects of Ts with other factors on Rs (Subke
and Bahn, 2010). The impacts of θ on Rs are distinct only when
the soil is too dry or too wet (Davidson et al., 1998). It is recog-
nized that θ and Rs might have an indirect relationship due to a
hysteresis effect in the θ changes on Rs changes (Pacaldo, 2012).
Therefore, continuous automated measurements can be beneficial
in understanding the relationships between Rs and Ts or θ over
time.

The continuous automated soil CO2 measurement can
generate high-frequency temporal data of CO2 fluxes from the
soil. The measured high-frequency Rs is one of the most valuable
incomings to calibrate and validate a model that simulates major
ecosystem processes. In this study, the DAYCENT model (Parton
et al., 1987) was calibrated using the high-frequency Rs data for
simulating and predicting Rs from a cornfield. This prediction is
vital to make policies or decisions for mitigating GHG emissions.
Therefore, the objectives of this study were to (i) explore the tem-
poral variabilities of Rss at seasonal and diurnal time scales from a
cornfield located in South Dakota and analyse the relationships
among Rs, Ts and θ, (ii) calibrate and validate DAYCENT
model, (iii) predict future impacts of climate change scenarios
on Rs and corn yield using the built model and (iv) forecast the
long-term Rs from cornfield using the built model and the pro-
jected climate data by the climate models.

Materials and methods

Data measurements

The study site is near Lennox, South Dakota, USA (43°14′27.0′′ N,
96°54′09.0′′ W; altitude: 384 m above sea level). Before 1977, the
site was an uncultivated field with wild grasses. From 1977 to
2001, the soybean, corn, spring wheat with unregular crop rota-
tions were planted at the site. In 2002–2015, the corn was con-
tinuously planted every year at the site, at which the cornfield
was not ploughed (i.e. no-tillage; but it was harrowed using the

disc harrows before planting) and applied nitrogen (N) fertiliza-
tion twice with an N rate of 6.7 (10 days after planting) and
5.6 g N/m2 (30–35 days after planting) for each growing season.
The Rs from the cornfield were measured using a high frequent
measurement method with the Automated Soil CO2 Flux
System, which was LI-8100 instrumentation (LI-COR
Biosciences Inc., Lincoln, NE, USA). Ts and θ at the 8-cm
depth were also measured using the same LI-8100 equipment
(the soil moisture sensors from the LI1800 were previously cali-
brated). The Automated Soil CO2 Flux System connected the
four gas chambers and sensors to measure Rs, Ts and θ. Two
gas chambers and sensors were installed between the cornrows,
and the other two were within the rows and were always in the
same spot from 2008 to 2011. The four chambers and sensors
were located within a 4-meter distance. The hourly Rs, Ts and θ
were continually measured in the growing seasons of corn in
2008 and 2009. The 2-h Rs, Ts and θ were continually measured
in the 2011 corn growing season. In 2010, most measured values
were incorrect because the flooding submerged the four chambers
in the field. The formula for the calculation of soil CO2 flux:

Rs =
10VP0 1− W0

1000

( )

RS(T0 + 273.15)
∂C′

∂t

where Rs is the soil CO2 flux (μmol/m2/s), V is volume (cm3), P0 is
the initial pressure (kPa), W0 is the initial water vapour mole frac-
tion (mmol/mol), R is Gas Constant (8.314 Pa m3/K/mol), S is
soil surface area (cm2), T0 is the initial air temperature (°C)
and ∂C’/∂t is the initial rate of change in water-corrected CO2

mole fraction (μmol/mol) from time 0 to t. C’(t) v. t data were
obtained from a soil CO2 flux measurement. The data are marked
to show when the chamber closed and opened. The details of C’(t)
v. t calculation were described in the Using the LI-8100A Soil Gas
Flux System and the LI-8150 Multiplexer (LI-8100A manual:
https://licor.app.boxenterprise.net/s/jtpq4vg358reu4c8r4id).

The means of Rs, Ts and θ measured from the four chambers
(i.e. averages of four values were calculated from the four cham-
bers simultaneously) were used to analyse this study. The daily
mean Rs (Rsd), Ts (Tsd) and θ (θd) were used to conduct the ana-
lyses at the seasonal time scale. The Rsd, Tsd and θd were calcu-
lated by averaging the values of Rsh, Tsh and θh during each
observed day. The hourly or 2-h Rs (Rsh), Ts (Tsh) and θ (θh)
were used for analysis at the diurnal time scale. Yearly (annual)
Rs (Rsy) was used for showing the modelling results (i.e. predicted
results using models).

The daily maximum and minimum air temperature and pre-
cipitation data from 1906 to 2013 were retrieved from the nearest
Weather Station (14 km) in Centerville, South Dakota. The daily
mean air temperature was calculated from the daily maximum
and minimum air temperature. The daily mean air temperature
in 2008, 2009, 2010 and 2011 were 6.58, 7.16, 8.23 and 8.22 °C,
respectively. The annual precipitation in 2008, 2009, 2010 and
2011 were 768, 693, 901 and 562 mm, respectively. The means
of air temperature and annual precipitation over the past
30 years (1984–2013) were 8.22°C and 653 mm. 2011 was a
drought year because the precipitation (562 mm) was lower
than the long-term annual mean precipitation of 653 mm and
the other three observed years. Corn yield was measured from
2008 to 2011. The data for soil bulk density (1.37 Mg/m3), pH
(6.7) and particle size distribution (22.5% clay, 37.7% silt and
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39.8% sand) were obtained from the USDA-NCSS soil survey
(http://casoilresource.lawr.ucdavis.edu/gmap/). The field capacity
and wilting point were automatically estimated by DAYCENT
model software, in which the field capacity was water content at
the option of −0.33 bar for the loam soil, and the wilting point
was assumed to be water content at −15 bars (Gupta and
Larson, 1979; Rawls et al., 1982).

Soil CO2 flux prediction

DAYCENT model (Stand-alone Version 08/17/2014) was used to
simulate and predict Rs in this study. The DAYCENT is the daily
version of the CENTURY ecosystem model (Parton et al., 1987), a
fully resolved ecosystem model that simulates all major ecosystem
processes, such as changes in SOM, plant productivity, nutrient
cycling, CO2 respiration, soil water and soil temperature at the
daily scale (Del Grosso et al., 2001). The model inputs included
daily precipitation, maximum and minimum daily temperature,
soil texture, pH, field capacity, wilting point, historical land use
and field and crop management information. The historical
land-uses were a series of temperate tall grass and clover grass
from year 1 through 1977, soybean (Glycine max L.), corn
and wheat rotation from 1978 to 2001, and corn from 2002 to
2013. These inputs were used to construct the local DAYCENT
model.

