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Monodisperse particle-laden exchange flows in a
vertical duct
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We study buoyancy-driven exchange flow of two mixtures in a vertical narrow duct
(two-dimensional channel as well as pipe) theoretically. While the light mixture is
assumed always to be a pure fluid, the heavy mixture can be selected as either a
pure or a particle-laden fluid. A small width-to-length ratio considered for the duct
(δ� 1) has been used as the perturbation parameter in developing a lubrication model
(negligible inertia). In particular, we have adopted the methodology of Zhou et al.
(Phys. Rev. Lett., vol. 94, 2005, 117803) for free-surface particle-laden film flows and
extended it to a lock exchange system in confined geometry under the Boussinesq
approximation. The resulting model is in the form of the classical Riemann problem
and has been solved numerically using a robust total variation diminishing finite
difference scheme. Both pure and particle-laden cases are investigated in detail. It is
observed that the interface between the two fluids takes a self-similar shape at long
times. In the case that both heavy and light fluids are pure, the dynamics of the
flow is governed by two dimensionless quantities, namely the Reynolds number, Re,
and the viscosity ratio, κ , of the light and heavy fluids. The interpenetration of the
heavy and light layers increases with Re but decreases with κ . Also, the heights of
the heavy and light fronts change with κ but remain unchanged with Re. In the case
of the particle-laden flow, however, four additional dimensionless parameters emerge,
namely the initial volume fraction of particles, φ0, the ratio of particle diameter to
duct width, rp, and the density ratios of particles to carrying fluid, ξ , and of light
fluid to carrying fluid, η. The effect of these parameters on the dynamics of the flow
has been quantified through a systematic approach. In the presence of solid particles,
the interface between the heavy and light layers becomes more curved compared
to the case of pure fluids. This modification occurs due to the change of heavy
mixture viscosity alongside the duct. Novel particle-rich zones are further discovered
in the vicinity of the advancing heavy and light fronts. These zones are associated
with different transport rates of the fluid and solid particles. The degree of particle
enrichment remains the same with Re, is enhanced by κ , rp and η, and is slightly
diminished with φ0 and ξ . On the other hand, the stretched exchange zone between
the heavy and light fronts grows with rp, η and Re, but decays with φ0, κ and ξ .

Key words: multiphase and particle-laden flows, particle/fluid flow

† Email address for correspondence: kalba@uh.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0001-9164-3527
mailto:kalba@uh.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.325&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.325&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.325&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.325&domain=pdf
https://doi.org/10.1017/jfm.2018.325


Monodisperse particle-laden exchange flows in a vertical duct 135

1. Introduction
Buoyant interpenetrating flows, due to the release of a heavy mixture into a light

one, are amongst the most fundamental fluid mechanics problems widely found in
nature within oceanographic, meteorological and geophysical contexts (Benjamin
1968; Shin, Dalziel & Linden 2004; Birman et al. 2007). They also have numerous
applications in industry, such as in continuous reactors and countercurrent extraction
columns (Pratt & Baird 1983; Baird et al. 1992). These multiphase flows have been
widely studied in the literature, experimentally by Debacq et al. (2001), Seon et al.
(2005, 2007a), Znaien, Moisy & Hulin (2011) and Alba, Taghavi & Frigaard (2012,
2013a), computationally by Sahu & Vanka (2011), Taghavi, Alba & Frigaard (2012a),
Alba, Taghavi & Frigaard (2014), Hallez & Magnaudet (2015) and Sebilleau, Issa
& Walker (2016) and analytically by Seon et al. (2007b), Taghavi et al. (2009,
2012b), Kerswell (2011), Borden & Meiburg (2013) and Alba, Taghavi & Frigaard
(2013b), considering a pair of pure fluids. Depending on the flow configuration
and parameters, various viscous, transitionary and diffusive regimes, governed by the
balance of viscous, buoyant and inertial forces, may emerge, as laid out by Seon et al.
(2006), Sahu & Vanka (2011) and Alba et al. (2013a). In many practical situations,
however, the involved fluids are particle-laden (suspension) and therefore not pure.
Particle-laden flows have been studied in the literature only in the context of Boycott
flow (settlement-induced convection within a single suspension mixture) by Boycott
(1920) and Davis, Herbolzheimer & Acrivos (1983), turbidity currents (intrusion of a
suspension into a liquid ambient over a nearly horizontal free-surface geometry) by
Bonnecaze, Huppert & Lister (1993) and Meiburg & Kneller (2010), and debris flows
(intrusion of a suspension into a gas ambient over an incline) by Cook (2008), Cook,
Bertozzi & Hosoi (2008) and Wang et al. (2015). The interpenetrating exchange
flow of a suspension into another fluid in a practical duct geometry has received
very little attention in the literature due to the increased complexity arising from
the interaction of the solid–fluid as well as fluid–fluid phases within enclosed walls.
One of the few studies available in the literature on this topic is the recent work of
Saha, Salin & Talon (2013) carried out experimentally for a horizontal configuration.
Numerous applications of particle-laden interpenetrating flows are found in a variety
of industrial operations, such as discharge, transport and dispersion of slurries, mine
tailings, pastes, pharmaceuticals, paper pulp, drill cuttings, sludge, effluents and
sewage, also the manufacture of cement clinker in inclined kilns, mineral processing
in hydrocyclones, and fluidized beds, as discussed by Segre & Silberberg (1961),
Asomah & Napier-Munn (1997), Hamed (2005), Nelson & Guillot (2006), Wiklund
et al. (2006) and Boateng (2015).

The lubrication approximation can be applied to model flows in the buoyant viscous
domain with negligible inertia. A continuum one-dimensional lubrication model of a
particle-laden film flowing down a slope was first developed by Zhou et al. (2005),
predicting the evolution of the interface height, h, and particle volume fraction, φ,
with time, t, and streamwise distance, x. Zhou et al. (2005), Cook (2008) and Cook
et al. (2008) reported the formation of a particle-rich ridge in the vicinity of the
advancing suspension front (contact line) due to the different rates of solid and fluid
transport. Two-dimensional (2D) effects were later studied by Cook, Alexandrov
& Bertozzi (2009), revealing that the addition of solid particles can diminish the
well-known fingering instabilities of an advancing contact line. While there is a large
body of studies on modelling single-layer suspension film flows, the literature on
two-layer exchange systems of suspension and pure fluid is severely lacking. As a
novel approach, we extend the methodology of Zhou et al. (2005) for free-surface
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136 N. Mirzaeian and K. Alba

Heavy mixture (H)

Light fluid (L)

FIGURE 1. (Colour online) Schematic of the symmetric particle-laden exchange flow in a
vertical 2D duct used in the lubrication model analysis. Note that dimensional notations
are used in the figure. The interface shape is illustrative only.

film flows to a practical exchange system within a confined (duct) geometry. As
discussed by Kerswell (2011), the exchange flow of two fluids in a vertical duct
may reveal slumping side-by-side or symmetric patterns with either heavy or light
fluids moving in the core region of the duct. In particular, we are interested in the
symmetric mode where the heavy particle-laden film falls along the side walls and
the light fluid moves upwards in the centre of the duct; see figure 1. From a different
perspective, the examined exchange flow can be considered as an extension to the
fundamental Taylor bubble problem of Davies & Taylor (1950), now studied for
particle-laden fluids.

