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A SIMPLIFIED ORDINAL ANALYSIS OF FIRST-ORDER REFLECTION
TOSHIYASU ARAI

Abstract. In this note we give a simplified ordinal analysis of first-order reflection. An ordinal notation
system OT is introduced based on wy-functions. Provable Xi-sentences on L, cx are bounded through
1
cut-elimination on operator controlled derivations.

§1. Introduction. Let ORD denote the class of all ordinals, 4 C ORD and « a
limit ordinal. « is said to be IT,-reflecting on A iff for any IT,-formula ¢(x) and
any b € L,. if (La.€) |= ¢(b). then there exists a f € AN« such that b € Ly and
(Lg.€) = ¢(b). Let us write a € rM,(A) 1< a is IT,-reflecting on 4. Also « is said
to be I,-reflecting iff o is I1,,-reflecting on ORD.

It is not hard for us to show that the assumption that the universe is IT,-reflecting
is proof-theoretically reducible to iterabilities of the lower operation rM,._; (and
Mostowski collapsings), cf. [4].

In this paper we aim at an ordinal analysis of IT,-reflection. Such an analysis
was done by Pohlers and Stegert [8] using reflection configurations introduced in
Rathjen [10], and an alternative analysis was given in [2, 3, 5] with the complicated
combinatorial arguments of ordinal diagrams and finite proof figures. Our approach
is simpler in view of combinatorial arguments. In [2], a I1,-reflecting universe is
resolved into ramified hierarchies of lower Mahlo operations, and ultimately into
iterations of recursively Mahlo operations. Our ramification process is akin to a
tower, i.e., has an exponential structure. It is natural that an exponential structure
emerges in lowering and eliminating first-order formulas (in reflections), cf. ordinal
analysis for the fragments IX, 3 of the first-order arithmetic. The Mahlo classes
Mhy (&) defined in Definition 2.5 to resolve or approximate IT,-reflection are based
on a similar structure. As in Rathjen’s analysis for Il3-reflection in [9], thinning
operations are applied on the Mahlo classes M#; (&), and this yields an exponential
structure similar to the one in [2] as follows.

Let us consider the simplest case N =4. Let A := ek, the next epsilon number
above the least I;-reflecting ordinal K. Roughly 7 € Mh3(&) designates the fact
that an ordinal n is Il3-reflecting on Mh;(v) for any v < & < A. Suppose a
I13-sentence 0 on L, is derived from the assumption = € Mh3(&). We need to find an
ordinal k < 7 for which L, = 6 holds. It turns out that & € M#h,(A¢a) suffices for an
ordinal a < A, where the ordinal  in the class Mhy(A¢a) is IT,-reflecting on classes
Mhy(ASbh) N Mhs(v) for any b < a and any v < &. Note that the class Mhy(A¢a) is
not obtained through iterations of recursively Mahlo operations since it involves
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1164 TOSHIYASU ARAI

I14-definable classes Mh;(v). The classes Mh3(v) (v < &) for the assumption 7 €
Mh3() are thinned out with the new classes Mh,(A<b) (b < A), cf. Lemma 5.1.

Our theorem runs as follows. Let KPIIy denote the set theory for ITy-reflecting
universes, and KPw the Kripke—Platek set theory with the axiom of infinity. OT
is a computable notation system for ordinals defined in §3. Q = w{* and yq is a
collapsing function such that wq(a) < Q. Ky is an ordinal term denoting the least
ITy-reflecting ordinal in the theorems.

THEOREM 1.1. Suppose KPIly 0 for a ,(Q)-sentence 0. Then we can find an
n < w such that for o = wo(w,(Ky +1)), L, = 0.

Actually the bound is seen to be tight, cf. [6].

THeOREM 1.2. KPIly proves that each initial segment
{a € OT :a< yal(w,(Ky+1))} (n=1,2....) is well-founded.

Thus the ordinal y/g(sKNH) is seen to be the proof-theoretic ordinal of KPTIy.

THEOREM 1.3.
waleky+1) = [KPTIy|so :=min{a < o V0 € T (KPTIy F 0% = L, = 0)}.

A C ORD is 1}-indescribable in o iff for any I1}-formula ¢(X) and any B C ORD,
if (Ly.€:BNa) = ¢(BNa). then there exists a f € ANa such that (Lg.€:BNS) =
#(BN B). A regular cardinal 7 is I1}-indescribable ifff ORD is I1}-indescribable in 7.

Let us mention the contents of this paper. In the next §2 we define simultaneously
iterated Skolem hulls H,(X) of sets X of ordinals, ordinals w5(«) for regular
cardinals k., a < egy; and sequences 5 = (&.....¢n_1) of ordinals & < exys.
and classes Mh{(Z) under the assumption that a I} ,-indescribable cardinal
K exists. It is shown that for 2 < k < N, a < egy; and each ¢ < egis,
(Kis a IT}, ,-indescribable cardinal) — K € MA¢ (&) in ZF+(V = L).

In §3 a computable notation system OT of ordinals is extracted. Following
Buchholz [7], operator controlled derivations for KPIIy are introduced in §4,
and inference rules for ITy-reflection are eliminated from derivations in §5. This
completes a proof of Theorem 1.1 for an upper bound.

IH denotes the Induction Hypothesis, MIH the Main IH and SIH the Subsidiary
IH. We are assuming tacitly the axiom of constructibility /" = L. Throughout this
paper N > 3 is a fixed integer.

