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A SIMPLIFIED ORDINAL ANALYSIS OF FIRST-ORDER REFLECTION

TOSHIYASU ARAI

Abstract. In this note we give a simplified ordinal analysis of first-order reflection. An ordinal notation

system OT is introduced based on ø-functions. Provable Σ1-sentences on LùCK
1
are bounded through

cut-elimination on operator controlled derivations.

§1. Introduction. Let ORD denote the class of all ordinals, A ⊂ ORD and α a
limit ordinal. α is said to be Πn-reflecting on A iff for any Πn-formula φ(x) and
any b ∈ Lα , if 〈Lα ,∈〉 |= φ(b), then there exists a â ∈ A∩α such that b ∈ Lâ and
〈Lâ ,∈〉 |= φ(b). Let us write α ∈ rMn(A) :⇔ α is Πn-reflecting on A. Also α is said
to be Πn-reflecting iff α is Πn-reflecting on ORD.
It is not hard for us to show that the assumption that the universe is Πn-reflecting

is proof-theoretically reducible to iterabilities of the lower operation rMn–1 (and
Mostowski collapsings), cf. [4].
In this paper we aim at an ordinal analysis of Πn-reflection. Such an analysis

was done by Pohlers and Stegert [8] using reflection configurations introduced in
Rathjen [10], and an alternative analysis was given in [2, 3, 5] with the complicated
combinatorial arguments of ordinal diagrams and finite proof figures. Our approach
is simpler in view of combinatorial arguments. In [2], a Πn-reflecting universe is
resolved into ramified hierarchies of lower Mahlo operations, and ultimately into
iterations of recursively Mahlo operations. Our ramification process is akin to a
tower, i.e., has an exponential structure. It is natural that an exponential structure
emerges in lowering and eliminating first-order formulas (in reflections), cf. ordinal
analysis for the fragments IΣn–3 of the first-order arithmetic. The Mahlo classes
Mhk(î) defined in Definition 2.5 to resolve or approximate Πn-reflection are based
on a similar structure. As in Rathjen’s analysis for Π3-reflection in [9], thinning
operations are applied on the Mahlo classesMhk(î), and this yields an exponential
structure similar to the one in [2] as follows.
Let us consider the simplest case N = 4. Let Λ := εK+1, the next epsilon number

above the least Π4-reflecting ordinal K. Roughly ð ∈Mh3(î) designates the fact
that an ordinal ð is Π3-reflecting on Mh3(í) for any í < î < Λ. Suppose a
Π3-sentence è on Lð is derived from the assumption ð ∈Mh3(î). We need to find an
ordinal κ< ð for which Lκ |= è holds. It turns out that κ ∈Mh2(Λ

îa) suffices for an
ordinal a<Λ, where the ordinal κ in the classMh2(Λ

îa) is Π2-reflecting on classes
Mh2(Λ

îb)∩Mh3(í) for any b < a and any í < î. Note that the class Mh2(Λ
îa) is

not obtained through iterations of recursively Mahlo operations since it involves
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Π4-definable classes Mh3(í). The classes Mh3(í)(í < î) for the assumption ð ∈
Mh3(î) are thinned out with the new classesMh2(Λ

îb)(b<Λ), cf. Lemma 5.1.
Our theorem runs as follows. Let KPΠN denote the set theory for ΠN-reflecting

universes, and KPù the Kripke–Platek set theory with the axiom of infinity. OT
is a computable notation system for ordinals defined in §3, Ω = ùCK1 and øΩ is a
collapsing function such that øΩ(α)<Ω. KN is an ordinal term denoting the least
ΠN-reflecting ordinal in the theorems.

Theorem 1.1. Suppose KPΠN ⊢ è for a Σ1(Ω)-sentence è. Then we can find an
n<ù such that for α = øΩ(ùn(KN +1)), Lα |= è.

Actually the bound is seen to be tight, cf. [6].

Theorem 1.2. KPΠN proves that each initial segment
{α ∈OT : α < øΩ(ùn(KN +1))}(n= 1,2, ...) is well-founded.

Thus the ordinal øΩ(εKN+1) is seen to be the proof-theoretic ordinal of KPΠN .

Theorem 1.3.

øΩ(εKN+1) = |KPΠN |ΣΩ1
:= min{α ≤ ùCK1 : ∀è ∈ Σ1(KPΠN ⊢ èLΩ ⇒ Lα |= è)}.

A⊂ORD is Π1n-indescribable in α iff for any Π
1
n-formula φ(X) and any B⊂ORD,

if 〈Lα ,∈;B∩α〉 |= φ(B∩α), then there exists a â ∈A∩α such that 〈Lâ ,∈;B∩â〉 |=
φ(B∩â). A regular cardinal ð is Π1n-indescribable ifffORD is Π

1
n-indescribable in ð.

Let us mention the contents of this paper. In the next §2 we define simultaneously

iterated Skolem hulls Hα(X) of sets X of ordinals, ordinals ø
Eî
κ(α) for regular

cardinals κ, α < εK+1 and sequences Eî = (î2, ... ,îN–1) of ordinals îi < εK+2,
and classes Mhαk (î) under the assumption that a Π

1
N–2-indescribable cardinal

K exists. It is shown that for 2 ≤ k < N, α < εK+1 and each î < εK+2,
(Kis a Π1N–2-indescribable cardinal)→K ∈Mhαk (î) in ZF+(V = L).
In §3 a computable notation system OT of ordinals is extracted. Following

Buchholz [7], operator controlled derivations for KPΠN are introduced in §4,
and inference rules for ΠN-reflection are eliminated from derivations in §5. This
completes a proof of Theorem 1.1 for an upper bound.
IH denotes the Induction Hypothesis, MIH theMain IH and SIH the Subsidiary

IH. We are assuming tacitly the axiom of constructibility V = L. Throughout this
paper N ≥ 3 is a fixed integer.

§2. Ordinals for ΠN -reflection. In this section we work in the set theory
ZFLKN obtained from ZFL = ZF+ (V = L) by adding the axiom stating that
∃K(K is Π1N–2-indescribable) for a fixed integerN ≥ 3. For ordinals α, ε(α) denotes
the least epsilon number above α.
Let ORD⊂ V denote the class of ordinals, K=KN the least Π

1
N–2-indescribable

cardinal, andReg the set of regular ordinals belowK. Θ denotes finite sets of ordinals
≤ K. u,v,w,x,y,z, ... range over sets in the universe, a,b,c,α,â ,ã, ... range over
ordinals<Λ= ε(K), î,æ ,í,ì, é, ... range over ordinals< ε(Λ) = εK+2, Eî, Eæ, Eí, Eì,Eé, ...
range over finite sequences over ordinals < ε(Λ), and ð,κ,ñ,ó,ô,ë, ... range over
regular ordinals. è denotes formulas.
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Let Eî = (î0, ... ,îm–1) be a sequence of ordinals. The length lh( Eî) :=m. Sequences
consisting of a single element (î) are identified with the ordinal î, and ∅ denotes the
empty sequence. E0 denotes ambiguously a zero-sequence (0, ... ,0) with its length 0≤
lh(E0)≤N – 1. Eî ∗ Eì= (î0, ... ,îm–1)∗ (ì0, ... ,ín–1) = (î0, ... ,îm–1,ì0, ... ,ìn–1) denotes

the concatenated sequence of Eî and Eì.
Λ = ε(K) = εK+1 denotes the next epsilon number above the least ΠN–2-

indescribable cardinal K, and ε(Λ) = εK+2 the next epsilon number above Λ.

Definition 2.1. For a nonzero ordinal î < ε(Λ), its Cantor normal form with
base Λ is uniquely determined as

î =NF
∑

i≤m

Λîiai =Λ
îmam+ ···+Λî0a0 (1)

where îm > ···> î0, 0< ai <Λ.

1. K(î) = {ai : i ≤ m} ∪
⋃
{K(îi) : i ≤ m} is the set of components of î with

K(0) = ∅. For a sequence Eî = (î0, ... ,în–1) of ordinals îi < ε(Λ), K( Eî) :=⋃
{K(îi) : i < n}.

2. For î > 1, te(î) = î0 in (1) is the tail exponent, and he(î) = îm is the head
exponent of î, resp. The head Hd(î) := Λîmam, and the tail Tl(î) := Λ

î0a0
of î.

3. he(i)(î) is the ith head exponent of î, defined recursively by he(0)(î) = î,
he(i+1)(î) = he(he(i)(î)).
The i-th tail exponent te(i)(î) is defined similarly.

4. æ is a part of î, denoted by æ ≤pt î iff æ =NF
∑
i≥nΛ

îiai =Λ
îmam+ ···+Λînan

for an n(0≤ n≤m+1).
æ <pt î :⇔ æ ≤pt î&æ 6= î.

5. A sequence Eì = (ì0, ... ,ìn) is an iterated tail parts of î, denoted by Eì ⊂pt î
iff ì0 ≤pt î&∀i < n(ìi+1 ≤pt te(ìi)).

6. Eí = (í0, ... ,ín) ∗ E0 < î iff there exists a sequence Eì = (ì0, ... ,ìn) such that
Eì⊂pt î and íi < ìi for every i ≤ n.

7. Let Eí = (í0, ... ,ín) and Eî = (î0, ... ,în) be sequences of ordinals in the same
length, and 0≤ k ≤ n.
Eí <k Eî :⇔∀i < k(íi ≤ îi)∧ (ík, ... ,ín)< îk.

8. æ is a step-down of î, denoted by æ <sd î iff æ =Λ
îmam+ ···+Λî1a1+Λ

î0b+í
for some ordinals b< a0 and í <Λ

î0 .
9. Eí = (í0, ... ,ín)∗ E0<sd î iff íi <sd te

(i)(î) for every i ≤ n.
10. æ ≤sp î :⇔∃ì≤pt î(æ ≤sd ì), and æ <sp î :⇔∃ì≤pt î(æ <sd ì).
11. Eí <sp î iff Eí <sd ì for a ì≤pt î.

Note that (í)∗E0<î⇔ í < î, and (î, te(î), te(2)(î), ...)⊂pt î. Also æ <sd î⇔ æ < î
if î <Λ.

Proposition 2.2. î < ì < ε(Λ)⇒ te(î)≤ he(î)≤ he(ì).

Proposition 2.3. Eí < î ≤ æ ⇒ Eí < æ .

Proof. By induction on the lengths n= lh(Eí). Let Eì= (ì0, ... ,ìn–1) be a sequence
for Eí = (í0, ... ,ín–1) such that Eì⊂pt î and ∀i ≤ n – 1(íi < ìi), cf. Definition 2.1.6.
If n= 1, then í0 < ì0 ≤pt î ≤ æ . í0 < æ ≤pt æ yields Eí = (í0)< æ .
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Let n > 1. We have (í1, ... ,ín–1) < te(ì0) with (ì1, ... ,ìn–1) ⊂pt te(ì0). We show
the existence of a ë such that ì0 ≤ ë ≤pt æ and te(ì0) ≤ te(ë). Then IH yields
(í1, ... ,ín–1)< te(ë), and Eí < æ follows.
If ì0 ≤pt æ , then ë = ì0 works. Suppose ì0 6≤pt æ . On the other hand we have

ì0 ≤pt î ≤ æ . This means that î < æ and there exists a ë≤pt æ such that ì0 < ë and
te(ì0)≤ te(ë). ⊣

2.1. Ordinals.

Definition 2.4. 1. For i < ù and î < ε(Λ), Λi(î) is defined recursively by
Λ0(î) = î and Λi+1(î) = Λ

Λi(î).
2. For A ⊂ ORD, limit ordinals α and i ≥ 0, let α ∈ M2+i(A) iff A ∩ α
is Π1i -indescribable in α.M2+i :=M2+i(ORD).

3. κ+ denotes the next regular ordinal above κ.
4. Ωα := ùα for α > 0, Ω0 := 0, and Ω =Ω1.

Define simultaneously classes Hα(X), Mh
α
k (î), and ordinals ø

Eî
κ(α) as follows.

We see that these are Σ1-definable as a fixed point in ZFL, cf. Proposition 2.7.
Let a<Λ, and ϕ denote the binary Veblen function. Let us define a Skolem hull

Ha(X) of {0,K}∪X under the functions +,α 7→ùα , (α,â) 7→ ϕαâ (α,â <K),α 7→
Ωα (α <K) and ø-functions. Reg denotes the set of regular ordinals ≤K.