The important dimensional and dimensionless parameters of the problem are first
laid out in § 2. The lubrication model is then derived in § 3. A total variation
diminishing (TVD) finite difference scheme, used to numerically solve the derived
model, is explained in § 4. In the presentation of our results in § 5, we first discuss
the case of pure fluids and then examine the effect of particle addition to the flow.
The effects of a wide range of controlling parameters, such as the density, size and
volume fraction of particles, as well as the viscosity and density of the light and
carrying fluids, and the Reynolds number, are investigated in detail. The paper closes
with a brief summary in § 6. A last note here is that the model developed in this
paper is unable to capture interfacial instabilities due to the inherent lubrication model
assumption used (negligible inertia). This model is only applicable to highly viscous
regimes with negligible inertia (Taghavi et al. 2009). The authors have extensively
studied the stability of thin pure fluid films in their previous works, such as in
Alba, Laure & Khayat (2011), Taghavi et al. (2012b) and Alba et al. (2013b), via a
weighted residual (WR) model. Extending the current particle-laden formulation to a
similar WR model, capable of capturing instabilities, is extremely challenging due to
the addition of weakly inertial terms in the Navier–Stokes equations.
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Monodisperse particle-laden exchange flows in a vertical duct 137

2. Dimensional and dimensionless governing parameters
The problem shown schematically in figure 1 involves 11 dimensional parameters,

which we denote with the ˆ symbol. The gravitational acceleration is denoted by
ĝ. The vertical duct has width, 2D̂, and length, L̂. The duct geometry considered
may simulate particle-laden groundwater flows through aquifers, conduits, caves,
cracks, joints and faults. To capture the fully developed flow effects as discussed by
Alba et al. (2013a), we assume L̂� D̂. The solid particles, which are considered to
be heavier than the carrying fluid (negatively buoyant), have radius â and density
ρ̂p. In particular, we are interested in non-Brownian suspensions, i.e. â > 1 µm
(Espín & Kumar 2014). The Newtonian carrying fluid in the heavy solution has
density ρ̂f ,H and viscosity µ̂f ,H . Similarly, the Newtonian light fluid density and
viscosity are denoted by ρ̂L and µ̂L, respectively. Both the fluids and solid phases
are assumed to be incompressible. The initial total volume of particles is V̂p. At
time t̂ = 0 s, the heavy particle-laden mixture occupies the top half of the duct
(x̂ < 0) whereas the light pure fluid takes up the bottom half (x̂ > 0). The jamming
volume, which depends on the shape and packing arrangement of the particles, is
further designated by V̂j (Saha et al. 2013). Through a dimensional analysis based
on Buckingham’s π theorem, it is not difficult to show that eight dimensionless
parameters control the flow in question, namely the duct aspect ratio, δ = D̂/L̂� 1,
particle-radius-to-half-duct-width ratio, rp= â/D̂, particle-to-carrying-fluid density ratio,
ξ = ρ̂p/ρ̂f ,H , light-to-carrying-fluid density ratio, η = ρ̂L/ρ̂f ,H , light-to-carrying-fluid
viscosity ratio, κ = µ̂L/µ̂f ,H , initial volume fraction of particles, φ0= V̂p/V̂H , jamming
volume fraction, φj = V̂j/V̂H , and the Reynolds number, Re = ρ̂H(φ0)V̂t(2D̂)/µ̂H(φ0).
Similar to the approach of Cook et al. (2008), we assume that the volume fraction
of particles across the depth of the suspension layer, y, is uniform, i.e. φ = φ(x, t)
only. See Metzger, Guazzelli & Butler (2005) for particle heterogeneity effects
in sedimentary flows and appendix A for negligibility of shear-induced migration
effects. Assuming that the duct has unit depth, the total volume of the heavy
solution is found as V̂H = D̂L̂. Further assuming monodisperse spherical particles, the
jamming volume fraction is obtained as φj≈ 0.67 (Cook et al. 2008). The expressions
ρ̂H(φ0) = ρ̂pφ0 + ρ̂f ,H(1− φ0) and µ̂H(φ0) = µ̂f ,H(1− φ0/φj)

−2 determine the density
and viscosity of the heavy fluid, respectively (Saha et al. 2013). The characteristic

velocity in the Reynolds-number expression is defined as V̂t =

√
(1−ψ)ĝD̂/(1+ψ),

where ψ = ρ̂L/ρ̂H(φ0) = η/(1+ (ξ − 1)φ0) is the density ratio of the light fluid to
the heavy suspension. In our simulations, η can be larger than 1, i.e. the light fluid
heavier than the carrying fluid. However, ψ is always less than 1, meaning that the
overall suspension mixture is heavier than the light fluid. The dimensional parameters
governing the flow along with the dimensionless numbers and their ranges are listed
in tables 1 and 2.

3. Lubrication model derivation
We aim to construct a lubrication model in simplified vertical 2D channel geometry,

shown schematically in figure 1. Owing to symmetry, only half of the duct domain
between the left wall (y= 0) and centre (y= 1) is considered in the model. Extending
the model to a pipe geometry, potentially more convenient for experimentation, is
performed in appendix B. As discussed in depth in appendix A, for the Boussinesq
limit considered (At� 1 where At = (ρ̂H(φ0)− ρ̂L)/(ρ̂H(φ0)+ ρ̂L)= (1− ψ)/(1+ ψ)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.325


138 N. Mirzaeian and K. Alba

Definition Parameter

Gravitational acceleration ĝ
Half duct width D̂
Duct length L̂
Particle radius â
Particle density ρ̂p

Carrying fluid density ρ̂f ,H

Carrying fluid viscosity µ̂f ,H

Light fluid density ρ̂L

Light fluid viscosity µ̂L

Initial total volume of particles V̂p

Jamming volume of particles V̂j

TABLE 1. List of dimensional independent input parameters of the problem.

Definition Parameter

Aspect ratio δ = D̂/L̂� 1
Particle-radius-to-half-duct-width ratio rp = â/D̂ � 1
Particle-to-carrying-fluid density ratio ξ = ρ̂p/ρ̂f ,H > 1
Light-to-carrying-fluid density ratio η= ρ̂L/ρ̂f ,H > 1
Light-to-carrying-fluid viscosity ratio κ = µ̂L/µ̂f ,H ∈ [0.1, 10]
Initial volume fraction of particles φ0 = V̂p/V̂H <φj

Jamming volume fraction of particles φj = V̂j/V̂H ≈ 0.67
Reynolds number Re= ρ̂H(φ0)V̂t(2D̂)/µ̂H(φ0)∼O(1)

TABLE 2. List of dimensionless independent input parameters of the problem.

is the Atwood number), we may neglect the diffusive effects associated with shear-
induced migration of particles (Cook et al. 2008; Mavromoustaki & Bertozzi 2014;
Wang & Bertozzi 2014). A lubrication model describing viscous exchange flow of
pure fluids has been developed in our recent work (Hasnain & Alba 2017) for which
the configuration was considered to be slumping, i.e. no-slip condition at both y= 0
and 1. Here, we adopt a symmetric configuration, i.e. no-slip condition at y= 0 and
stress-free condition at y= 1. Following the approach of Hasnain & Alba (2017), the
governing streamwise and depthwise momentum equations in the heavy particle-laden
layer reduce to

0=−px +
ρH(φ)Re

1−ψ
+µH(φ)uyy, (3.1)

0=−py, (3.2)

where we have scaled the streamwise and depthwise distances by D̂/δ and D̂,
respectively. Moreover, the pressure has been scaled by µ̂H(φ0)V̂t/δD̂. The dimen-
sionless density and viscosity of the heavy layer in the continuum form and as a
function of the particle volume fraction, φ, are expressed as (Cook et al. 2008)

ρH(φ)=
1+ (ξ − 1)φ
1+ (ξ − 1)φ0

, (3.3)

µH(φ)=
(1− φ/φj)

−2

(1− φ0/φj)−2
. (3.4)
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Monodisperse particle-laden exchange flows in a vertical duct 139

Similarly, for the light fluid layer we obtain

0=−px +
ψRe

1−ψ
+muyy, (3.5)

0=−py, (3.6)

where m= µ̂L/µ̂H(φ0)= κ(1− φ0/φj)
2 is the viscosity ratio of the light fluid to that

of the heavy suspension layer. Integrating (3.2) and (3.6) across the width gives

p= p0(x, t)+
ρH(φ)xRe

1−ψ
, 0 6 y 6 1, (3.7)

where we define p0(x, t) as

p0(x, t)= p(x, 0, t)−
ρH(φ)xRe

1−ψ
. (3.8)

In obtaining (3.7), we neglected the effects of interfacial tension between the two
mixtures for simplicity. In other words, we consider an immiscible interface but with
zero interfacial tension. Such a limit is indeed equivalent to a miscible interface with
zero molecular diffusion; see Petitjeans & Maxworthy (1996), Taghavi et al. (2012b)
and Alba et al. (2013b) for studies taking a similar approach for pure fluids.