§2. Ordinals for Ily-reflection. In this section we work in the set theory
ZFLKy obtained from ZFL = ZF + (V = L) by adding the axiom stating that
IK(K is H}H-indescribable) for a fixed integer N > 3. For ordinals «, £ (o) denotes
the least epsilon number above «.

Let ORD C V denote the class of ordinals, K = Ky the least H}\Lz—indescribable
cardinal, and Reg the set of regular ordinals below K. ® denotes finite sets of ordinals
<K. u,v,w,x,y,z,... range over sets in the universe, a.b, c,a,[)’,y,...qrgnge over
ordinals < A =¢(K), &,{, v, u.1,... range over ordinals < e (A) = ex 2. &, (. V. i 1, ...
range over finite sequences over ordinals < (A), and 7.k.p.0, 7./, ... range over
regular ordinals. § denotes formulas.
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Let & = (&o.....En 1) be a sequence of ordinals. The length lh((f ) := m. Sequences
consisting of a single element (¢) are identified with the ordinal ¢, and @) denotes the
empty sequence, 0 denotes ambiguously a zero-sequence (0, ...,0) with its length 0 <
1h(0) <N~ 1. Exji = (&g Eppt) # (0. vi1) = (G0 . ém—l»/‘O» -+ Mn-1) denotes
the concatenated sequence of ¢ and i.

A = e(K) = eg41 denotes the next epsilon number above the least Ily_,-
indescribable cardinal K, and €(A) = ex.» the next epsilon number above A.

DEeFINITION 2.1, For a nonzero ordinal & < e(A), its Cantor normal form with
base A is uniquely determined as

¢ =nr Z/\éiaizl\i’”am+~-+/\é°ao (1)
i<m
where &,, > -+ > &), 0 < a; < A.

1. K(&) ={a;: i <m}UU{K(&) :i < m} is the set of components of & with
K(0) = (. For a sequence E = (&.....5,1) of ordinals & < e(A), K(&) :=
U{K(E) i < n).

2. For &> 1. te(&) = &y in (1) is the tail exponent, and he(&) = &,, is the head
exponent of &, resp. The head Hd(&) = A°"a,,. and the tail TI(¢) = A%aq
of &.

3. he') (&) is the ith head exponent of &, defined recursively by hel® (&) = &,
he ™V (&) = he(he') (¢)).

The i-th tail exponent te') (&) is defined similarly.

4. Cisapart of &, denoted by { <, Eiff { =nr Yo, A¥ai = A" @y, + -+ + A ay
forann(0<n<m+1). B
(<p e <pul&i#C.

5. A sequence fi = (uo..... 14n) is an iterated tail parts of &, denoted by fi Cp, &
iff uo <pt E&Vi < n(/u1+1 <pt Ze(;uz))

6. V=(v0.....v) «0 < & iff there exists a sequence i = (ug,....u,) such that
4 Cp & and v; < p; for every i < n.

7. Let v = (vg....,v,) and &= (&o.....&,) be sequences of ordinals in the same
lengthJ and 0 <k <n.

V< EaVi<k(v,<E)N (vk,...,vn) < &.

8. (s a step-down of &, denoted by { <y & iff { = Aay, + -+ A1a; + A0b 4y
for some ordinals b < ap and v < AfO

9. V= (Vo. ... V) %0 <y & iff vy <yq 161 (&) for every i < n.

10. C Ssp é = Ellu Spt é(é <sd ,u) and C <sp é = Ellu Spt é(C <sd ;u)
11. V< Eiff v < pfora u <, &.

Note that (v) %0 < & < v < & and (¢, 1e(). 1eD(£)....) Cpr & Also { <oy E (< &
if & <A

PROPOSITION 2.2. & < < e(A) = te(&) < he(&) < he(u).
ProOPOSITION 2.3. vV <é<({ =V <.

ProoF. By induction on the lengths n = [A(V). Let i = (uo. ..., 1) be a sequence
for v = (vo.....v,1) such that i C,, & and Vi <n—1(v; < g;). cf. Definition 2.1.6.
Ifn=1, then vo < 1o < & < L. vp < < Cylelds v = (vg) < .
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Let n > 1. We have (vi.....v,1) < te(po) with (u1,.... un1) Cpe te(uo). We show
the existence of a A such that uy < 4 <,, { and re(u) < te(4). Then IH yields
(V1o V1) < te(A), and ¥ < ¢ follows.

If uo <,i ¢, then A = uo works. Suppose uo £, {. On the other hand we have
1o <pr ¢ <. This means that £ < { and there exists a 4 <, { such that uo < 4 and
te(uo) < te(2). -

2.1. Ordinals.

DEFINITION 2.4. 1. For i < w and & < e(A), A;(&) is defined recursively by
Ao(&) =& and Ajy (&) = ANG),

2. For A C ORD, limit ordinals o and i >0, let a € My, ;(4) iff AN«
is I1!-indescribable in . M>,; := M>,;,(ORD).

3. k™ denotes the next regular ordinal above .

4. Q, =w, fora>0,Qp:=0,and Q = Q.

Define simultaneously classes Ho (X). Mh$ (). and ordinals & (a) as follows.
We see that these are X-definable as a fixed point in ZFL, cf. Proposition 2.7.

Let a < A, and ¢ denote the binary Veblen function. Let us define a Skolem hull
H.(X) of {0,K} U X under the functions +,a — 0®, (a, ) — paf (. f < K),a —
Q. (o < K) and w-functions. Reg denotes the set of regular ordinals < K.