Definition 2.5. Ha[Y ](X) :=Ha(Y ∪X) for sets Y ⊂K.

1. (Inductive definition ofHa(X)).
(a) {0,K}∪X ⊂Ha(X).
(b) x,y ∈ Ha(X) ⇒ x+ y ∈ Ha(X), x ∈ Ha(X) ⇒ ù

x ∈ Ha(X), and x,y ∈
Ha(X)∩K⇒ ϕxy ∈Ha(X).

(c) K> α ∈Ha(X)⇒Ωα ∈Ha(X).
(d) Let {ð,b} ⊂ Ha(X) with ð ∈ Reg, and Eí = (í2, ... ,íN–1) be a sequence
of ordinals < ε(Λ) such that K(Eí) ⊂Ha(X) and maxK(Eí) ≤ b < a.Then
κ = ø Eí

ð(b) ∈Ha(X).

2. (Definitions of Mhak(î) and Mh
a
k(

Eî))First let K ∈ MhaN(0) :⇔ K ∈ MN ⇔
K is Π1N–2-indescribable.The classes Mh

a
k(î) are defined for 2 ≤ k < N, and

ordinals a<Λ, î < ε(Λ). Let ð be a regular ordinal ≤K. Then for î > 0

ð ∈Mhak(î) :⇔{ð,a}∪K(î)⊂Ha(ð)& (2)

∀Eí < î
(
K(Eí)⊂Ha(ð)⇒ ð ∈Mk(Mh

a
k(Eí)))

where Eí = (ík, ... ,ín)(2 ≤ k ≤ n ≤ N – 1) varies through nonempty sequences
of ordinals < ε(Λ) and

ð ∈Mhak(Eí) :⇔ ð ∈
⋂

k≤i≤n

Mhai (íi).

By convention, let for 2 ≤ k < N, ð ∈ Mhak(0) :⇔ ð ∈ Mha2(∅) :⇔
ð is a limit ordinal. Note that by letting Eí = (0), ð ∈Mhak(î)⇒ ð ∈Mk for

î > 0. Also E0< 1, andMhak(1) =Mk.
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3. (Definition of ø
Eî
ð(a))Let a<Λ be an ordinal, ð ≤K a regular ordinal and Eî a

sequence of ordinals < ε(Λ) such that lh( Eî) =N – 2. Then let

ø
Eî
ð(a) := min({ð}∪{κ ∈Mha2(

Eî)∩ð :Ha(κ)∩ð ⊂ κ,K( Eî)∪{ð,a} ⊂ Ha(κ)}).
(3)

Let øða := ø
E0
ða, where lh(E0) = N – 2, Mh

a
2(

E0) = Lim, and ð ∈M2, i.e., ð is a
regular ordinal.

Note that ð ∈ Mhak(î) ⇒ ∀í < î
(
ð ∈Mk(Mh

a
k(í))

)
, since (í) < î holds with

(î)⊂pt î for í < î.

Proposition 2.6. b+ c ∈ Ha[Θ](d)⇒ c ∈ Ha[Θ](d), and ù
c ∈ Ha[Θ](d)⇒ c ∈

Ha[Θ](d).

The following Proposition 2.7 is easy to see.

Proposition 2.7. Each of x=Ha(y)(a<Λ,y<K), x ∈Mhak(î) and x= ø
Eî
κ(a),

is a Σ1-predicate as fixed points in ZFL.

Proof. This is seen from the facts that there exists a universal Π1n-formula, and
by using it, α ∈Mn(x) iff 〈Lα ,∈〉 |=mn(x∩Lα) for some Π

1
n+1-formula mn(R) with

a unary predicate R. ⊣

LetA(a) denote the conjunction of ∀u<K∃!x[x=Ha(u)], and ∀ Eî∀x(maxK( Eî)≤

a&K( Eî)∪{κ,a} ⊂ x=Ha(κ)→∃!b≤ κ(b= ø
Eî
κ(a))), where lh( Eî) =N – 2.

Since the cardinality of the setHεK+1(ð) is ð for any infinite cardinal ð ≤K, pick
an injection f :HΛ(K)→K so that f ”HΛ(ð)⊂ ð for any weakly inaccessibles ð≤K.

Lemma 2.8. 1. ∀a<ΛA(a).
2. ð ∈Mhak(î) is a Π

1
k–1-class on Lð uniformly for weakly inaccessible cardinals

ð ≤ K and a,î. This means that for each k there exists a Π1k–1-formula mh
a
k(x)

such that ð ∈Mhak(î) iff Lð |= mh
a
k(î) for any weakly inaccessible cardinals

ð ≤K with f ”({a}∪K(î))⊂ Lð.
3. K ∈MhαN–1(Λ)∩MN–1(Mh

α
N–1(Λ)).

Proof. 2.8.1. We show that A(a) is progressive, i.e., ∀a<Λ[∀c< aA(c)→A(a)].
Assume ∀c < aA(c) and a < Λ. ∀b < K∃!x[x =Ha(b)] follows from IH in ZFL.

∃!b≤ κ(b= ø
Eî
κa) follows from this.

2.8.2. Let ð be a weakly inaccessible cardinal with f ”({a}∪K(î))⊂ Lð. Let f be
an injection such that f ”HΛ(ð) ⊂ Lð. Then for ∀α ∈ K(î)(f (α) ∈ f ”Hα(ð)), ð ∈
Mhak(î) iff for any f (Eí) = (f (ík), ... , f (íN–1)), each of f (íi)∈Lð, if ∀α ∈K(Eí)(f (α)∈
f ”Ha(ð)) and Eí < î, then ð ∈Mk(Mh

a
k(Eí)), where f ”Ha(ð)⊂ Lð is a class in Lð.

2.8.3. We show the following B(a) is progressive in a<Λ:

B(a) :⇔K ∈MhαN–1(a)∩MN–1(Mh
α
N–1(a)).

Note that a ∈Ha(K) holds for any a<Λ.
Suppose ∀b< aB(b). We have to show thatMhαN–1(a) is Π

1
N–3-indescribable in K.

It is easy to see that if ð ∈MN–1(Mh
α
N–1(a)), then ð ∈Mh

α
N–1(a) by induction on ð.

Let è(u) be a Π1N–3-formula such that LK |= è(u).
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By IH we have ∀b < a[K ∈MN–1(Mh
α
N–1(b))]. In other words, K ∈MhαN–1(a),

i.e., LK |=mhαN–1(a), where mh
α
N–1(a) is a Π

1
N–2-sentence in Proposition 2.8.2. Since

the universe LK is Π
1
N–2-indescribable, pick a ð < K such that Lð enjoys the Π

1
N–2-

sentence è(u)∧mhαN–1(a), and {f (α), f (a)} ⊂ Lð. Therefore ð ∈Mh
α
N–1(a) and Lð |=

è(u). Thus K ∈MN–1(Mh
α
N–1(a)). ⊣

2.2. Normal forms in ordinal notations. In this subsection we introduce an
irreducibility of sequences, which is needed to define a normal form in ordinal
notations.

Proposition 2.9. ð ∈Mhak(æ)&î ≤ æ ⇒ ð ∈Mh
a
k(î).

Proof. (2) for ð ∈Mhak(î) in Definition 2.5.2 follows from ð ∈Mh
a
k(æ) and

Proposition 2.3. ⊣

Lemma 2.10. (Cf. Lemma 3 in [2].) Assume K ≥ ð ∈Mhak(î)∩Mh
a
k+1(î0) with

2≤ k≤N – 1, he(ì)≤ î0 and K(ì)⊂Ha(ð). Then ð ∈Mh
a
k(î+ì) holds. Moreover

if ð ∈Mk+1, then ð ∈Mk+1(Mh
a
k(î+ì)) holds.

Proof. Suppose ð ∈Mhak(î)∩Mh
a
k+1(î0) andK(ì)⊂Ha(ð) with he(ì)≤ î0.We

show ð ∈Mhak(î+ì) by induction on ordinals ì. First note that if b ∈Ha(ð), then
f (b) ∈ f ”HΛ(ð) ⊂ Lð. We have K(î+ì) ⊂ Ha(ð). ð ∈Mk+1(Mh

a
k(î+ì)) follows

from ð ∈Mhak(î+ì) and ð ∈Mk+1.
Let (æ)∗ Eí < î+ì andK(æ)∪K(Eí)⊂Ha(ð) for Eí = (í0, ... ,ín–1).We need to show

that ð ∈Mk(Mh
a
k((æ)∗ Eí)). By Definition 2.1.6, let (æ0)∗ (ì0, ... ,ìn–1) be a sequence

such that æ < æ0 ≤pt î+ì, ì0 ≤pt te(æ0), ∀i ≤ n – 1(íi < ìi), and ∀i < n – 1(ìi+1 ≤pt
te(ìi)).
If æ0 ≤pt î, then (æ)∗ Eí < î, and ð ∈Mk(Mh

a
k((æ)∗ Eí)) by ð ∈Mhak(î).

Let æ0= î+æ1with 0<æ1≤pt ì. If æ1<pt ì, then by IHwith he(æ1)= he(ì)we have
ð ∈Mhak(æ0). On the other hand we have (æ)∗ Eí < æ0. Hence ð ∈Mk(Mh

a
k((æ)∗ Eí)).

Finally consider the case when 0< æ1 =ì. Then we obtain Eí < te(î+ì) = te(ì)≤
he(ì)≤ î0. ð ∈Mh

a
k+1(î0) with Proposition 2.9 yields ð ∈Mk+1(Mh

a
k+1(Eí)).

On the other side we see ð ∈Mhak(æ) as follows. We have æ < î+ì. If æ ≤ î, then
this follows from ð ∈Mhak(î) and Proposition 2.9, and if æ = î+ë < î+ì, then IH
yields ð ∈Mhak(æ).
Since ð ∈Mhak(æ) is a Π

1
k–1-sentence holding on Lð by Lemma 2.8.2 and {a}∪

K(æ)⊂Ha(ð), we obtain ð ∈Mk+1(Mh
a
k((æ)∗ Eí)), a fortiori ð ∈Mk(Mh

a
k((æ)∗ Eí)).

⊣

Definition 2.11. For sequences of ordinals Eî = (îk, ... ,îN–1) and Eí =
(ík, ... ,íN–1) and 2≤ k,m,n≤N – 1,

Mham(Eí)≺kMh
a
n( Eî) :⇔∀ð ∈Mhan( Eî)({a,ð}∪K(Eí)⊂Ha(ð)⇒ ð ∈Mk(Mh

a
m(Eí))).

Corollary 2.12. Let Eí be a sequence defined from a sequence Eî as follows. ∀i <
k(íi = îi), ∀i> k(íi = 0), and ík = îk+Λ

îk+1b, where 2≤ k<N, b<Λ and îk+1 6= 0.
ThenMha2(Eí)≺k+1Mh

a
2(

Eî) holds. In particular if ð ∈Mha2(
Eî) and a≥ b∈Ha(ð), then

ø Eí
ð(a)< ð.

Proof. Mha2(Eí)≺k+1Mh
a
2(

Eî) is seen from Lemma 2.10.
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Suppose ð ∈ Mha2(
Eî) and K(Eí) ⊂ Ha(ð). The set C = {κ < ð : Ha(κ) ∩ ð ⊂

κ,K(Eí) ∪ {ð,a} ⊂ Ha(κ)} is a club subset of the regular cardinal ð. This
shows the existence of a κ ∈ Mha2(Eí) ∩ C ∩ ð, and hence ø Eí

ð(a) < ð by the
definition (3). ⊣

Proposition 2.13. Let Eí = (í2, ... ,íN–1), Eî = (î2, ... ,îN–1) be sequences of ordinals
< ε(Λ) such that Eí <k Eî for an integer k with 2≤ k≤N – 1. ThenMha2(Eí)≺kMh

a
2(

Eî).

In particular if ð ∈Mha2(
Eî), K(Eí)⊂Ha(ð), and maxK(Eí)≤ a, then ø

Eí
ð(a)< ð.

Proof. Assume ð ∈Mha2(
Eî) and K(Eí) ⊂ Ha(ð). We have ð ∈Mh

a
k(îk). By the

definition (2) and (ík, ... ,íN–1)< îk, we obtain ð ∈Mk(
⋂
k≤i≤N–1Mh

a
i (íi)).