However, the performance of this model strongly depends on
how well it is calibrated and validated for the specific environ-
mental conditions being evaluated (Smith et al., 1997; De Gryze
et al., 2010). The model was calibrated using the Combined
Parameter estimation (Doherty, 2010) and Trial-Error (CPTE)
methodology, which was described in our previous publications
(Mbonimpa et al., 2015; Lai et al., 2016). First, this study used
the ‘trial and error’ method to calibrate the DAYCENT model.
Then, the model was calibrated manually by adjusting values
of the critical parameters until the adjusted parameters improved
the simulations of CO2 fluxes. However, we could not obtain the
best DAYCENT model through manual calibration. Therefore,
the PEST model was used to calibrate the manually calibrated
DAYCENT model further. First, the 42 most sensitive parameters
(Table S1) were selected by running PEST with DAYCENT model
from 87 parameters can be adjusted in a total of 599 parameters
for simulating crops in the DAYCENT model (Lai et al., 2016).
Then, the PEST with DAYCENT models were run for calibration
using the 42 most sensitive parameters and the measured CO2

flux data from the corn growing seasons in 2008 and 2009. The
calibrated modelled CO2 fluxes were extracted from the outputs
of the PEST calibrated model, and then the modelled v. measured
CO2 fluxes (Rsd) were compared. For model evaluation, we used
the measured CO2 flux data from the corn growing seasons in
2011 to validate the DAYCENT model (all the measurements in
2010 were not correct due to flooding). Also, the data of corn
yield, Ts and θ were used to validate the model. Based on the
DAYCENT model developer, the net primary productivity
(NPP) is the most critical parameter for the model validation (if
the NPP for the site is incorrect, then none of the other model
outputs can be expected to be representative of the conditions
at the site). The corn yield can check the NPP for the study site
(Parton et al., 1998). Therefore, the corn yield is necessary to val-
idate the calibrated DAYCENT model. The model was validated
by comparing the calibrated DAYCENT modelled outputs (i.e.
CO2 flux, corn yield, Ts and θ) to the measured data.

Then, the calibrated and validated DAYCENT model was used
to simulate Rs for the long-term (we selected 2014 to 2049) using
climate change (i.e. temperature and precipitation changes) scen-
arios. The temperature scenarios were created based on the incre-
mental scenarios development (McCarthy, 2001). Temperature
scenario I (ST1, baseline temperature) in the next 36 years is
the past 36-years (from 1978 to 2013) temperature. The climate
data over the past 100 years showed no increasing trend in tem-
perature (Fig. S1). Therefore, we developed scenarios II, III and
IV (ST2, ST3 and ST4) by increasing the temperature by 0.5,
1.0 and 1.5°C for the next 36 years (from 2014 to 2049), respect-
ively, and keeping the precipitation constant. The five scenarios of
precipitation changes (SP1-SP5) from 2014 to 2049 were created
based on the changes in precipitation from SP1 to SP5 corre-
sponding to −30, −15, 0, +15 and +30% of the precipitation mea-
sured from 1978 to 2013 (SP3 is the precipitation in 1978–2013,
i.e. baseline precipitation). The precipitation frequencies for
future climate scenarios were kept the same as that of 1978 to
2013. The range was based on that reported by IPCC’s projected
precipitation to be approximately between −30 to 30% across the
globe by 2090 relative to 1990 (IPCC, 2007), and the temperature
was kept the same to the increasing trend from 1978 to 2013 (Lai
et al., 2016).

The calibrated and validated DAYCENT model was also used
for predicting Rs in the next 36 years based on the projected cli-
mate data using a nine-member high-resolution regional climate
model ensemble. This was generated using the International
Centre for Theoretical Physics Regional Climate Model Version 4
(RegCM4, https://www.int-res.com/articles/cr_oa/c052p001.pdf),
driven by the 6-hourly initial and boundary forcing from
Global Climate Models (GCM) that were part of the 5th phase
of the Coupled Model Intercomparison Project (CMIP5). Each
RegCM4 integration covered 1965–2005 using the historical simu-
lations and 2010–2050 using the Representative Concentration
Pathway 8.5 (RCP 8.5) (Ashfaq et al., 2016). The nine downscaled
CMIP5 GCMs include the Beijing Climate Center Climate model
(BCC-CSM), Community Climate System Model (CCSM4),
Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate
Model (CMCC-CM) (Scoccimarro et al., 2011), Flexible Global
Ocean-Atmosphere-Land System model (FGOALS) (Oleson et al.,
2004), Institute Pierre Simon Laplace Climate Model 5 running on
a low-resolution grid (IPSL-CM5A-LR), Model for Interdisciplinary
Research on Climate 5 (MIROC5), Max-Planck-Institute Earth
System Model running on medium resolution grid (MPI-ESM-
MR), Meteorological Research Institute Coupled ocean-
atmosphere General Circulation Model (MRI-CGCM3) (Yukimoto
et al., 2012), and the Norwegian Earth System Model (NorESM1-M)
(Bentsen et al., 2013). RegCM4 simulations were conducted at 18
km horizontal grid spacing with 18-levels in the vertical over a
domain covering the continental United States and parts of
Canada and Mexico (Ashfaq et al., 2016). The output from the
RegCM4 simulations was further bias-corrected to 4 km using the
methodology detailed in Ashfaq et al. (2013). Finally, the bias-
corrected data was used to extract the simulated temperature for
the 10 points representing the study site.

Statistical analysis

The trend analysis for the measured data was conducted by using
the Mann–Kendall test (the null hypothesis states that there is no
monotonic trend) (Mann, 1945; Kendall, 1975; Gilbert, 1987)
with slopes estimated by the Sen estimator (Sen, 1968) using
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the package ‘mblm’ in R (Komsta, 2013; R Core Team, 2020). The
data autocorrelation coefficients were calculated, and
Autocorrelation Function (ACF) plots were drawn using the R
language (R Core Team, 2020). The line plots, scatter plots with
trend lines and their functions, and tables were made using
Microsoft Excel 2019. Parallel-line analysis was used for compar-
ing the simulated Rss under different climate scenarios using SAS
9.4 (SAS, 2013). The parallel-line analysis is a statistical method
for comparing two datasets that are time-correlated or paired
values that are not independent. It can determine whether linear
regression slopes and intercepts of the two datasets are
significantly different. If the slopes are not significantly different
(i.e. the two-line slopes are parallel), it can test whether the
line intercepts are significantly different. If the slopes are signifi-
cantly different, there is no sense in testing line intercepts
(Solusions4u, 2021). The distributions of the datasets were tested
for normality using the Kolmogorov-Smirnov method using SAS
9.4 (SAS, 2013) when exploring the datasets. Data were transformed
when necessary for building a regression model. The transformation
was determined using the Box-Cox method (Box and Cox, 1964,
1982) using SAS 9.4 (SAS, 2013). Pearson correlation coefficient
(r) was calculated using SAS 9.4 (SAS, 2013). Significance was deter-
mined at α = 0.05 level for all statistical analyses.