The pressure expression (3.7) is now used in the streamwise momentum equations
(3.1) and (3.5) to give

0=−P0,x +µH(φ)uyy, 0 6 y 6 h, (3.9)

0=−P0,x −
ρH(φ)−ψ

1−ψ
Re+muyy, h 6 y 6 1. (3.10)

Note that, for simplification, we have defined P0,x = p0,x + (xρH,φφxRe)/(1 − ψ).
Applying appropriate boundary and interfacial conditions in (3.11)–(3.13), the
equations (3.9) and (3.10) can be integrated with respect to y in order to determine the
streamwise velocity closures in each layer. In the case of miscible fluids, a standard
no-slip condition at the lower wall (y = 0) may be used. However, in the case of
immiscible fluids, we face the well-known contact-line problem due to the singularity
of the stress at the walls. Many authors have worked intensely for decades to address
this issue, suggesting a wide range of remedies, e.g. replacing no-slip conditions at
the wall by Navier slip ones (Greenspan 1978), assuming a narrow precursor film of
thickness b in the vicinity of the wall as laid out by Spaid & Homsy (1996), etc. As
mentioned in § 1, similar to Cook et al. (2008) we are interested in a scenario where
the suspension mixture flows close to the surface of the duct wall. The precursor
film approach then suits our application the best. In fact, the validity of such an
assumption for particle-laden flows has been confirmed in the experiments of Zhou
et al. (2005). Owing to the symmetry, we can further apply the stress-free condition
in the duct centre (y= 1). In summary, we have

u= 0, at y= 0, (3.11)
uy = 0, at y= 1. (3.12)

The homogeneity of the velocity and stress at the interface, h, requires

[u] = 0, [τxy] = 0, at y= h, (3.13a,b)
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FIGURE 2. Variation of the flux function, q, in (3.17) with interface height, h, for pure
fluids (φ0 = rp = ξ = 0) and (a) κ = 1 at various values of Re, and (b) Re= 20 at various
values of κ . Owing to the choice of scaling used, the results in the pure fluids limit do
not depend on η.

where [ ] denotes the jump of the given quantity. Note that in (3.13), τxy = uy for
the heavy and τxy = muy for the light fluids, respectively. The last condition needed
to solve the system of equations (3.9) and (3.10) for the velocity closures is the total
flow constraint, ∫ 1

0
u dy= 0. (3.14)

The streamwise velocity, u, in the heavy and light layers can then be obtained by
integrating (3.9) and (3.10) twice as

u=
P0,xy2

2µH
+ c1y+ c2, 0 6 y 6 h, (3.15)

u=
(

P0,x +
ρH −ψ

1−ψ
Re
)

y2

2m
+ d1y+ d2, h 6 y 6 1, (3.16)

where P0,x, c1, c2, d1 and d2 are coefficients given in appendix C. The flux function,
q= q̂/D̂, as the flow rate within the heavy layer can eventually be calculated as

q=
∫ h

0
u dy, (3.17)

which is given in appendix D as a function of h, Re, m, µH and ρH . In the case
of pure fluids (φ0 = 0), we obtain ρH = µH = 1 from (3.3) and (3.4). The relevant
dimensionless numbers governing the flow would then be reduced to Re and κ .
Note that, since ρH = 1 in (3.16), the model becomes independent of ψ (thus η).
Figures 2(a) and 2(b) show the variation of q versus h for different values of Re and
κ , respectively. As h→ 0 and 1, q→ 0. The flux function q exhibits a maximum
in the interval h ∈ [0, 1]. The location of this maximum remains unchanged in the
iso-viscous case, h ≈ 0.586; see figure 2(a). However, the maximal q location shifts
slightly to the left (smaller h) with decreasing viscosity ratio, κ , i.e. less viscous light
fluid, as shown in figure 2(b).
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Monodisperse particle-laden exchange flows in a vertical duct 141

The evolution equations for the interface height and particle volume fraction,
respectively, read (see also Cook et al. (2008) for a similar formulation derived for
particle-laden film flow over an inclined surface)

ht + qx = 0, (3.18)
(φh)t + (upφh)x = 0, (3.19)

where up is the particle velocity expressed as up = q/h + us(1 − φ). Here, us =

f (φ)w(h)u0 is the dimensionless hindered Stokes velocity, with u0 = 2â2(ρ̂p − ρ̂f ,H)ĝ/
(9V̂tµ̂f ,H) or u0 = (ξ − 1)ψκRe(1+ψ)r2

p/(9mη(1−ψ)) being the dimensionless
Stokes velocity of a single particle (Saha et al. 2013). Moreover, f (φ)= (1− φ)5 is
the Richardson–Zaki settling function (Richardson & Zaki 1954) and w(h) is the wall
function chosen as w(h)= h2 to give 0 and 1 at the wall (y= 0) and centre (y= 1),
respectively; see also Cook et al. (2008) for other forms of the wall function. In
(3.18) and (3.19), time is naturally scaled by D̂/δV̂t. In order to advantageously solve
the system of equations (3.18) and (3.19) in a conservative framework, we define an
additional parameter θ as

θ = φh. (3.20)

Using (3.20), (3.18) and (3.19) will result in the following set of equations, simply in
the form of a classical Riemann problem,

ht + Fx(h, θ)= 0, (3.21)
θt +Gx(h, θ)= 0, (3.22)

where

F(h, θ)= q(h, θ), (3.23)

G(h, θ)=
θF(h, θ)

h
+ u0θ

(
1−

θ

h

)
f
(
θ

h

)
w(h). (3.24)

The kinematic conditions (3.21) and (3.22) along with flux condition (3.14) ensure
conservation of pure fluids as well as total mass of particles (and thus volume and
area due to the presumed incompressibility) at all times.

4. Numerical scheme
4.1. Procedure

Our methodology to numerically solve the system of partial differential equations
(PDEs) of (3.21) and (3.22) in space x and time t is based on the robust explicit
high-resolution TVD finite difference scheme of Kurganov & Tadmor (2000). We first
define

u=
[

h
θ

]
, f =

[
F
G

]
. (4.1a,b)

Discretizing (3.21) and (3.22) using the finite difference method gives

un+1
j − un

j

1t
+

1
1x

[
f n

j+1/2 − f n
j−1/2

]
= 0. (4.2)
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The flux vector, f , in (4.2) is expressed as

f n
j±1/2 =

1
2

{[
f
(
uR,n

j±1/2

)
+ f

(
uL,n

j±1/2

)]
− an

j±1/2

[
uR,n

j±1/2 − uL,n
j±1/2

]}
. (4.3)

Here,

uR,n
j+1/2 = un

j+1 −
1x
2
(un

x)j+1, uL,n
j+1/2 = un

j +
1x
2
(un

x)j,

uR,n
j−1/2 = un

j −
1x
2
(un

x)j, uL,n
j−1/2 = un

j−1 +
1x
2
(un

x)j−1,

 (4.4)

with (un
x)k being a flux limiter chosen to be in the minmod class of the following

form:

(un
x)k =minmod

(
un

k − un
k−1

1x
,

un
k+1 − un

k

1x

)
. (4.5)

The minmod function is defined as

minmod(a, b)= 1
2 [sgn(a)+ sgn(b)]min(|a|, |b|). (4.6)

Also note that

an
j±1/2 =max

[
ρ

(
∂ f
∂u

)
uR,n

j±1/2

, ρ

(
∂ f
∂u

)
uL,n

j±1/2

]
(4.7)

gives the local propagation speed of the interfacial wave. Here,

ρ(A)=max(|λ1|, |λ2|) (4.8)

is the spectral radius of matrix A, with λ1 and λ2 being its eigenvalues. The stable
time step, dt, is calculated using a Courant–Friedrichs–Lewy (CFL) condition as

dt=
CFL dx

max(|a(t)|)
. (4.9)

For our simulations, we have found that CFL ≈ 0.1 leads to stable results. Once h
and θ are computed, the particle volume fraction can be simply obtained from φ =
θ/h. The numerical examples shown in this paper are attained using the computational
resources in the Center for Advanced Computing & Data Systems of the University
of Houston (Maxwell cluster). While the run-time on a parallelized code on such a
cluster (four nodes) for pure fluids can be very quick (order of minutes), due to the
extremely small mesh size required in the particle-laden case, it can take up to four
days for the simulations to complete. We will discuss this in more detail in § 5.2.