On the other hand we have ð ∈
⋂
i<kMh

a
i (îi), and hence ð ∈

⋂
i<kMh

a
i (íi) by ∀i<

k(íi ≤ îi) and Proposition 2.9. Since ð ∈
⋂
i<kMh

a
i (íi) is a Π

1
k–2-sentence holding in

Lð, we obtain ð ∈Mk(
⋂
i≤N–1Mh

a
i (íi)) =Mk(Mh

a
2(Eí)), a fortiori ð ∈M2(Mh

a
2(Eí)).

If ð ∈Mha2(
Eî), K(Eí) ⊂ Ha(ð), and maxK(Eí) ≤ a, then ø

Eí
ð(a) < ð is seen as in

Corollary 2.12. ⊣

Proposition 2.14. Let Eî = (î2, ... ,îN–1) be a sequence of ordinals < ε(Λ) such
that {ð,a}∪K( Eî) ⊂ Ha(ð). Assume Tl(îi) < Λk(îi+k+1) for some i < N – 1 and

k> 0. Then ð ∈Mha2(
Eî)⇔ ð ∈Mha2( Eì), where Eì= (ì2, ... ,ìN–1)with ìi = îi – Tl(îi)

and ìj = îj for j 6= i.

Proof. When 0 < îi = Λ
ãmam + ···+Λã1a1 +Λ

ã0a0 with ãm > ··· > ã1 > ã0,
0< ai <Λ, ìi =Λ

ãmam+ ···+Λã1a1 for Tl(îi) = Λ
ã0a0. If îi = 0, then so is ìi = 0.

Let ð ∈ Mha2( Eì) and Tl(îi) < Λk(îi+k + 1). We obtain ∀j ≤ k(he(j)(Tl(îi))

< Λk–j(îi+k + 1)), and he
(k)(Tl(îi)) ≤ îi+k. On the other hand we have ð ∈

Mhai+k(îi+k). From Lemma 2.10 we see inductively that for any j < k, ð ∈

Mhai+j(he
(j)(Tl(îi))). In particular ð ∈Mh

a
i+1(he(Tl(îi))), and once again by Lemma

2.10 and ð ∈Mhai (ìi) we obtain ð ∈Mh
a
i (îi). Hence ð ∈Mh

a
2(

Eî). ⊣

Definition 2.15. A sequence of ordinals Eî = (î2, ... ,îN–1) is said to be irreducible
iff ∀i <N – 1∀k > 0(îi > 0⇒ Tl(îi)≥Λk(îi+k+1)).

Proposition 2.16. Let Eí = (ík, ... ,íN–1) 6= E0 be an irreducible sequence, and k0 ≥ k
be the least number such that ík0 6= 0. Assume ík0 < he

(k0–k)(î). Then Eí < î holds in

the sense of Definition 2.1.6.

Proof. Let ℓ < N – k be the largest number such that ík+ℓ 6= 0. We show
(ík, ... ,ík+ℓ)< î. Since Eí is irreducible, we have Λi(ík0+i+1)≤ Tl(ík0). From ík0 <

he(k0–k)(î) and te(ì)≤ he(ì) we obtain ík0+i < ík0+i+1≤ he
(i)(ík0)≤ he

(k0–k+i)(î).
Let (ìk, ... ,ìN–1) ⊂pt î such that ìk = Hd(î) and ìi+1 = he(ìi) = te(Hd(ìi)).

Then te(ìk+i) = he(ìk+i) and ìk0+i = he(ìk0+i–1) = he
(k0–k+i)(î) for k0 – k+ i > 0.

Therefore (ìk, ... ,ìk+ℓ)⊂pt î witnesses (ík, ... ,ík+ℓ)< î. ⊣

Definition 2.17. Let Eî = (îk, ... ,îN–1), Eí = (ík, ... ,íN–1) and Eí 6= Eî. Let i ≥ k be
the minimal number such that íi 6= îi. Suppose (îi, ... ,îN–1) 6= E0, and let k1 ≥ i be
the minimal number such that îk1 6= 0. Then Eí <lx,k Eî iff one of the followings holds:

1. (íi, ... ,íN–1) = E0.
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2. In what follows assume (íi, ... ,íN–1) 6= E0, and let k0 ≥ i be the minimal number
such that ík0 6= 0(i = min{k0,k1}). Then Eí <lx,k Eî iff one of the followings
holds:
(a) i = k0 < k1 and he

(k1–k0)(ík0)≤ îk1 .

(b) k0 ≥ k1 = i and ík0 < he
(k0–k1)(îk1).

Proposition 2.18. Suppose that both of Eí and Eî are irreducible. Then Eí <lx,k Eî⇒

Mhak(Eí)≺kMh
a
k(

Eî).

Proof. Let ð ∈Mhak(
Eî), K(Eí) ⊂ Ha(ð), and i ≥ k be the minimal number such

that íi 6= îi. We have ð ∈
⋂
k≤j<iMh

a
j (íj), which is a Π

1
i–2-sentence holding on Lð. In

the case îi 6= 0, it suffices to show that ð ∈Mi(
⋂
j≥iMh

a
j (íj)), since then we obtain

ð ∈Mi(Mh
a
k(Eí)) by ð ∈Mh

a
i (îi)⊂Mi, a fortiori ð ∈Mk(Mh

a
k(Eí)).

If (íi, ... ,íN–1) = E0, then îi 6=0and
⋂
j≥iMh

a
j (íj) denotes the class of limit ordinals.

Obviously ð ∈Mi(
⋂
j≥iMh

a
j (íj)).

In what follows assume (íi, ... ,íN–1) 6= E0, and let k0 ≥ i be the minimal number
such that ík0 6= 0, and k1 ≥ i be the minimal number such that îk1 6= 0.

Case 1. k0 ≥ k1 = i: Then we have ík0 < he
(k0–k1)(îk1). Proposition 2.16 yields

(ík0 , ... ,íN–1)< îk1 = îi, which in turn yields ð ∈Mi(
⋂
j≥iMh

a
j (íj)) by the definition

(2) of ð ∈Mhai (îi).
Case 2. i = k0 < k1: Then we have he

(k1–i)(íi) ≤ îk1 . Also íi+p < he
(p)(íi) for any

p> 0 since Eí is irreducible and íi 6= 0. Let j ≥ k1. Then íj < he
(j–i)(íi)≤ he

(j–k1)(îk1).
In particular ík1 < îk1 . Proposition 2.16 yields (ík1 , ... ,íN–1) < îk1 . ð ∈Mh

a
k1
(îk1)

yields ð ∈ Mk1(
⋂
j≥k1
Mhaj (íj)). Moreover for any p < k1 – i, he

(k1–i–p)(íi+p) ≤

îk1 by Proposition 2.2. Lemma 2.10 yields ð ∈
⋂
k1>j≥i

Mhaj (íj). Therefore ð ∈

Mk1(Mh
a
k(Eí)), a fortiori ð ∈Mk(Mh

a
k(Eí)). ⊣

Proposition 2.19. (Cf. Proposition 4.20 in [9])
Let Eí = (í2, ... ,íN–1), Eî = (î2, ... ,îN–1) be irreducible sequences of ordinals< ε(Λ).

Assume that ø Eí
ð(b) < ð with K(Eí)∪ {ð,b} ⊂ Hb(ø

Eí
ð(b)) and maxK(Eí) ≤ b. Also

assume that ø
Eî
κ(a)< κ with K( Eî)∪{κ,a} ⊂ Ha(ø

Eî
κ(a)) and maxK( Eî)≤ a.

Then â1 = ø
Eí
ð(b)<ø

Eî
κ(a) = α1 iff one of the following cases holds:

1. ð ≤ ø
Eî
κ(a).

2. b< a, ø Eí
ð(b)< κ and K(Eí)∪{ð,b} ⊂ Ha(ø

Eî
κ(a)).

3. b> a and K( Eî)∪{κ,a} 6⊂ Hb(ø
Eí
ð(b)).

4. b= a, κ < ð and κ 6∈ Hb(ø
Eí
ð(b)).

5. b= a, ð = κ, K(Eí)⊂Ha(ø
Eî
κ(a)), and Eí <lx,2 Eî.

6. b= a, ð = κ, K( Eî) 6⊂ Hb(ø
Eí
ð(b)).

Proof. If the case (2) holds, then ø Eí
ð(b) ∈Ha(ø

Eî
κ(a))∩κ ⊂ ø

Eî
κ(a).

If one of the cases (3) and (4) holds, then K( Eî)∪{κ,a} 6⊂ Ha(ø
Eí
ð(b)). On the

other hand we have K( Eî)∪{κ,a} ⊂ Ha(ø
Eî
κ(a)). Hence ø

Eí
ð(b)<ø

Eî
κ(a).

If the case (5) holds, then Proposition 2.18 yields Mha2(Eí) ≺2 Mh
a
2(

Eî) ∋ ø
Eî
κ(a).

Hence ø
Eî
κ(a) ∈M2(Mh

a
2(Eí)). Since K(Eí)∪{κ,a} ⊂ Ha(ø

Eî
κ(a)), the set {ñ < ø

Eî
κ(a) :
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Ha(ñ)∩κ ⊂ ñ,K(Eí)∪{κ,a} ⊂Ha(ñ)} is club in ø
Eî
κ(a). Therefore ø

Eí
ð(b) = ø

Eí
κ(a)<

ø
Eî
κ(a) by (3) in Definition 2.5.3.

Finally assume that the case (6) holds. Since K( Eî) ⊂Ha(ø
Eî
κ(a)), ø

Eí
ð(b) < ø

Eî
κ(a)

holds.
Conversely assume that ø Eí

ð(b)<ø
Eî
κ(a) and ø

Eî
κ(a)< ð.

First consider the case b < a. Then we have K(Eí) ∪ {ð,b} ⊂ Hb(ø
Eí
ð(b)) ⊂

Ha(ø
Eî
κ(a)). Hence (2) holds.

Next consider the case b > a. K( Eî)∪ {κ,a} ⊂ Hb(ø
Eí
ð(b)) would yield ø

Eî
κ(a) ∈

Hb(ø
Eí
ð(b))∩ð ⊂ ø

Eí
ð(b), a contradiction ø

Eî
κ(a)<ø

Eí
ð(b). Hence (3) holds.

Finally assume b = a. Consider the case κ < ð. κ ∈ Hb(ø
Eí
ð(b))∩ ð would yield

ø
Eî
κ(a)< κ < ø

Eí
ð(b), a contradiction. Hence κ 6∈ Hb(ø

Eí
ð(b)), and (4) holds. If ð < κ,

then ð ∈ Hb(ø
Eí
ð(b))∩κ ⊂ Ha(ø

Eî
κ(a))∩κ, and ð < ø

Eî
κ(a), a contradiction, or we

should say that (1) holds. Finally let ð = κ. We can assume that K( Eî)⊂Hb(ø
Eí
ð(b)),

otherwise (6) holds. If Eî <lx,2 Eí, then by (5) ø
Eî
κ(a)<ø

Eí
ð(b) would follow. If K(Eí) 6⊂

Ha(ø
Eî
κ(a)), then by (6) againø

Eî
κ(a)<ø

Eí
ð(b) would follow. HenceK(Eí)⊂Ha(ø

Eî
κ(a))

and Eí ≤lx,2 Eî. If Eí = Eî, then ø
Eî
κ(a) = ø

Eí
ð(b). Therefore (5) must be the case. ⊣

Definition 2.20 is utilized to define a computable notation system in the next
section 3.

Definition 2.20. A set SD of sequences Eî = (î2, ... ,îN–1) of ordinals îi < ε(Λ)
is defined recursively as follows.

1. E0∗ (a) ∈ SD for each a<Λ.
2. (Cf.Definition 2.1.9.) Let Eî = (î2, ... ,îN–1)∈ SD, 1≤ k<N – 1, æ < ε(Λ) be an
ordinal such that (îk+1, ... ,îN–1)<sd æ , and (î2, ... ,îk–1,îk,æ)∗E0∈SD. Then for
æk = îk+Λ

æa with an ordinal a<Λ, (î2, ... ,îk–1)∗ (æk)∗ (îk+1, ... ,îN–1) ∈ SD
and (î2, ... ,îk–1)∗ (æk)∗ E0 ∈ SD.

Proposition 2.21. Let Eî = (î2, ... ,îN–1) ∈ SD.

1. (î2, ... ,îi)∗ E0 ∈ SD for each i with 1≤ i <N.
2. For 2≤ i < j < k <N, if îi 6= 0 and îk 6= 0, then îj 6= 0.
3. Let îi 6= 0. Then (îi+1, ... ,îN–1)<sd te(îi).
4. Eî is irreducible.