Performance of the calibrated and validated DAYCENT model
was evaluated with four widely used quantitative criteria (Moriasi
et al., 2007; Dai et al., 2014) that include the determination coef-
ficient (R2, squared correlation coefficient), per cent bias (PBIAS)
(Gupta et al., 1999), model performance efficiency (ME/NSE)
(Nash and Sutcliffe, 1970) and the root mean squared error (the
RMSE) and RSR (the ratio of RMSE to SD (standard deviation of
measured data)) (Singh et al., 2004). The acceptable range of the
four evaluation criteria R2, PBIAS, ME/NSE and RSR are 0.5 to 1,
−25 to 25%, 0.5 to 1 and 0 to 0.7, respectively (Table S2).

Results

Soil hourly CO2 fluxes and corn yield

Soil hourly (2008 and 2009) and 2-h (2011) CO2 fluxes (n = 38 416)
are the original measured data, presented in Fig. 1 and Fig. S2.
Data showed that, in general, the hourly and 2-h Rs displayed a
seasonal trend with the temperature change, such as higher Rs

from mid-June to mid-August and lower Rs in other periods for
each year (Fig. 1). The maximum and minimum values of the
hourly and 2-h Rs were 11.8575 and −0.1225 μmol/m2/s (there
was a total of 2 negative values). The median, mean and standard
deviation of hourly and 2-h Rs were 2.4120, 2.8250 and 1.9355
μmol/m2/s, respectively. The values of hourly and 2-h Rs did
not follow a normal distribution. The hourly and 2-h Rs values
between 0 and 3 μmol/m2/s had a higher frequency, and the
values greater than 8 μmol/m2/s had a smaller frequency
(Fig. S2). Several hourly and 2-h Rs values increased or decreased
suddenly, and a few values were extraordinarily high and low
(Fig. 1(a)).

The corn yield at this study site was 10 432, 11 700, 9949 and
9591 kg/ha in 2008, 2009, 2010 and 2011, respectively.

Seasonal soil daily CO2 fluxes and soil temperature and
moisture

The daily CO2 fluxes (Rsd) and daily soil temperature (Tsd) and
moisture (θd) at the seasonal time scale are presented in Figs 2

to 4, Figs. S3 to S10 and Table 1. In 2008, the median, mean
and standard deviation of Rsd were 2.7, 3.3 and 2.3 μmol/m2/s,
respectively. The maximum and minimum values of Rsd were
8.3 and 0.30 μmol/m2/s, respectively. Rsd had an increasing
trend from 13 June to 30 July 2008, and a decreasing trend
from 30 July to 18 November 2008, with fluctuations (Fig. 2
(a)). Tsd followed a decreasing trend in the 2008 growing season
(Fig. 2(b)). However, θd showed a flat pattern throughout the
growing season with large fluctuations (Fig. 2(c)). Further, the
trend tests showed that, overall, Rsd and Tsd followed a signifi-
cantly reducing trend over time (P value < 0.0001 with negative
slopes). In contrast, θd did not follow a significant trend (P value
= 0.71). The first-order and second-order autocorrelation coeffi-
cients (r1 and r2) for Rsd, Tsd and θd were greater than 0.65,
which indicated that these three variables had time-series auto-
correlation. Further, the r1 and r2 for Rsd and Tsd were greater
than that for θd (Table 1). The ACF plots further displayed that
the Rsd, Tsd and θd exhibited autocorrelation with their 14, 14
and 6 lags (days), respectively (Fig. S5). There was an exponential
relationship with high R2 between Rsd and Tsd in the corn produc-
tion field for the growing season in 2008: Rsd = 0.2826e0.1282Tsd

(R2 = 0.90) (Fig. 3(a)). However, corresponding to different θd,
the exponential relationships were different. The three ranges of
soil moisture were decided by splitting the θd dataset in 2008
into three groups with the same amount of data, namely, 22–
26%, 27–31% and 32–37%. During the range of 32–37% of θd,
there was a strong exponential relationship with high R2 (0.9)
between Rsd and Tsd, and the exponential relationship was very
strong (R2 = 0.95) for the 27–31% of θd. However, for the low
θd condition (soil moisture of 22–26%), the exponential relation-
ship was weak (close linear relationship) (Fig. S8). There was a
fairly weak relationship between Rsd and θd in 2008 (Fig. 4).
However, the relationship between CO2 and the product of Ts

and θ (Ts × θ), which is called the soil environment index (SEI),
was strong. The outputs of the linear regression model (Rsd

0.5 = b
+ a × SEI + ε, Rsd

0.5 is 0.5 power of Rsd) in 2008 showed that a (coef-
ficient of SEI in the model) was positive and P value < 0.0001
(Table 2), indicating that the SEI had a significant positive impact
on the Rsd in the cornfield. R2 was 0.77 (Table 2), indicating the
77% of the variance in the Rsd

0.5 that the SEI could explain.
In 2009, the median, mean and standard deviation of Rsd were

2.3, 2.4 and 1.4 μmol/m2/s, respectively, and the maximum and
minimum values of Rsd were 5.1039 and 0.1580 μmol/m2/s,
respectively. Rsd followed a decreasing trend from 17 May to 7
June and 26 June to 30 October 2009, and an increasing trend
from 7 June to 26 June 2009, with fluctuations (Fig. S3(a)). Tsd

followed a decreasing trend in 2009, and θd did not show an obvi-
ous trend (Fig. S3(b) and (c)). Further, the trend analysis showed
that Rsd and Tsd followed an overall decreasing trend over time (P
value < 0.0001 with negative slopes). In contrast, θd did not follow
a significant trend (P value = 0.42) (Table 1). The first-order and
second-order autocorrelation coefficients (r1 and r2) for Rsd, Tsd

and θd were >0.45, which indicated that these three variables
had time-series autocorrelation. Further, r1 and r2 values for Rsd

and Tsd were greater than those for θd (Table 1). The ACF plots
further showed that Rsd, Tsd and θd had autocorrelation with
12, 12 and 3 lags (days), respectively (Fig. S6). There was an expo-
nential relationship between Rsd and Tsd for the corn growing sea-
son in 2009: Rsd = 0.1586e0.1452Tsd (R2 = 0.86) (Fig. 3(b)). During
the range of 32–37% of θd, there was a strong exponential rela-
tionship with high R2 (0.90) between Rsd and Tsd, and for the
27–31% of θd, the exponential relationship was still strong
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(R2 = 0.82) (Fig. S9). However, there were only five values of Rsd

under the low θd condition (22–26%), which were too small to
reveal a correct relationship. There was a fairly weak relationship
between Rsd and θd in 2009 (Fig. 4). The linear regression model
(Rsd

0.5 = b + a × SEI + ε) in 2009 showed that the a was positive and
P value < 0.0001 (Table 2), indicating that the SEI had a signifi-
cant positive impact on the Rsd in the cornfield. R2 was 0.72
(Table 2), indicating the 72% of the variance in the Rsd

0.5 that
the SEI could explain.

