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ABSTRACT

In this article, we study parameter uncertainty and its actuarial implications in
the context of economic scenario generators. To account for this additional
source of uncertainty in a consistent manner, we cast Wilkie’s four-factor
framework into a Bayesian model. The posterior distribution of the model
parameters is estimated using Markov chain Monte Carlo methods and is
used to perform Bayesian predictions on the future values of the inflation
rate, the dividend yield, the dividend index return and the long-term interest
rate. According to the US data, parameter uncertainty has a significant impact
on the dispersion of the four economic variables of Wilkie’s framework. The
impact of such parameter uncertainty is then assessed for a portfolio of annu-
ities: the right tail of the loss distribution is significantly heavier when parame-
ters are assumed random and when this uncertainty is estimated in a consistent
manner. The risk measures on the loss variable computed with parameter
uncertainty are at least 12% larger than their deterministic counterparts.

KEYWORDS
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1. INTRODUCTION AND LITERATURE REVIEW

Actuarial liabilities are very different from those of other financial institu-
tions, with the investment time horizon being the main distinction between the
two groups. In fact, most actuaries—at least life and pension professionals—
are concerned mainly with the movement of investment variables over the
long run, without being too concerned with very short-term fluctuations.
They therefore have a great need to improve their understanding of the current
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economic landscape and to develop a methodology that allows for a deeper
understanding of the landscape’s future evolution. An economic scenario gen-
erator (ESG)—which is also known as an investment model—is the basis for
generating simulated asset returns and economic variables. Broadly speaking,
it is a parametric model that, based on past observations, captures the joint
future behaviour of the economic variables relevant to the application under
scrutiny. The notion of joint behaviour is critical to the concept of ESGs: the
economic variables considered might be interrelated, and some of that depen-
dence needs to be accounted for in order to understand the future state of the
economy as a whole.

Indeed, the future plausible outcomes generated by a parametric ESG
rely on parameter estimates. Most studies on ESGs are based on the classi-
cal (frequentist) approach and assume that the parameters are known once
the estimation procedure is carried out, meaning that all the randomness is
due to the stochastic nature of a given model and that parameter uncertainty
is not accounted for. Another popular school of statistical inference is the
Bayesian paradigm, which was named after Reverend Thomas Bayes. While
classical statisticians treat data as random samples and parameters as constant,
Bayesian statisticians regard parameters as uncertain. This main philosophical
distinction is convenient because it allows researchers to account for parameter
uncertainty in a consistent manner.

Uncertainty is indeed a broad concept. In this study, we define uncertainty
as a state of limited knowledge in which it is not possible to precisely describe a
future outcome. Even though the overall impact of such uncertainty is the fail-
ure to forecast the future exactly, the uncertainty arises from different sources.
We discuss two different types of uncertainty in this study: (1) process uncer-
tainty and (2) parameter uncertainty. The former refers to the uncertainty
due to the stochastic nature of the random process—the actual probabilistic
model used—and the latter deals with the uncertainty in the values of the esti-
mated parameters in a model (e.g., Bernardo and Smith, 2001, Chapter 6).
A third type of uncertainty—the uncertainty in the model underlying what we
can observe—is also often investigated. We leave model uncertainty for future
work.

Given that parameter uncertainty might have dire consequences on one’s
risk assessment, an ESG end-user might wonder: what is the impact of param-
eter uncertainty. In other words, should one care about parameter uncertainty?
This study answers this question.

The literature on investment models dates back to the 1980s. One of the
first ESGs to be proposed in the actuarial literature is the Wilkie (1986) model.
This minimal model is composed of four connected sub-models: a retail price
index model, a dividend yield model, a dividend index model and a long-term
interest rate model. This model’s primary appeal is its ease of implementation.
It is also easy to understand, somewhat parsimonious, and well known in the
actuarial literature. The model was later extended and updated (Wilkie, 1995)
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with the inclusion of five additional variables: a wage index, property rentals
and yields, short-term interest rates, index-linked stock yields and currency
exchange rates.

The Wilkie model has attracted a great deal of attention over the years.
Geoghegan et al. (1992) review the model and discuss several alternatives
without making any specific recommendations. Huber (1997) reviews Wilkie’s
framework from a statistical perspective; he also makes some relevant sug-
gestions for the future development of ESGs. In a series of papers, Wilkie
and his collaborators investigate different assumptions of the classic Wilkie
model and consider various extensions (Wilkie et al., 2011; Wilkie and Sahin,
2016, 2017a,b,c, 2018). Finally, in a recent paper, Zhang et al. (2018) revisit the
Wilkie model and assess the model’s performance.

Wilkie’s framework is, however, not the only ESG available in the actuar-
ial literature (for an exhaustive review, see the Society of Actuaries’ recently
published in-depth primer on ESGs, that is, Pedersen et al., 2016). Most of
these investment models are based on time series methods and applications
of stochastic processes typically used in finance and financial econometrics.
For instance, a continuous-time ESG based on Lévy processes is proposed by
Chan (1998); threshold autoregressive models are used byWhitten and Thomas
(1999) and Chan et al. (2004). Chan (2002) generalizesWilkie’s model by allow-
ing for multiple autoregressive and moving average effects across the variables
via a vector autoregression moving average (VARMA) model. In a compar-
ative study, Ahlgrim et al. (2008) examine two public ESGs, namely the one
developed in Ahlgrim et al. (2004) and the model recommended by the Life
Capital Adequacy Subcommittee of the American Academy of Actuaries.

Although parameter uncertainty in the context of an ESG has not received
much attention in the literature, parameter uncertainty is not a new concern
for actuaries (Hartman et al., 2017, for a review). The first attempt to under-
stand the role of parameter uncertainty dates back to the early 1980s; Heckman
and Meyers (1983) and Meyers and Schenker (1983) both analyse the impact
of parameter uncertainty on aggregate losses by adding additional variability
to the frequency and severity distribution in order to make the model more
sensible. In an extension of Heckman and Meyers (1983), Hayne (1999) shows
that “parameter uncertainty [is a more significant issue] to insurers than simple
process uncertainty”. A full Bayesian approach is proposed by Cairns (2000)
to capture parameter—as well as model—uncertainty. In accordance with the
rest of the literature, Cairns finds that, when applied to both stochastic interest
models and ruin theory, the predictive distributions under parameter uncer-
tainty are more volatile than those derived with point estimates and therefore
lead to more conservative decisions. Parameter uncertainty has also interested
a number of researchers in health insurance (e.g., Fellingham et al., 2015)
and mortality modelling (e.g., Cairns et al., 2006). More similar to our study,
Hartman and Heaton (2011) assess the impact of parameter uncertainty in a
(regime-switching) stochastic rate of return model. Using standard Bayesian
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methods, they find that adding parameter uncertainty has a more important
effect on the risk measures than does simple process uncertainty. In a similar
vein, Hartman and Groendyke (2013) consider a broader class of models, for
example, generalized autoregressive conditional heteroskedasticity (GARCH)
and stochastic volatility models.

Interestingly, the notion of quantifying parameter uncertainty in the con-
text of investment models has been proposed—but not formally investigated—
in the past. Indeed, Section 6 of Cairns (2000) contemplates parameter
uncertainty within more complex models. Cairns even suggests that Markov
chain Monte Carlo (MCMC) methods could be used to “allow us to deal
with more complex models with many parameters, such as the Wilkie model”.
Additionally, in the conclusion of Wilkie et al. (2011), the authors highlight
that there is also uncertainty in the estimation of the parameter values.

In this article, we propose a new estimation methodology for the Wilkie
model based on the Bayesian paradigm. Specifically, we use the Gibbs sam-
pler along with the Metropolis–Hastings algorithm (Metropolis et al., 1953;
Hastings, 1970) to obtain posterior samples of the model parameters. The
Bayesian approach used in this study is indeed well suited because parame-
ter uncertainty can be accounted for in a consistent way: the estimated random
behaviour of the model parameters is in agreement with the data used. For the
sake of robustness, two very different priors are used—a non-informative prior
that does not put strong a priori beliefs on the parameters, and a subjective
prior that expresses definite information about the parameters.

The end product of the MCMC method is a sample of parameters. Our
results using post-World War II US data show that the average parameters
are similar across the two prior assumptions. Moreover, most of the posterior
means are consistent with the point estimates obtained via maximum likeli-
hood estimation (MLE). The MCMC scheme can also recover the shape of the
parameters’ posterior distribution, which is often very different from the shape
of the asymptotic parameter distribution under the MLE.

The MCMC sampler can be used as a way to obtain the so-called funnels
of doubt in the case of parameter uncertainty (the term funnel of doubt, intro-
duced by Redington (1952), refers to a plot showing the dispersion of a given
process). Using the posterior-predictive density, paths of the four variables
under study are generated and compared to those simulated without parame-
ter uncertainty—assuming that the actual parameters are set to their posterior
means. We find that in the case of Wilkie’s ESG, parameter uncertainty adds a
great deal of uncertainty to the total risk profile: the funnels of doubt are wider
when we consider parameter uncertainty.

Finally, to assess the importance of parameter uncertainty from an actu-
arial perspective, we consider a portfolio of annuities. The stochastic rate of
return of the annuity seller is a function of the variables modelled by the ESG.
Through conditional distribution functions, we find that in all the cases con-
sidered, the tails of the distributions obtained under parameter uncertainty
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are heavier than those acquired without. The risk measures—the value at risk
(VaR) and the conditional tail expectation (CTE), both at a 95% level—are
at least 12% higher when we consider parameter uncertainty. Hence, once we
account for parameter uncertainty, the risk profile of this portfolio of annuities
changes drastically, which could have dire consequences because the risk is mis-
specified if one accounts for process uncertainty only. As a matter of fact, most
end-users of ESG therefore utilize significantly downward-biased risk measures
when they do not consider parameter uncertainty.

The rest of the paper is organized as follows. Section 2 illustrates our
research question with a simple example. The Wilkie framework is presented
in Section 3. In Section 4, we present the three building blocks of the Bayesian
inference. Section 5 discusses the estimation methodology. Empirical results
are presented in Section 6, and an application to an annuity portfolio is shown
in Section 7. Finally, Section 8 concludes.

2. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the impact of parameter uncertainty by means of
a simple example. For the sake of simplicity, we consider only one of the eco-
nomic variables typically included in ESGs: the dividend index.We assume that
the annual (log) rate of return on the dividend index at time t—or the so-called
dividend growth—follows a normal distribution such that

d(t)∼N (μ, σ 2),

where μ is the annual mean return and σ is its standard deviation. We assume
that σ is known, that is, σ = 0.15. We further assume that the mean parameter
of the Gaussian distribution is uncertain and has the following distribution:

μ ∼N (0.06, δ2).

Parameter δ takes four different values in this example; these can be interpreted
as four different levels of parameter uncertainty: no parameter uncertainty
(δ = 0), low uncertainty (δ = 0.005), intermediate uncertainty (δ = 0.05) and
high uncertainty (δ = 0.15).

Using this simple model, a sample of 100,000 dividend index return paths
is generated via Monte Carlo simulation. Then, for each path, we cumulate
the returns over a 50-year horizon to obtain the total return over this period.
Figure 1 presents the funnels of doubt for the four different levels of uncer-
tainty. It seems that the cases with no parameter uncertainty and low parameter
uncertainty (upper panels) yield similar results. Indeed, the 2.5th percentiles at
a 50-year horizon are almost identical: 0.941 for the case without parameter
uncertainty and 0.940 when δ = 0.005. When the uncertainty is moderate, that
is, δ = 0.05, the funnel of doubt tends to become larger, although this increase is
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FIGURE 1: Funnels of doubt for the total dividend index growth over a period of 50 years.
This figure shows the effect of parameter uncertainty on the dividend index’s total (log) rate of return over
50 years, that is,

∑τ

t=1 d(t), where τ is the time horizon in years. This example considers four different parame-
ter uncertainty levels: no parameter uncertainty, that is, δ = 0 (upper-left panel), δ = 0.005 (upper-right panel),
δ = 0.05 (bottom-left panel) and δ = 0.15 (bottom-right panel). For each path, we cumulate the returns over
the 50-year horizon and obtain the median total return (solid line) and the 95% confidence interval (dashed
line). The 2.5th percentile of the cumulative return over the 50-year horizon is denoted by Q(0.025) in the
figure.

mild. In this case, the 2.5th percentile decreases to 0.827. Finally, when param-
eter uncertainty is large, that is, δ = 0.15, the funnel of doubt is rather wide,
with the 2.5th percentile at 0.050.

This example shows that, to some extent, parameter uncertainty might be
inconsequential if it is low. If it is important, however, it can dramatically
change the risk profile of the economic variable under scrutiny. The remain-
der of this article will focus on the economic implications of such parameter
uncertainty if it is used in the context of actuarial risk valuation—and when
accounted for in a consistent manner.

3. MODELLING FRAMEWORK: THE WILKIE MODEL

TheWilkie (1986) model is the one of the first comprehensive open access ESGs
to be used in the actuarial academic literature. It is a stochastic asset model
that describes the behaviour of various economic factors, such as the dividend
yield, the dividend index, the long-term interest rate and the (price) inflation
rate (see Figure 2). In that sense, Wilkie’s framework is simple to grasp because
it includes only four different variables. Since the publication of the full model
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Price Inflation, i(t)

Dividend Yield, y(t)

Dividend Index, d(t) Long-Term Interest Rate, c(t)

FIGURE 2: The cascade structure of Wilkie’s model.
This figure shows the cascade structure adopted by Wilkie (1986). The inflation rate, i(t), is linked to the
dividend yield, y(t), the dividend index, d(t) and the long-term interest rate, c(t). Moreover, the dividend index
and the long-term interest rate are impacted by the dividend yield. The figure is inspired from the one included
in the original Wilkie article (Page 346 of Wilkie, 1986).

in 1986, the framework has been the subject of extensive study and debate (e.g.,
Geoghegan et al., 1992; Wilkie, 1995; Huber, 1997; Sahin et al., 2008).

The Wilkie model is constructed in a so-called cascade structure, with
inflation being the driver of other economic variables. The inflation rate is
linked to the dividend yield, the dividend index and the long-term interest rate.
Moreover, the dividend index and the long-term interest rate are impacted by
the dividend yield.

Indeed, more advanced ESGs are available. The main goal of this paper,
however, is to assess the impact of parameter uncertainty, not to discuss the
ESG per se. Hence, in the following, we will use the Wilkie model as it stands,
without commenting on its adequacy.

3.1. Inflation

Let I(t) be the level of the consumer price index (CPI) at time t. For most—if
not all—economies, the CPI time series contains a unit root. Therefore, instead
of modelling the actual level of the CPI, the continuously compounded rate of
change in the CPI is generally used. In Wilkie’s setting, the inflation rate—the
continuously compounded rate of change—is modelled by an autoregressive
model of order one, AR(1), defined as follows:

i(t)= log
(

I(t)
I(t− 1)

)
= μi + ai (i(t− 1)− μi) + zi(t), zi(t)∼N (

0, σ 2
i

)
,

where μi is the long-run level of the inflation rate, ai is the parameter that
deals with the autoregression and σi is the standard deviation of the Gaussian
innovations. To make sure that the inflation dynamics are stationary, the
autoregressive parameter is constrained to the interval (−1, 1), that is, |ai| < 1.
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The autoregressive structure of the inflation rate is common in the actuarial
literature; in addition to Wilkie, Sherris et al. (1997) and Bégin (2016) use an
AR(1) process to model the inflation rate.

3.2. Dividend yield

Let y(t) be the dividend yield in year t. Under Wilkie’s assumptions, the log-
transformed dividend yield is given by the following equations:

log (y(t))= log (μy)+wyi(t)+ ym(t)

= μ∗
y +wyi(t)+ ym(t),

ym(t)= ayym(t− 1)+ zy(t), zy(t)∼N (
0, σ 2

y

)
,

where μy is the long-run level of the dividend yield, wy is the loading on the cur-
rent inflation rate, ay is the autoregressive factor of the noise process and σy is
the standard deviation of the innovation terms. Parameter μ∗

y is a transformed
version of μy; it is the logarithm of the long-run dividend yield. The dividend
yield model can be rewritten in an autoregressive form as follows:

log (y(t))− μ∗
y −wyi(t)= ay

(
log (y(t))− μ∗

y −wyi(t− 1)
)+ zy(t).

Again, for stationary purposes, the autoregressive parameter should satisfy the
following condition: |ay| < 1.

In the equations above, the dividend yield at time t is a function of the
contemporaneous inflation rate i(t), consistent with the cascade structure in
Figure 2. According to Wilkie (1986), the level of the dividend should be (pos-
itively) related to the general level of prices in the economy—meaning that wy

should be positive.

3.3. Dividend index

LetD(t) be the level of the dividend index at time t. In Wilkie’s setting, the level
is described by multiple inputs of current and past inflation rates, and previous
innovations in the dividend yield. The dividend growth in period t is given by
the following dynamics:

d(t)= log
(

D(t)
D(t− 1)

)
= μd +wddm(t)+ (1−wd)i(t)+ ydzy(t− 1)

+ bdzd(t− 1)+ zd(t), zd(t)∼N (
0, σ 2

d

)
,

dm(t)= (1− dd)dm(t− 1)+ ddi(t),

where μd is the long-run level of the dividend growth in excess of inflation,
dm(t) captures the exponentially weighted inflation up to time t, dd governs the
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impact of current inflation in the weighted average dm(t), yd measures the effect
of the previous shocks to dividend yield, bd deals with the moving-average
behaviour of the innovations and σd is the standard deviation of dividend
growth innovations. As in Wilkie (1995) and Zhang et al. (2018), we set wd

to 1 and dd to 0.38.
As shown in Figure 2, the inflation dynamics impact the dividend index.

However, since wd = 1, the current inflation rate has only an indirect impact on
the dividend growth—it is accounted for only through the weighted inflation
estimate, dm(t). The weighted inflation also implies that past inflation rates have
a diminishing effect on the current rate of dividend growth.

The dividend yield impacts the dividend growth according to the cascade
structure (see Figure 2). In Wilkie, this is achieved by including the lagged
dividend yield innovation. The rationale behind the inclusion of the lagged
innovation is that investors can account for unexpected changes in the previous
period’s dividend yield to forecast changes in the coming year’s dividends—
which is consistent with the Efficient Market Hypothesis (Huber, 1997).

Finally, a lagged dividend index innovation is included in the dynamics to
account for the fact that “companies pay out only part of any additional earn-
ings in dividend in one year, with a further part in the following year” (Wilkie,
1986). We therefore expect the parameter associated with this lagged innova-
tion, bd , to be positive. At any rate, it must at least be constrained between −1
and 1 to ensure the stationarity of the dividend index dynamics.

3.4. Long-term interest rate

Let c(t) be the long-term interest rate at time t. Following Fisher’s (1930) equa-
tion, the long-term interest rate is modelled as the sum of inflationary and real
components:

c(t)=wccm(t)+ cr(t),

where wc is a factor dealing with the impact of the current and past infla-
tion, cm(t) is the time-t exponentially weighted moving average of inflation and
cr(t) is the real interest rate component at time t. The inflationary and real
components are modelled by the following dynamics:

cm(t)= (1− dc)cm(t− 1)+ dci(t),
log ((cr(t)) = log (μc)+ ac (log (cr(t− 1))− log (μc)) + yczy(t)+ zc(t) (1)

= μ∗
c + ac

(
log (cr(t− 1))− μ∗

c

)+ yczy(t)+ zc(t), zc(t)∼N (
0, σ 2

c

)
,

where μc is the long-run average of the real interest rate and μ∗
c is its logarith-

mic equivalent. Parameter ac is the autoregressive parameter and yc captures
the sensitivity to the dividend yield’s current innovations. We constrain the
autoregressive parameter to remain within the unit interval. We set dc to 0.058
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and wc to 1 to be consistent with Wilkie (1995) and Zhang et al. (2018); indeed,
these two parameters are difficult to estimate (Huber, 1997). The selected
values allow for a strictly positive real interest rate, given that cm(0) is not
too high; this step is necessary because of the logarithmic transformation of
Equation (1).

The way inflation is incorporated into the long-term interest rate is
extremely similar to the case for the dividend index: we assume that the long-
term rate is proportional to an exponentially weighted estimate of current and
past inflation, cm(t).

As per Figure 2, the dividend yield must be incorporated into the long-term
rate dynamics. In this spirit, Wilkie includes the contemporaneous dividend
yield innovation into the (log) long-term interest rate equation. This innovation
is multiplied by the parameter yc.