Proof. Let 1≤ k<N – 1, æ < ε(Λ) be an ordinal such that (îk+1, ... ,îN–1)<sd æ ,
and (î2, ... ,îk–1,îk,æ)∗ E0 ∈ SD. Also let æk = îk+Λ

æa with an ordinal a<Λ.
2.21.1 is seen by induction on the recursive definition of Eî ∈ SD.
2.21.2 is seen by induction on the recursive definition of Eî ∈ SD. Suppose îi 6= 0

for an i < k. From (î2, ... ,îk–1,îk,æ)∗ E0 ∈ SD and æ 6= 0, IH yields îk 6= 0.
2.21.3 and 2.21.4. We show these by simultaneous induction on the recursive

definition of Eî ∈ SD.
2.21.3. We show Proposition 2.21.3 for the sequence (î2, ... ,îk–1) ∗ (æk) ∗

(îk+1, ... ,îN–1) ∈ SD. The proposition holds for the sequence Eî, and we can assume
a 6= 0. We obtain (îi+1, ... ,îN–1)<sd te(îi) for i> k if îi 6= 0, and (îk+1, ... ,îN–1)<sd
te(æk) = æ by the assumption. Let 2≤ i< k and îi 6=0.We show (îi+1, ... ,îk–1)∗(æk)∗
(îk+1, ... ,îN–1) <sd te(îi). It suffices to show that æk <sd te

(k–i)(îi). By IH we have
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îk <sd te
(k–i)(îi). On the other hand we have îk 6= 0 by (î2, ... ,îk–1,îk,æ) ∗ E0 ∈ SD,

æ 6= 0, and Proposition 2.21.2. Moreover (î2, ... ,îk–1,îk,æ) ∗ E0 is irreducible by
Proposition 2.21.4, and hence Tl(îk) ≥ Λ

æ+1. Therefore te(îk) > æ . This means
that æk =NF îk +Λ

æa, and îk <sd te
(k–i)(îi) yields æk <sd te

(k–i)(îi) by Definition
2.1.8.
2.21.4. If (îi+1, ... ,îN–1)<sd te(îi) for îi 6= 0, then îi+k <sd te

(k)(îi) for k> 0, and
îi+k+1≤ te

(k)(îi). Hence Λk(îi+k+1)≤Λ
te(îi) ≤ Tl(îi), and Eî is irreducible. ⊣

§3. Computable notation system OT. In this section (except Proposition 3.6 and
Lemma 3.8) we work in a weak fragment of arithmetic, e.g., in the fragment
IΣ1 or even in the bounded arithmetic S

1
2. Referring to Proposition 2.19 the

sets of ordinal terms OT ⊂ Λ = εK+1 and E ⊂ ε(Λ) = εK+2 over symbols
{0,K,Λ,+,ϕ,Ω,ø} are defined recursively. OT is isomorphic to a subset ofHΛ(0).
Simultaneously we define finite sets Kä(α) ⊂ OT for ä,α ∈ OT , and sequences
(mk(α))2≤k≤N–1 for α ∈ OT ∩K, where in α = ø Eí

ð(a), mk(α) = ík, i.e., Eí =
(í2, ... ,íN–1) = (m2(α), ... ,mN–1(α)) = (mk(α))k = Em(α). For {α0, ... ,αm,â} ⊂OT ,
Kä(α0, ... ,αm) :=

⋃
i≤mKä(αi),Kä(α0, ... ,αm)<â iff ∀ã ∈Kä(α0, ... ,αm)(ã< â), and

â ≤ Kä(α0, ... ,αm) iff ∃ã ∈ Kä(α0, ... ,αm)(â ≤ ã).
First let us define a set OT of terms over symbols {0,K,Λ,+,ϕ,Ω,ø}. Second a

relation α < â on OT is defined. Third a subset OT ⊂OT is defined to be the set of
terms in normal form. The relation α < â on OT is defined to be the restriction of
α < â to OT .

Definition 3.1. SetsOT and E of terms are defined simultaneously. Also a finite
set K(í) ⊂ OT is defined for í ∈ E, and subsets SC,P of OT are defined. SC [P]
is intended to be the set of strongly critical numbers [the set of additive principal
numbers], resp.

1. (a) 0 ∈ E.
(b) If 0 6= a ∈OT , then a ∈ E. K(a) = {a}.
(c) If {îi : i ≤ m} ⊂ E and 0 6= bi ∈ OT , then

∑
i≤mΛ

îibi = Λ
î0b0 + ···+

Λîmbm ∈ E. K(
∑
i≤mΛ

îibi) = {bi : i ≤m}∪
⋃
{K(îi) : i ≤m}.

(d) For sequences Eí = (í2, ... ,íN–1), let K(Eí) =
⋃
2≤i≤N–1K(íi).

2. (a) SC ⊂ P⊂OT .
(b) 0 ∈OT , and K ∈ SC.
(c) If {αi : i ≤m} ⊂ P(m> 0), then α0+ ···+αm ∈OT .
(d) If {â ,ã} ⊂OT , then ϕâã ∈ P.
(e) If â ∈OT , then Ωâ ∈ SC.

(f) Let ð ∈ SC, a ∈ OT and Eí = (í2, ... ,íN–1) be a sequence of terms íi ∈ E.
Then ø Eí

ð(a) ∈ SC.

Definition 3.2. A finite set Kä(α)⊂OT for ä,α ∈OT , a relation α < â on OT ,
and a relation í < î on E are defined simultaneuously as follows. α ≤ â :⇔ α <
â ∨α = â .

1. Kä(0) = Kä(K) = ∅ Kä(α0 + ···+αm) = Kä(α0, ... ,αm). Kä(ϕâã) = Kä(â ,ã).
Kä(ù

â) = Kä(â). Kä(Ωâ) = Kä(â). Kä(ø
Eí
ð(a)) = ∅ if ø Eí

ð(a) < ä. Otherwise
Kä(ø

Eí
ð(a)) = {a}∪Kä(a,ð)∪

⋃
{Kä(b) : b ∈ K(Eí)}.
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2. (a) 0< α for 0 6= α ∈OT .
(b) α0 + ···+αm < â0 + ···+ ân iff either there exists a p ≤ min{n,m} such
that ∀i < p(αi = âi) and αp < âp, or n<m and ∀i ≤ n(αi = âi). For â ∈ P,
α0+ ···+αm <â iff ∀i≤m(αi <â), and â<α0+ ···+αm iff ∃i≤m(â ≤αi).

(c) α0 = ϕâ0ã0 < ϕâ1ã1 = α1 iff â0 < â1&ã0 < α1 or â0 = â1&ã0 < ã1 or â1 <
â0&α0<ã1.Forα ∈SC,ϕâã<α iffâ ,ã<α, andα<ϕâã iffα≤ â∨α≤ ã.

(d) Ωα <Ωâ iffα<â . Ωα <ø
Eí
ð(a) iffα<ø

Eí
ð(a), andø

Eí
ð(a)<Ωα iffø

Eí
ð(a)≤α.

(e) ø Eí
ð(b)<ø

Eî
κ(a) iff one of the following cases holds:

(i) ð ≤ ø
Eî
κ(a).

(ii) b< a, ø Eí
ð(b)< κ, and K

ø
Eî
κ(a)
({ð,b}∪K(Eí))< a.

(iii) b≥ a, and b≤ K
øEí
ð(b)
({κ,a}∪K( Eî)).

(iv) b= a, ð = κ, K
ø

Eî
κ(a)
(K(Eí))< a, and Eí <lx,2 Eî, cf.Definition 2.17.

3. í < î for í,î ∈ E is defined. 0 < a <
∑
i≤mΛ

îibi.
∑
i≤nΛ

íiai <
∑
i≤mΛ

îibi

iff either there exists a p ≤ min{n,m} such that ∀i < p[(íi,ai) = (îi,bi)] and
(íp,ap)< (îp,bp) lexicographically, or n<m and ∀i ≤ n[(íi,ai) = (îi,bi)].

Proposition 3.3. (OT ,<) is a computable linear ordering.

Proof. ℓα denotes the number of occurrences of symbols {0,K,Λ,+,ϕ,Ω,ø} in
terms α ∈OT ∪E. Note that ℓâ < ℓα for any â ∈Kä(α). It is clear that both α ∈OT
and α < â are decidable for terms over symbols {0,K,Λ,+,ϕ,Ω,ø}.
For α,â ,ã ∈OT , α 6< α, α < â ∨α = â ∨â < α, and α < â < ã ⇒ α < ã are seen

simultaneously by induction on ℓα+ ℓâ+ ℓã as in [1]. ⊣

An ordinal term is said to be a regular term if it is one of the form K, Ωâ+1 or

ø Eí
ð(a) with a nonzero sequence Eí 6= E0.K and the latter termsø Eí

ð(a) areMahlo terms.
α =NF α0+ ···+αm means that α = α0+ ···+αm, α0 ≥ ··· ≥ αm, and each αi is a

nonzero additive principal number. α =NF ϕâã means that α = ϕâã and â ,ã < α.
α =NF ù

â means that α = ùâ > â . α =NF Ωâ means that α =Ωâ > â .

Let pd(ø Eí
ð(a)) = ð (even if Eí = E0). Moreover for n, pd(n)(α) is defined recursively

by pd(0)(α) = α and pd(n+1)(α)≃ pd(pd(n)(α)).
For terms ð,κ, ð ≺ κ denotes the transitive closure of the relation {(ð,κ) :

∃ Eî∃b[ð = ø
Eî
κ(b)]}, and its reflexive closure ð � κ :⇔ ð ≺ κ ∨ ð = κ ⇔ ∃n(κ =

pd(n)(ð)).
For each ordinal term α = ø Eí

ð(a), a series (ði)i≤L of ordinal terms is uniquely
determined as follows: ðL = α, ði = pd(ði+1) and ð0 = K. Let us call the series
(ði)i≤L the collapsing series of α = ðL.

Thenwe see that an ordinal termα=ø Eí
ð(a) with Eí 6= E0 is constructed byDefinition

3.4.2g below iff L= 1. α is constructed by Definition 3.4.2i iff L≡ 1(mod (N – 2)).
Otherwise α is constructed by Definition 3.4.2h.

Definition 3.4. Subsets OT ⊂OT and E ⊂ E are defined recursively as follows.
Also we define sequences (mk(α))2≤k≤N–1 for α ∈OT ∩K.

1. (a) 0 ∈ E.
(b) If 0 6= a ∈OT , then a ∈ E.
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(c) If {îi : i ≤ m} ⊂ E, î0 > ···> îm 6= 0 and 0 6= bi ∈ OT , then
∑
i≤mΛ

îibi =

Λî0b0+ ···+Λîmbm ∈ E.
2. (a) 0,K ∈OT . mk(0) = 0 for any k.
(b) If α =NF αm+ ···+α0 (m > 0) with {αi : i ≤ m} ⊂ OT , then α ∈ OT , and
mk(α) = 0 for any k.

(c) If α =NF ϕâã with {â ,ã} ⊂OT ∩K, then α ∈OT , and mk(α) = 0 for any
k.

(d) If α =NF ù
â :≡ ϕ0â with K < â ∈ OT , then α ∈ OT , and mk(α) = 0 for

any k.
(e) If α =NF Ωâ with â ∈OT ∩K, then α ∈OT . m2(α) = 1,mk(α) = 0 for any
k > 2 if â is a successor ordinal. Otherwise mk(α) = 0 for any k.

(f) Let α =øð(a) :=ø
E0
ð(a) with ð,a∈OT where ð is a regular term, i.e., either

ð=K or Em(ð) 6= E0, andKα(ð,a)< a.Then α =øð(a) ∈OT . Letmk(α) = 0
for any k.

(g) Let α = ø Eí
K
(a) with Eí = E0∗ (b)(lh(Eí) =N – 2) and b,a ∈OT such that 0<

b≤ a andKα(b,a)< a.Then α =ø
Eí
K
(a) ∈OT . LetmN–1(α) = b,mk(α) = 0

for k <N – 1.
(h) Let ð ∈ OT ∩K be such that mk+1(ð) 6= 0 and ∀i > k+1(mi(ð) = 0) for a
k (2≤ k ≤N – 2), and b,a ∈ OT such that 0≤ b≤ a. Let Eí = (í2, ... ,íN–1)
be a sequence defined by ∀i < k(íi = mi(ð)), ík = mk(ð)+Λ

mk+1(ð)b, and
∀i > k(íi = 0).Then α = ø

Eí
ð(a) ∈OT if Kα(ð,a,b)∪Kα(K( Em(ð)))< a. Let

mi(α) = íi for each i.
(i) Let ð ∈OT ∩K be such thatm2(ð) 6= 0 and ∀i> 2(mi(ð) = 0), and a ∈OT .
Let E0 6= Eí = (í2, ... ,íN–1) ∈ SD be a sequence of ordinal terms íi ∈ E such
that Eí <sp m2(ð).Then α = ø

Eí
ð(a) ∈OT if Kα(ð,a)< a and

∀k(Kα(ík)<maxK(ík)). (4)

Let mi(α) = íi for each i.