In 2011, the median, mean and standard deviation values of
Rsd were 2.4, 2.6 and 1.4 μmol/m2/s, respectively, with the max-
imum and minimum values of 6.6 and 0.18 μmol/m2/s, respect-
ively (Fig. S4(a)). Rsd had an increasing trend from 17 May to
18 July, 2011, and a decreased trend from 18 July to 16 October
2011 (Fig. S4(a)). Tsd showed the same trend in Rs (Fig. S4(b)).
θd followed a decreasing trend (Fig. S4(c)). Further, the trend
tests showed that Rsd, Tsd and θd followed a significantly decreased
trend over the observed days (P value = 0.024, <0.0001 and
<0.0001 with negative slopes, respectively). The first-order and
second-order autocorrelation coefficients (r1 and r2) of Rsd, Tsd

and θd were greater than 0.78, which indicated the three variables
had time-series autocorrelation. The r1 and r2 of Tsd and θd were
greater than that of Rsd (Table 1). The ACF plots further showed
that, overall, Rsd, Tsd and θd had autocorrelation with their 10, 12
and 12 lags (days), respectively (Fig. S7). There was an exponen-
tial relationship between Rsd and Tsd in 2011: Rsd =
0.3098e0.1028Tsd (R2 = 0.53) (Fig. 3(c)). Specifically, for the high
θd (38–41%), there was no obvious relationship between Rsd

and Tsd. For the ranges of 32–37%, 27–31% and 22–26% of θd,

there were exponential relationships between Rsd and Tsd with
0.43, 0.74 and 0.57 of R2, respectively (Fig. S10). There were
strong relationships (a curve) between Rsd and θd in 2011, in
which the Rsd was highest when the soil moisture was 30.80%.
When the θd＜ 30.80%, the Rsd increased as the θd increased.
When the θd > 30.80%, the Rsd reduced as the θd increased
(Fig. 4). The linear regression model (Rsd

0.5 = b + a × SEI + ε) in
2011 showed that the a was positive and P value < 0.0001
(Table 2), indicating that the SEI had a significant positive impact
on the Rsd in the cornfield. R2 was 0.28 (Table 2), indicating the
28% of the variance in the Rsd

0.5 that the SEI could explain.

Diurnal soil CO2 fluxes and soil temperature and moisture

Rsh, Tsh and θh at the diurnal time scale are presented in Figs 5
and 6 and Figs. S11 to S13. In 2008, Rsh, Tsh and θh had a similar
pattern. There was a linear relationship between Rsh and Tsh: Rsh
= 0.029Tsh + 2.8756 (R2 = 0.52). Also, the linear relation between
Rsh and θh was: Rsh = 0.3436θh – 6.6463 (R2 = 0.48). The relation-
ship between Rsh and Tsh did not display daily hysteresis (Figs. 5
and S11(d)). The diurnal patterns of Rsh, Tsh and θh with standard
deviation in 2008 are shown in Fig. S11.

In 2009, Rsh, Tsh and θh followed a similar pattern. There was a
linear relationship between Rsh and Tsh: Rsh = 0.1719Tsh – 0.6452
(R2 = 0.81). The linear relationship between Rsh and θh was: Rsh =
1.0201θh – 30.442 (R2 = 0.85) (Fig. 6). The relationship between
Rsh and Tsh displayed a daily hysteresis loop (Fig. 6(a)).

In 2011, Rsh and θh had a similar pattern. However, Tsh
had different from the pattern of Rsh and θh. There was a linear

Fig. 1. (a) Soil hourly (2008 and 2009) and 2-hour (2011) CO2 fluxes (μmol/m2/s) and (b) daily air temperature (tem) and precipitation (prcp) data corresponding to
the measured days in 2008, 2009 and 2011 from the cornfield at the South Dakota site.
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relationship between Rsh and Tsh: Rsh = 0.0071Tsh + 2.5056 with
R2 = 0.0036. The linear relationship between Rsh and θh was:
Rsh = 1.3289θh – 37.884 with R2 = 0.66. The relationship of Rsh
and Tsh displayed a daily hysteresis loop (Fig. S13(d)).

Calibration and validation of DAYCENT model

The calibrated results using the measured Rs showed that the
values of determination coefficient (R2), PBIAS, modelling

efficiency (ME/NSE) and RSR (ratio of RMSE to SD of measured
Rs) were 0.71, 1.4%, 0.71 and 0.54, respectively, which were within
the acceptable ranges of the four evaluation criteria (Table S2).
The simulated and measured Rs in the calibration period had a
similar trend and magnitude with few unaligned peaks
(Fig. S14). Based on the validated results, for Ts, the values of
R2, PBIAS, ME and RSR were 0.80, 1.10%, 0.71 and 0.54, respect-
ively, which were acceptable. The corresponding values for θ were
0.51, −2.7%, 0.02 and 0.99, respectively, in which the R2 and

Fig. 2. (a) Means of daily soil CO2 flux (Rsd) ± S.D. (standard deviation of values of four chambers), (b) means of daily soil temperature (Tsd) ± S.D. (standard deviation
of values of four chambers) and (c) means of daily soil moisture (θd) ± S.D. (standard deviation of values of four chambers) from the cornfield at the South Dakota
site in 2008.
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PBIAS were acceptable but ME and RSR were out of the
acceptable ranges. However, the R2 (0.84) and PBIAS (1.10%)
values for corn yield were acceptable (Table S2). Therefore, gen-
erally, this study’s calibrated and validated DAYCENT model
was acceptable.