4. BUILDING BLOCKS OF BAYESIAN INFERENCE

Unfortunately, the parameters that govern the model dynamics are unknown:
we must estimate them. As explained in the introduction, we want to make a
Bayesian inference about �—the vector containing all the model parameters—
because this paradigm can handle parameter uncertainty in a consistent
manner. Bayesian inference allows us to update our initial belief and knowl-
edge as more information becomes available: we wish to learn more about the
unknown parameters �, and the X = {i(t), y(t), d(t), c(t)}Tt=1 data allow us to do
so. In other words, as a result of the Bayesian inference, we can answer the
following questions: what are the plausible values of � and what is the extent
of the uncertainty associated with these estimates?

The Bayesian approach requires not only a model from which we can
construct a likelihood function but also an a priori distribution for �. This dis-
tribution, as explained earlier, represents subjective belief and knowledge. In
this section, we discuss the three main building blocks of Bayesian inference:
the likelihood function, the prior and the posterior distribution of the param-
eters. The latter is constructed by using the Bayes theorem and by combining
the likelihood and the prior density:

π (�|X)︸ ︷︷ ︸
Posterior

∝ L (X |�)︸ ︷︷ ︸
Likelihood

π (�)︸ ︷︷ ︸
Prior

.

4.1. The likelihood

Conditional on the past values of the inflation rate, one can write the density
of i(t) as a function of i(t− 1):

f
(
i(t)
∣∣i(t− 1),μi, σ 2

i , ai
)= 1√

2πσi
exp

(
−1
2

(i(t)− μi − ai (i(t− 1)− μi))
2

σ 2
i

)
;
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the likelihood associated with inflation dynamics is thus given by

L ({i(t)}Tt=1

∣∣μi, σ 2
i , ai

)= f
(
i(1)

∣∣μi, σ 2
i , ai

) T∏
t=2

f
(
i(t)
∣∣i(t− 1),μi, σ 2

i , ai
)
.

The density related to the first term, i(1), is different since we do not know
i(0)—there is no preceding observation on which to condition. To circumvent
this issue, we condition on i(0)≡ i0 and treat i0 as an additional parameter in
our setting:

L ({i(t)}Tt=1

∣∣�i

)=
T∏
t=1

f
(
i(t)
∣∣i(t− 1),μi, σ 2

i , ai
)
, (2)

where �i = {μi, σ 2
i , ai, i0}.

We can apply the same strategy to the dividend yield’s dynamics: condi-
tional on the current value of the inflation rate and the past dividend yields, we
can write the density of y(t) as a function of ym(t− 1) and i(t):

f
(
y(t)

∣∣ym(t− 1), i(t),μ∗
y, σ

2
y , ay,wy

)
= 1√

2πσy
exp

(
−1
2

(
log (y(t))− μ∗

y −wyi(t)− ayym(t− 1)
)2

σ 2
y

)
.

Again, to cope with the fact that ym(0) and zy(0) are unknown, we assume
that both are extra parameters, that is, ym,0 and zy,0, respectively. Thus, the
likelihood, conditional on ym,0 and zy,0, is given by

L ({y(t)}Tt=1

∣∣{i(t)}Tt=1�y

)=
T∏
t=1

f
(
y(t)

∣∣ym(t− 1), i(t),μ∗
y, σ

2
y , ay,wy

)
, (3)

where �y = {μ∗
y, σ

2
y , ay,wy, ym,0, zy,0}.

The density of d(t), conditional on the past value of dm(t− 1), the current
value of inflation and the past innovations zy(t− 1) and zd(t− 1), is given by a
normal density:

f
(
d(t)

∣∣∣dm(t− 1), i(t), zy(t− 1), zd (t− 1),μd , σ
2
d , bd , yd

)
= 1√

2πσd
exp

(
−1
2

(
d(t)− μd − 0.62dm(t− 1)− 0.38i(t)− ydzy(t− 1)− bdzd (t− 1)

)2
σ 2
d

)
.

Using the same trick as before—treating the missing information as additional
parameters—we can now write the likelihood associated with the dividend
index as

L ({d(t)}Tt=1

∣∣{i(t), y(t)}Tt=1,�y,�d

)
=

T∏
t=1

f
(
d(t)

∣∣dm(t− 1), i(t), zy(t− 1), zd(t− 1),μd , σ 2
d , bd , yd

)
, (4)

where �d = {μd , σ 2
d , bd , yd , dm,0, zd,0}, dm(0)≡ dm,0 and zd(0)≡ dm,0.
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Finally, the (conditional) density of c(t) is given by the following Gaussian
probability density function:

f
(
c(t)

∣∣c(t− 1), cm(t), cm(t− 1), zy(t),μ∗
c , σ

2
c , ac, yc

)
= 1√

2πσc
exp

(
−1
2

(
log

(
c(t)− cm(t)

)− μ∗
c − ac

(
log

(
c(t− 1)− cm(t− 1)

)− μ∗
c

)− yczy(t)
)2

σ 2
c

)
.

To obtain a closed-form likelihood function, we will need to include additional
parameters in our framework in the following way:

L ({c(t)}Tt=1

∣∣{i(t), y(t)}Tt=1,�y,�c

)
=

T∏
t=1

f
(
c(t)

∣∣c(t− 1), cm(t), cm(t− 1), zy(t),μc, σ 2
c , ac, yc

)
, (5)

where �c = {μ∗
c , σ

2
c , ac, yc, cm,0, c0}.

4.2. The prior

The prior distribution is an important component of the Bayesian inference.
It represents the subjective belief and knowledge about the uncertain parame-
ters � and allows the researcher to incorporate “non-sample” information in
a consistent manner. For instance, parameter constraints can be incorporated
readily in the prior distribution. A key issue in selecting this distribution is
determining what kind of information goes into the prior. In that respect, we
use two different sets of assumptions in this study: a non-informative prior and
a subjective one. These two sets correspond to two extremes—either no infor-
mation at all on the model parameters or fairly precise a priori information
on them. The non-informative prior is based on a combination of flat as well
as very vague densities. On the other hand, the subjective prior is inspired by
the parameter estimates obtained by Wilkie (1995) for the US economy. The
main reason we use these two sets of prior distributions is to ensure that the
prior used does not drive the results and that our conclusions are robust to a
change in this assumption. For more details on the a priori distributions, see
Appendix A.

4.3. The posterior

Given all the above ingredients, we can calculate the conditional probability
density of � given the data X with Bayes’s formula:

π (�|X) ∝L (X |�) π (�),

where the likelihood function, conditional on the parameter � = {�i,�y,�d ,
�c}, is given by
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L (X |�) =L ({i(t)}Tt=1

∣∣�i

)×L ({y(t)}Tt=1

∣∣{i(t)}Tt=1,�y

)
×L ({d(t)}Tt=1

∣∣{i(t), y(t)}Tt=1,�y,�d

)
×L ({c(t)}Tt=1

∣∣{i(t), y(t)}Tt=1,�y,�c

)
(6)

and π(�) is obtained by multiplying the individual priors given in Table 5.

5. ESTIMATION METHODOLOGY

The Bayesian inference scheme laid out in the previous section provides a the-
oretical way to understand parameter uncertainty. However, to actually assess
this uncertainty, we would need to compute the posterior distribution, π(�|X ),
as well as the marginal posterior distribution, π(θi|X ), for each parameter
θi ∈ �. It is, however, challenging to do so because this process involves mul-
tiple high-dimensional integrals. Various methods exist to numerically recover
the marginal a posteriori distribution for each model parameter. In this study,
we rely on MCMC methods because they allow us to readily generate sam-
ples of parameters that are consistent with the posterior distribution. For more
details on the estimation methodology, see Appendix B.

6. EMPIRICAL RESULTS

In this section, we present the data used to estimate the model, report the results
for both prior distributions and discuss the Bayesian prediction based on the
posterior distribution of the model’s parameters.

6.1. Data

The four datasets employed in this study are extracted from the Bloomberg
terminal. In this study, we focus on post-World War II data, that is, data for
the year 1945 and after. First, to construct the annual inflation rate, we use
the monthly non-seasonally adjusted US Consumer Price Index for All Urban
Consumers (CPURNSA) series from the end of December 1945 to the end of
December 2016. We then convert these monthly observations into the annual
inflation rate by taking the (log) return of the CPI index from one December to
the next one. This step yields 72 index observations and, thus, 71 inflation rate
observations.

Second, the dividend yield in the US economy is proxied by the dividend
paid out on the stocks that are part of the S&P 500. It is constructed by
taking the sum of the gross dividend payments over a given (calendar) year
and dividing it by the value of the index at the end of the year.

Third, the S&P 500 value is used as a proxy for the dividend index. Similar
to our process for the CPI, we build our annual returns out of monthly index
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FIGURE 3: Inflation rate, dividend yield, dividend index and long-term interest rate.
The upper panel of this figure presents the inflation rate of the annual non-seasonally adjustedUSCity Average
All Items Consumer Price Index for All Urban Consumers (CPURNSA) from the end of December 1945 to the
end of December 2016; grey-shaded regions highlight NBER-dated recessions. The second panel reports the
dividend yield on the S&P 500 index over the same period. The third panel shows the returns on the dividend
index. The lower panel reports the end-of-year Moody’s Seasoned AAA Corporate Bond Yield. The four time
series were obtained from the Bloomberg terminal.

values by simply log differencing the annual index value time series at the end
of December. This step also yields a sample of 71 annual returns.

Finally, the long-term interest rate is proxied by Moody’s Seasoned Aaa
Corporate Bond Yield. These rates are again obtained via the Bloomberg ter-
minal (MOODCAAA). We use the December series in this study. Figure 3
presents the behaviour of the four time series under study. Since we are
considering post-World War II data, we still have 71 observations for this case.

6.2. Estimation results

Using the MCMC methodology explained in Section 5 and in Appendix B,
we can numerically obtain the marginal posterior distributions of the model
parameters. For each parameter, we obtain a sample of 100,000 values from
which we can find the average value and the standard deviation. Table 1
reports the value of such means and standard deviations for both prior cases,
that is, non-informative and subjective. For comparison, we also include the
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TABLE 1

PARAMETER ESTIMATES FOR THE WILKIE MODEL.