Let {ð,a,î} ⊂Ha(ð). Then î =mk(ð) is intended to be equivalent to ð ∈Mh
a
k(î).

Proposition 3.5. For each Mahlo term α = ø Eí
ð(a) ∈OT, Em(α) = Eí ∈ SD for the

class SD in Definition 2.20.

Proposition 3.6. For any α ∈ OT and any ä such that ä = 0,K or ä = ø Eí
ð(b) for

some ð,b, Eí, α ∈Hã(ä)⇔ Kä(α)< ã.

Proof. By induction on ℓα. ⊣

Proposition 3.7. 1. Let â = ø Eí
ð(b) with ð = ø

Eî
κ(a). Then a< b.

2. For α = ø Eí
ð(a) ∈OT, maxK(Eí)≤ a holds.

Proof. 3.7.1. Let â =ø Eí
ð(b) with ð=ø

Eî
κ(a). ThenKâ({ð,b}∪K(Eí))< b. On the

other hand we have â < ð. Hence a ∈ Kâ(ð)< b.
3.7.2. This is seen by induction on ℓα. We have c < a by Proposition 3.7.1 when

ð=ø Eì
ó (c).Whenα is constructed byDefinition 3.4.2h, ík =mk(ð)+Λ

mk+1(ð)b holds

for b≤ a. By IH we have maxK( Em(ð))≤ c< a when ð = ø Eì
ó (c).
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Suppose α is constructed by Definition 3.4.2i. We obtain Eí <sp m2(ð), and hence
maxK(Eí)≤maxK(m2(ð))≤ c< a by IH. ⊣

Lemma 3.8. OT is isomorphic to a subset of HΛ(0). (OT ,<) is a computable
notation system for ordinals. In particular the order type of the initial segment {α ∈
OT : α <Ω1} is less than ù

CK
1 .

Proof. This is seen referring to Propositions 2.19, 3.6, and 3.7.2. To see
ø Eí
ð(a) < ð in Definition 3.4.2h, see Corollary 2.12, and in Definition 3.4.2i, see
Proposition 2.13. ⊣

§4. Operator controlled derivations. In this section, operator controlled deriva-
tions are defined, which are introduced by Buchholz [7].
In this and the next sections except otherwise stated α,â ,ã, ... ,a,b,c,d, ...

range over ordinal terms in OT ⊂ HΛ(0), î,æ ,í,ì, é, ... range over ordinal terms

in E, Eî, Eæ , Eí, Eì,Eé, ... range over finite sequences over ordinal terms in E, and
ð,κ,ñ,ó,ô,ë, ... range over regular ordinal terms K, Ωâ+1, ø

Eí
ð(a) with Eí 6= E0. Reg

denotes the set of regular ordinal terms. We write α ∈ Ha(â) for Kâ(α) < a, cf.
Proposition 3.6.

4.1. Classes of sentences. Following Buchholz [7] let us introduce a language for
ramified set theory RS.

Definition 4.1. RS-terms and their levels are inductively defined.

1. For each α ∈OT ∩K, Lα is an RS-term of level α.
2. If φ(x,y1, ... ,yn) is a set-theoretic formula in the language {∈}, and a1, ... ,an
are RS-terms of levels < α, then [x ∈ Lα : φ

Lα (x,a1, ... ,an)] is an RS-term of
level α.

Each ordinal term α is denoted by the ordinal term [x ∈ Lα : x is an ordinal],
whose level is α.

Definition 4.2. 1. |a| denotes the level of RS-terms a, and Tm(α) the set of
RS-terms of level < α. Tm = Tm(K) is then the set of RS-terms, which are
denoted by a,b,c,d, ...

2. RS-formulas are constructed from literals a ∈ b,a 6∈ b by propositional con-
nectives ∨,∧, bounded quantifiers ∃x ∈ a,∀x ∈ a and unbounded quantifiers
∃x,∀x. Unbounded quantifiers ∃x,∀x are denoted by ∃x ∈ LK,∀x ∈ LK, resp.

3. For RS-terms and RS-formulas é, k(é) denotes the set of ordinal terms α such
that the constant Lα occurs in é.

4. For a set-theoretic Σn-formula ø(x1, ... ,xm) in {∈} and a1, ... ,am ∈ Tm(κ),
øLκ (a1, ... ,am) is a Σn(κ)-formula, where n = 0,1,2, ... and κ ≤ K. Πn(κ)-
formulas are defined dually.

5. For è ≡ øLκ (a1, ... ,am) ∈ Σn(κ) and ë < κ, è
(ë,κ) :≡ øLë(a1, ... ,am).

Note that the level |t|=max({0}∪k(t)) for RS-terms t. In what follows we need
to consider sentences. Sentences are denoted A,C possibly with indices.
The assignment of disjunctions and conjunctions to sentences is defined as in [7].
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Definition 4.3. 1. For b,a ∈ Tm(K) with |b|< |a|,

(bε a) :≡

{
A(b) if a≡ [x ∈ Lα : A(x)],
b 6∈ L0 if a≡ Lα

and (a= b) :≡ (∀x ∈ a(x ∈ b)∧∀x ∈ b(x ∈ a)).
2. For b,a ∈ Tm(K) and J := Tm(|a|)

(b ∈ a) :≃
∨
(cεa∧ c= b)c∈J and (b 6∈ a) :≃

∧
(c 6εa∨ c 6= b)c∈J .

3. (A0∨A1) :≃
∨
(Aé)é∈J and (A0∧A1) :≃

∧
(Aé)é∈J for J := 2.

4. For a ∈ Tm(K)∪{LK} and J := Tm(|a|)

∃x ∈ aA(x) :≃
∨
(bεa∧A(b))b∈J and ∀x ∈ aA(x) :≃

∧
(b 6ε a∨A(b))b∈J .

The rank rk(é) of sentences or terms é is defined as in [7].

Definition 4.4. 1. rk(¬A) := rk(A).
2. rk(Lα) = ùα.
3. rk([x ∈ Lα : A(x)]) = max{ùα+1,rk(A(L0))+2}.
4. rk(a ∈ b) = max{rk(a)+6,rk(b)+1}.
5. rk(A0∨A1) := max{rk(A0), rk(A1)}+1.
6. rk(∃x ∈ aA(x)) := max{ùrk(a), rk(A(L0))+2} for a ∈ Tm(K)∪{LK}.

Proposition 4.5. Let A be a sentence with A≃
∨
(Aé)é∈J or A≃

∧
(Aé)é∈J .

1. rk(A)<K+ù.
2. |A| ≤ rk(A) ∈ {ù|A|+ i : i ∈ ù}.
3. ∀é ∈ J(rk(Aé)< rk(A)).
4. rk(A)< ë⇒ A ∈ Σ0(ë)

4.2. Operator controlled derivations. By an operator we mean a map H, H :
P(OT)→P(OT), such that

1. ∀X ⊂OT[X ⊂H(X)].
2. ∀X ,Y ⊂OT[Y ⊂H(X)⇒H(Y)⊂H(X)].

For an operator H and Θ,Θ1 ⊂ OT , H[Θ](X) := H(X ∪Θ), and H[Θ][Θ1] :=
(H[Θ])[Θ1], i.e.,H[Θ][Θ1](X) =H(X ∪Θ∪Θ1).
ObviouslyHα in Definition 2.5.1 is an operator for any α, and ifH is an operator,

then so isH[Θ].
Sequents are finite sets of sentences, and inference rules are formulated in one-

sided sequent calculus. Let H =Hã (ã ∈ OT) be an operator, Θ a finite set of K, Γ
a sequent, a ∈OT and b ∈OT ∩ (K+ù).
Wedefine a relation (Hã ,Θ)⊢

a
b Γ,which is read ‘there exists an infinitary derivation

of Γ which is Θ-controlled by Hã , and whose height is at most a and its cut rank is
less than b’.
κ,ë,ó,ô,ð ranges over regular ordinal terms.

Definition 4.6. (Hã ,Θ) ⊢
a
b Γ holds if

k(Γ)∪{a} ⊂ Hã [Θ] (5)
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and one of the following cases holds:

(
∨
) A≃

∨
{Aé : é ∈ J}, A ∈ Γ and there exist é ∈ J and a(é)< a such that

|é|< a (6)

and (Hã ,Θ) ⊢
a(é)
b
Γ,Aé .

(
∧
) : A≃

∧
{Aé : é ∈ J}, A ∈ Γ and for every é ∈ J there exists an a(é)< a such

that (Hã ,Θ∪{k(é)}) ⊢a(é)
b
Γ,Aé .

(cut) : There exist a0 < a and C such that rk(C)< b and (Hã ,Θ) ⊢
a0
b
Γ,¬C and

(Hã ,Θ) ⊢
a0
b
C,Γ.

(Ω ∈M2) : There exist ordinals aℓ , ar(α) and a sentence C ∈ Π2(Ω) such
that sup{aℓ +1,ar(α)+1 : α < Ω} ≤ a, b ≥ Ω, (Hã ,Θ) ⊢

aℓ
b
Γ,C and (Hã ,Θ∪

{ùα}) ⊢ar(α)
b

¬C(α,Ω),Γ for any α <Ω.

(rfl(ð,k, Eî, Eí)) : There exist aMahlo ordinalK≥ ð ∈Hã [Θ]∩(b+1), an integer

2 ≤ k ≤ N and sequences Eí = (í2, ... ,íN–1), Eî = (î2, ... ,îN–1) ∈ SD of ordinals
íi,îi ∈ E, ordinals aℓ ,ar(ñ),a0, and a finite set ∆ of Σk(ð)-sentences enjoying
the following conditions: When ð = K, k = N and Eí = E0 with lh(Eí) = N – 1
hold. Also let Eî = E0 in this case. When ð < K, îk 6= 0 with k < N, E0 6= Eî, and
∀i(îi ≤sp mi(ð)).
1. When ð <K, cf.Definitions 2.1.9,

∀i < k(íi = îi)&(ík, ... ,íN–1)<sd îk&K(Eí)∪K( Eî)⊂Hã [Θ] (7)

and

∀ì ∈ Eí ∪ Eî∪ Em(ð)(K(ì)⊂HmaxK(ì)[Θ]) (8)

cf.(4).
2. For each ä ∈ ∆, (Hã ,Θ) ⊢

aℓ
b
Γ,¬ä.

3. H(Eí,ð,ã,Θ) denotes the resolvent class for Eí, ð, ã and Θ defined as follows:

C(ð,ã,Θ) := {ñ < ð :Hã(ñ)∩ð ⊂ ñ&Θ∩ð ⊂ ñ} (9)

ñ ∈H(Eí,ð,ã,Θ) :⇔∀i(íi ≤sp mi(ñ)∧K(mi(ñ))⊂HmaxK(mi(ñ))(ñ))

for ñ ∈ Reg∩C(ð,ã,Θ).

Then for each ñ ∈H(Eí,ð,ã,Θ), (Hã ,Θ∪{ñ}) ⊢ar(ñ)
b
Γ,∆(ñ,ð).

4.

sup{aℓ ,ar(ñ) : ñ ∈H(Eí,ð,ã,Θ)} ≤ a0 ∈Hã [Θ]∩a. (10)

In the inference rule (rfl(ð,k, Eî, Eí)) for ð = ø
Eî
ó(c) < K, we have ð ∈Mhc2(

Eî). In
particular, ð ∈

⋂
i<kMh

c
i (îi)∩Mh

c
k(îk). Also we are assuming (ík, ... ,íN–1)<sd îk,

a fortiori (ík, ... ,íN–1) < îk. Since ð ∈
⋂
i<kMh

c
i (íi) is a Πk-sentence holding on

Lð, we obtain ð ∈Mk(Mh
c
2(Eí)). Thus the reflection rule (rfl(ð,k, Eí)) says that ð

is Πk-reflecting on the class H(Eí,ð,ã,ã0,Θ) for the club subset C(ð,ã,Θ) of ð, cf.
Proposition 2.13. On the other side we see ñ ∈Mha2(Eí) from Proposition 2.9 if
∀i(íi ≤mi(ñ)) for ñ ∈Mh

a
2( Em(ñ)).