DEFINITION 2.5. H [Y](X) := H, (Y UX) for sets Y C K.
1. (Inductive definition of H,(X)).

(a) {0.K}UX C Hu(X).

(b) x.y € Ho(X) = x+y € Ho(X). x € Ho(X) = 0* € Hy(X). and x.y €
Ho(X)NK = pxy € Ho(X).

(c) K>acHi(X)=Q, € Hyo(X).

(d) Let {n.b} C H,(X) with = € Reg, and v = (v.....vy 1) be a sequence
of ordinals < (A) such that K(v) C H,(X) and maxK(v) < b < a.Then
k=i (b) € Ha(X). )

2. (Definitions of Mh{(¢) and Mh{(&))First let K € Mh§(0) 1= K e My &

K is IT} ,-indescribable.The classes Mh{ (&) are defined for 2 < k < N, and

ordinals a < A. & < e(A). Let n be a regular ordinal < K. Then for & > 0

e M (&) e {rnatUK(E) CHalm)& (2)
Vi < &(K(V) C Halr) = m € Mi(MIL(V)))

where V = (vg,...,v,) (2 <k <n < N —1) varies through nonempty sequences
of ordinals < (A) and

ne MW (V) ere ﬂ MK (v;).

k<i<n

By convention, let for 2 < k < N, n € Mh{(0) :& n € MI5(0) &
7 is a limit ordinal. Note that by letting v = (0), 7 € Mh{ (&) = n € M for

£>0. Also 0 < 1. and Mh{(1) = M.
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3. (Definition of l//f; (a))Let a < A be an ordinal, 7 < K a regular ordinal and f a

-

sequence of ordinals < £(A) such that /#(¢) = N — 2. Then let
wé(a) == min({z} U{x € MIS(E)Nr: Halk) N7 € k. K(E) U {m.a} C Halk)}).
3)

Let wya:= z//ga, where /h(0) = N -2, Mh‘z‘(ﬁ) =Lim,and n € M, ie,misa
regular ordinal.

Note that 7 € Mh{(&) = Vv < &(n € M (Mh{(v))). since (v) < & holds with
(&) Cp & forv< .

PROPOSITION 2.6. b+ c € H,[Ol(d) = ¢ € Hu[O)(d). and w¢ € H,[O](d) = c €
Ha[O](d).

The following Proposition 2.7 is easy to see.

PROPOSITION 2.7. Each of x = Ha(y) (a < A.y <K). x € Mh{ (&) and x = wg(a),
is a X-predicate as fixed points in ZFL.

Proor. This is seen from the facts that there exists a universal H},-formula, and
by using it, & € M, (x) iff (La.€) = m,(xN L,) for some I}, | -formula 1, (R) with
a unary predicate R. -

-

Let A(a) denote the conjunction of Vu < K3! x[x = H,(u)]. and VEVx(max K (&) <
a&K(&)U{k.a} € x=H,(k) — b < k(b= ws(a))), where [h(&) = N - 2.
Since the cardinality of the set H., (7) is = for any infinite cardinal 7 < K, pick

an injection f : Ha (K) — K so that f”H (n) C n for any weakly inaccessibles 7 < K.

Lemma 2.8. 1. Va< AA(a).

2. me Mh(&) is a H}H-class on L, uniformly for weakly inaccessible cardinals
n < Kand a,&. This means that for each k there exists a H}H-formula th(x)
such that m € Mh{(&) iff L, = mh{(&) for any weakly inaccessible cardinals
n <Kwithf”({a} UK(¢)) C L.

3. Ke Mh$, ((A)NMy_1(Mh%, (A)).

PrOOF. 2.8.1. We show that 4(a) is progressive, i.e.. Va < A[Vc < a A(c) — A(a)].

Assume Ve < aA(c) and a < A. Vb < K3!x[x = H,(b)] follows from IH in ZFL.
3'b < k(b = wta) follows from this.

2.8.2. Let © be a weakly inaccessible cardinal with /”({a} UK(&)) C L,. Let f be
an injection such that f”Ha (%) C L,. Then for Va € K(&)(f(a) € f"Ho (7)), n €
MR (&) iffforany f(V) = (f (vi).....f (vy-1)). each of £ (v;) € L. if Vo € K(V)(f (@) €
S Ha(7)) and vV < £, then w € My (Mh{(V)). where f”H,(n) C Ly is a class in L.

2.8.3. We show the following B(a) is progressive in a < A:

B(a) = Ke Mh$y (a) "My 1(MhS, | (a)).

Note that a € H,(K) holds for any a < A.

Suppose Vb < a B(b). We have to show that Mh$, | (a) is T1}, ;-indescribable in K.
It is easy to see that if 7 € My_;(Mh$, | (a)). then 7 € MhS, | (a) by induction on 7.
Let 0(u) be a IT}, ,-formula such that Lg = 0(u).
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By IH we have Vb < a[K € My_(Mh% ,(b))]. In other words. K € Mh%, |(a).
ie., Ly |=mh%_,(a). where mh$, ,(a) is a IT}, ,-sentence in Proposition 2.8.2. Since
the universe Ly is T}, ,-indescribable, pick a = < K such that L, enjoys the IT}, ,-
sentence 0 (u) Amh%,_((a). and {f(c).f(a)} C L,. Therefore n € Mh$, (a) and L, |=
H(u) Thus K € My (]‘4/1%71 (a)) o

2.2. Normal forms in ordinal notations. In this subsection we introduce an
irreducibility of sequences, which is needed to define a normal form in ordinal
notations.