Non-informative Subjective MLE Wilkie (1995) ZHS (2018)
1945–2017 1945–2017 1945–2017 1926–1989 1926–2014

Inflation
μq 0.031 0.031 0.041 0.030 0.031

(0.007) (0.008) (0.012) – (0.008)
σq 0.021 0.021 0.024 0.035 0.034

(0.002) (0.002) (0.002) – (0.003)
aq 0.590 0.643 0.750 0.650 0.573

(0.082) (0.061) (0.055) – (0.086)

Dividend Yield
μy 0.033 0.033 0.031 0.043 0.031

(0.014) (0.005) (0.008) – (0.010)
σy 0.190 0.193 0.172 0.210 0.162

(0.017) (0.017) (0.014) – (0.012)
ay 0.912 0.855 0.927 0.700 0.938

(0.046) (0.037) (0.038) – (0.038)
wy −0.072 0.524 0.152 0.500 −0.441

(0.943) (0.432) (0.534) – (0.469)

Dividend Index
μd 0.040 0.034 0.033 0.015 0.013

(0.025) (0.028) (0.023) – (0.007)
σd 0.169 0.168 0.157 0.090 0.157

(0.015) (0.015) (0.015) – (0.012)
bd 0.148 0.415 −0.079 0.500 −0.575

(0.196) (0.092) (0.285) – (0.108)
yd 0.145 0.280 0.075 -0.350 0.088

(0.149) (0.116) (0.268) – (0.090)

Long-Term Interest Rate
μc 0.031 0.034 0.025 0.026 0.024

(0.026) (0.029) (0.008) – (0.010)
σc 0.246 0.246 0.235 0.210 0.283

(0.022) (0.021) (0.015) – (0.021)
ac 0.936 0.965 0.917 0.960 0.918

(0.043) (0.035) (0.040) – (0.044)
yc 0.010 0.001 0.028 0.070 0.024

(0.163) (0.150) (0.171) – (0.140)

The table reports the posterior means and standard deviations for both priors—non-informative
and subjective. The third column reports the maximum likelihood estimates (MLE) and their
standard errors (calculated via the observed Fisher information matrix). The rightmost columns
report frequentist results obtained by two previous studies: Wilkie (1995) and Zhang et al. (2018,
ZHS). Values in brackets represent standard deviations of the parameter’s posterior distribution
(for Bayesian inference) or standard errors (for frequentist methods).
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parameter estimates obtained via MLE, the parameters found byWilkie (1995)
and the ones recovered by Zhang et al. (2018, hereafter ZHS).

For the inflation dynamics, the average parameters obtained by both pri-
ors are similar, although aq is slightly larger for the subjective case. They
are also consistent with those found via the MLE and those estimated by
ZHS. The standard deviations and standard errors are also of the same
order.

The posterior average for all the dividend yield parameters—either from
the non-informative or the subjective case—is consistent with their frequen-
tist counterparts, except for wy. As explained earlier in Section 3, wy should be
positive because the level of the dividend should be proportional to the general
level of prices in the economy. Nonetheless, our Bayesian estimate of wy in the
non-informative case as well as the one found by ZHS seem to be negative on
average, whereas those of our subjective case and Wilkie are positive, that is,
0.524 and 0.5, respectively. The variation around these estimators is, however,
rather large: 0.943 for the non-informative prior, 0.432 for the subjective prior,
0.534 for the MLE and 0.469 for ZHS. Indeed, Huber (1997) finds that the
wy is sensitive to outliers, which could explain to some extent these high stan-
dard deviations and the difference between our Bayesian results and the MLE
estimates (ours, Wilkie’s and ZHS’s).

The means of the dividend index parameter distributions are somewhat
similar for both priors. Their standard deviations are also consistent with one
another. When compared to frequentist results, the parameters μd obtained
with the Bayesian approach are consistent with that obtained with MLE,
although it is fairly different from Wilkie’s and ZHS’s estimates. The different
sample periods may explain this discrepancy. Parameter σd is consistent across
the different methods, even though the one obtained by Wilkie is smaller than
the others. As explained in Section 3, bd should be positive in order to account
for the fact that companies pay out only part of any additional earnings in
a given year. The posterior averages of this parameter are indeed positive for
our two priors, which departs from the frequentist results presented in Table 1:
ZHS and the estimates obtained via the MLE are negative. The standard devi-
ation for the Bayesian estimates of bd are different; this hints towards different
posterior distribution shapes for the two priors. The two average posterior val-
ues for yd are consistent with those obtained with the MLE and estimated by
ZHS, although the sign of yc contradicts that of Wilkie. Note that the standard
errors and deviations of this very parameter are large, which could explain the
difference in sign to some extent.

Finally, for the long-term interest rate dynamics, the posterior means of
the four parameters—μc, σc, ac and yc—are consistent with one another and
with their frequentist counterparts. The uncertainty, estimated here as either
the standard deviation or the standard error of a parameter, is also consis-
tent across the different methods and for most parameters, although the actual
shape of the posterior distributions for parameters μc and ac are different for
both prior choices.
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FIGURE 4: Posterior distributions for model parameter: subjective prior.
This figure exhibits the (marginal) posterior distribution for each parameter obtained using the MCMC
methodology explained in Section 5 and in Appendix B. For each parameter, we obtain a sample of 100,000
values from which we construct a histogram. In this study, we focus on post-World War II data, that is, data
for the year 1945 and after. In addition to determining the histogram, we also obtain the moment-matched
Gaussian distribution (solid line). The second column of Table 1 reports the values of such means and standard
deviations needed to match the moment of the normal distributions.

Figure 4 plots the density estimates of the parameters for the subjective
prior distribution (the results for the non-informative are available in the
Supplementary Material). The posterior histograms of the simulated param-
eters are complemented by moment-matched Gaussian distributions. Even
though the posterior standard deviations calculated by our Bayesian approach
are consistent with the standard errors obtained by the MLE and in ZHS for
most parameters, the actual shape of the posterior distribution might, how-
ever, be different from the asymptotic parameter distribution under the MLE
framework, for example, the distribution of μy, μc and ac does not appear to be
normally distributed for the subjective prior. Indeed, parameter uncertainty is
accounted for in a more consistent manner by the Bayesian inference developed
in Sections 4 and 5 and therefore allows us to understand the actual posterior
distribution of these parameters.

In summary, both priors lead to similar posterior distributions for all
parameters except wy, bd , μc and ac. For the sake of brevity, we will use the
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subjective prior in the remainder of the paper. For robustness purposes, how-
ever, all the figures and tables obtained using the non-informative prior are
available in Section SM.B of the Supplementary Material.

6.3. Bayesian prediction

The main advantage of the Bayesian inference method used in this study—in
addition to its consistency—is that we can readily make Bayesian predictions
using only past data. Specifically, if X represents the past data (used in the
estimation) and Y the future values of the four economic values, that is, Y =
{i(t), y(t), d(t), c(t)}T+τ

t=T+1, then we can find the posterior-predictive density of
these future observations based on past information:

f (Y |X )= f (Y ,X )
f (X )

=
∫
f (Y ,X ,�) d�

f (X )
=
∫
f (Y ,X |�) π(�) d�

f (X )

=
∫
f (Y |�) f (X |�) π(�) d�

f (X )
=
∫
f (Y |�) π(�|X ) d�.

The Bayesian estimation technique in Section 5 can be thought of as an inter-
mediate step to build the posterior-predictive density: it allows us to obtain
parameter sets that are used to generate samples of Y in a consistent manner.
To build the Bayesian prediction, each posterior parameter set draw—those
kept to build the posterior distribution—is used to draw ten paths of the four
processes, making a total of 1,000,000 paths.

In this section, we consider two cases: a first case in which there is param-
eter uncertainty and a second case without parameter uncertainty, that is,
fixed parameters. The uncertainty is characterized by the posterior distribution
found previously; in the case without parameter uncertainty, the parameters
are fixed to the sample average, for example, 1

M

∑M
j=1 μ( j)

q for the long-run level
of the inflation rate.

To characterize the impact of parameter uncertainty for the four variables
of interest, we construct funnels of doubt similar to those presented in Figure 1.
These funnels of doubt are constructed on four different variables, each related
to one of the processes described in Wilkie’s model:

1. The total inflation index growth, defined as
∑T+τ

t=T+1 i(t)= log
(
I(T+τ )
I(T)

)
, where

τ is the time horizon.
2. The dividend yield, y(T + τ ).

3. The total dividend index growth, defined as
∑T+τ

t=T+1 d(t)= log
(
D(T+τ )
D(T)

)
.

4. The long-term interest rate, c(T + τ ).

Figure 5 presents the median and the 95% confidence interval for the four
variables and for both cases, for example, with (leftmost column) and without
parameter uncertainty (rightmost column). The median value is similar in both

https://doi.org/10.1017/asb.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.6


ECONOMIC SCENARIO GENERATOR AND PARAMETER UNCERTAINTY 353

0 10 20 30 40 50
Year

0 10 20 30 40 50
Year

0 10 20 30 40 50
Year

0 10 20 30 40 50
Year

0 10 20 30 40 50
Year

0 10 20 30 40 50
Year

0 10 20 30 40 50
Year

0 10 20 30 40 50
Year

0

1

2

In
fl

at
io

n
 In

d
ex

 G
ro

w
th

Parameter Uncertainty

0

1

2

No Parameter Uncertainty

0

0.03

0.06

0.09

0.12

D
iv

id
en

d
 Y

ie
ld

0

0.03

0.06

0.09

0.12

–2

0

2

4

6

8

D
iv

id
en

d
 In

d
ex

 G
ro

w
th

–2

0

2

4

6

8

0

0.1

0.2

0.3

L
o

n
g

-T
er

m
 In

te
re

st
 R

at
e

0

0.1

0.2

0.3
Median
95% Confidence Interval

FIGURE 5: Funnels of doubt for the four economic variables: subjective prior.
This figure shows funnels of doubt with (left column) and without (right column) parameter uncertainty, and
for each of the four economic variables under study: the total inflation growth, the dividend yield, the total
dividend growth and the long-term interest rate. These plots present the median (solid) as well as the 95%
confidence interval (dashed line) for each year. The leftmost figures present the funnels of doubt in the case of
parameter uncertainty based on the MCMC methodology explained in Section 5 and in Appendix B. For the
rightmost figures, we use no parameter uncertainty: instead of using the posterior sets of parameters, we use
the average value of each parameter, as given in Table 1.

cases, meaning that the broad behaviour of these economic variables is similar.
However, the tails of each of these distributions are thinner in the case without
parameter uncertainty. Indeed, the fact that the parameters are uncertain seems
to significantly increase the variability: the 95% confidence intervals shown
in Figure 5 are wider when considering uncertain parameter. The parameter
uncertainty has a larger impact on the total inflation index growth, on the div-
idend index growth and on the long-term interest rate. On the other hand, the
impact is more modest for the dividend yield, albeit there is still a difference
between the two cases.
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TABLE 2

DESCRIPTIVE STATISTICS AND QUANTILES OF ECONOMIC VARIABLES OVER DIFFERENT
TIME HORIZONS: SUBJECTIVE PRIOR.