We will state some lemmas for the operator controlled derivations. These can be
shown as in [7]. In what follows by an operatorH we mean anHã for an ordinal ã.
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Lemma 4.7. Let (Hã ,Θ) ⊢
a
b Γ.

1. (Hã′ ,Θ∪Θ0) ⊢
a′

b′
Γ,∆ for any ã ′ ≥ ã, any Θ0, and any a

′ ≥ a, b′ ≥ b such that
k(∆)∪{a′} ⊂ Hã′ [Θ∪Θ0].

2. Assume Θ1∪{c}=Θ, c ∈Hã [Θ1]. Then (Hã ,Θ1) ⊢
a
b Γ.

Lemma 4.8 (Tautology). (H,k(Γ∪{A})) ⊢2rk(A)0 Γ,¬A,A.

Lemma 4.9 (Inversion). Let A≃
∧
(Aé)é∈J , and (H,Θ) ⊢

a
b Γ with A ∈ Γ. Then for

any é ∈ J, (H,Θ∪k(é)) ⊢ab Γ,Aé holds.

Lemma 4.10 (Boundedness). Suppose (H,Θ) ⊢ac Γ,C for a C ∈ Σ1(ë), and a≤ b ∈
H∩ë. Then (H,Θ) ⊢ac Γ,C

(b,ë).

Lemma 4.11 (Persistency). Suppose (H,Θ) ⊢ac Γ,C
(b,ë) for a C ∈ Σ1(ë) and a

b< ë ∈H[Θ]. Then (H,Θ) ⊢ac Γ,C.

Lemma 4.12 (Predicative Cut-elimination). Suppose (H,Θ) ⊢bc+ùa Γ, a ∈ H[Θ]

and ]c,c+ùa]∩Reg= ∅. Then (H,Θ) ⊢ϕabc Γ.

Lemma 4.13 (Embedding of Axioms).
For each axiom A in KPΠN , there is an m<ù such that for any operatorH=Hã ,

(H,∅) ⊢K·2
K+m A holds.

Proof. The axiom ¬A,∃zA(z) for ΠN-reflection follows from A,¬A and
∃zA(z),¬A(ñ) for regular ordinals ñ <K by an inference (rfl(K,N, E0, E0)). ⊣

Lemma 4.14 (Embedding). IfKPΠN ⊢Γ for a setΓ of sentences, there arem,k<ù
such that for any operatorH=Hã , (H,∅) ⊢

K·2+k
K+m Γ holds

§5. Lowering and eliminating higher Mahlo operations. In this section inferences
(rfl(K,N, E0, E0)) for ΠN-reflecting ordinalsK are eliminated from operator controlled
derivations of Σ1-sentences ϕ

LΩ over Ω.
α#â denotes the natural (commutative) sum of ordinal terms α,â .

Lemma 5.1. For a Mahlo term ð ∈ OT, Eî ∈ SD denotes a sequence with lh( Eî) =
N – 2, and 2≤ k≤N – 1 an integer for which the following hold:When ð=K, let Eî = E0
and k =N – 1. Eî = (î2, ... ,îk+1)∗ E0 with îk+1 6= 0 such that ∀i ≤ k+1(îi ≤sp mi(ð)).

For ordinal terms ã,a ∈ OT let us define a sequence Eæ(a) := (æ2(a), ... ,æk(a)) ∗ E0
with lh(Eæ(a)) = N – 2 as follows. Eæ(a) = E0 ∗ (ã + a) when ð = K. Otherwise æk(a) =
îk+Λ

îk+1(ã+a) and æi(a) = îi for i < k.
Let κ ∈H(Eæ(a),ð,ã,Θ) for a finite set Θ⊂OT.
Now suppose (Hã ,Θ) ⊢

a
ð Γ where {ã,ð} ∪K( Eî) ⊂ Hã [Θ], Θ ⊂ ð, ∀i(K(îi) ⊂

HmaxK(îi)[Θ]), and Γ⊂Πk+1(ð).
Let ã(a,b) = ã#a#b, â(a,b) = øð(ã(a,b)), and c > ã(a,κ). Then the following

holds:

(Hc,Θ∪{κ}) ⊢â(a,κ)κ Γ(κ,ð). (11)
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Proof. By induction on a. Let κ ∈H(Eæ(a),ð,ã,Θ). We see Eæ(a) ∈ SD, and from
(5) and Θ⊂ κ that

k(Γ)∩ð ⊂Hã(κ)∩ð ⊂ κ. (12)

For any a ∈ Hã [Θ], we obtain {ã,ð,a,κ} ⊂ Hã(ð) by Θ∪ {κ} ⊂ ð. Hence for
ã(a,κ) = ã#a#κ, {ã(a,κ),ð} ⊂ Hã(ð), and {ã(a,κ),ð} ⊂ Hã(a,κ)(â(a,κ)) by the
definition (3). Therefore κ ∈ Hã(a,κ)(â(a,κ))∩ð ⊂ â(a,κ) by Proposition 2.6, and
Θ⊂ â(a,κ)< ð. Thus we obtain

{a0,a1} ⊂ Hã [Θ∪Θ0]&a0 < a1&Θ0 ⊂ κ⇒ â(a0,κ)< â(a1,κ).

Case 1. First consider the case when the last inference is a (rfl(ð,k+1, Eî, Eí)).
We have aℓ ∈ Hã [Θ]∩ a, ar(ñ) ∈ Hã [Θ∪{ñ}]∩ a, and a finite set ∆ of Σk+1(ð)-

sentences. We have for each ä ∈ ∆

(Hã ,Θ) ⊢
aℓ
ð Γ,¬ä (13)

and for each ñ ∈H(Eí,ð,ã,Θ)

(Hã ,Θ∪{ñ}) ⊢ar(ñ)ð Γ,∆(ñ,ð). (14)

When ð < K, Eí = (í2, ... ,íN–1) ∈ SD is a sequence such that ∀i < k+1(íi = îi),
(ík+1, ... ,íN–1)<sd îk+1, K(Eí)∪K( Eî)⊂Hã [Θ], and ∀i(K(íi)⊂HmaxK(íi)[Θ]), cf. (7)
and (8).
Let Γ0 = Γ∩Σk(ð) and {∀x ∈ Lð èi(x) : i = 1, ... ,n}(n ≥ 0) = Γ \Γ0 for Σk(ð)-

formulas èi(x). Let us fix Ed = {d1, ... ,dn} ⊂ Tm(κ) arbitrarily. Put k(Ed) =
⋃
{k(di) :

i = 1, ... ,n} and Γ(Ed) = Γ0∪{èi(di) : i = 1, ... ,n}.
By Inversion lemma 4.9 from (13) we obtain for each ä ∈ ∆

(Hã ,Θ∪k(Ed)) ⊢
aℓ
ð Γ(Ed),¬ä. (15)

Let ñ ∈ C(κ,c,Θ∪{κ}∪ k(Ed)). We see ñ < κ, and k(Ed) < ñ from k(Ed) < κ. By

Θ∩ ð ⊂ Hã(κ)∩ ð ⊂ κ and ã ≤ c we obtain C(κ,c,Θ∪ {κ}∪ k(Ed)) ⊂ C(ð,ã,Θ).
Namely, cf. (9)

ñ ∈H(Eí,κ,c,Θ∪{κ}∪k(Ed))⇒ ñ ∈H(Eí,ð,ã,Θ). (16)

For each ñ ∈ H(Eí,κ,c,Θ ∪ {κ} ∪ k(Ed)), IH with (14) and (16) yields for c >

ã(ar(ñ),κ) and κ ∈H(Eæ(ar(ñ)),ð,ã,Θ∪{ñ})

(Hc,Θ∪{ñ,κ}) ⊢â(ar(ñ),κ)κ Γ(κ,ð),∆(ñ,ð). (17)

Let ñ ∈Mℓ := {ñ ∈ Reg : ∀i(æi(aℓ) ≤sp mi(ñ))} ∩H(Eí,κ,c,Θ∪ {κ} ∪ k(Ed)). Then

Mℓ ⊂H(Eæ(aℓ),ð,ã,Θ∪k(Ed)) and Θ∪k(Ed)⊂ ñ. For each ä ∈ ∆, IH with (15) yields
for c> ã(aℓ ,ñ)

(Hc,Θ∪k(Ed)∪{ñ}) ⊢
â(aℓ ,ñ)
ñ Γ(Ed)(ñ,ð),¬ä(ñ,ð). (18)

From (17) and (18) by several (cut)’s of ä(ñ,ð) with rk(ä(ñ,ð)) < κ we obtain for
a(ñ) = max{aℓ ,ar(ñ)} and some p<ù

{(Hc,Θ∪k(Ed)∪{κ,ñ}) ⊢â(a(ñ),κ)+pκ Γ(Ed)(ñ,ð),Γ(κ,ð) : ñ ∈Mℓ}. (19)
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On the other hand we have by Tautology lemma 4.8 for each è(Ed)(κ,ð) ∈ Γ(Ed)(κ,ð)

(Hã ,Θ∪k(Ed)∪{κ}) ⊢2rk(è(
Ed)(κ,ð))

0 Γ(Ed)(κ,ð),¬è(Ed)(κ,ð) (20)

where 2rk(è(Ed)(κ,ð))≤ κ+p for some p<ù.
Moreover we have sup{2rk(è(Ed)(κ,ð)),â(a(ñ),κ)+ p : ñ ∈Mℓ} ≤ â(a0,κ)+ p ∈

Hã [Θ∪{κ}], where sup{aℓ ,ar(ñ) : ñ ∈H(Eí,ð,ã,Θ)} ≤ a0 < a by (10).

Now let Eì = (ì2, ... ,ìN–1) = max{Eæ(aℓ), Eí} with ìi = max{æi(aℓ),íi}. Since

íi = îi ≤pt æi(aℓ) for i < k+ 1, we obtain ìi =

{
æi(aℓ) i ≤ k,
íi i > k.

We see that

Mℓ = H( Eì,κ,c,Θ ∪ {κ} ∪ k(Ed)). Moreover we have ∀i < k(ìi = îi = æi(a))
and (ìk, ... ,ìN–1) = (æk(aℓ)) ∗ (ík+1, ... ,íN–1) <sd æk(a). Also ∀i(K(æi(a)) ⊂
HmaxK(æi(a))[Θ]) and ∀i(K(ìi) ⊂ HmaxK(ìi)[Θ]). For ¬Γ(Ed)(κ,ð) ⊂ Πk(κ), by an

inference rule (rfl(κ,k, Eæ(a), Eì)) with its resolvent classMℓ , we conclude from (20)

and (19) that (Hc,Θ∪{κ}∪ k(Ed)) ⊢
â(a0,κ)+p+1
κ Γ(Ed)(κ,ð),Γ(κ,ð). Since Ed ⊂ Tm(κ) is

arbitrary, several (
∧
)’s yield (11).

Case 2. Second consider the case when the last inference is a (rfl(ð, j, Eî, Eí)) for a
j < k+1. We have (Hã ,Θ) ⊢

aℓ
ð Γ,¬ä for each ä ∈ ∆⊂ Σj(ð) with aℓ ∈Hã [Θ]∩a, and

(Hã ,Θ∪{ñ}) ⊢ar(ñ)ð Γ,∆(ñ,ð) for each ñ ∈H(Eí,ð,ã,Θ) with ar(ñ) ∈Hã [Θ∪{ñ}]∩a.
Eí ∈ SD is a sequence such that ∀i < j(íi = îi) and (íj, ... ,íN–1)<sd îj.
We see that the resolvent class H(Eí,κ,c1,Θ∪{κ}) is a subclass of H(Eí,ð,ã,Θ).