Modelling future impacts of temperature and precipitation
changes on annual soil CO2 fluxes, root CO2 fluxes and
corn yield

In response to four temperature scenarios, ST1, ST2, ST3 and
ST4, the four simulated annual soil CO2 fluxes RT1, RT2, RT3
and RT4 for the next 36 years (2014–2049) are presented in
Table 3. For the soil CO2 fluxes, the RT1 (ST1: baseline tempera-
ture) and RT4 (ST4: + 1.5°C) were significantly different (P value
= 0.018). The RT3 (ST3: + 1.0°C) and RT1 were marginally differ-
ent (0.05 ≦ P value < 0.10). RT2 v. RT1, RT4 v. RT2, RT3 v. RT2
and RT4 v. RT3 were not significantly different (P value > 0.11).
The means of RT1, RT2, RT3 and RT4 had an increasing trend
with increasing temperature scenarios (Table 3). For the root
CO2 fluxes, the RT1-4 were not significantly different from one
another, and the means of RT1-4 increased as the temperature
scenarios increased (Table 3). The corn yields in response to
four temperature scenarios were not significantly different from
one another (Table 3).

In response to five precipitation scenarios SP1-5 (−30%,
−15%, +0, +15%, +30% Precipitation from 1978 to 2013, which
is baseline precipitation, i.e. SP3), the five simulated annual soil
CO2 fluxes RP1-5 for the next 36 years (2014–2049) are presented
in Table 4. For the soil CO2 fluxes, the RP4 and RP2 were mar-
ginally significantly different (0.05 ≦P value < 0.10). The RP2 v.
RP3, RP4 v. RP3, RP5 v. RP3, RP1 v. RP2 and RP5 v. RP4
were not significantly different. The RP1 v. RP3, P5 v. RP2,
RP4 v. RP1 and RP5 v. RP1 were unable to be compared because
the line slopes are significantly different based on the parallel line
analysis. For the root CO2 fluxes, the RP5 was significantly lower
than the RP3. The RP4 v. RP3, RP4 v. RP2 and RP5 v. RP2 were
marginally different. Other paired RPs were not significantly dif-
ferent. The means of RP1-5 reduced as the precipitation scenarios
increased (Table 4). The corn yield under the SP5 was
significantly lower than that for the SP3 and SP2. The corn
yield under the SP4 was marginally lower than that for the SP3
and SP2. Other paired yields were not significantly different
(Table 4).

Fig. 3. The exponential relationship between daily soil CO2 fluxes (Rsd) and daily soil
temperature (Tsd) measured in the cornfield at the South Dakota site in (a) 2008, (b)
2009 and (c) 2011. y = daily soil CO2 flux (Rsd); × = daily soil temperature (Tsd); R

2 =
determination coefficient.

Fig. 4. Relationships between daily soil CO2 fluxes (Rsd) and daily soil moisture (θsd)
measured in the cornfield at the South Dakota site in (a) 2008, (b) 2009 and (c) 2011.
y = daily soil CO2 flux (Rsd); x = daily soil moisture (θsd); R

2 = determination coefficient.
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Predicted future long-term soil CO2 fluxes

Comparisons of all pairs of ten projected soil CO2 fluxes corre-
sponding to ten projected weather data showed that within a
total of 45 pairs of the predicted CO2 fluxes, 12 pairs were signifi-
cantly different (P value < 0.05), and the other 33 pairs were not
significantly different (P values > 0.05) (Table S4). The 12 signifi-
cant different pairs likely implied that the projected weather data
corresponding to the 12 pairs had significant differences.
However, most pairs of soil CO2 fluxes (73.3%) were not signifi-
cant. Therefore, generally, the projected weather data were
acceptable.

Means and 95% confidence intervals of predicted Rsy for the
next 36 years are presented in Fig. 7 and Table S3. The means
had an increasing trend over the years: Rsy = 3.0548 × year +
609.33 (R2 = 0.80) (Fig. 7). The trend test showed that the slope
was 3.1578 with a very small P value (<0.0001). Based on the
equation, the predicted mean of Rsy in 2014 and 2049 were
612.38 and 719.30 g/m2/year, respectively, which had a difference
of 106.92 g/m2/year. The mean of predicted Rsy in 2015 was
611.49 g/m2/year, and its 95% confidence interval was [569.33,
653.64] (Table S3). The mean predicted Rsy from 2014 to 2049
was 665.85 g/m2/year. The mean 95% confidence intervals of pre-
dicted Rsy for the means of predicted Rsy in the next 36 years were
628.48 to 703.22 g/m2/year.

Discussion

Seasonal variabilities of soil CO2 fluxes influenced by soil
temperature and moisture and their interaction in the
cornfield

The findings from this study showed that the seasonal variabilities
of Rsd were closely linked to Tsd and θd. The Rsd increased

exponentially with Tsd (Fig. 3). There was a robust exponential
relationship between Rsd and Tsd during the 27–31% range of
θd. However, there were relatively weak relationships between
Rsd and Tsd for the ranges of 38–41% or 22–26% of θd (Figs.
S8–S10). Previous studies have reported the exponential depend-
ence of respiration rate on temperature. It was originated by Van’t
Hoff in 1898 (Lloyd and Taylor, 1994). Lloyd and Taylor (1994)
used natural logarithms to express the case of respiration rate.
Furthermore, Kominami et al. (2012) confirmed the exponential
relationship and presented their function in 2012:

Rs = 0.0566e0.0717Ts u
u+0.1089

( )
which was at a depth of 5-cm in

their study site located in a mountainous region of western
Japan. In this study, the exponential relationships of Rs with Ts

were changed in different ranges of θ. This is likely related to
the confounding effect of the association between Ts and θ.

The SEI influences Rs in most ecosystems (Li et al., 2006;
Kanerva et al., 2007), but the relationships between Rs and SEI
in the ecosystems are different. A study reported that the SEI
was linearly related to Rs (Amacher and Mackowiak, 2011).
However, they only had a single year of temporal variation in
Rs. In this study, we have the 3-year data, and there was a
power relationship between Rs and SEI, namely, Rs = i + k × SEI2

or Rs
0.5 = b + a × SEI. However, the degrees of relationships in

2008, 2009 and 2011 differed (Table 2 and Fig. S15). For example,
the SEI can explain 77, 72, 28 and 51% of the variance in the Rs

0.5

in 2008, 2009, 2011 and the three years, respectively (Table 2). As
the SEI increased by one unit, the Rs

0.5 increased 0.28, 0.24, 0.13
and 0.21% in 2008, 2009, 2011 and the three years, respectively
(Table 2). The SEI can impact Rs likely because the precipitation
can impact soil respiration by altering both soil temperature and
moisture (Gabriel and Kellman, 2014; Deng et al., 2018), and the
temperature can influence soil CO2 by changing the soil tempera-
ture and soil moisture by evapotranspiration (Poll et al., 2013),
but deeper reasons should be further investigated.