PROPOSITION 2.9. € Mh{({) & & < (= ne Mh(&).

PrOOF. (2) for m € Mh{(£) in Definition 2.5.2 follows from 7= € Mh{({) and
Proposition 2.3. o

Lemma 2.10. (Cf. Lemma 3 in [2].) Assume K > 7 € Mh{(&) N Mh{ (&) with
2<k<N-1. he(u) <& and K(u) C Ho(n). Then n € Mh{(E+ ) holds. Moreover
if € My, thenw € My (MhS(E + w)) holds.

PROOF. Suppose 7 € Mh{ (&) N Mh (&) and K (u) C H,(n) with he(u) < &. We
show 7 € Mh{ (& + u) by induction on ordinals x. First note that if b € H,(x), then
f(b) € f"Ha(n) C L. We have K(&+ ) C Ho(n). € My1 (M (E + 1)) follows
from 7 € Mh{ (& +p) and m € M.

Let () *V <&+ pand K(()UK(V) C Hy(n) for v = (vg, ..., v,_1). We need to show
that 7 € M (Mh{(({)*v)). By Definition 2.1.6, let ({o) * (uo. .... tts-1) be a sequence
such that { < (o <pr &+ u. o <pr te(lo). Vi <n—1(v; < ;). and Vi < n— 1(uir1 <p
te(u;)).

If (o <pi &, then ({) *V < &, and m € My(Mh(({)+v)) by n € Mh{ (é)

Let (o= ¢+ with0< () <, u. If {4 <, u. then by IH with he((,) = he(u) we have
n € Mh{({y). On the other hand we have ({) v < {o. Hence € My (Mh{(({) «V)).

Finally consider the case when 0 < {; = u. Then we obtain v < ze(& + ,u) te(u) <
he(u) < &. m € Mh{_ (&) with Proposition 2.9 yields 7 € M1 (Mh{ (V).

On the other side we see 7 € Mh¢(() as follows. We have { < &+ . If { <&, then
this follows from 7 € Mh{(&) and Proposition 2.9, and if { =&+ 4 < &+ u. then IH
yields 7 € Mh{(().

Since = € Mh{(() is a II;_,-sentence holding on L, by Lemma 2.8.2 and {a} U
K(() C Halm). we obtain 7 € My, (Mh{(({) xV)), a fortiori m € M(Mh{(($) *V)).

_{

DerFINITION  2.11. For sequences of ordinals = (EknoonEno1) and ¥V =
Ve, ...ovy-)and 2 <kmn< N-1,

MR, (V) <k th,‘(f) = Ve ME(E )({a n}UK(V) C Holm) = 7 € My(MK,(V))).

COROLLARY 2.12. Let v be a sequence defined from a sequence 5 as follows. Vi <
k(vi=¢&).Vi>k(v;=0). and v, = &+ ASk+1b, where 2 < k <N.b<Aand& i #0.
Then Mh3(V) <jcs1 Mh“(f) holds. In particular if 1 € M "(é) anda>b € H,(n), then

l//n()<ﬂ

PROOF. MNS(V) <k41 Mh5(&) is seen from Lemma 2.10.
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-

Suppose n € Mh5(&) and K(V) C Hy(n). The set C = {rk < 7 : Hu(k) N7 C
k,K(V)U{n,a} C H,(k)} is a club subset of the regular cardinal z. This
shows the existence of a k € Mh4(¥) N CN=., and hence wi(a) < by the
definition (3). 4

PROPOSITION 2.13. Let V = (v.....vn1). 5: (&2.....En1) be sequences of ordinals
<e(A) such that v <i & for an integer k with2 < k < N — 1. Then Mh5(V) <x Mh4(&).
In particular if 1 € Mh3(E), K(V) C Hu(n), and max K (V) < a, then y}(a) < =.

-

PROOF. Assume 7 € Mh5(¢) and K(V) C Hy(n). We have n € Mh{ (). By the
definition (2) and (vg.....vy_1) < &. we obtain 7 € M,y MIE(vi)).

On the other hand we have 7 € (),_, Mh¢(&;). and hence 7 € (", Mh¢(v;) by Vi <
k(v; < &) and Proposition 2.9. Since 7 € (), Mh?(v;) is a II}_,-sentence holding in
L. we obtain n € My ((;cy | Mh¢(vi)) = Mi(Mh5(7)). a fortiori # € M>(Mh5(V)).

If n e th(f) K(¥) € H(n). and maxK(¥) < a. then w?(a) < 7 is seen as in
Corollary 2.12. —

PROPOSITION 2.14. Let &= (&, ....ENn21) be a sequence of ordinals < e(A) such
that {m.a} UK () C Ha(n). Assume TI(E;) < Ax(Eik + 1) for some i < N — 1 and
k>0.Thenn € th(é) e Mhy(i). where i = (. ... un-1) with u; = & - TI(&;)
and iy = & for j .

Proof. When 0 < &; = AMa, + -+ AVlay + Aay with y,, > - > y1 > o,
0<a;i <A, uj=ANmay,+ -+ Aa for TI(E;) = Aay. If &, = 0, then so is u; = 0.