4.2. Benchmarking notes
In order to ensure the validity of our model and numerical scheme, the following
steps were taken (results are not presented here for brevity). (1) Figures 6.23–6.27
and 6.32 in Kurganov & Tadmor (2000), obtained from solving similar nonlinear
conservation equations to (3.21) and (3.22), were successfully recovered using
our code. (2) Adopting the flux function expression given in appendix B of
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Hasnain & Alba (2017), we benchmarked their results of exchange flow of pure
immiscible fluids in a duct. (3) In the case of particle-laden film flow over a flat free
surface studied by Cook et al. (2008), the flux function, q, is shown to simply reduce
to q= ρHh3/µH; compare with the expression for q given in our appendix D. Using
this flux function and our numerical scheme, we fully recovered figures 4.3 and 4.4
in Cook et al. (2008), where they depict particle enrichment and depletion effects in
the vicinity of the advancing suspension front. We will discuss this issue in detail
in § 5.2.

5. Results
5.1. Pure fluids (φ0 = 0)

While the slumping exchange flow of two fluids in a duct has been investigated
extensively in the literature (Taghavi et al. 2009; Martin et al. 2011; Matson &
Hogg 2012; Hasnain & Alba 2017), the symmetric configuration, to the best of our
knowledge, has not been studied even for pure fluids. Therefore, we find it important
to address such a limit first before moving on to a more complicated particle-laden
flow. In the absence of an interfacial tension between the two fluids, the thickness of
the precursor film can be chosen as zero (b= 0) without any contact-line singularity
issue (Taghavi et al. 2009; Hasnain & Alba 2017). Figure 3(a) shows the evolution
of the interface height with time assuming two iso-viscous fluids (κ = 1) at Re= 20.
The initial condition is such that the interface height is h= 1 and 0 over x< 0 and
x> dx, respectively, i.e. the heavy (light) mixture occupying the left (right) side of the
duct. It has been confirmed that the computed solution is not sensitive to the choice
of initial conditions (results not presented here for brevity). The mesh size chosen
to produce figure 3(a) and all other pure fluid examples is dx = 0.02. The results
for dx= 0.002 are almost indistinguishable from those of dx= 0.02, as illustrated in
figure 3(a). Owing to the symmetric duct flow configuration, the light layer in the
centre of the duct has to advance faster than the heavy one to conserve mass.

The interface profiles shown in figure 3(a) suggest a rather self-similar pattern in
the form of steady travelling waves. Using a similarity parameter, λ = x/t, equation
(3.18) can be rewritten as

−
λhλ

t
+

qλ
t
= 0. (5.1)

Alternatively, the following condition can be derived:

λ= qh, (5.2)

which, via the expression for q given in appendix D, relates λ to h, Re and κ . For the
example shown in figure 3(a) (φ0= 0, Re= 20, κ = 1), we may obtain the following:

λ=−10(h3
− 5h2

+ 6h− 2)h2. (5.3)

Equation (5.3) clearly has an analytical expression for h as a function of λ. However,
it can be checked that this solution does not satisfy the total flow rate constraint
(3.14) over the whole range of λ (Hasnain & Alba 2017). Zheng, Rongy & Stone
(2015) showed that a compound wave solution may instead be put forth comprising
heavy and light layer front heights, hHf and hLf , located at λHf and λLf , respectively;
and a stretching region in between (λLf < λ < λHf ). Following the approach of
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FIGURE 3. (Colour online) (a) Evolution of the interface height, h, with time, t =
[0, 1, 2, . . . , 10], in exchange flow of two iso-viscous fluids (κ = 1) at Re = 20. Other
parameters used are φ0 = rp = ξ = 0. The blue dashed line shows the solution at t = 10
for dx= 0.002, which is almost indistinguishable from that of dx= 0.02. (b) Dependence
of the derivative of the flux function, qh, on h for the same parameters as in (a). The
equal-area rules (5.4) and (5.5) can successfully predict the heavy and light front heights,
hHf ≈ 0.482 and hLf ≈ 0.736, as well as velocities, VHf ≈ 0.366 and VLf ≈ −0.575.
(c) Collapse of the interface height profiles using similarity parameter, λ = x/t. The red
line shows the similarity solution obtained from (5.6).

Taghavi et al. (2009), the front heights, hHf and hLf , and speeds, λHf (= VHf ) and
λLf (= VLf ), are determined from the equal-area rule

q(hHf )= hHf qh(hHf ), (5.4)
−q(hLf )= (1− hLf )qh(hLf ). (5.5)

Figure 3(b) depicts the implementation of the equal-area rule for the example shown
in figure 3(a). It is found that hHf ≈ 0.482, hLf ≈ 0.736, VHf ≈ 0.366 and VLf ≈−0.575.
The compound similarity solution for the flow shown in figure 3(a) is finally obtained
as

h=

1, λ<−0.575,
−10(h3

− 5h2
+ 6h− 2)h2, −0.575 6 λ6 0.366,

0, λ> 0.366.
(5.6)

The analytical solution (5.6) and computed interface profiles at long time are shown in
figure 3(c). The long-time behaviour is defined where there are no noticeable changes
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FIGURE 4. Comparison of the interface height, h, at t=10 for (a) κ=1 at different values
of Re, and (b) Re= 20 at different values of κ . Other parameters used are φ0= rp= ξ = 0.
(c) Streamwise velocity profile, u, plotted at locations x=−6,−2, 2, 5 corresponding to
different interface heights, h= 1, 0.669, 0.534, 0, for the κ = 2 case in panel (b).

of the interface height behaviour with time, t. For instance, in figure 3(a), it can be
seen that, as time progresses, the interface height front approaches the value of 0.482,
i.e. the layers steadily interpenetrate into one another within a traceable path. The very
close agreement found between the analytical solution (5.6) and the computation in
figure 3(c) verifies the effectiveness of the similarity-solution approach.

Figure 4(a) compares the interface profiles at long time (t = 10) for κ = 1 and
different values of Re. As observed, the interpenetration of the heavy and light
layers is enhanced with Re. Larger Re can be interpreted as a higher density
difference between the two fluids, which acts to intensify the exchange flow.
Although the frontal speeds change with Re, the front heights remain unaffected.
The effect of a viscosity contrast between the two fluids, κ , is shown in figure 4(b).
It is evident that, at lower κ values (less viscous light fluid), the degree of
interpenetration of the layers is higher, which is in agreement with the findings
of Taghavi et al. (2009) and Matson & Hogg (2012) for slumping flows. Keeping
Re = ρ̂H(φ0)V̂t(2D̂)/µ̂H(φ0) constant with more viscous heavy fluid (low κ) requires
larger V̂t or driving buoyancy force, which acts to expand the extent of the
exchange zone (figure 4b). Unlike figure 4(a) shown for different values of Re,
the front height does change with κ . It is insightful at this stage to look into the
streamwise velocity profiles of a typical simulation. Figure 4(c) shows computed
velocity profiles using (3.15) and (3.16) at different locations, x = −6, −2, 2, 5,
for the κ = 2 case in figure 4(b). The calculated interface heights at the given x
locations are, respectively, h = 1, 0.669, 0.534, 0. The velocity profile is perfectly
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FIGURE 5. Variation of (a) heavy front height, hHf , and (b) light front height, hLf , versus
κ for φ0= rp= ξ = 0 and all values of Re> 0. Panels (c) and (d) show the corresponding
frontal velocities, VHf and VLf , of (a) and (b), respectively, at different values of Re.

zero at duct cross-sections that are full of heavy (h = 1) and light (h = 0) layers.
The validity of the no-slip and no-stress conditions (3.11) and (3.12) at the wall
(y= 0) and the duct centre (y= 1), respectively, is apparent. Since κ = 2 corresponds
to a less viscous heavy fluid, we note a slightly larger gradient of velocity within
this layer (h = 0.669 and 0.534 cases in figure 4c), which ensures homogeneity of
shear stress across the interface; see condition (3.13).