By IH we have (Hc,Θ ∪ {κ}) ⊢
â(aℓ ,κ)
κ Γ(κ,ð),¬ä(κ,ð) for each ä ∈ ∆, and

(Hc,Θ ∪ {κ,ñ}) ⊢â(ar(ñ),κ)κ Γ(κ,ð),∆(ñ,ð) for each ñ ∈ H(Eí,κ,c,Θ ∪ {κ}) with
∆(ñ,ð) = (∆(κ,ð))(ñ,κ). We claim that ∀i ≤ j(îj ≤sp mi(κ)). Consider the case when
i = j = k. Then we have îk ≤sp mk(ð) and æk(a) ≤sp mk(κ) with îk <pt æk(a). We

obtain îk ≤sp mk(κ). Hence by an inference rule (rfl(κ, j, Eî(j), Eí)) for the sequence
Eî(j) = (î2, ... ,îj)∗ E0 ∈ SD, cf. Proposition 2.21.1, we obtain (11).
Case 3. Third consider the case when the last inference is a (rfl(ó, j, Eì, Eí)) for a

ó < ð. We have (Hã ,Θ) ⊢
aℓ
ð Γ,¬ä for each ä ∈ ∆ ⊂ Σj(ó), and (Hã ,Θ∪{ñ}) ⊢ar(ñ)ð

Γ,∆(ñ,ó) for each ñ ∈H(Eí,ó,ã,Θ). We obtain ó < κ by (12) for ó ∈ Hã [Θ]. Hence

∆⊂Σ10(ó)⊂Σ0(κ) and ä
(κ,ð)≡ ä for any ä ∈∆.LetH(Eí,ó,c,Θ∪{κ}) be the resolvent

class for ó, Eí, c and Θ∪{κ}. Then H(Eí,ó,c,Θ∪{κ})⊂H(Eí,ó,ã,Θ).

From IH we have (Hc,Θ∪{κ}) ⊢
â(aℓ ,κ)
κ Γ(κ,ð),¬ä for each ä ∈ ∆, and (Hc,Θ∪

{κ,ñ}) ⊢â(ar(ñ),κ)κ Γ(κ,ð),∆(ñ,ó) for each ñ ∈H(Eí,ó,c,Θ∪{κ}). We obtain (11) by an
inference rule (rfl(ó, j, Eì, Eí)) with the resolvent class H(Eí,ó,c,Θ∪{κ}).
Case 4. Fourth consider the case when the last inference (

∧
) introduces a

Πk+1(ð)-sentence (∀x ∈ Lð è(x)) ∈ Γ. We have (Hã ,Θ∪k(d)) ⊢a(d)ð Γ,è(d) for each

d ∈Tm(ð). For each d ∈Tm(κ), IHwith k(d)<κ yields (Hc,Θ∪{κ}∪k(d))⊢â(a(d),κ)κ

Γ(κ,ð),è(d)(κ,ð). (
∧
) yields (11) for ∀x ∈ Lκ è(x)

(κ,ð) ≡ (∀x ∈ Lð è(x))
(κ,ð) ∈ Γ(κ,ð).

Case 5. Fifth consider the case when the last inference (
∧
) introduces a Σ0(ð)-

sentence (∀x ∈ cè(x)) ∈ Γ for a c ∈ Tm(ð). We have (Hã ,Θ∪ k(d)) ⊢a(d)ð Γ,è(d)
for each d ∈ Tm(|c|). Then we have |d| < |c| < κ by (12). IH yields (Hc,Θ∪{κ}∪

k(d) ⊢â(a(d),κ)κ Γ(κ,ð),è(d), and we obtain (11) by an inference (
∧
).
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Case 6. Sixth consider the case when the last inference (
∨
) introduces a Σk(ð)-

sentence (∃x ∈ Lð è(x)) ∈ Γ. We have (Hã ,Θ) ⊢
a0
ð Γ,è(d) for a d ∈ Tm(ð). Without

loss of generality we can assume that k(d) ⊂ k(è(d)). Then we see that |d| < κ
from (12), and d ∈ Tm(κ). Also |d| < κ < â(a,κ) for (6). IH yields with (∃x ∈

Lð è(x))
(κ,ð)≡ (∃x∈Lκ è(x)

(κ,ð))∈Γ(κ,ð), (Hc,Θ∪{κ})⊢
â(a0,κ)
κ Γ(κ,ð),è(d)(κ,ð), and

we obtain (11) by an inference (
∨
).

Case 7. Seventh consider the case when the last inference is a (cut). We have
(Hã ,Θ) ⊢

a0
ð Γ,¬C and (Hã ,Θ) ⊢

a0
ð C,Γ for a0 < a with rk(C) < ð. Then C ∈ Σ0(ð)

by Proposition 4.5.4. On the other side k(C) ⊂ ð holds by Proposition 4.5.2. Then
k(C)⊂ κ by (12). Hence C(κ,ð) ≡ C and rk(C(κ,ð))< κ again by Proposition 4.5.2.

IH yields (Hc,Θ∪{κ}) ⊢
â(a0,κ)
κ Γ(κ,ð),¬C(κ,ð) and (Hc,Θ∪{κ}) ⊢

â(a0,κ)
κ C(κ,ð),Γ(κ,ð).

Hence by a (cut) we obtain (11).
Case 8. Eighth consider the case when the last inference is an (Ω ∈M2). We

have (Hã ,Θ) ⊢
aℓ
ð Γ,C and (Hã ,Θ∪ {ùα}) ⊢ar(α)ð ¬C(α,Ω),Γ for each α < Ω with

sup{aℓ +1,ar(α)+1 : α <Ω} ≤ a and C ∈Π2(Ω).
We obtain ùα < κ for α <Ω. IH with C(κ,ð) ≡ C yields for each α <Ω, (Hc,Θ∪

{κ,ùα}) ⊢â(ar(α),κ)κ ¬C(α,Ω),Γ(κ,ð), and (Hc,Θ∪{κ}) ⊢
â(aℓ ,κ)
κ Γ(κ,ð),C. An (Ω ∈M2)

yields (11)
All other cases are seen easily from IH. ⊣

Lemma 5.2. Let ë ≤ ð be a regular ordinal term such that ∀i(K(mi(ð)) ⊂
HmaxK(mi(ð))[Θ])), and Γ⊂ Σ1(ë).
Suppose for an ordinal term a ∈OT

(Hã ,Θ) ⊢
a
ð Γ

where {ã,ë,ð} ⊂ Hã [Θ].
Assume

∀ñ ∈ [ë,ð]∀d[Θ⊂ øñ(ã#d)]. (21)

Let â= ã#ùð+a+1 and â = øë(â). Then the following holds

(Hâ+1,Θ) ⊢
â

â
Γ. (22)

Proof. By main induction on ð with subsidiary induction on a. We can assume
a> 0.
We see that Θ⊂ â = øë(â) from (21). Hence

a0 ∈Hã [Θ]∩a⇒ øë(â0)<øë(â)

Let Eî ∈ SD be a sequence of ordinals and k a number for which the following hold:
If ð = K, then let Eî = E0 with lh( Eî) = N – 1 and k = N – 1. Let ð < K. If Em(ð) 6= E0,
then K( Eî) ⊂ Hã [Θ], Eî ≤ Em(ð) and k = max{k ≤ N – 2 : îk+1 > 0}. Otherwise let
Eî = E0 and k = 1. By the assumption (21), and (5) we obtain

∀ñ ∈ [ë,ð]∀b ∈ K( Eî)∀d[k(Γ)∪{ã,ë,a,ð,b} ⊂ Hã(øñ(ã#d))] (23)

Case 1. First consider the case when k ≥ 2.
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Let Eî= Em(ð), and Eæ(a) := (æ2(a), ... ,æk(a))∗E0be the sequence defined as inLemma
5.1 from ã,a: Eæ(a) = E0∗ (ã+a) when ð=K, otherwise æk(a) = îk+Λ

îk+1(ã+a) and
æi(a) = îi for i < k. Also let ã(a,b) = ã#a#b and â(a,b) = øðã(a,b).

Letκ :=ø
Eæ(a)
ð (ã(a,0)). By the assumption (21)we haveΘ⊂øð(ã#a).On the other

hand we have øð(ã#a) = øð(ã(a,0))≤ κ, and Θ⊂ κ. ð ∈ Hã [Θ] with Θ⊂ ð yields

K( Eî) = K( Em(ð))⊂Hã [Θ]⊂Hã(a,0)(κ). Hence K( Eî)∪{ð,ã(a,0)} ⊂ Hã(a,0)(κ), and
κ ∈OT by ã(a,0)= ã#a> 0 andDefinition 3.4.2h such thatκ<ð andHã(κ)∩ð⊂κ.
Moreover we have ∀i(K(æi(a))⊂HmaxK(æi(a))[Θ]) by ∀i(K(mi(ð))⊂HmaxK(mi(ð))[Θ])

and {ã,a} ⊂ Hã [Θ] with Θ⊂ κ. In other words, κ ∈H(Eæ(a),ð,ã,Θ).

By Lemma 5.1 we obtain (Hã(a,κ)+1,Θ∪{κ}) ⊢â(a,κ)κ Γ(κ,ð), and Lemma 4.7.2 with
κ ∈Hã(a,0)+1[Θ]

(Hã(a,κ)+1,Θ) ⊢
â(a,κ)
κ Γ(κ,ð). (24)

If ë = ð, then Γ(κ,ð) ⊂ Σ1(κ) ⊂ Σ0(ë). We have Θ ⊂ øð(â) = â , and κ ∈ Hâ(â).
Hence {ã,ð,a,κ} ⊂ Hâ(â), and ã(a,κ) = ã#a#κ < ã#ù

ð+a+1 = â. Therefore κ <
â(a,κ)≤ øð(â) = â . We obtain (22) by Persistency lemma 4.11.
Next consider the case when ë < ð. Then ë < κ and Γ(κ,ð) = Γ. We have

for (21), ∀d∀ñ ∈ [ë,κ](Θ ⊂ øñ(ã(a,κ) + 1#d)). By MIH on (24) we obtain

(Hb0+1,Θ) ⊢
â0
â0
Γ for â0 = øë(b0) with b0 = (ã(a,κ) + 1)#ù

κ+â(a,κ)+1. We have

b0 = ã#a#κ#1#ù
â(a,κ)+1 < ã#ùð+a+1 = â by â(a,κ)< ð. This yields øë(b0) = â0 <

â = øë(â) by Θ⊂ â and {ã,κ,ð,a} ⊂ Hâ(â). Hence (22) follows.
In what follows suppose k = 1.
Case 2. Consider the case when the last inference rule is a (rfl(ð,2, Eî, Eí)).
We have an ordinal term aℓ ∈ Hã [Θ]∩a, and a finite set ∆ of Σ2(ð)-sentences for

which (Hã ,Θ) ⊢
aℓ
ð Γ,¬ä holds for each ä ∈ ∆. On the other hand we have sequences

Eí, (î2)∗ E0 ∈ SD such that Eí <sd î2 and K(Eí)∪K( Eî)⊂Hã [Θ] by (7), and an ordinal

term ar(ñ) ∈ Hã [Θ∪{ñ}]∩a for which (Hã ,Θ∪{ñ}) ⊢ar(ñ)ð Γ,∆(ñ,ð) holds for each
ñ ∈H(Eí,ð,ã,Θ), where î2 ≤sp m2(ð).
Let ñ := ø Eí

ð(âℓ#ð) for âℓ = ã#ù
ð+aℓ+1. By the assumption (21) we have

Θ ⊂ øð(âℓ) ⊂ ñ. K(Eí)∪ {ð,ã,a} ⊂ Hã [Θ] yields K(Eí)∪ {ð, âℓ} ⊂ Hâℓ#ð(ñ). Next
consider the condition (4). We have ∀i(K(íi) ⊂ HmaxK(íi)[Θ]) by (8), and hence
∀i(K(íi)⊂HmaxK(íi)(ñ)) byΘ⊂ ñ. Therefore ñ ∈OT byDefinition 3.4.2i.Moreover
ñ ∈ C(ð,ã,Θ), i.e.,Hã(ñ)∩ð ⊂ ñ&Θ∩ð ⊂ ñ. Hence ñ ∈H(Eí,ð,ã,Θ).
By Inversion lemma 4.9 we obtain for each ä ≡ (∃x ∈ Lðä1(x)) ∈ ∆ and each

d ∈ Tm(ñ) with |d|=max({0}∪k(d)), (Hã#|d|,Θ∪k(d)) ⊢
aℓ
ð Γ,¬ä1(d).