Let = € Mh4(fi) and TI(&) < Ap(Eix +1). We obtain Vj < k(heW)(TI(&;))
< Aj(Ex + 1)), and he®(TI(E)) < & k. On the other hand we have 7 €
Mn!_ (&iyx). From Lemma 2.10 we see inductively that for any j < k. 7 €

Mh?+j(he(7) (T1(&))). In particular = € Mh{_, (he(TI(£;))). and once again by Lemma
2.10 and = € Mh¢(u;) we obtain = € Mh¢(&;). Hence 7 € th(é) 4

DEerFINITION 2.15. A sequence of ordinals 5 = (&,....En.1) is said to be irreducible
iffVi< N—1Vk>0(& > 0= TIE) > Ap(Eipr +1)).

PROPOSITION 2.16. Let v = (vi.....vy_1) # 0 be an irreducible sequence, and ko > k
be the least number such that vy, # 0. Assume vy, < he'ko k) (&), Then v < & holds in
the sense of Definition 2.1.6.

PrOOF. Let £ < N — k be the largest number such that vy, # 0. We show
(V. ... vkse) < &. Since ¥ is irreducible, we have A;(vi,+i+ 1) < TI(vg,). From vy, <
heto (&) and te(u) < he(u) we obtain vy s < vig4i+ 1 < he? (v, ) < heko k0 (&),
Let (uk.....pun-1) Cpr & such that w, = Hd(E) and piy1 = he(u;) = te(Hd(u;)).
Then te(psi) = he(uiri) and pry+i = he(pry+i1) = he®0 (&) for kg —k+i> 0.
Therefore (uy. ... picre) Cpe & Witnesses (i, ... vire) < &. 4

DEFINITION 2.17. Let & = (&koooilnt). V= (Whoooovyer) and ¥ # E Leti>kbe
the minimal number such that v; # &;. Suppose (&;.....¢x1) # 0. and let k| > i be
the minimal number such that &, # 0. Then v <. ¢ iff one of the followings holds:

-

1. (V,‘,...,VN,I) =0.
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2. In what follows assume (v;, ..., vy_1) # 6 and let ko > i be the minimal number
such that v, # 0(i = min{ko.k}). Then v <, ¢ iff one of the followings
holds:

(a) i=ko < ki and helk1750) () < &,.
(b) ko > ki =i and vy, < heto (&),

PROPOSITION 2.18. Suppose that both of V and 5 are irreducible. Then V <y 5 =
MK (7)< MAE(E).

PrROOF. Let 7 € th(é'), K(V) ¢ Hy(n). and i > k be the minimal number such
that v; # ;. We have € (", ;. Mh¢ (v;). which is a I1! ,-sentence holding on L. In
the case & # 0, it suffices to show that neEM,; (m]Zl Mh{(v;)). since then we obtain
e M{(Mh{(V)) by n € Mh{(&;) C M, a fortiori m € My (Mh{(V)).

If (v;.....vy_1) =0, then & # 0 and Nisi M (v;) denotes the class of limit ordinals.
Obviously 7 € Mi(ﬂjZiMh]‘.l(vj)).

In what follows assume (v;,...,vy_1) # 6 and let ky > i be the minimal number
such that v, # 0. and k; > i be the minimal number such that &, # 0.

Cask 1. ko > ky = i: Then we have vy, < he o5 (& ). Proposition 2.16 yields
(Vigs -+ VN-1) < &k, = & which in turn yields 7 € Mi(ﬂjZiMh_;’(vj)) by the definition
(2) of 7 € MI(&,).

CASE 2. i = ko < ki: Then we have he*17)(v;) < &k, Also vy, < he?)(v;) for any
p > 0since ¥ is irreducible and v; # 0. Let j > k1. Then v; < heV) (v;) < hel D (&;,).
In particular vz, < &, . Proposition 2.16 yields (vk,.....vy-1) < &,. 7 € Mhi, (&)
yields 7 € Mkl(ﬂ].Zk1 M (v;)). Moreover for any p < ki — i. helki=p) (v, ) <
¢, by Proposition 2.2. Lemma 2.10 yields 7 € ﬂk1>i2ith‘?(vj). Therefore 7 €
My, (Mh{(7V)), a fortiori m € M (Mh(v)). =

ProposITION 2.19.  (Cf. Proposition 4.20 in [9])

LetvV = (vy,....vN_1). E= (&, .. ..En1) be irreducible sequences of ordinals < e(A).
Assume that 1//n(b) < 7 with K( YUu{rm.b} C ’Hb(l//;;(b)) and maxK (V) < b. Also

assume that y<(a) < k with K(& )U{/-c a} CH, (V/K( )) and max K (&) < a.
Then i = wl(b) < !//K( ) = ay iff one of the following cases holds:

n< l//ﬁf(a).

b<a.yl(b) <k and K(V) U{n.b} C Ha(l//f:(a)).

b>aand K(&) U{k.a} ¢ Hy(yi(b)).

b=a k<mandk §Z’Hh(l//n( ).

b=a.n=k. K(7) CHapi(a)). and ¥ <y E.

b=a m=r K(&) ¢ Hy(wi(b)).

ProoOF. If the case (2) holds, then v/ () € H,( g(a)) Nk C y/é(a).

If one of the cases (3) and (4) holds, then K (&)U {k.a} ¢ H,(y!(b)). On the
other hand we have K (&)U {k.a} CH, (y/,i( ). Hence v/ (b) < t//f(a).