Furthermore, the scatter plots of Rs and SEI showed that Rs

gradually changed (i.e. increased or reduced) as SEI increased
(Fig. S15). This is because as the SEI increased, the Ts × θ mainly
resulted in three possible situations: high Ts and low θ, moderate
Ts and θ and/or low Ts and high θ. (i) When Ts was high and θ
was low, the SOM decomposition and root respiration are slow
due to depression of low θ (Jensen et al., 2003; Smith et al.,
2003; Mbonimpa et al., 2015), resulting in lower Rs. (ii) Ts and
θ were moderate, leading to the SOM fast decomposed, mainly
resulting in higher Rs (Raich and Schlesinger, 1992; Schimel
and Clein, 1996; Giorgi et al., 1998). (iii) When low Ts and
high θ occurred, the SOM slowly decomposed owing to the low
Ts that reduces soil biological activity (Al-Kaisi and Yin, 2005),
specifically, high θ in soils reduced transpiration due to increased
stomatal resistance or anaerobic conditions by flood, thereby
reducing or blocking CO2 emissions from soils (Liu et al., 2002;
Kirkham, 2011).

Diurnal variabilities of soil CO2 fluxes from cornfield impacted
by soil temperature and moisture

The findings in this study showed distinct diurnal patterns of Rsh
in 2008, 2009 and 2011. The relationships among Rsh, Tsh and θh
at a diurnal time scale in 2008, 2009 and 2011 differed. No lags
were found in 2008, but daily hysteresis loops in 2009 and 2011
were displayed (Figs. 6(a) and S13(d)). The lags between Rsh
and Tsh have also been observed in other ecosystems and vary

Table 1. The P values of Mann–Kendall test for analysing the trend over time
(days), slopes using Sen Estimator and first-order and second-order
autocorrelation coefficients (r1 and r2)

Rsd
a Tsd θd

2008

P value <0.0001 <0.0001 0.71

Slope −0.04048 −0.1225 0.000141

r1 0.955 0.955 0.838

r2 0.914 0.908 0.656

2009

P value <0.0001 <0.0001 0.42

Slope −0.02989 −0.05441 −0.00475

r1 0.897 0.945 0.734

r2 0.809 0.894 0.453

2011

P value 0.024 <0.0001 <0.0001

Slope −0.02093 −0.0809 −0.10979

r1 0.887 0.931 0.956

r2 0.786 0.84 0.906

aRsd is the daily soil CO2 fluxes (μmol/m2/s); Tsd is the daily mean soil temperature (°C); θd is
the daily mean soil moisture (%, cm3/cm3).
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seasonally with θh (Verstraete and Focht, 1977; Gaumont-Guay
et al., 2006; Riveros-Iregui et al., 2007; Kirkham, 2011; Wang
et al., 2014). The lags may be caused by a mismatch between
the depths of Ts measurement and CO2 production or by a diur-
nal variation in the photosynthetic carbon supply which affected
the rhizospheric respiration (Kiniry et al., 1999; Li, 2000; Subke
and Bahn, 2010). The lags may also be attributed to different
autotrophic and heterotrophic respiration responses to environ-
mental factors (Riveros-Iregui et al., 2007). Autotrophic respir-
ation responds to photosynthetically active radiation (Li et al.,
2006) and air temperature, whereas heterotrophic respiration
responds primarily to Ts (Lloyd and Taylor, 1994; Winkler
et al., 1996). Maybe plant photosynthesis is a factor in influencing
diel hysteresis between Rs and Ts (Tang et al., 2005). In this study,
the mean θ was 29.17% during the corn growing season in 2008,
which was smaller than that in 2009 (32.19%) and 2011 (30.97%).
The soil in 2008 was relatively drier. Therefore, the diffusion coef-
ficient of CO2 in the air-filled pore space was large enough to
facilitate the transport of autotrophic and heterotrophic CO2

Table 2. Outputs of linear regression model (CO2
0.5 = b + a × SEI + ε) in 2008, 2009, 2011 and the 3 years

Regression outputsa 2008 2009 2011 3 years

R2 0.77 0.72 0.28 0.51

P values for testing model <0.0001 <0.0001 <0.0001 <0.0001

b 0.3328 0.1809 0.7504 0.4599

a 0.002829 0.002362 0.00134 0.002059

P values for testing a <0.0001 <0.0001 <0.0001 <0.0001

SEI, soil temperature (Ts) × soil moisture (θ); ε, model residues
aR2, determination coefficient; a, coefficient of SEI in the model. b, intercept in the model.

Fig. 5. Diurnal pattern of hourly CO2 fluxes (Rsh) and (a) hourly soil temperature (Tsh)
and (b) hourly soil moisture (θh) from the cornfield at the South Dakota site in 2008.

Fig. 6. (a) Diurnal hourly CO2 fluxes Rsh v. hourly soil temperature Tsh and (b) Rsh v.
hourly soil moisture θh in 2009. y = hourly soil CO2 flux (Rsh); (A) x = hourly soil tem-
perature (Tsh) and (B) x = hourly soil moisture (θh); R

2 = determination coefficient.

Table 3. Means and P values of comparisons of the predicted annual soil CO2

fluxes, root autotrophic CO2 fluxes (Rsy: RT1, RT2, RT3 and RT4) and corn yield
in response to four scenarios of temperature (ST1, ST2, ST3 and ST4)

Temperature
scenariosa

Soil CO2 (Rsy) Root CO2 (Rsy) Corn yield

P valuesb

ST4_v._ST1 0.02 0.61 0.76

ST3_v._ST1 0.092 0.33 0.53

ST2_v._ST1 0.41 0.17 0.38

ST4_v._ST2 0.11 0.64 0.74

ST3_v._ST2 0.38 0.40 0.56

ST4_v._ST3 0.47 0.71 0.81

Annual mean (S.D.) (g/m2/year) Yield (S.D.) (kg/ha)

ST1 604.0 (51.2) 170.2 (26.0) 10 508 (1214.3)

ST2 613.2 (53.4) 173.2 (25.5) 10 597 (1129.2)

ST3 623.0 (55.2) 175.9 (24.1) 10 688 (1051.1)

ST4 631.1 (56.8) 177.9 (22.6) 10 753 (978.70)

aST1 is the temperature scenario 1 from 2014 to 2049, which is the past 36-year temperature
and precipitation from 1978 to 2013 at this study site. S2, S3 and S4 are temperature
scenario 2, 3 and 4, respectively, which are an increase of temperature by 0.5, 1 and 1.5 °C in
the next 36 years from 2014 to 2049, respectively, and keeping the precipitation constant,
which was same as the precipitation from 1978 to 2013.
bP values were from the results using the Parallel-line statistical analysis method for
comparing the two datasets over time.
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from the soil. As the soil becomes drier, microbial activity declines
and the time lag between photosynthetically active radiation and
Ts decreases due to accelerated soil heat diffusion (LI-COR, 2010).
This could result in no daily hysteresis loop in 2008. Whereas, in
2009 and 2011, because the θ was higher than that in 2008, the
hysteresis was formed between Rsh and Tsh. (Riveros-Iregui
et al., 2007; Liebig et al., 2008).