Parameter Uncertainty No Parameter Uncertainty

Standard Standard
Average Deviation Average Deviation

Total Inflation Index Growth
5 Years 0.1595 0.0991 0.1593 0.0945
10 Years 0.3134 0.1755 0.3131 0.1600
15 Years 0.4691 0.2375 0.4687 0.2083
25 Years 0.7808 0.3424 0.7803 0.2818
50 Years 1.5598 0.5655 1.5595 0.4109
100 Years 3.1188 0.9703 3.1185 0.5896

Dividend Yield
5 Years 0.0281 0.0099 0.0283 0.0096
10 Years 0.0322 0.0128 0.0323 0.0122
15 Years 0.0342 0.0143 0.0343 0.0131
25 Years 0.0358 0.0154 0.0356 0.0137
50 Years 0.0364 0.0160 0.0359 0.0138
100 Years 0.0365 0.0161 0.0359 0.0138

Total Dividend Index Growth
5 Years 0.3701 0.5417 0.3698 0.5202
10 Years 0.6873 0.8191 0.6873 0.7623
15 Years 1.0097 1.0454 1.0101 0.9469
25 Years 1.6594 1.4369 1.6578 1.2342
50 Years 3.2803 2.2852 3.2769 1.7598
100 Years 6.5204 3.8310 6.5182 2.5004

Long-Term Interest Rate
5 Years 0.0449 0.0116 0.0446 0.0110
10 Years 0.0495 0.0196 0.0489 0.0176
15 Years 0.0537 0.0271 0.0526 0.0229
25 Years 0.0609 0.0415 0.0582 0.0308
50 Years 0.0732 0.0670 0.0654 0.0403
100 Years 0.0856 0.0913 0.0688 0.0440

This table presents descriptive statistics with and without parameter uncertainty
and for each of the four economic variables under study: the total inflation index
growth, the dividend yield, the total dividend index growth and the long-term
interest rate. These statistics are calculated for different time horizons: 5, 10, 15,
25, 50 and 100 years. In the case without parameter uncertainty, instead of using
the posterior sets of parameters, we use the average value of each parameter as
given in Table 1 to generate 1,000,000 observations for each year.

Table 2 shows two descriptive statistics for each variable under study and
for different time horizons. In each case, we compute the average and standard
deviation for both cases, for example, with and without parameter uncertainty.
In general, the averages are similar in both cases and the standard deviations
differ largely. For the total inflation growth, the standard deviation is between
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FIGURE 6: Kernel smoothed densities of the economic variables for a period of 50 years: subjective prior.
This figure shows densities with (left column) and without (right column) parameter uncertainty, and for each
of the four economic variables under study: the total inflation growth, the dividend yield, the total dividend
growth and the long-term interest rate. The leftmost figures present the densities in the case of parameter
uncertainty based on the MCMC methodology explained in Section 5 and in Appendix B. For the rightmost
figures, we use no parameter uncertainty: instead of using the posterior sets of parameters, we use the average
value of each parameter, as given in Table 1.

5% and 65% larger for the time horizons considered in Table 2. The stan-
dard deviation is between 3% and 17% larger when we consider parameter
uncertainty for the dividend yield. The total dividend index growth’s stan-
dard deviation is between 4% and 53% larger once parameter uncertainty is
accounted for. Finally, for the long-term interest rate, we have standard devi-
ations under the parameter uncertainty assumption that could be up to 108%
larger than for the case without uncertainty.

Figure 6 complements Figure 5 and Table 2. It shows kernel smoothed den-
sities for the four economic variables for a period of 50 years, that is, τ = 50.
Generally speaking, the densities that allow for parameter uncertainty have
fatter tails than those without. The impact of parameter uncertainty is more
significant for the dividend index growth, the inflation index growth as well as
the long-term interest rate. It is less considerable for the dividend yield, albeit
still present.

A conjecture that could explain these results is the cascade structure
explained in Section 3. The cascade structure is indeed key in capturing the
dependence among the various factors modelled in the Wilkie model. In addi-
tion to the obvious linkages among the four economic variables, there are
further interactions when parameter uncertainty is allowed for. The fact that
some variables sit at the top of the cascade creates the so-called compounded
(or magnified) parameter uncertainty that makes the whole model even more
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0

Issue Date Complement of Life

k Time

Accumulation Phase Payout Phase

FIGURE 7: A diagram illustrating the two phases of the annuity design.
This figure summarizes the two phases of our annuity design: the accumulation phase (from issue date, 0, to k)
and the payout phase (from k to the complement of life, ω − x). The figure also shows the valuation time s,
which could be before or after k (in the figure, it is before k).

uncertain. In other words, the uncertainty coming from upper levels of the cas-
cade gets compounded into the lower levels of the structure. Specifically, the
parameter uncertainty associated with the inflation and the dividend yield is
included in the dividend index and on the long-term interest rate, making the
latter even more uncertain.

Overall, parameter uncertainty has an impact on the funnels of doubt and,
more broadly, on the dispersion of the economic variables under study. It goes
without saying that this uncertainty can have a considerable impact on the tail
behaviour of the inflation, the dividend yield, the dividend index and the long-
term interest rate future distributions. One question still remains, however: is
this uncertainty relevant from an actuarial perspective?

7. ACTUARIAL IMPLICATIONS

In this final section, we assess the impact of parameter uncertainty in the case
of a life insurer that sells annuities. We consider in this illustration a homoge-
neous portfolio of identical annuities issued to a group of N policyholders, all
aged x. Each policyholder buys a k-year deferred whole life due annuity that
pays b at the beginning of each year to each annuitant. To obtain this benefit,
the annuitant must make an annual payment of π , the annual level premium,
payable at the beginning of each year during the accumulation phase—or, in
other words, during the first k years of the contract. If the annuitant dies dur-
ing the accumulation phase, the annual premiums are refunded, indexed to
inflation (see Figure 7).

To account for the time-value of money, a stochastic rate of return is
needed. In this study, we assume that the portfolio is rebalanced at the end
of each year and that half of the portfolio is invested in the dividend index and
the other half is invested in a portfolio of Aaa-rated 20-year bonds:

P(t)=
(
1
2
ed(t) (1+ y(t)) + 1

2
(1+ c(t− 1))20

(1+ c(t))20

)
P(t− 1),

where P(t) is the investment portfolio value at time t. The total return on the
dividend index contains in fact an ex-dividend component as well as a dividend
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payment. Recall that the dividend yield series is constructed by taking the sum
of the gross dividend payments over a given year and dividing it by the value
of the index at the end of the year, that is,

y(t)= Y (t)
D(t)

⇒ y(t)D(t)=Y (t),

where Y (t) is the gross dividend payments over a given year (i.e., from t− 1
to t). Therefore, the total return of an investment in the dividend index is
given by

D(t)+Y (t)
D(t− 1)

= D(t)+D(t)y(t)
D(t− 1)

= D(t)(1+ y(t))
D(t− 1)

= D(t− 1)ed(t)(1+ y(t))
D(t− 1)

= ed(t)(1+ y(t)).

The (continuously compounded) stochastic rate of return is given by δ(t)=
log (P(t)/P(t− 1)).

We assume that the annuity portfolio contains only females aged x whose
mortality is random and follows a Gompertz model fitted to the US data. The
Gompertz survival function is approximated by S(x)= exp

(−e0.0938(x−87.047)
)
.

These parameters are estimated by Pflaumer (2011) using the 2006 National
Vital Statistics Reports life table for females in the US. We further assume that
the future lifetimes of the policyholders in the portfolio are independent and
identically distributed.

Consider the following life-contingent indicator variables:

Lt,j = 1{Policyholder j is Alive at the Beginning of Year t}
and Dt,j = 1{Policyholder j Dies in Policy-Year t}.

At the inception of the contract, the (random) net cash outflow at time t is
given by

Ct =
N∑
j=1

[
π s̈t
 i Dt, j1{t<k} + bLt, j1{t≥k} − πLt, j1{t<k}

]
,

where s̈t
 i is a t-year annuity due accumulated at the inflation rate. The time-t
net cash outflow is indeed defined as the accumulated premiums if the annui-
tant dies before the end of the accumulation phase, plus the annuity payment
during the payout phase if the annuitant is still alive, minus the premium paid
during the accumulation phase if the annuitant is alive.

The loss at issue random variable is therefore given by the discounted value
of the (random) net cash outflows:

Lossx =
ω−x∑
t=0

Cte−l(T ,T+t), (7)
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where

l(T ,T + t)=
{∑T+t

s=T+1 δ(s) if t> 0

0 if t= 0

similar to the notation used by Marceau and Gaillardetz (1999) and Nolde and
Parker (2014). The product annual premium π is calculated by using the actu-
arial equivalence principle, that is, π such that E [Lossx]= 0. Different loadings
θ on the premium are considered: 0%, 5%, 10% and 20%.

In the example, we specifically consider the case where 100 contracts are
sold, that is, N = 100. Three different initial ages are considered: 35, 45 and
55 years old. The annual annuity payoff in the payout phase is assumed to be
1000. We select k, the deferred period, such that the payout period starts at 65,
regardless of the actual age at issue, x.

To obtain the stochastic rate of return and the inflation rate, we use
the same 1,000,000 paths generated in Section 6.3. Then, for each of these
economic scenarios (that accounts for parameter uncertainty), life-contingent
indicators Lt,j and Dt,j are generated from a multinomial distribution, as mor-
tality is assumed to be random in this study. We do exactly the same thing for
the case without parameter uncertainty using the 1,000,000 paths found for this
case, as explained in Section 6.3.