The variation of the height and speed of heavy and light fronts at long time with
κ and Re is shown in figure 5 using the equal-area rule. Figure 5(a,b) demonstrates
the variation of hHf and hLf , respectively, over a wide range of κ . As predicted in
figure 4(a), the heights of heavy and light fronts will not change with the Reynolds
number. Therefore, the curves for all values of Re overlay in figure 5(a,b). The hHf
value reaches a minimum at κ ≈ 0.8, while the minimum hLF value appears at a
smaller viscosity contrast (κ ≈ 0.2). Although hHf and hLf change non-monotonically
with viscosity ratio, the variation of VHf and VLf with κ is monotonic, as shown
in figure 5(c,d). Also note that, unlike the frontal height, the frontal speeds clearly
depend on Re (speeds increasing with Re). The absolute values of VHf and VLf
decrease with an increase in κ , as also revealed in figure 4(b).

5.2. Particle-laden flows (φ0 > 0)
We now examine particle-laden flows. Solving the governing system of PDEs (3.18)
and (3.19) numerically when φ0 6= 0, is more challenging, since an extremely small
mesh size (dx ≈ 2 × 10−7) is required to fully capture the underlying effects of the
flow (Cook et al. 2008). Figure 6(a) shows the evolution of the interface height profile,
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FIGURE 6. (Colour online) Evolution of the (a) interface height, h, and (b) particle
volume fraction, φ, profiles with time, t = [0, 0.01, 0.02, . . . , 0.1]. The parameters used
are φ0 = 0.3, Re = 0.1, κ = 1, rp = 0.06, ξ = 1.9 and η = 1.25. The blue dashed lines
show the solution at t= 0.1 for dx= 2× 10−6, which is almost indistinguishable from that
of dx= 2× 10−7. The lower left inset in (a) shows the corresponding interface profile in
the pure fluid case obtained for the same Re and m values. The upper right inset in (a)
and the one in (b) show the collapse of the profiles using the self-similarity parameter,
λ= x/t.

h, at times t = [0, 0.01, 0.02, . . . , 0.1] for φ0 = 0.3, Re = 0.1 and κ = 1. The other
parameters are chosen close to those in the experiments of Zhou et al. (2005) (rp =

0.06, ξ = 1.9 and η= 1.25). The particle volume fraction value mostly chosen in our
study (φ0 = 0.3) is selected such that a comparison with the results of Zhou et al.
(2005) and Cook et al. (2008) can be made feasible. Understanding the suspension
behaviour in the dense granular limit, φ0→ φj (Lyon & Leal 1998), requires further
study, which is outside the scope of the current paper. Note that the viscosity function
(3.4) becomes singular as φ0→φj. In the case of particle-laden flows, a zero precursor
film thickness introduces a singularity into the solution, as laid out by Cook et al.
(2008). To overcome such a singularity, we have used a small value of b = 0.01 in
this paper unless otherwise stated; see also the experiments of Zhou et al. (2005) and
the computations of Cook et al. (2008). The small choice of t = 0.1 for the case of
figure 6 is due to the limited access to computational resources for carrying out these
simulations. Nevertheless, even this small interval is enough to extrapolate the long-
time behaviour of the flow, thanks to the self-similarity characteristic of the solutions.
The top insets in figure 6(a,b) show the collapse of profiles using λ = x/t with a
small residual dependence on time that is comparable to that found by Taghavi et al.
(2009) and Hasnain & Alba (2017) for displacement flows. Owing to the complex
interface shape, the Rankine–Hugoniot similarity conditions of Zhou et al. (2005) may
not be directly applied to the particle-laden exchange flows in confined geometry. The
computed solution mesh independence is successfully confirmed in figure 6(a) for two
different values of dx.

In order to fully understand the effect of particle addition to exchange flows, we
have added interface height profiles corresponding to the pure fluids as insets to
the particle-laden figure results; see figures 6–13. The Reynolds number, Re, and
mixture viscosity ratio, m=m(φ0, κ), are kept the same in associated pure fluid and
particle-laden cases. Upon comparing figure 6(a) to pure fluid results shown in the
lower left inset, two important conclusions may be drawn. (1) The interface height
profile in the presence of solid particles exhibits a plateau in the vicinity of the heavy
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layer front (h≈ 0.348 and φ ≈ 0.400 as steady long-time behaviour). Such a plateau
is reminiscent of the capillary ridge in the simulations of Hasnain & Alba (2017)
but is formed under a completely different mechanism, namely the presence of solid
particles. (2) The stretched interface between the heavy and light fronts also is more
curved in the particle-laden case compared to the pure fluid. In order to understand
these differences, we need to look at the volume fraction profiles, φ, as shown in
figure 6(b). As is interestingly evident, there are jumps in φ along the duct length,
x. In particular, there is an increase in φ close to the light layer front followed by a
stronger jump in the vicinity of the heavy layer front. This pattern is different from
that reported experimentally and theoretically by Zhou et al. (2005) for free-surface
film flows. Owing to the lock exchange configuration and geometry confinement, we
witness a two-step increase in φ close to the heavy and light layers instead of the
one observed in the vicinity of the heavy front in the case of Zhou et al. (2005). The
curvature of the interface height in the particle-laden case is then justified by the fact
that the viscosity of the heavy solution is continuously changing along the streamwise
direction through φ in (3.4), in turn modifying the dynamics of the exchange flow
(see also figure 4b).

It has been hypothesized by Zhou et al. (2005) that the accumulation of particles
close to the frontal region of the flow (e.g. in figure 6b) is due to the different
transport rates of fluid and solid shown mathematically in (3.23) and (3.24). See
also Auzerais, Jackson & Russel (1988) for similar shock formation effects in
sedimentation problems. One question that might arise here is whether particle
accumulation at the front can grow to an extent that causes pinch-off. In fact, by
looking closely into the experiments of Zhou et al. (2005), Grunewald et al. (2010),
Mata & Bertozzi (2011), Murisic et al. (2011, 2013), Mavromoustaki & Bertozzi
(2014), Wang et al. (2015) and Wong & Bertozzi (2016) for particle-laden film flow
down an incline, there is no evidence that such accumulation may lead to pinch-off.
Also note that our computational code fails when particle enrichment approaches the
jamming limit (µ→∞ as φ→φj). The lubrication model assumption will also not be
valid close to this limit. As can be seen, in all presented simulations, the computed
φ values are well below this jamming limit. Owing to settling Stokes velocity of
particles (negative buoyancy), the particles accumulate close to the front. However,
this accumulation does not grow unboundedly because at the same time the properties
of the mixture, such as density (3.3) and viscosity (3.4), are also changing as a result
of enrichment, eventually taking the frontal flow dynamics to a balanced state.

The effect of the precursor film thickness, b, is investigated in figure 7, keeping
the rest of the controlling parameters the same as in figure 6. Figure 7(a) shows that,
even though the shape of the light layer front remains unchanged, the one for the
heavy layer is significantly affected by b; also compare against the inset representing
the pure fluid case. The height of the heavy layer front and its extent increase with
b. An increase in the frontal height is accompanied by a decrease in the level of
particle enrichment, as evident in figure 7(b). For small values of b, the particle-rich
zone grows to an extent that might cause singularity in the solution (µH →∞ as
φ→ φj). This observation is in complete agreement with the findings of Zhou et al.
(2005) and Cook et al. (2008) for free-surface film flows. In fact, they mention that
this complex frontal shock behaviour may not be entirely captured by a first-order
lubrication model. A singular shock behaviour in our model may also be observed at
high initial volume fractions. As discussed by Cook et al. (2008), using the Buscall
settling function instead of Richardson–Zaki may alleviate such a singularity, which
requires further study. Figures 8(a) and 8(b) compare the profiles of the interface
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FIGURE 7. Change in (a) interface height, h, and (b) particle volume fraction, φ, with
x at t= 0.1 and various values of the precursor film thickness, b. Other parameters used
are φ0 = 0.3, Re = 0.1, κ = 1, rp = 0.06, ξ = 1.9 and η = 1.25. The inset in (a) shows
the corresponding interface profiles to the pure fluid case obtained for the same Re and
m values.
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FIGURE 8. Change in (a) interface height, h, and (b) particle volume fraction, φ, with
x at t = 0.1 and various values of the Reynolds number, Re. Other parameters used are
φ0= 0.3, κ = 1, rp= 0.06, ξ = 1.9 and η= 1.25. The inset in (a) shows the corresponding
interface profiles to the pure fluid case obtained for the same Re and m values.

height, h, and particle volume fraction, φ, respectively, at various values of the
Reynolds number, Re. In compliance with our observation in figure 8(a) inset for
pure fluids, the interpenetration rate of the heavy and light layers similarly increases
with Re. Moreover, the heights of the heavy and light fronts remain the same while
changing Re. The constancy in advancing front heights is accompanied by uniform
increase in volume fraction of particles; see figure 8(b).