If the case (5) holds, then Proposition 2.18 yields Mh5(V) <, th(g) > wg(a).
Hence l//fj(a) € M>(Mh5(¥)). Since K(V) U{x.a} C ”Ha(l//g(a)), the set {p < l//f};(a) :

AN i
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Ha(p) Nk C p. K(V)U{k.a} C Ha(p)} is club in wé(a). Therefore w! (b) = w' (a) <
w<(a) by (3) in Definition 2.5.3.

Finally assume that the case (6) holds. Since K(&) C Ha(u/f:(a)), wl(b) < t//g(a)
holds.

Conversely assume that ! (b) < wg(a) and t//f:(a) <. i

First consider the case b < a. Then we have K(v)U {n.b} C H(wL(b)) C
”Ha(t//,é(a)). Hence (2) holds.

Next consider the case b > a. K(&) U {rw.a} C Hy(wl (b)) would yield z//f-j(a) €
Hy(wi(b)) N7 C wl(b), a contradiction wS(a) < w! (b). Hence (3) holds.

Finally assume b = a. Consider the case k < 7. k € Hp(w. (b)) N7 would yield
t//f;(a) < k <y’ (b). a contradiction. Hence x ¢ H; (! (b)). and (4) holds. If 7 < k.
then 7 € H,(wl (b)) Nk C ’Ha(l//g(a)) Nk, and 7 < l//f:(a), a contradiction, or we
should say that (1) holds. Finally let 7 = x. We can assume that K (¢) C H, (/) (b)).
otherwise (6) holds. If & <5 7. then by (5) w<(a) < ! (b) would follow. If K (¥) ¢
Ha(t//g(a)), then by (6) again wg(a) < v (b) would follow. Hence K (V) C Hu(t//,é(a))
and v <j.» f Ifv= 5 then wé(a) = w(b). Therefore (5) must be the case. -

Definition 2.20 is utilized to define a computable notation system in the next
section 3.

DEFINITION 2.20. A set SD of sequences &= (&5,....En-1) of ordinals & < e(A)
is defined recursively as follows.
1. 0+ (a) € SD for each a < A.
2. (Cf.Definition2.1.9.) Let & = (&5.....En_1) €ESD. 1 <k <N-1,{ <e(A) bean
ordinal such that (&1, ... En 1) < C.and (Ea. ..., 1, Ex. £) %0 € SD. Then for
(e = &+ Afa with an ordinal a < A. (&.....&xt) * (k) * Sk . Enot) € SD
and (fz, ,fk,l) * (Ck) x0e SD.

PROPOSITION 2.21. Let & = (&5,....En 1) € SD.

1. (fz,...,fi)*()eSDforeachiwith 1 <i<N.
2. For2<i<j<k<N.if&#0and & #0. then & #0.

3. Let & #0. Then (&g ... .En1) < te(&)).
4. ¢ is irreducible.

PrOOF. Let1 <k <N-1.{<e(A)bean ordinal such that (&1.....En1) < C.
and (&..... &k 1. () 0 € SD. Also let § = & + Aa with an ordinal @ < A.

2.21.1 is seen by induction on the recursive definition of £ € SD.

2.21.2 is seen by induction on the recursive definition of ¢ € SD. Suppose &; # 0
for an i < k. From (&....,&1.&,.0) 0 € SD and { # 0, IH yields & # 0.

2.21.3 and 2.21.4. We show these by simultaneous induction on the recursive
definition of & € SD.

2.21.3. We show Proposition 2.21.3 for the sequence (&.....¢k1) * ({k) *
(Ek41s....En21) € SD. The proposition holds for the sequence &, and we can assume
a# 0. Weobtain (& ..., En1) <gq te(&) fori>kif & #0, and (Eryr. ..., Eny) <sa
te({i) = { by the assumption. Let 2 < i < kand &; # 0. We show (&4 1..... &) * (8 ) *
(EstsonEnit) <sa te(&)). Tt suffices to show that (i <4 e%)(&;). By IH we have
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&k <sq 1e%)(&,). On the other hand we have & # 0 by (&, NISNING, %0 € SD,
{ # 0, and Proposition 2.21.2. Moreover (&, ..., ¢ 1.E.C) 0 is irreducible by
Proposition 2.21.4, and hence TI(Ek) > A%t Therefore te(fk) > (. This means
that & =yr & + Aba, and & <, 1e%9 (&) yields ¢ <,q te (&) by Definition
2.1.8.

2214, IF (Ejypy.nnn Enc) <ga te(&;) for & # 0, then &y <gq Ze k) (&) for k> 0, and
Eik+1 < 1e®(&). Hence Ap(Eip +1) < A& < TI(E), and & is irreducible,

§3. Computable notation system OT. In this section (except Proposition 3.6 and
Lemma 3.8) we work in a weak fragment of arithmetic, e.g., in the fragment
IZ; or even in the bounded arithmetic S}. Referring to Proposition 2.19 the
sets of ordinal terms OT C A = ex;; and E C e(A) = eg42 over symbols
{0.K, A, +.¢.Q,w} are defined recursively. OT is isomorphic to a subset of H (0).
Simultaneously we define finite sets Ks(a) C OT for .o € OT, and sequences
(mi(@))a<k<n1 for a € OT NK, where in o = yi(a), m(a) = v, ie, ¥ =
(V2, e VN,1) = (le(a), oMy (Oz)) = (mk(a))k = ﬁa(a) For {Ozo., ,am,[)’} C 0T,
Ks(ag.....am) = U<, Ks (i), K5 (ao. ..., an) < B iffVy € Ks(ag.....a,)(y < B).and
B < Ks(a.....q) iff 3y Eﬁs(am o) (B < ).