Figure 8 shows cumulative distribution function (cdf) for the case with
parameter uncertainty (solid line) and without (dashed line). This figure con-
siders four different levels of loading θ and the three different initial ages. The
tails of the cdf obtained under parameter uncertainty are significantly heavier
than those generated without. At first sight, parameter uncertainty increases
the risk and creates heavier tails that result in more extreme scenarios and, if
we focus on the right tail, more extreme losses.

Table 3 summarizes some of the descriptive statistics and risk measures of
the loss random variable (per annuity sold)—along with the annual premium—
for different levels of θ and various ages x. The premium obtained by the
equivalence principle, π , is always greater when we account for parameter
uncertainty: it is approximately 21% greater when x= 35, 12% if x= 45 and
6% if x= 55. This is also the case for the other risk measures, namely, the 95th
quantile (the so-called VaR) and the CTE at 95%: they are between 23% and
51% higher when considering parameter uncertainty.

Therefore, it appears that the parameter uncertainty in Wilkie’s ESG
changes the risk profile in a significant way. All risk measures are substan-
tially larger when parameter uncertainty is taken into account—with increases
above 20% in all cases. Additionally, in the case of this ESG, most risk cal-
culations that do not account for parameter uncertainty are thus downward
biased. This conclusion is therefore highly relevant for ESG end-users—and,
more generally, actuaries using such models.

This result must remain true for other more advanced ESGs to some extent.
Indeed, more advanced ESGs include extra parameters, making the statistical
estimation of such models cumbersome—therefore creating more uncertainty
around each parameter’s point estimates.
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FIGURE 8: Cumulative distribution functions of the loss at issue as a function of different initial ages
and levels of loading for a portfolio of 100 annuities: subjective prior.

This figure shows cumulative distribution functions (cdf) for different initial ages (35, 45 and 55 years old) and
levels of loading (0%, 5%, 10% and 20%). Two cases are shown in this figure: parameter uncertainty (solid line)
and no parameter uncertainty (dashed line). For the parameter uncertainty case, we use the MCMC method-
ology explained in Section 5. Under no parameter uncertainty, we use the average value of each parameter, as
given in Table 1. Associated with each of these paths, we generate the indicator variables Lt,j and Dt,j for 100
lives using the Gompertz model fitted to the US data (Pflaumer, 2011). Then, based on these simulations, we
obtain the loss at issue under each scenario to obtain a sample of this random variable.

Finally, to make a parallel with Section 2, the parameter uncertainty consid-
ered in this problem is not inconsequential because it greatly increases the risk.
The uncertainty uncovered in Section 6 therefore has an important impact on
the risk calculation; omitting such uncertainty could (negatively) bias an actu-
ary’s risk assessment. Therefore, to answer our research question, parameter
uncertainty seems to matter very much.

7.1. Robustness test: Using more data in the estimation

One caveat of this study is the use annual data to perform the Bayesian param-
eter inference. We did so to make our estimation results comparable to prior
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TABLE 3

DESCRIPTIVE STATISTICS AND QUANTILES OF LOSS AT ISSUE FOR A PORTFOLIO OF
100 ANNUITIES: SUBJECTIVE PRIOR.

Parameter Uncertainty No Parameter Uncertainty

Premium Standard Premium Standard
π (1+ θ ) Deviation Q(0.95) CTE(0.95) π (1+ θ) Deviation Q(0.95) CTE(0.95)

xxx= 35
θ = 0% 230.52 5280.95 6381.56 15469.82 190.53 2577.60 4264.38 10706.27
θ = 5% 242.05 5249.63 6110.80 15136.55 200.05 2563.02 4063.73 10390.29
θ = 10% 253.57 5219.77 5836.43 14805.24 209.58 2549.73 3866.88 10080.81
θ = 20% 276.62 5167.47 5298.01 14149.86 228.63 2527.11 3470.26 9449.84

xxx= 45
θ = 0% 435.14 5582.00 7822.73 16800.36 386.99 3277.64 5658.41 12721.60
θ = 5% 456.90 5537.88 7430.29 16341.56 406.33 3254.45 5339.50 12281.79
θ = 10% 478.65 5498.38 7031.16 15887.05 425.68 3233.31 5024.19 11832.35
θ = 20% 522.17 5430.86 6256.86 14989.01 464.38 3197.37 4396.81 10950.82

xxx= 55
θ = 0% 1046.70 5556.75 8968.00 16882.15 983.41 3898.45 7020.53 13860.30
θ = 5% 1099.04 5517.61 8425.98 16292.12 1032.58 3870.52 6535.73 13280.38
θ = 10% 1151.37 5480.61 7885.42 15704.85 1081.75 3845.26 6052.60 12697.51
θ = 20% 1256.04 5413.87 6827.80 14538.73 1180.10 3802.94 5096.78 11559.27

This table summarizes descriptive statistics and risk measures of the loss at issue (per annuity
sold) for different initial ages (35, 45 and 55 years old) and levels of loading (0%, 5%, 10% and
20%). Two cases are used in this table: parameter uncertainty (leftmost columns) and no param-
eter uncertainty (rightmost columns). For the parameter uncertainty case, we use the MCMC
methodology explained in Section 5 and in Appendix B. Under no parameter uncertainty, we use
the average value of each parameter, as given in Table 1. Associated with each of these paths,
we generate the indicator variables Lt,j and Dt,j for 100 lives using the Gompertz model fitted to
the US data (Pflaumer, 2011). Then, based on these simulations, we obtain the loss at issue under
each scenario to determine a sample of this random variable. The table shows, for both cases,
the annual premium paid by the annuitant, the standard deviation of the losses at issue, the 95th
quantile of the loss distribution Q(0.95) and the CTE at the 95% level.

studies in the literature (e.g. Wilkie, 1995; Zhang et al., 2018). Yet, this fairly
reduces the amount of data available in the estimation state—recall that only
71 data points were available for each time series—and this could have a not-
so-marginal impact on the uncertainty of parameters: having a modest number
of observations makes the parameter more uncertain, broadly speaking.

For the sake of robustness, we assess once more the impact of parameter
uncertainty on a portfolio of annuities, but this time we consider economic
time series at a higher frequency: we use quarterly data instead of annual time
series. Still using the subjective prior—for which the parameters of the a priori
distributions of Table 5 were adjusted to account for the fact that we have
quarterly data—we rerun the estimation procedure applied in Section 6 and
generate samples of the future values of the economic variables.
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TABLE 4

DESCRIPTIVE STATISTICS AND QUANTILES OF LOSS AT ISSUE FOR A PORTFOLIO OF 100 ANNUITIES:
SUBJECTIVE PRIOR AND QUARTERLY DATA.

Parameter Uncertainty No Parameter Uncertainty

Premium Standard Premium Standard
π (1+ θ ) Deviation Q(0.95) CTE(0.95) π (1+ θ) Deviation Q(0.95) CTE(0.95)

xxx= 35
θ = 0% 195.44 2003.19 3279.06 6148.01 178.77 1255.06 2270.86 4861.76
θ = 5% 205.21 1986.53 3087.56 5935.86 187.71 1246.53 2113.11 4654.87
θ = 10% 214.98 1970.65 2898.02 5724.64 196.65 1238.83 1955.04 4449.76
θ = 20% 234.53 1941.15 2520.52 5304.88 214.53 1225.97 1640.70 4039.07

xxx= 45
θ = 0% 381.29 2368.74 4117.58 7174.87 360.81 1683.00 3060.71 6024.51
θ = 5% 400.36 2345.36 3823.61 6854.50 378.85 1669.17 2804.92 5711.88
θ = 10% 419.42 2323.32 3530.60 6535.79 396.89 1656.67 2546.89 5399.41
θ = 20% 457.55 2282.98 2950.29 5903.04 432.98 1635.80 2037.18 4778.13

xxx= 55
θ = 0% 945.05 2713.26 4928.75 7894.87 917.82 2146.70 3936.93 7025.32
θ = 5% 992.31 2688.28 4486.60 7426.84 963.71 2129.99 3522.03 6563.80
θ = 10% 1039.56 2665.04 4044.98 6961.13 1009.60 2115.15 3109.28 6099.49
θ = 20% 1134.07 2623.67 3166.10 6035.91 1101.38 2091.24 2292.35 5178.84

This table summarizes descriptive statistics and risk measures of the loss at issue (per annuity
sold) for different initial ages (35, 45 and 55 years old) and levels of loading (0%, 5%, 10% and
20%) using quarterly data. For more details, please refer to the caption of Table 3.

Similar to Table 3, Table 4 summarizes some of the descriptive statis-
tics and risk measures of the loss at inception random variable (per annuity
sold). Overall, the premiums are still greater when we allow for parameter
uncertainty, although the difference is slightly less sizeable: the premium is
approximately 9% greater when x= 35, 6% if x= 45 and 3% if x= 55. The VaR
measures and the CTEs at 95% using quarterly data are generally smaller than
those using annual data, although the relative increases are larger in the quar-
terly case. Specifically, the 95th quantile (CTE estimates) is 48% (29%) greater
when x= 35, 39% (21%) when x= 45 and 30% (14%) when x= 55. Therefore,
it appears that even if we use more data—in our case, four times more—the
uncertainty on the parameters remains and still has dire consequences on the
risk profile of the portfolio of annuities.

When comparing the results of Table 4 to those of Table 3, we observe a
substantial twofold decrease in most of the risk measures (i.e., standard devi-
ation, VaR and CTE). Even though the average value of the parameters is
not that different in the quarterly case (vis-à-vis the annual case), small differ-
ences in the parameters can compound over time and create discrepancies in
the long haul. Specifically, in our case, the overall long-run risk in the dividend
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index and the long-term interest rate—two crucial variables in determining the
portfolio return—is lower when using quarterly data.

For the leftmost columns of Tables 3 and 4, the uncertainty on the param-
eters can be quite different when using different frequencies, which could
also explain partly the differences mentioned above (e.g., when appropriately
scaled, the standard deviation of μq is reduced by about half, from 0.0076 with
annual data to 0.0043 with quarterly observations). Indeed, having more data
points yields less uncertainty on the parameters, which translates into a loss dis-
tribution that is less dispersed. Yet, the impact of parameter uncertainty does
not vanish: even if you increase the sampling frequency, there is still uncertainty
on the parameters.