The initial volume fraction of particles, φ0, plays an important role in the dynamics
of the flow, as it controls both the density (3.3) and viscosity (3.4) of the heavy
mixture. Keeping all the other parameters constant, the dependence of the interface
height, h, and volume fraction of particles, φ, on φ0 is investigated in figures 9(a)
and 9(b) respectively. The extent of the exchange flow is decreased with φ0 as shown
in figure 9(a). While the density of the heavy mixture, ρ̂H , increases with φ0 (larger
driving force), its viscosity, µ̂H , also increases, which results in an overall slowdown
of the flow. The frontal heights of the heavy and light layers are shown to minutely
increase with φ0. The corresponding profiles to the pure fluid case are shown in the
inset of figure 9(a). An increase in φ0 results in a decrease in the effective mixture
viscosity ratio, m, which can mildly extend the exchange zone between the two fluids
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FIGURE 9. Change in (a) interface height, h, and (b) particle volume fraction, φ, with x
at t= 0.1 and various values of the initial particle volume fraction, φ0. Other parameters
used are Re = 0.1, κ = 1, rp = 0.06, ξ = 1.9 and η = 1.25. The inset in (a) shows the
corresponding interface profiles to the pure fluid case obtained for the same Re and m
values.
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FIGURE 10. Change in (a) interface height, h, and (b) particle volume fraction, φ, with
x at t = 0.1 and various values of the light-to-carrying-fluid viscosity ratio, κ . Other
parameters used are φ0 = 0.3, Re= 0.1, rp = 0.06, ξ = 1.9 and η= 1.25. The inset in (a)
shows the corresponding interface profiles to the pure fluid case obtained for the same Re
and m values.

observed from the inset of figure 9(a); see also figure 4(b). Particle enrichment close
to the heavy and light fronts is consistently observed over a range of φ0 (figure 9b).
However, the relative rise in particle concentration seems to be slightly less for higher
φ0; compare, for example, the φ0 = 0.29 and 0.31 curves in figure 9(b). The general
features of the flow, such as interface height curvature as well as particle enrichment
close to the heavy front, for other values of φ0, e.g. in the dilute range φ0 = 0.01
(Segre & Silberberg 1961), are similar to those obtained for φ0≈ 0.3. Results are not
presented here for brevity.

The increase in light-to-carrying-fluid viscosity ratio, κ , tends to contract the
exchange zone between the two fluids, as shown in figure 10(a). Comparing this
to the results for pure exchange flows shown as the inset, we infer that the height
of the heavy front in the particle-laden case slightly decreases with κ , which is
complemented by a growth in the volume fraction of particles, φ (figure 10b). Note
that in the case of free-surface film flow of Zhou et al. (2005) and Cook et al.
(2008), an increase (decrease) in the frontal height is only achieved by an increase
(decrease) in local particle volume fraction. However, in a confined geometry, various
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FIGURE 11. Change in (a) interface height, h, and (b) particle volume fraction, φ, with
x at t = 0.1 and various values of the particle-radius-to-half-duct-width ratio, rp. Other
parameters used are φ0 = 0.3, Re = 0.1, κ = 1, ξ = 1.9 and η = 1.25. The inset in (a)
shows the corresponding interface profile to the pure fluid case obtained for the same Re
and m values.

intricate scenarios might happen at the front; for example, the frontal height might
decrease while particle volume fraction increases (figure 10) and vice versa (figure 7).
Let us physically explain the increase of φ with κ observed in figure 10(b). Large
κ corresponds to small µ̂f ,H . Considering the definition, the dimensionless Stokes
velocity, u0 = 2â2(ρ̂p − ρ̂f ,H)ĝ/(9V̂tµ̂f ,H), is increased as µ̂f ,H is decreased. Larger u0
increases particle slip velocity in the G flux function (3.24), which will consequently
result in stronger accumulation of particles, as shown in figure 10(b). In the case of
Zhou et al. (2005) and Cook et al. (2008), the flow dynamics is basically governed
by particles settling within a single carrying fluid plus the no-stress condition imposed
at the free surface. However, in the current channel flow case, we have not only the
effect of the particles’ slip velocity but also the interaction of the carrying and light
fluids at the interface captured via the stress homogeneity condition (3.13). Such
a combination gives rise to complex patterns observed in the channel geometry as
opposed to the free-surface geometry.

Investigating the effect of the relative size of particles, rp, can provide more
insight into the dynamics of the exchange flow in question. Figure 11 shows the
interface height and particle volume fraction profiles for the same parameters as in
figure 6 except rp. An increase in the size of particles consistently increases the
height of the heavy front (figure 11a) and local volume fraction (figure 11b). Note
a similar increase in φ close to the light fluid front as well as the heavy one. As
is evident in figure 11(a), the interface between the two fluids has been extended
with rp. Let us have a fundamental look into this effect. The increase in rp = â/D̂
can be interpreted as either an increase in particle radius, â, or a decrease in half the
duct width, D̂. If we supposedly consider the latter, then from the Reynolds-number
expression given in table 2, Re should therefore decrease. Increasing rp while keeping
Re the same in figure 11 requires, for instance, a decrease in the heavy mixture
viscosity, µ̂H(φ0), which is achievable by decreasing the carrying fluid viscosity,
µ̂f ,H; see § 2. In order to keep κ = µ̂L/µ̂f ,H the same in figure 11, µ̂L will also be
decreased. A decrease in the carrying and light fluids viscosity, on the other hand,
acts to ease the advancement of the exchange flow as confirmed in figure 11(a). The
effect of rp is also directly reflected in the particles’ dimensionless Stokes velocity,
u0 = (ξ − 1)ψκRe(1+ψ)r2

p/(9mη(1−ψ)), which feeds into the flux function G
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FIGURE 12. Change in (a) interface height, h, and (b) particle volume fraction, φ, with
x at t = 0.1 and various values of the particle-to-carrying-fluid density ratio, ξ . Other
parameters used are φ0 = 0.3, Re = 0.1, κ = 1, rp = 0.06 and η = 1.25. The inset in (a)
shows the corresponding interface profile to the pure fluid case obtained for the same Re
and m values.

in (3.24). An increase in rp enhances the settling speed of the particles, which in
turn causes accumulation of particles close to the advancing frontal regions.

Another factor that can potentially enhance the Stokes settling velocity of the
particles is the particle-to-carrying-fluid density ratio, ξ ; see figure 12. As opposed
to rp, an increase in ξ reduces the interpenetration rate of the heavy and light layers;
see figure 12(a). At first glance, this effect seems rather counterintuitive since an
increase in ξ indicates heavier particles, which should, in turn, increase the buoyant
driving force of the flow. However, similar to the rationale presented for figure 11,
we need to consider the fact that the depicted profiles are obtained for constant
Reynolds number, Re = ρ̂H(φ0)V̂t(2D̂)/µ̂H(φ0). From § 2, we learnt that Re depends

on V̂t, which, by itself, decreases with ψ since V̂t =

√
(1−ψ)ĝD̂/(1+ψ). The

parameter ψ = η/(1 + (ξ − 1)φ0) is inversely related to ξ . Therefore, increasing
ξ (thus V̂t) meanwhile keeping Re constant may be deduced as an increase in
µ̂H(φ0) = µ̂f ,H(1 − φ0/φj)

−2 or µ̂f ,H . Since κ = µ̂L/µ̂f ,H = 1, we shall also have
µ̂L increasing. As a result, flow deceleration will occur for high ξ , which is
correspondingly confirmed in figure 12(a). Furthermore, the increase in volume
fraction of particles for high ξ (settling in high-viscosity medium) is slightly less
than, but still comparable to, that of low ξ due to the higher density of solids in the
former (figure 12b).