In this study, the diel variation of Rs was constrained by θ,
which is similar to the results of Wang et al. (2014). In contrast,
Tang et al. reported for an oak-grass savanna that Ts largely con-
trolled the diel variation in Rs, whereas θ did not affect the diel Rs
cycle (Tang et al., 2005). Another situation is that the diel vari-
ation of θ was negligible or constant over a day while Rs had an
obvious diel variation (Gaumont-Guay et al., 2006). In this
study, the Rsh and θh had a relatively strong relationship (R2 =
0.48, 0.85 and 0.66 in 2008, 2009 and 2011, respectively), and
there was no apparent daily hysteresis loop between Rsh and θh.
Perhaps, it is attributed to the humid continental climate at this
study site. This climate is appropriate for corn to grow well and
has a high diurnal temperature range. The high daily temperature
range potentially leads to conditions where the soil temperature is
lower than the dew-point temperature on most nights. As a result,
condensation water often occurs on the ground (Agam and

Berliner, 2006), increasing root activity and inducing a high
root respiration rate (Wang et al., 2014).

Furthermore, in this study, there was a weak relationship
between the diel variation of Rsh and Tsh (R2 = 0.0036) in 2011.
The diel variation of Rsh reduced as Tsh increased during 14–24 h
of the day and Tsh decreased during 1–14 h of the day (Fig. S13
(a) and (b)). The specific reasons for this behaviour need to be fur-
ther explored. However, we speculated that the unusual rainfall in
2011 (the less manual rainfall and several heavy rainfalls in this
year) likely diluted or constrained the relationship between Rsh
and θh measured from July to October in 2011.

Predicted soil CO2 fluxes from cornfields impacted by climate
changes

The predicted results in this study using the DAYCENT model
showed that the mean annual CO2 fluxes under the temperature
scenarios ST4 and ST3 (i.e. air temperature increase of 1.5 and
1°C) would be 4.49 and 3.15% higher than ST1 in the next 36
years. The impacts of ST4 and ST3 on Rsy were significant
(Table 3). These findings differ from the results from the switch-
grass land in South Dakota, which showed that the impacts of
temperature increases of 1°C or higher on Rs were not significant
(Lai et al., 2016). Some studies have demonstrated that soil tem-
perature, which is strongly related to air temperature, was the pri-
mary factor regulating CO2 emission in the growing season
(Kirschbaum, 1995; Omonode et al., 2007). The significant
impacts of ST4 and ST3 on Rsy from the cornfield in this study
are likely attributed to higher SOM and more appropriate soil
microenvironment built by corn plants than that for the switch-
grass land, which was a marginal land (Lai et al., 2018), resulting
in higher residue decomposition and root respiration in corn than
switchgrass (Omonode et al., 2007), subsequently, Rsy from corn-
field was stronger to soil temperature than for switchgrass.
Moreover, the directions of the two effects were similar, as there
was an increasing trend over the years. However, the magnitudes
of the two effects could not be clearly concluded from the com-
parisons of predicted soil CO2 fluxes given that there were several
distinct influencing factors, such as different data of soil proper-
ties, landscape positions, climate, fertilizers, land-use history
and so forth at the two study sites.

The soil Rsys under SP1 (−30%SP3) and SP3 (baseline precipi-
tation) were unable to be compared (Table 4) because the two
slope lines were not parallel based on the Parallel-line analysis,
indicating that there was a complicated situation impacted
under the drought SP1. The soil Rsys under the SP2 (−15%
SP3), SP4 (+15%SP3) and SP5 (+30%SP3) were not significantly
different than that for the SP3 (Table 4). This is in accord with a
previous study that reported that the CO2 release by aerobic res-
piration was primarily temperature-dependent but became
moisture-dependent as soil dries (Smith et al., 2003). However,
the specific impacts of precipitation on GHG emissions from
the soil surface are uncertain (Omonode et al., 2007). This is
because the soil moisture’s strong dependence on precipitation
affects soil CO2 fluxes by directly influencing corn root and
microbial activities and indirectly on soil physical and chemical
properties (Raich and Schlesinger, 1992; Schimel and Clein,
1996). Moreover, there was a wide range of fluctuations in Rss
under drought conditions (Lai et al., 2016). Therefore, it could
not directly compare the Rsys under SP1 (−30%SP3) and baseline
precipitation (SP3).

Table 4. Means and comparisons of the predicted annual soil CO2 fluxes, root
autotrophic CO2 (Rsy: RP1, RP2, RP3, RP4 and RP5) and corn yield in response to
five scenarios of precipitation (SP1, SP2, SP3, SP4 and SP5)

Precipitation
scenariosa

Soil CO2 (Rsy) Root CO2 (Rsy) Corn yield

P valuesb

SP1_v._SP3 – 0.862 0.919

SP2_v._SP3 0.468 0.372 0.353

SP4_v._SP3 0.249 0.068 0.076

SP5_v._SP3 0.133 0.041 0.040

SP1_v._SP2 0.975 0.474 0.340

SP4_v._SP2 0.077 0.099 0.054

SP5_v._SP2 – 0.061 0.025

SP4_v._SP1 – 0.35 0.313

SP5_v._SP1 – 0.237 0.175

SP5_v._SP4 0.702 0.779 0.705

Annual mean (S.D.) (g/m2/year) Yield (S.D.) (kg/ha)

SP1 639.3 (88.2) 182.3 (24.5) 10 954 (1344.7)

SP2 639.8 (68.7) 181.4 (23.2) 10 962 (1027.0)

SP3 631.1 (55.5) 177.6 (23.0) 10 753 (993.60)

SP4 619.2 (48.2) 172.7 (22.6) 10 524 (1024.3)