One slight note of caution, however, for those who would be tempted
to increase considerably the sampling frequency: even though increasing the
frequency makes sense from a statistical perspective, it could be misguided.
ESGs are mainly used for generating scenarios over the long term and using
high-frequency series may capture features that are unrelated to the future evo-
lution of the economic variables under scrutiny. For instance, increasing the
frequency could raise the process uncertainty by capturing noise—similar in
essence to the microstructure noise in intraday returns, as described in Zhang
et al. (2005), among others—instead of the underlying risk. Hence, higher
sampling frequencies do not necessarily lead to more confidence. Finding the
adequate frequency to use given a specific application is an open question and
is left for future research.

8. CONCLUDING REMARKS

A new estimation methodology for the Wilkie model was proposed based
on the Bayesian paradigm. Using MCMC methods, we obtained posterior
distributions of the model parameters; we did so for two different a priori distri-
butions: a non-informative prior and a subjective one. Using post-World War
II US data, we found the posterior densities for each of the model parame-
ters, consistent with the available data. We also found funnels of doubt for the
four economic quantities under scrutiny using the posterior-predictive density:
parameter uncertainty adds a great deal of uncertainty to the total risk profile,
and the funnels of doubt are wider when we consider parameter uncertainty.

In an additional application, we considered a portfolio of annuities in order
to assess the relevance of parameter uncertainty from an actuarial perspective.
In all the cases considered, we found that the distribution of the loss at issue
that accounted for parameter uncertainty had heavier tails than that without
uncertainty: the risk profile of this portfolio of annuities changes drastically
when parameter uncertainty is accounted for consistently. Not accounting for
this uncertainty could therefore have dire consequences for an insurer’s risk
assessment.
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The bulk of the results obtained in this study should remain accurate for
more advanced ESGs because models that are less parsimonious than Wilkie’s
model will lead to parameters that are more difficult to identify—and, there-
fore, to posterior distributions that are less precise, generally speaking. Yet,
other—more complex—ESGs might be more difficult to cast into a Bayesian
model. A rather straightforward proposition in these cases is to use the MLE-
based standard errors as proxies for the posterior standard deviations, as well
as the asymptotic normality to approximate the distribution of said param-
eters. Notice, however, that the distribution of some parameters is far from
being normal (i.e., Figure 4). Thus, using the asymptotic distribution might
distort the uncertainty quantification. For the Wilkie model, the MLE-based
approximation yields biased results when compared to our Bayesian method
(these untabulated results are available upon request). The end-product of such
an approximation should, therefore, be used with precaution. The Bayesian
methodology put forward in this study is indeed a good starting point to assess
parameter uncertainty in more complex ESGs, although it might complicate
the risk assessment methodology considerably.

Finally, one source of uncertainty that we have not assessed is model risk;
even though this risk seems to be of lesser importance than parameter uncer-
tainty (Cairns, 2000), it would be interesting to quantify its impact in the case
of ESGs. This question is also left for future research.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/
10.1017/asb.2019.6.
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APPENDIX A. PRIOR DISTRIBUTIONS

A.1. Non-informative prior

When there is insufficient information about the value of a parameter or if the end-user
does not have strong prior beliefs, then a non-informative prior can be used. They are also
called vague or diffuse prior in the literature. Typically, in their simplest forms, these priors
are rectangular distributions (i.e., flat) over the feasible set of parameter values (Upton and
Cook, 2014).

A flat prior is considered improper (i.e., does not exist) if the interval is infinite, which
would be the case for the model parameters that are unbounded. An improper prior is not
necessarily a bad choice as long as the posterior distribution is proper. If it leads to an
improper posterior, however, then no Bayesian inference can be achieved.
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To verify that a posterior distribution is, in fact, proper, we would need to derive its
density in closed form which is not always possible. Therefore, on the one hand, we use a
flat (improper) prior for cases where we can obtain the closed-form solution. On the other
hand, however, we use a very diffuse prior if we cannot find the density in closed form, that
is, a distribution with a very large dispersion, albeit proper.

Specifically, for the inflation dynamics, both parameters μi and i0 have flat priors, that
is, μi ∼ U(−τ , τ ) and i0 ∼ U(−τ , τ ) with τ → ∞. The autoregressive parameter ai is con-
strained between −1 and 1, so a uniform distribution over this interval is used as the prior
distribution for this parameter: ai ∼ U(−1, 1). We also use a flat prior for log (σi); in other
words, π (σi)∝ 1/σi, so that the log (σi) is uniformly distributed on the real line. It is possible
to show that all these posterior distributions are in fact proper (see Section 5 andAppendix B
for more details).

The rationale to select non-informative priors for long-term interest rate parameters
remains almost the same. Themean parameterμ∗

c has a flat prior. The autoregressive param-
eter ac has a uniform prior over (−1, 1). Finally, the log (σc) are uniformly distributed on
the real line. The posterior distributions of parameters cm,0 and c0 cannot be found in closed
form if we use a flat prior for these parameters; therefore, for these two parameters, we use
a very diffuse prior, that is,N (0, 102).

The same very diffuse prior is used for the majority of dividend yield and dividend index
parameters: μ∗

y, wy, ym,0, zy,0, μd , yd , dm,0 and zd,0 are normally distributed (with a mean of
zero and a standard deviation of 10). The only exceptions are the scale, the autoregressive
and the moving-average parameters. The scale priors are based on exponential distributions
for which the rate parameter is very large, that is, 10. The autoregressive and the moving-
average parameters are flat over the interval (−1, 1), which is proper.

The leftmost column of Table 5 summarizes the different non-informative prior distri-
butions used in this study.

A.2. Subjective prior

A subjective prior expresses definite and specific information about the parameters. In this
study, the subjective prior we use is inspired by the parameter estimates obtained by Wilkie
(1995) for the US economy. The prior is centred around the parameters estimated inWilkie’s
1995 update. For the a priori dispersion, we use the following rules of thumb: initial val-
ues, mean, scale, autoregressive and moving-average parameters have a standard deviation
of 0.1, and other parameters have a dispersion of 0.5. The rightmost column of Table 5
provides details on the various subjective prior distributions we use.

Generally speaking, we assume that all parameters are a priori normally distributed,
except for the scale, the autoregressive and the moving-average parameters. The scale
parameters are given by moment-matched gamma distributions. The autoregressive and the
moving-average parameters, ai, ay, bd and ac, are given by moment-matched (general) beta
distributions defined over the interval (−1, 1), in the spirit of Gill and Freeman (2013). The
beta distribution is used because of its flexibility (O’Hagan, 1998). The probability density
function of this general beta distribution we use is given by

f ( y|α, β) = �(α + β)
�(α)�(β)

( y+ 1)α−1(1− y)β−1

2α+β−1
,

where α and β are shape parameters.
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TABLE 5

SUMMARY OF PRIOR DISTRIBUTIONS.

Non-informative Subjective

Inflation Inflation
μi Uniform U(−τ , τ ), τ → ∞ μi Normal N (0.03, 0.12)
log (σi) Uniform U(−τ , τ ), τ → ∞ σi Gamma Gamma(0.123, 0.286)
ai Uniform U(−1, 1) ai Beta Beta(46.819, 9.931)
i0 Uniform U(−τ , τ ), τ → ∞ i0 Normal N (0.03, 0.12)

Dividend Yield Dividend Yield
μ∗
y Normal N (0, 102) μ∗

y Normal N ( log (0.043), 1.0282)
σy Exponential Exp(10) σy Gamma Gamma(4.41, 0.048)
ay Uniform U(−1, 1) ay Beta Beta(42.5, 7.5)
wy Normal N (0, 102) wy Normal N (0.5, 0.52)
ym,0 Normal N (0, 102) ym,0 Normal N (0, 0.12)
zy,0 Normal N (0, 102) zy,0 Normal N (0.021, 0.12)

Dividend Index Dividend Index
μd Normal N (0, 102) μd Normal N (0.0155, 0.12)
σd Exponential Exp(10) σd Gamma Gamma(0.81, 0.111)
bd Uniform U(−1, 1) bd Beta Beta(55.5, 18.5)
yd Normal N (0, 102) yd Normal N (−0.35, 0.52)
dm,0 Normal N (0, 102) dm,0 Normal N (0.03, 0.12)
zd,0 Normal N (0, 102) zd,0 Normal N (0, 0.12)

Long-Term Interest Rate Long-Term Interest Rate
μ∗
c Uniform U(−τ , τ ), τ → ∞ μ∗

c Normal N ( log (0.0265), 1.2082)
log (σc) Uniform U(−τ , τ ), τ → ∞ σc Gamma Gamma(4.41, 0.048)
ac Uniform U(−1, 1) ac Beta Beta(6.703, 0.137)
yc Uniform U(−τ , τ ), τ → ∞ yc Normal N (0.07, 0.52)
cm,0 Normal N (0, 102) cm,0 Normal N (0.0265, 0.12)
c0 Normal N (0, 102) c0 Normal N (0.0265, 0.12)

This table summarizes the two sets of priors: non-informative (leftmost column) and subjective
(rightmost column).

Finally, when we use the transformed version of the mean parameters (i.e., μ∗
y and

μ∗
c ), we moment-matched the standard deviation of the normal prior such that the actual

untransformed parameter has a standard deviation of 0.1.

APPENDIX B. MORE ON THE ESTIMATION
METHODOLOGY

The main goal of this appendix is to present the specific methodology used to obtain a
sequence of Monte Carlo samples, {�( j)}Mh=1, where �( j) is the jth simulated parameter set.

We apply a Gibbs sampler to obtain samples of the model’s parameters. Gibbs sam-
pling is a technique that generates a sequence of random variables—in our case, the model
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parameters—by using multiple (small-dimensional) sampling instead of sampling directly
from a multidimensional probability distribution. Specifically, parameters are sampled one
at a time from their full conditional distributions—the distribution of a given parameter, θi,
conditional on X and all the other parameters. Therefore, instead of sampling directly from
the multivariate distribution we wish to approximate—which involves multiple integrals—
we deal with multiple one-dimensional distributions. Beginning from an initial parameter
set �(0), we can generate the subsequent set, �(1), and do the same thing for the following
sets in an iterative way. In other words, we generate the ith parameter at step j from the
following distribution:

θ
( j)
i ∼ π

(
·
∣∣∣X ,�( j)

1:i−1,�
( j−1)
i+1:n

)
,

where �
( j)
a:b corresponds to model parameters, from the ath up to the bth, at the jth step. We

therefore use information from both the j− 1th and j th sets to obtain θ
( j)
i . As the Gibbs

sampler iterates, it produces a good approximation of the marginal posterior distribution
for the said parameter, π (θi|X ), and for every parameter in �.