Finally, the variations of the interface height, h, and particle volume fraction, φ,
versus the light-to-carrying-fluid density ratio, η, are examined in figures 13(a) and
13(b), respectively. Even though the presented η values are all larger than unity, i.e.
light fluid denser than carrying fluid, the overall density of the suspension mixture is
always larger than the light pure fluid (ψ < 1). Note that the interpenetration extent
of the mixtures has increased with η (figure 13a). Similar to figure 12, this effect
also appears counterintuitive at first. This is because an increase in η means a denser
light fluid in the lower section of the duct compared to the carrying fluid at the
top, i.e. a decrease in the effective density difference between the heavy and light
mixtures. Increasing η meanwhile keeping Re the same in figure 13(a) requires, for
instance, a reduction in the viscosity of the involved fluids (Re ∝ ρ̂H(φ0)/µ̂H(φ0)),
which consequently enhances flow acceleration. The front height on the heavy side
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FIGURE 13. Change in (a) interface height, h, and (b) particle volume fraction, φ, with x
at t=0.1 and various values of the light-to-carrying-fluid density ratio, η. Other parameters
used are φ0 = 0.3, Re = 0.1, κ = 1, rp = 0.06 and ξ = 1.9. The inset in (a) shows the
corresponding interface profile to the pure fluid case obtained for the same Re and m
values.

slightly decreases with an increase in η. As η increases (while keeping Re constant),
the mixture’s viscosity decreases, facilitating particle settling and thus enrichment in
volume fraction, φ, close to the fronts (figure 13b). Since rp, ξ and η do not affect the
mixture’s viscosity ratio, m= κ(1− φ0/φj)

2, the shape of the interface height obtained
in the pure fluid limit remains unchanged with these parameters; see insets shown in
figures 11(a)–13(a).

6. Conclusions
Buoyancy-driven exchange flow of two mixtures in a vertical duct (2D channel as

well as pipe) is investigated theoretically. The light mixture is always assumed to be a
pure fluid, whereas the heavy mixture can be either pure or particle-laden. Assuming a
small aspect ratio for the duct, δ, a lubrication model is developed. The methodology
of Zhou et al. (2005) for free-surface particle-laden film flows is employed and
extended to a lock exchange system in a confined geometry under the Boussinesq
limit. The derived model takes the simple form of the classical Riemann problem.
A robust TVD finite difference scheme is implemented to solve the model PDEs
numerically. The solutions suggest self-similar interface shapes over time. In the limit
of small aspect ratio (δ�1) and assuming a jamming volume fraction of φj≈0.67, six
dimensionless parameters govern the flow, namely, particle-radius-to-half-duct-width
ratio, rp, particle-to-carrying-fluid density ratio, ξ , light-to-carrying-fluid density ratio,
η, light-to-carrying-fluid viscosity ratio, κ , initial volume fraction of particles, φ0,
and the Reynolds number, Re. Owing to the choice of scaling, the dynamics of the
flow for pure fluids (φ0 = rp = ξ = 0) is governed only by κ and Re. The physical
effect of these parameters on the dynamics of the flow has been quantified through a
systematic approach. It is observed that the interpenetration rate of the heavy and light
layers increases with Re and decreases with κ . The heights of the heavy and light
fronts change with κ but remain unchanged with Re. The dynamics of the exchange
flow becomes entirely different in the presence of solid particles compared to pure
fluids. Primarily, the interface profiles are more curved in the former with respect to
the latter due to change of viscosity along the duct. Novel particle-rich zones inside
the suspension are further discovered in the vicinity of the advancing heavy and light
fronts. The particle enrichment at the fronts is associated with different transport rates
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of fluid and solid due to the Stokes settling velocity of the particles. It is also revealed
that geometry confinement plays a significant role in exchange flow dynamics such
as formation of interfacial patterns and particle-enrichment behaviour. Whereas, in
the unconfined geometry, particle enrichment was shown to be accompanied by an
increase in the interface height profile, in a confined duct, either an increase or a
decrease in height is possible depending on the controlling parameters of the flow.
The level of particle enrichment remains the same with Re, is enhanced by κ , rp and
η, and is slightly reduced with φ0 and ξ . The stretched interface between the heavy
and light fronts grows with rp, η and Re, but shrinks with φ0, κ and ξ . The model
can be easily extended to include interfacial tension effects; see Hasnain & Alba
(2017) for similar implementation in the case of pure fluids.
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Appendix A. Shear-induced migration effects
Migration of particles induced by shear is in fact an important effect widely

observed in particle-laden flows. Our methodology follows the approach of Zhou
et al. (2005) for gravity-driven suspension film flow down an incline, which neglects
the shear-induced migration effect (Schaflinger, Acrivos & Zhang 1990; Acrivos, Fan
& Mauri 1994). In this appendix we would like to verify the conditions under which
such an assumption is valid. The particle transport equation for particle-laden film
flows is given by Murisic et al. (2013) and Wong & Bertozzi (2016) as

φt̂ + ûφx̂ + v̂φŷ =− Ĵ x̂,x̂ − Ĵ ŷ,ŷ. (A 1)

Here, Ĵ is the particle flux due to settling and migration,

Ĵ = Ĵsettling + Ĵmigration. (A 2)

The settling and migration flux components can be expressed as the following (Murisic
et al. 2013; Wong & Bertozzi 2016):

Ĵsettling =
2â2ĝ(ρ̂p − ρ̂f ,H)

9µ̂f ,H
(1− φ)φ, (A 3)

Ĵmigration =−
â2V̂t

D̂2

[
Kcφ∇(φuy)+

Kvφ
2uy

µH
∇µH

]
. (A 4)

The constants Kc ≈ 0.41 and Kv ≈ 0.62 correspond to shear-induced particle flux due
to gradients in the particle volume fraction and effective viscosity of the suspension,
which are determined empirically (Phillips et al. 1992; Wong & Bertozzi 2016). From
the velocity expression (3.15), it can be found that uy ∼ Re; see also appendix C for
the coefficients. Therefore, the largest flux component due to shear-induced migration
in (A 4) is of order Kvâ2V̂tRe/D̂2, whereas that of settling is the coefficient of the
(1− φ)φ term in (A 3), i.e. 2â2ĝ(ρ̂p − ρ̂f ,H)/(9µ̂f ,H). Note that the rest of the terms in
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Light fluid (L)

FIGURE 14. (Colour online) Schematic of axisymmetric particle-laden exchange flow in
a vertical pipe.

(A 3) and (A 4) being multiplied by these coefficients are O(1) since they are made
dimensionless. By requiring that the settling effects overcome those of migration
( Ĵsettling� Ĵmigration), the following condition is finally obtained:

9Kvη(1− φ0/φj)
2

ψ(ξ − 1)
(1−ψ)
(1+ψ)

� 1. (A 5)

Note that the (1−ψ)/(1+ψ) term in (A 5) is nothing other than the effective Atwood
number, At = (ρ̂H(φ0) − ρ̂L)/(ρ̂H(φ0) + ρ̂L). In other words, the Boussinesq limit
(At�1), discussed by Taghavi et al. (2012b), ensures that the shear-induced migration
effects are negligible in front of settling. Note that the rest of the terms in (A 5) are
approximately O(1). From a fundamental standpoint, the small Atwood number or
density difference between the mixtures does not cause a strong countercurrent and
shear in the flow, which would lead to migration. However, in the meantime, the
particles would have the opportunity to settle due to their weight. The condition (A 5)
is indeed valid in the simulations presented in this paper. For instance, for a typical
set of parameters chosen in our study, e.g. in figure 6, the left-hand side term in the
condition above is approximately 0.019, i.e. settling flux more than 50 times stronger
than that of shear-induced migration.