First let us define a set OT of terms over symbols {0, K, A, +,¢.Q,y}. Second a
relation o < f on OT is defined. Third a subset OT C OT is defined to be the set of
terms in normal form. The relation oo < § on OT is defined to be the restriction of
a< ftoOT.

DEFINITION 3.1. Sets OT and E of terms are defined simultaneously. Also a finite
set K(v) C OT is defined for v € E. and subsets SC. P of OT are defined. SC [P]
is intended to be the set of strongly critical numbers [the set of additive principal
numbers], resp.

1. (a) OEE.

(b) If0£a€ OT. thena € E. K(a) = {a}.
(c) If {&:i<m} CE and 0 # b; € OT, then Y ,_, A%b; = Aby+ - +
Asmb,, € E.K(Y .o, ATb;) = {b; :i <m}UUJ{K(E) i < m}.
d) For sequences v = (v2,....vy-1). let K(V) = Upeicn 1 K(vi).
a) SCc Pc OT.
b) 0 OT. and K € SC.
c) If {a;:i <m} C P(m>0), then ag + -+, € OT.
d) If {$.y} C OT. then @fy € P.
e) If f € OT. then Q; € SC.
f) Let 7 € SC. a € OT and v = (v5.....vy_1) be a sequence of terms v; € E.
Then y!(a) € SC.

DEFINITION 3.2. A finite set K;(a) C OT ford.a € OT. a relation a < f on OT,
and a relation v < & on E are defined simultaneuously as follows. a < f i1 a <

fVa=2,.

1. K5(0) = K5(K) = 0 Ks(ao + - + ) = Ks(ao,....am). Ks(pfy) = Ks(B.7).
B). K(;(Qﬁ) K;5(B). K(s(l//;;(a) =(Z) if w’(a) <J. Otherwise

(
(
(
(
(
(
(

https://doi.org/10.1017/js1.2020.23 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2020.23

A SIMPLIFIED ORDINAL ANALYSIS OF FIRST-ORDER REFLECTION 1173

2. (a) 0<afor0+#acOT.

(b) ag+ -+ am < Po + -+ + By iff either there exists a p < min{n,m} such
that Vi < p(a; = ;) and o, < f8,. or n <m and Vi < n(e;; = ;). For ff € P,
ag+ - ta, < PiffVi<m(o; < B).and < ap+ -+, T I <m(f < ;).

(C) ag = pPoyo <Py =aq iff fo < f1&yo < ayor fy=p1 &y <yporf <
Po&ayg <yi.Fora e SC.pfy<aiff f.y<a.anda<pfyiffa <fVa<y.

(d) Qo <Qpiffa<f.Qq <wyl(a)iffa<y)(a).and y)(a) < Q. iff y)(a) < .

(e) vl (b) < 1//5:((4) iff one of the following cases holds:

(i) 7 < ys(a).
i)
)

(ii) b <a. ! (b) < k.and K ¢ >({7z,b}uK(17)) <a.
yila

(iii) b>a, and b < ng(w({ka,a} UK(&)).
oK) <a.and ¥ <p; &, of Definition 2.17.
3. v< ¢ forv.& €Eis defined. 0 <a <Y, A%bi. Y, Na; < Y, A%ib;

iff either there exists a p < min{n,m} such that Vi < p[(v;,a;) = (&;.b;)] and
(vp.a,) < (&,.b,) lexicographically, or n < m and Vi < n[(vi.a;) = (&.b;)].

(iv) b=a.n=k.K ;
Vi

PrOPOSITION 3.3. (OT, <) is a computable linear ordering.

PROOF. fa denotes the number of occurrences of symbols {0. K, A, +,¢. Q. w} in
terms o € OT UE. Note that £ < £a for any f§ € Ks(a). It is clear that both a € OT
and a < f are decidable for terms over symbols {0, K. A, +.¢.Q, w}.

Fora.f.y € 0T, a¢a.a<fVa=fVE<a anda< f<y= o<y areseen
simultaneously by induction on £a + £f + £y as in [1]. -

An ordinal term is said to be a regular term if it is one of the form K, Qg or
w? (a) with a nonzero sequence ¥ # 0. K and the latter terms w? (a) are Mahlo terms.

o =y ay+ -+, means that o = g+ -+, 9 > -+ > o, and each o 1s a
nonzero additive principal number. o =yr @y means that a = ¢ffy and £,y < a.
a =yr o means that @ = w” > . a =yr Qp means that o = Qs > B.

Let pd(w?(a)) = n (even if v = 0). Moreover for n, pd™ (a) is defined recursively
by pd9 (a) = a and pd"tV () ~ pd(pd™ ().

For terms 7.k, © < k denotes the transitive closure of the relation {(n K):

ETp[r = w< ()]}, and its reflexive closure 7 < Kk (&1 < KV 7 = Kk < In(k =
pd" (m)).

For each ordinal term a = y!(a), a series (7;);<; of ordinal terms is uniquely
determined as follows: n; = a., n; = pd(n;y1) and my = K. Let us call the series
(m1)i<1 the collapsing series of o = 7.

Then we see that an ordinal term o = l//i (@) with v # 0 is constructed by Definition
3.4.2g below iff L = 1. « is constructed by Definition 3.4.2i iff L = 1(mod (N —2)).
Otherwise « is constructed by Definition 3.4.2h.