Fortunately, we can find the a posteriori full conditional distribution for some of the
model parameters when the non-informative prior is used—which greatly simplifies our
implementation of the Gibbs sampler. However, in the subjective case and for some param-
eters in the non-informative case, it is difficult to sample directly from their full conditional
distribution. Therefore, for these, we use theMetropolis–Hastings algorithm in lieu of direct
steps in the Gibbs sampler. For each iteration j, the Metropolis–Hastings method allows us
to obtain the sampled parameters by generating a candidate from some proposal distribu-
tions that are as yet undefined. Then, the candidate is either accepted or rejected. Two main
ingredients are thus needed to apply Metropolis-within-Gibbs steps: (1) a proposal density
and (2) the (marginal) posterior density from which we wish to sample. The proposal den-
sity g can be almost anything as long as it is easy to generate a sample from it. As for the a
posteriori full conditional density from which we want to sample, we can compute it readily
from Equation (6) up to a normalizing constant.

Using these two building blocks, we can now apply Metropolis-within-Gibbs steps, as
described in the following algorithm.

Algorithm 1. Metropolis–Hastings Algorithm
At step j and for θi ∈ �, we do the following steps.

1. Generate a candidate state θ∗
i from g( · | θ ( j−1)

i ). This proposal density should be based on

the previous value of θi in the Markov chain, that is, θ ( j−1)
i .

2. Calculate the acceptance probability

α
(
θ∗
i , θ

( j−1)
i

)
=min

⎛
⎝1,

π
(
θ∗
i

∣∣∣X ,�( j)
1:i−1,�

( j−1)
i+1:n

)
π
(
θ
( j−1)
i

∣∣∣X ,�( j)
1:i−1,�

( j−1)
i+1:n

) g(θ ( j−1)
i |θ∗

i )

g(θ∗
i | θ ( j−1)

i )

⎞
⎠. (8)

3. Accept or reject this new sample using a uniform random number u∼ U(0, 1), that is, if
u≤ α

(
θ∗
i , θ

( j−1)
i

)
, accept the new state and set θ

( j)
i = θ∗

i , or if u> α
(
θ∗
i , θ

( j−1)
i

)
, reject the

new sate and copy the old state forward.
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Because of its specific structure, our MCMC sampler can be divided into four smaller
blocks—one for each sub-model of the ESG. These four blocks are described below.

B.1. Inflation

For the subjective case, we will use the Metropolis-within-Gibbs methods to sample μi, σ 2
i ,

ai and i0, as explained above. For the non-informative case, we can find the full conditional
posterior distribution of certain parameters.

Proposition 1. Full Conditional Posterior Distribution for Inflation Parameters (Non-
informative Case)
The full conditional a posteriori distributions of the inflation parameters are given by

μi
∣∣ai, σi, {i(t)}Tt=0 ∼N

(∑T
t=1 i(t)− aii(t− 1)

T(1− ai)
,

σ 2
i

T(1− ai)2

)
,

σ 2
i

∣∣μi, ai, {i(t)}Tt=0 ∼ IG

(
T
2

+ 1,
1
2

T∑
t=1

(i(t)− μi − ai (i(t− 1)− μi))
2

)
,

ai
∣∣μi, σi, {i(t)}Tt=0 ∼N(−1,1)

(∑T
t=1 (i(t− 1)− μi) (i(t)− μi)∑T

t=1 (i(t− 1)− μi)
2

,
σ 2
i∑T

t=1 (i(t− 1)− μi)
2

)
,

i0
∣∣μi, σi, ai, {i(t)}Tt=1 ∼N

(
i(1)− μi(1− ai)

ai
,
σ 2
i

a2i

)
,

where N(−1,1)(μ, σ 2) is a Gaussian distribution truncated to (−1, 1) with a mean parameter of
μ and a variance parameter of σ 2, and IG(α, β) is an inverse Gamma distribution with a shape
parameter of α and a scale parameter of β.

Proof. See Section SM.A.1 of the Supplementary Material. �

B.2. Dividend yield

For both the non-informative and the subjective prior distributions, we need to use the
Metropolis-within-Gibbs method to obtain a posteriori samples of the dividend yield param-
eters. Indeed, because the dividend yield innovations zy(t) are also involved in the dividend
index and the long-term interest rate dynamics, the full conditional posterior distribution of
�y is cumbersome and prevents us from directly using the Gibbs sampler.

B.3. Dividend index

Finding full conditional posterior distributions for the parameters involved in the dividend
index dynamics is also troublesome since the time t density involved in Equation (4) depends
on zd (t− 1), which in turn depends on the other dividend index parameters. Therefore, the
parameters μd , σ 2

d , bd , yd , dm,0 and zd,0 are all sampled via Metropolis-within-Gibbs steps.
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B.4. Long-term interest rate

We use theMetropolis-within-Gibbsmethod to sample the long-term interest rate parameter
�c for the subjective case. For the non-informative prior, a few full conditional distributions
can be obtained analytically.

Proposition 2. Full Conditional Posterior Distribution for Long-Term Interest Rate
Parameters (Non-informative Case)
The full conditional posterior distributions of the long-term interest rate parameters are
given by

μ∗
c

∣∣ σ 2
c , ac, yc, cm,0, c0, {i(t), y(t), c(t)}Tt=0

∼N
(∑T

t=1

(
log

(
c(t)− cm(t)

)− ac log
(
c(t− 1)− cm(t− 1)

)− yczy(t)
)

T(1− ac)
,

σ 2
d

T(1− ac)2

)
,

σ 2
c

∣∣∣ μ∗
c , ac, yc, cm,0, c0, {i(t), y(t), c(t)}Tt=0

∼ IG

(
T
2

+ 1,
1
2

T∑
t=1

(
log

(
c(t)−cm(t)

)−μ∗
c−ac

(
log

(
c(t− 1)−cm(t− 1)

)−μ∗
c

)−yczy(t))2
)
,

ac| μ∗
c , σ

2
c , yc, cm,0, c0, {i(t), y(t), c(t)}Tt=0

∼N(−1,1)

(∑T
t=1

(
log

(
c(t− 1)−cm(t− 1)

)− μ∗
c

)(
log

(
c(t)−cm(t)

)− μ∗
c − yczy(t)

)
∑T

t=1

(
log

(
c(t− 1)−cm(t− 1)

)− μ∗
c

)2 ,

σ 2
c∑T

t=1

(
log

(
c(t− 1)−cm(t− 1)

)− μ∗
c

)2
)
,

yc | μ∗
c , σ

2
c , ac, cm,0, c0, {i(t), y(t), c(t)}Tt=0

∼N
(∑T

t=1 zy(t)
(
log

(
c(t)− cm(t)

)− μ∗
c − ac

(
log

(
c(t− 1)− cm(t− 1)

)− μ∗
c

))
∑T

t=1 z2y(t)
,

σ 2
c∑T

t=1 z2y(t)

)
.

The extra parameters cm,0 and c0 are generated using Metropolis–Hastings steps, as explained
above.

Proof. See Section SM.A.2 of the Supplementary Material. �

B.5. Implementation and convergence issues

In the Metropolis-within-Gibbs steps, a proposal density is needed. In this study, we use the
Gaussian distribution or, when the parameter is constrained, a truncated Gaussian distri-
bution. The location parameter of these normal distributions is set to the current value of
the parameter in the Markov chain, and their standard deviation is chosen as half of the
standard error on the parameter estimate obtained via MLE (see Table 1).

Because the truncated Gaussian distribution is no longer symmetric, the Metropolis–
Hastings acceptance ratios need to be changed. The acceptance probability is still given by
Equation (8), although the last part of the latter is no longer equal to 1; for nonsymmetric
proposals, the probability density function of the normal distribution needs to be scaled to
account for the fact that some parameters must be positive. This scaling factor is a function
of the normal cdf.
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FIGURE 9: Trace plots for model parameters: subjective prior.
This figure exhibits the trace plot of the draws from the posterior distribution for each parameter obtained
using the MCMC methodology explained in Section 5. For each parameter, we obtain a sample of 100,000
values. In this study, we focus on post-World War II data, that is, data for the year 1945 and after.

The proposal distribution used in this study is reasonable: the acceptance rate ranges
between 20% and 73%. On average, it is about 49% (42%) across the various parameters for
the non-informative (subjective) prior.

To address potential slow convergence issues, we use a long Markov chain, that is,
M = 510, 000 observations. The first 10,000 observations are considered the burn-in period
and are therefore removed from the sample. Thereafter, every fifth simulation is recorded
for posterior analysis to cope with potential highly dependent samples (i.e., thinning). This
process yields a final Markov chain of size 100,000 that can be used for empirical purposes.

In most cases, the Gibbs sampler is convergent for problems with a continuous target
density and a non-disjoint support. However, it is very difficult to verify this convergence
from a theoretical standpoint in high-dimensional problems. As for many practical applica-
tions of MCMC, the convergence can therefore be assessed on the basis of the empirical
analysis of the output of sampled parameters, for example, using different starting val-
ues and providing output for which the empirical distributions are indistinguishable. As
a robustness test, we use different starting values and find the same posterior distributions.
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Using these different chains, we can evaluate empirically the convergence of our sam-
pler. The Gelman and Rubin (1992) diagnostic is a neat way to do that. This diagnostic
test, based on the potential scale reduction factor (PSRF), assesses the convergence by com-
paring the estimated between-chains and within-chain variances for each model parameter.
Simply put, if the chains under scrutiny have converged to the target posterior distribution,
then the PSRF should be close to 1. Indeed, for all the parameters and for the two priors
used in this study, all the PSRFs range between 1 and 1.0001, meaning that the chains seem
to have converged to their target posterior distribution.

Finally, to assess the mixing of our chains, we present trace plots. Figure 9 shows the
trace plots for all the model parameters under scrutiny. Generally speaking, we want to try
to avoid flat bits or toomany consecutive steps in one direction. Figure 9 shows the opposite:
the trace plots exhibit a hairy caterpillar behaviour, meaning that the mixing seems adequate.
The trace plots for the non-informative case are similar, qualitatively speaking; they are
available in Section SM.B of the Supplementary Material.
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