SP5 615.4 (45.5) 171.2 (23.7) 10 429 (1076.8)

aSP1 is the precipitation scenario 1 from 2014 to 2049, which is the past 36-year temperature
and precipitation from 1978 to 2013 at this study site. SP2, SP3, SP4, SP5 are precipitation
scenarios 2, 3, 4 and 5, respectively, which are 70%, 85%, 100%, 115% and 130%
precipitation in the next 36 years from 2014 to 2049, respectively, and keeping the
temperature constant, which was expected to increase by the same trend from 1978 to 2013.
bP values were from the results using the Parallel-line statistical analysis method for
comparing the two datasets over time. ‘–’ indicates no P value here because the P value of
interaction between Rsy level and years < 0.05 based on the Parallel-line statistical analysis
method; this situation (two lines are not parallel) needs to be future analysed for comparing
the CO2 fluxes under different SPs based on different periods from 2014 to 2019.
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Furthermore, the root Rsy under drought SP1 and SP2 were not
significantly different from that for the SP3, whereas the root Rsys
under wet SP5 and SP4 were significantly lower than that for the
SP3 (Table 4). The effect of drought on root Rsy depends on the
function of plants and the response of plant roots to drought
(Zhang et al., 2014). Drought conditions may limit plant growth
and decrease the input from litter and the supply of photosyn-
thetic products to the root system and root respiration
(Gomez-Casanovas et al., 2012). Drought stress may limit the
number and size of soil microbial populations (Manzoni et al.,
2012; Zhang et al., 2014). Therefore, the effect of drought on
root Rsy could be an indirect reflection (Scott-Denton et al.,
2006; Zhou et al., 2007; Zheng et al., 2021). The indirect impact
may result in an insignificant change in the root Rsy under
drought conditions. In contrast, excessive precipitation can reduce
gaseous connectivity among micropores within soils, temporally
reducing oxygen diffusion into and through soils and air-filled
porosity (Sexstone et al., 1985), increasing stomatal resistance,
hence decreasing CO2 respiration (Kirkham, 2011) and corn
yield, likely resulting in a significantly low root Rsy and corn
yield (Table 4).

However, statistically testing modelled data can always result
from significant differences if simulating for enough years.
Therefore, we used the DAYCENT model to predict the 36-year
CO2 flux data at different scenarios in this study. The compari-
sons for the modelled data were to find significant differences
in CO2 fluxes among different scenarios within the 36 years.
The significant differences are relative, not absolute comparisons
as with measured data. Therefore, our results from the compari-
sons were relative among the scenarios within the 36 years,
hence reasonable.

Also, the predicted Rsy had a significantly increasing trend
over the next 36 years in terms of the projected temperature
and precipitation from 2014 to 2049 at the South Dakota site
using the nine climate models (Fig. 7; the positive slop with
P value < 0.0001 based on the trend test). The projected daily
mean temperature from 2014 to 2049 had an increasing trend
(Fig. S17). The soil CO2 fluxes exponentially increased with the
temperature in the cornfield (Fig. 3). Therefore, there could be
a significantly increasing trend in the future soil CO2 fluxes
over time. The mean Rsy from 2014 to 2049 was 665.84 g/m2/
year, which was 22.3% higher than the mean Rsy (544 g/m2/
year) from croplands (Raich and Schlesinger, 1992). These results
indicated that the soil CO2 fluxes from cornfields would be sig-
nificantly higher than the mean Rs from other croplands. Other
studies also reported that perennial crops emit less CO2 emissions
than corn (Adler et al., 2007; Lai et al., 2016).

Limitations and further work

The model in this study was calibrated using the CPTE method-
ology (Mbonimpa et al., 2015; Lai et al., 2016), which can obtain
the best model based on the four quantitative criteria (Moriasi
et al., 2007; Dai et al., 2014) and improve efficiency and accuracy
of model calibration manually using ‘trial and error’ method. The
measured Rsd in 2008, 2009 and 2011 calibrated the DAYCENT
model. Of 461 values of measured Rsd in the growing seasons
in 2008, 2009, 2011 and 19 values had sudden and unexplainable
changes and were unable to be captured by the DAYCENT model.
Also, the 19 values changed the trend of whole data over time,
even though the 19 values are only 4.1% of total observations.
To simulate the trend of 95.9% values using the DAYCENT
model, the 19 values as outliers were removed.

Some parameters differed by 1 order of magnitude from the
default in this study. The default values were determined by the
model developer in Colorado, USA, while the model calibration
for this study was based on the data collected in South Dakota,
USA. The two states have different environmental conditions,
soil types, landscapes and other relevant characteristics.
The model developer has defined the lower and upper bound
for each parameter. All calibrated parameters were in the prede-
fined lower and upper bounds range. This clarifies the need for
significant differences from default values for some parameters.

This study reported the temporal variability of soil CO2 fluxes
from a cornfield but no spatial distribution results. This was pri-
marily because the measurement of Rs from multiple sites using
the Automated Soil CO2 Flux System can be costly. However,
the soil CO2 flux spatial distribution is essential for policymakers
and producers to find the differences in soil CO2 emissions at dif-
ferent sites under various climate conditions. Based on the differ-
ences in soil CO2 emissions, one can suggest which regions should
grow more corn to mitigate soil CO2 emissions. Moreover, as sta-
ted previously, the Rs from cornfield would be significantly higher
than the mean Rs from other croplands. Therefore, future research
is needed to (i) use the static chamber method (Hutchinson and
Mosier, 1981; Parkin and Venterea, 2010) or flux tower measure-
ment to measure Rs at various sites for evaluating the spatial dis-
tribution of Rs in cornfields, (2) explore different methods such as
tillage, fertilization and irrigation methods for mitigating Rs from
cornfields and (3) assessing sensitivities of Rss from different
croplands to changes in temperature to regulate land-use policies.

Conclusions

This study showed the findings of continuous hourly soil CO2 flux
measurements from a cornfield at the South Dakota site, and

Fig. 7. The means and their 95% confidence interval of forecast-
ing annual soil CO2 fluxes Rsy from the cornfield in South Dakota
for the next 36 years using the DAYCENT model based on wea-
ther data predicted by ten climate models. y = yearly soil CO2

flux (Rsy); x = year; R2 = determination coefficient; L95% CL =
lower 95% confidence interval; U95% CL = upper 95% confidence
interval.
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especially the temporal variability of measured and modelling soil
CO2 fluxes related to Ts, θ and climate changes. The findings
indicate that the daily Rs exponentially increased with Ts con-
strained by θ. The SEI significantly impacted Rs, but the impacts
could be positive or negative based on different quantities of Ts

and θ. At the diurnal scale, there were different trends in Rs

and dissimilar relationships among Rs and Ts and θ in 2008,
2009 and 2011. The predicted yearly Rs in 2014–2049 significantly
increased as the temperature rose by 1°C or higher, but predicted
root Rss and corn yield under different temperature scenarios
were not different. The predicted yearly Rss, root Rss and corn
yield decreased with an increase in precipitation scenarios, but
the root Rss and corn yield significantly reduced as the precipita-
tion increased by 15% or higher. The predicted yearly Rs from the
cornfield based on the projected temperature and precipitation
using the nine regional climate models had a significantly increas-
ing trend, indicating that the cornfield will generate more soil CO2

emissions in the future. Future research is needed to evaluate the
spatial distribution of Rs, explore different methods to mitigate Rs
from cornfields and assess sensitivities of Rss from different crop-
lands to temperature changes for adjusting land-use policies.
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