Appendix B. Axisymmetric flow in pipe
Performing exchange flow experiments in a pipe geometry can be more feasible

compared to the 2D channel geometry. Therefore, in this appendix the exchange flow
model is extended to a practical pipe geometry; see figure 14. It is not difficult to
show that in cylindrical coordinates the momentum equations (3.9) and (3.10) take
the following forms:

0=−P0,x +µH(φ)(rur)r/r, 1− h 6 r 6 1, (B 1)
0=−P0,x − (ρH(φ)−ψ)Re/(1−ψ)+m(rur)r/r, 0 6 r 6 1− h. (B 2)

Applying appropriate boundary and interfacial conditions, equations (B 1) and (B 2)
can be integrated with respect to r in order to determine the streamwise velocity
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closures in each layer. The flux function, q= q̂/(πD̂2V̂t), as the flow rate within the
heavy layer, can eventually be calculated as

q= 2
∫ 1

1−h
ru dr, (B 3)

which is given below as a function of h, Re, m, µH , ρH and ψ :

q = −(1/8)Re [−4 ln(1− h)µHψ − 104h6mψ − 144h5µHψ + 176h5mψ
− 80h3mρH + 16h2mρH + 164h4mρH + 144h5µHρH + 104h6mρH

+ 80h6µHψ + 92h3µHρH − 30h2µHρH + 4hµHρH − 4h8mψ + 32h7mψ
+ 4h8mρH − 32h7mρH − 24h7µHψ + 24h7µHρH + 3h8µHψ − 3h8µHρH

+ 280 ln(1− h)h4µHρH − 208 ln(1− h)h3mψ + 208 ln(1− h)h3mρH

+ 224 ln(1− h)h3µHψ − 224 ln(1− h)h3µHρH − 112 ln(1− h)h2µHψ

+ 112 ln(1− h)h2µHρH + 32 ln(1− h)hµHψ − 32 ln(1− h)hµHρH

+ 88 ln(1− h)h2mψ − 88 ln(1− h)h2mρH − 16 ln(1− h)hmψ
+ 16 ln(1− h)hmρH + 4 ln(1− h)h8mψ − 32 ln(1− h)h7mψ
− 4 ln(1− h)h8mρH + 32 ln(1− h)h7mρH − 4 ln(1− h)h8µHψ

+ 32 ln(1− h)h7µHψ + 4 ln(1− h)h8µHρH − 32 ln(1− h)h7µHρH

+ 112 ln(1− h)h6mψ − 112 ln(1− h)h6mρH − 112 ln(1− h)h6µHψ

+ 112 ln(1− h)h6µHρH − 224 ln(1− h)h5mψ + 224 ln(1− h)h5mρH

+ 224 ln(1− h)h5µHψ − 224 ln(1− h)h5µHρH + 276 ln(1− h)h4mψ
− 276 ln(1− h)h4mρH − 280 ln(1− h)h4µHψ − 92h3µHψ − 164h4mψ
− 4hµHψ + 30h2µHψ + 80h3mψ − 16h2mψ + 151h4µHψ − 151h4µHρH

− 80h6µHρH − 176h5mρH + 4 ln(1− h)µHρH] / [µH (h4mψ − h4µHψ

− h4m+ h4µH − 4h3mψ + 4h3µHψ + 4h3m− 4h3µH + 6h2mψ − 6h2µHψ

− 6h2m+ 6h2µH − 4hmψ + 4hµHψ + 4hm− 4hµH −µHψ +µH)] . (B 4)

Similar to (3.21) and (3.22), the evolution equations for the interface height and
particle volume fraction in cylindrical coordinates, respectively, read

Ht + Fx(H, Θ)= 0, (B 5)
Θt +Gx(H, Θ)= 0, (B 6)

where H = (1− h)2, Θ = θ(1− (1− h)2)/h and

F(H, Θ)=−q(H, Θ), (B 7)

G(H, Θ)=−
ΘF(H, Θ)

1−H
+ u0Θ

(
1−

Θ

1−H

)
f (H, Θ)w(H). (B 8)

Using exactly the same numerical scheme as the one explained in § 4, the system
of PDEs (B 5) and (B 6) can be solved to give evolution of H and Θ (thus h and
φ) in space x and time t. Figures 15(a) and 15(b) show sample computed results in
pipe geometry for the pure fluid (φ0= 0) and suspension cases (φ0= 0.3), respectively.
Figure 15(a) compares the pipe interface profile with that of 2D channel shown earlier
in figure 3(a). The effect of geometry on spreading of heavy and light layers is evident.
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FIGURE 15. Comparison of the pipe interface height profile, h, for (a) pure fluid (φ0= 0)
and (b) particle-laden cases (φ0 = 0.3) against the results of the 2D channel presented
earlier in figures 3 and 6, respectively. The inset in panel (b) depicts the corresponding
profile of volume fraction, φ.

The computed heavy and light frontal shock heights (hHF ≈ 0.36 and hLF ≈ 0.63) were
successfully compared to those obtained from an equal-area rule in a pipe (see also
(5.4)–(5.5) and Taghavi et al. (2011)):

q(hHf )= (1− (1− hHF)
2)qh(hHf )/[2(1− hHF)], (B 9)

−q(hLf )= (1− hLF)
2qh(hLf )/[2(1− hLF)]. (B 10)

Figure 15(b) compares the pipe interface profile against that of a 2D channel shown
earlier in figure 6 for the particle-laden case. The inset depicts the corresponding
profile of volume fraction, φ. A similar particle enrichment effect to the 2D channel
case is observed with only slight modification due to the geometric difference.
Figure 15 suggests that the heavy and light frontal height, h, is larger in the case of
a channel compared to the pipe. Moreover, the exchange flow overall advances more
rapidly in the former.

Appendix C. Coefficients in velocity expressions (3.15) and (3.16) for 2D channel
case

P0,x = −
[
(3h3m− 2h3µH − 9h2m+ 6h2µH + 6hm− 6hµH + 2µH)ψ − 3h3mρH

+ 2h3µHρH + 9h2mρH − 6h2µHρH − 6hmρH + 6hµHρH − 2µHρH
]
Re/[

2(ψ − 1)(h3m− h3µH − 3h2m+ 3h2µH + 3hm− 3hµH +µH)
]
, (C 1)

c1 =
[
(2h3m− 2h3µH − 5h2m+ 6h2µH + 3hm− 6hµH + 2µH)ψ

− 2h3mρH + 2h3µHρH + 5h2mρH − 6h2µHρH − 3hmρH + 6hµHρH

− 2µHρH
]
hRe/

[
2µH

(
(h3m− h3µH − 3h2m+ 3h2µH + 3hm− 3hµH +µH)ψ

− h3m+ h3µH + 3h2m− 3h2µH − 3hm+ 3hµH −µH
)]
, (C 2)

c2 = 0, (C 3)
d1 = [(h− 3)ψ − hρH + 3ρH]h2Re/

[2(ψ − 1)(h3m− h3µH − 3h2m+ 3h2µH + 3hm− 3hµH +µH)], (C 4)
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d2 =
[
(h3m− h3µH − h2m+ h2µH + 2µH)ψ − h3mρH + h3µHρH + h2mρH

− h2µHρH − 2µHρH
]
h2Re/[

4µH(ψ − 1)(h3m− h3µH − 3h2m+ 3h2µH + 3hm− 3hµH +µH)
]
. (C 5)

Appendix D. Flux function, q, in (3.17) for 2D channel case

q =
[
(3h3m− 4h3µH − 6h2m+ 12h2µH + 3hm− 12hµH + 4µH)ψ − 3h3mρH

+ 4h3µHρH + 6h2mρH − 12h2µHρH − 3hmρH + 12hµHρH − 4µHρH
]
h3Re/[

12µH
(
(h3m− h3µH − 3h2m+ 3h2µH + 3hm− 3hµH +µH)ψ − h3m

+ h3µH + 3h2m− 3h2µH − 3hm+ 3hµH −µH
)]
. (D 1)

For pure fluids, φ0 = 0 and ρH =µH = 1. Therefore, q is reduced to

q=
(3h3m− 4h3

− 6h2m+ 12h2
+ 3hm− 12h+ 4)h3Re

12(h3m− h3 − 3h2m+ 3h2 + 3hm− 3h+ 1)
. (D 2)
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