We have {ð,ã, |d|} ⊂ Hã#|d|(ð) by |d| < ñ < ð, and this yields |d| ∈
Hã#|d|(øð(ã#|d|)) ∩ ð ⊂ øð(ã#|d|). Hence |d| < øð(ã#|d|), and ∀e(Θ ∪ k(d) ⊂
øð(ã#|d|#e)), i.e., (21) holds for ë = ð and ã#|d|. Let âd = øð(âd) for

âd = ã#|d|#ù
ð+aℓ+1 = âℓ#|d|. SIH yields (Hâd+1,Θ∪ k(d)) ⊢

âd
âd
Γ,¬ä1(d), which

in turn Boundedness lemma 4.10 yields (Hâð+1,Θ∪k(d)) ⊢
âd
âd
Γ,¬ä

(âd ,ð)
1 (d) for âð =

ã#ð#ùð+aℓ+1 = âℓ#ð. By persistency we obtain (Hâð+1,Θ∪ k(d)) ⊢
âd
ñ Γ,¬ä

(ñ,ð)
1 (d)

for âd <øð(âð) = ñ ∈Hã [Θ]. Since d ∈ Tm(ñ) is arbitrary, (
∧
) yields

(Hâð+1,Θ) ⊢
ñ
ñ Γ,¬ä

(ñ,ð). (25)
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Now pick the ñth branch from the right upper sequents

(Hâð+1,Θ∪{ñ} ⊢ar(ñ)ð Γ,∆(ñ,ð).

By ñ ∈Hâð+1[Θ] and Lemma 4.7.2 we obtain

(Hâð+1,Θ) ⊢
ar(ñ)
ð Γ,∆(ñ,ð). (26)

Case 2.1. First consider the case ë = ð. Then ∆(ñ,ð) ⊂ Σ0(ë). Let âñ = øð(bñ)

with bñ = âð#1#ù
ð+ar(ñ)+1 = ã#ùð+aℓ+1#ùð+ar(ñ)+1#ð#1. Then âñ > ñ and ∀d[Θ∪

{ñ} ⊂ øð(âð+1#d)]. SIH yields for (26)

(Hbñ+1,Θ) ⊢
âñ
âñ
Γ,∆(ñ,ð). (27)

Several (cut)’s with (27), (25) yield (Hâ+1,Θ) ⊢
âñ+p

âñ
Γ for âñ ≥ ñ, âð < bñ < â and

some p<ù, where âñ < â = øð(â) by bñ < â. (22) follows.

Case 2.2. Next consider the case when ë < ð. Then ë < ñ and ∆(ñ,ð) ⊂ Σ1(ñ
+) with

ñ+ =Ωñ+1. SIH with (26) yields (Hbñ+1,Θ∪{ñ}) ⊢
â
ñ+

â
ñ+
Γ,∆(ñ,ð) for âñ+ =øñ+(bñ)>

ñ, and by Lemma 4.7.2 we obtain

(Hbñ+1,Θ) ⊢
â
ñ+

â
ñ+
Γ,∆(ñ,ð). (28)

Several (cut)’s with (25), (28) yield (Hb0+1,Θ) ⊢
â
ñ++p

â
ñ+

Γ for âñ+ > ñ and b0 =

ã#(ùð+aℓ+1 · 2)#ùð+ar(ñ)+1#1 ≥ max{bℓ ,bñ}. Predicative cut-elimination lemma
4.12 yields for â1 = ϕ(âñ+)(âñ+ +p)< ñ

+

(Hb0+1,Θ) ⊢
â1
ñ Γ. (29)

We obtain ë < ñ ∈ Hb0+1[Θ] by ã < âℓ < b0. MIH with (29) yields (Hc+1,Θ) ⊢
øëc
øëc

Γ for c = b0#1#ù
ñ+â1+1. We obtain c = b0#ù

ñ+â1+1#1 = ã#(ùð+aℓ+1 ·
2)#ùð+ar(ñ)+1#ùñ+â1+1#2 < ã#ùð+a+1 = â since aℓ ,ar(ñ) < a and ñ,â1 < ñ

+ < ð.
Hence øëc<øë(â) = â , and (22) follows.
Case 3. Third consider the casewhen the last inference introduces a Σ1(ë)-sentence

(∀x ∈ cè(x)) ∈ Γ for c ∈ Tm(ë). We have (Hã ,Θ∪ k(d)) ⊢a(d)ð Γ,è(d) for each d ∈
Tm(|c|). Then we see from (23) that |d|< |c| ∈ Hã(øñ(ã#e))∩ñ ⊂ øñ(ã#e) for any
ñ ∈ [ë,ð] and any e. Hence |d| ∈ øñ(ã#e). (21) is enjoyed for Θ∪ k(d). SIH yields

(Hâ+1,Θ∪k(d)) ⊢
âd
âd
Γ,è(d) for âd = øë(â(d)). (

∧
) yields (22) for â = øë(â)> âd .

Case 4. Fourth consider the case when the last inference introduces a Σ1(ë)-
sentence (∃x∈Lë è(x))∈Γ.We have (Hã ,Θ) ⊢

a0
ð Γ,è(d) for a d ∈Tm(ë). SIH yields

(Hâ+1,Θ) ⊢
â0
â0
Γ,è(d) for â =øë(â)>øë(â0) = â0. Without loss of generality we can

assume that k(d)⊂ k(è(d)). Thenwe see from (23) that [10] |d| ∈Hã(øë(ã+1))∩ë⊂
øë(ã +1) < â . Thus is enjoyed in the following inference rule (

∨
). We obtain

(Hâ+1,Θ) ⊢
â

â
Γ by a (

∨
), which enjoys (6).

Case 5. Fifth consider the case when the last inference is a (rfl(ô, j, Eì, Eí)) for a
ô ∈ Hã [Θ]∩ ð. We have an aℓ < a and a finite set ∆ of Σj(ô)-sentences such that
(Hã ,Θ) ⊢

aℓ
ð Γ,¬ä for each ä ∈ ∆. On the other hand we have a sequence Eí and
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an ordinal term ar(ñ) < a for each ñ ∈ H(Eí,ô,ã,Θ) such that (Hã ,Θ∪{ñ}) ⊢ar(ñ)ð

Γ,∆(ñ,ô). By (23), for any ñ ∈H(Eí,ô,ã,Θ) we obtain

∀e∀κ[max{ô+1,ë} ≤ κ ≤ ð⇒ ñ < ô ∈Hã(øκ(ã#e))∩κ ⊂ øκ(ã#e)]. (30)

Case 5.1. First consider the case when ô < ë. Then ñ<øκ(ã#e) for any κ ∈ [ë,ð] and

e. FromSIHwith (30) we obtain (Hâ+1,Θ)⊢
âℓ
âℓ
Γ,¬ä for each ä ∈∆with âℓ =øë(âℓ),

and (Hâ+1,Θ∪{ñ}) ⊢âr(ñ)
âr(ñ)
Γ,∆(ñ,ô) for each ñ ∈H(Eí,ô,ã,Θ) with âr(ñ) =øë(âr(ñ)).

We see max{âℓ ,âr(ñ),ô} < â = øë(â), and an inference rule (rfl(ô, j, Eì, Eí)) yields

(Hâ+1,Θ) ⊢
â

â
Γ.

Case 5.2. Second consider the case when ë≤ ô. Then ∆∪∆(ñ,ô) ⊂ Σ1(ô
+), and ñ <

øκ(ã#e) for ô < κ ≤ ð and e by (30). SIH yields (Hâℓ+1,Θ) ⊢
â2
â2
Γ,¬ä for each ä ∈ ∆,

where â2 = øô+ (âℓ). On the other side SIH yields (Hâr(ñ)+1
,Θ∪{ñ}) ⊢

âñ
âñ
Γ,∆(ñ,ô)

for each ñ ∈ H(Eí,ô,ã,Θ), where âñ = øô+
(
âr(ñ)

)
. Predicative cut-elimination

lemma 4.12 yields (Hâℓ+1,Θ) ⊢
ä2
ô Γ,¬ä and (Hâr(ñ)+1

,Θ ∪ {ñ}) ⊢
äñ
ô Γ,∆

(ñ,ô) for

ä2 =ϕ(â2)(â2) and äñ =ϕ(âñ)(âñ). From these with the inference rule (rfl(ô, j, Eì, Eí))
we obtain

(Hâ0+1,Θ) ⊢
ä0+1
ô Γ (31)

where sup{ä2,äñ : ñ ∈ H(Eí,ô, â0 + 1,Θ)} ≤ ä0 := ϕ(â0)(â0) ∈ Hâ0+1[Θ] with
sup{â2,âñ : ñ ∈H(Eí,ô,ã,Θ)}≤ â0 :=øô+ (â0), and sup{aℓ ,ar(ñ) : ñ ∈H(Eí,ô,ã,Θ)}≤
a0 ∈Hã [Θ]∩a, cf. (10).
MIH with (31) yields (Hâ+1,Θ) ⊢

ä
ä
Γ for ä = øë((â0 +1)#ù

ô+ä0+2) and (â0 +

1)#ùô+ä0+2 < â. We have ä = øë(â0#1#ù
ô+ä0+2)< øë(â) = â by â0 < â and ô,ä0 <

ô+ < ð and ô ∈Hã [Θ]. (22) follows.
Case 6. Sixth consider the case when the last inference is a (cut). For an a0 < a

and a C with rk(C)< ð, we have (Hã ,Θ) ⊢
a0
ð Γ,¬C and (Hã ,Θ) ⊢

a0
ð C,Γ.

Case 6.1. First consider the case when rk(C)< ë. Then C ∈ Σ0(ë). SIH yields the
lemma.
Case 6.2. Second consider the case when ë ≤ rk(C) < ð. Let ñ+ = (rk(C))+ =

min{κ ∈ Reg : rk(C) < κ}. Then C ∈ Σ0(ñ
+) and ë ≤ ñ ∈ Hã [Θ]∩ ð. SIH yields

(Hâ0+1,Θ)⊢
â0
â0
Γ,¬C and (Hâ0+1,Θ)⊢

â0
â0
C,Γ forâ0=øñ+ (â0)∈Hâ0+1[Θ]. By a (cut)

we obtain (Hâ0+1,Θ)⊢
â1
â1
Γ forâ1=max{â0, rk(C)}+1withñ<â1<ñ

+. Predicative

cut-elimination lemma 4.12 yields (Hâ0+1,Θ) ⊢
ä1
ñ Γ for ä1 = ϕ(â1)(â1), where â0 ∈

Hâ0+1[Θ], and ∀e∀ô ∈ [ë,ñ][Θ ⊂ øô(â0#e)] hold. Hence MIH with ñ ∈ Hâ0+1[Θ]

yields (Hb+1,Θ)⊢
øë(b)

øë(b)
Γ for b= â0#1#ù

ñ+ä1+1.We see b< â andøë(b)<øë(â) = â ,

and (22) follows.
Case 7. Seventh consider the case when the last inference is an (Ω ∈M2). We have

(Hã ,Θ) ⊢
aℓ
ð Γ,C for an aℓ < a, and (Hã ,Θ∪{α}) ⊢ar(α)ð ¬C(α,Ω),Γ for an ar(α)< a

for each α <Ω, where C ∈Π2(Ω).
The case ë >Ω is seen as in Case 5.1. The case ë=Ω is seen as in Case 5.2. ⊣

Let us conclude Theorem 1.1. Let Ω = Ω1.

https://doi.org/10.1017/jsl.2020.23 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.23


A SIMPLIFIED ORDINAL ANALYSIS OF FIRST-ORDER REFLECTION 1185

Proof of Theorem 1.1. Let KPΠN ⊢ è for a Σ1(Ω)-sentence è. By Embedding
lemma 4.14 pick an m so that (H0,∅) ⊢

K·2+m
K+m è. Predicative cut-elimination lemma

4.12 yields (H0,∅) ⊢
ùm+1(K+1)
K

è for ùm(K · 2 +m) < ùm+1(K+ 1). Lemma 5.2

yields (Ha+1,∅) ⊢
â

â
è for a = ùK+ùm+1(K+1)+1 and â = øΩ(a). Predicative cut-

elimination lemma 4.12 yields (Ha+1,∅) ⊢
ϕ(â)(â)
0 è. We obtain ϕ(â)(â) < α :=

øΩ(ùn(K+1)) for n=m+3, and hence (Hùn(K+1),∅)⊢
α
0 è. Boundedness lemma 4.10

yields (Hùn(K+1),∅) ⊢
α
0 è
(α,Ω). Since each inference rule other than reflection rules

(rfl(ð,k, Eî, Eí)) and (Ω ∈M2) is sound, we see by induction up to α =øΩ(ùn(K+1))
that Lα |= è.
This completes a proof of Theorem 1.1.
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