DEFINITION 3.4. Subsets OT C OT and E C E are defined recursively as follows.
Also we define sequences (my(a))2<k<n-1 for @ € OTNK.
1. (a) 0€E.
(b) If0#£a € OT. thena € E.
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(c) If{&:i<m}CE. &> >E&,#0and 0 # b; € OT, then
AS0by+ -+ Amb, € E.
2. (a) 0.K € OT. m;(0) = 0 for any k.
(b) If @ =nF Q + -+ (m > 0) with {o; : i <m} C OT, then a € OT, and
my (o) = 0 for any k.
(c) If o =nF @By with {B.7} C OTNK, then o € OT, and my () = 0 for any
k

Afib; =

i<m

(d) If & =yr 0 := p0p with K < f € OT, then o € OT, and my(a) = 0 for
any k.

(e) If oo =nr Qp with f € OTNK, then a € OT. my(a) = 1.my () = 0 for any
k> 2if f8 is a successor ordinal. Otherwise my (o) = 0 for any k.

(f) Let & = wy(a) := w2(a) with n,a € OT where 7 is a regular term, i.e., either
n=Korm(r) #0,and K, (r.a) < a.Then a = y(a) € OT. Let my(at) =0
for any k. _

(g) Let a = yy (a) with v = 0% (b) (Ih(V) = N —2) and b,a € OT such that 0 <
b<aand K, (b.a) < a.Then a =y (a) € OT. Let my 1(a) = b, my(a) =0
fork<N-1.

(h) Let # € OT NK be such that ny((7) # 0 and Vi > k+ 1(m;(z) =0) for a
k(2<k<N-2),and b,a€ OT suchthat 0 < b <a. Let vV = (v5....,vn_1)
be a sequence defined by Vi < k(v; = m;(n)). vi = my(n) + A"+1™p_and
Vi > k(v;=0).Then a = w!(a) € OT if K, (n.a.b) UK, (K(in(n))) < a. Let
m;(a) = v; for each i.

(i) Let 7 € OT NK be such that my () # 0 and Vi > 2(m;(n) = 0). and a € OT.
Let 0 # v = (v....,vn_1) € SD be a sequence of ordinal terms v; € E such
that v <, ms(n). Then a = wi(a) € OT if K,(n.a) < a and

Vk(K,(vi) < maxK(vg)). (4)

Let m;(a) = v, for each i.
Let {m.a.&} C Hy(n). Then & = my () is intended to be equivalent to = € Mh{ (¢).

PROPOSITION 3.5. For each Mahlo term a = ! (a) € OT. in(a)) = v € SD for the
class SD in Definition 2.20.

PRrROPOSITION 3.6. For any o € OT and any 6 such that 6 = 0.K or 6 = l//g(b) for
some bV, a € H, () & Ks(a) < 7.

ProOOF. By induction on Za. =

PropPOSITION 3.7. 1. Let f = wi(b) withm = wg(a). Then a < b.
2. For a =y (a) € OT, maxK(V) < a holds.

PrOOF. 3.7.1.Let f =y (b) withn = y/,{(a). Then Ky ({n.b} UK(v)) < b. On the
other hand we have 8 < 7. Hence a € Ky(n) < b.

3.7.2. This is seen by induction on £a. We have ¢ < a by Proposition 3.7.1 when
7 = " (c). When a is constructed by Definition 3.4.2h, v; = my (1) 4 A"+ (@ p holds
for b < a. By IH we have max K (71(n)) < ¢ < a when 7 = w4 (¢).
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Suppose « is constructed by Definition 3.4.2i. We obtain v <y, m(n), and hence
max K (V) < maxK(my(n)) < ¢ < aby IH. 4

LemMA 3.8. OT is isomorphic to a subset of Ha(0). (OT,<) is a computable
notation system for ordinals. In particular the order type of the initial segment {a €
OT : oo < Q} is less than K.

ﬁPROOF. This is seen referring to Propositions 2.19, 3.6, and 3.7.2. To see
w!(a) < = in Definition 3.4.2h, see Corollary 2.12, and in Definition 3.4.2i, see
Proposition 2.13. -

§4. Operator controlled derivations. In this section, operator controlled deriva-
tions are defined, which are introduced by Buchholz [7].

In this and the next sections except otherwise stated «.f.y,....a.b,c.d....
range over ordinal terms in OT C Ha(0). &.{,v, u.1,... range over ordinal terms
in E, &.{.V.ji.7,... range over finite sequences over ordinal terms in E, and
m.K.p.0.T. A, ... range over regular ordinal terms K, Qg . l//;(d) with v # 0. Reg
denotes the set of regular ordinal terms. We write a € H,(f) for Kz(a) < a. cf.
Proposition 3.6.

4.1. Classes of sentences. Following Buchholz [7] let us introduce a language for
ramified set theory RS.

DErINITION 4.1, RS-terms and their levels are inductively defined.

1. Foreach o € OTNK, L, is an RS-term of level a.

2. If ¢(x.y1,...,yn) is a set-theoretic formula in the language {€}, and ay,...,a,
are RS-terms of levels < a, then [x € L, : ole(x.ay. ... .a,)] is an RS-term of
level a.

Each ordinal term « is denoted by the ordinal term [x € L, : x is an ordinal],
whose level is a.

DEerFINITION 4.2. 1. |a| denotes the level of RS-terms a, and Tm(a) the set of
RS-terms of level < a. Tim = Tm(K) is then the set of RS-terms, which are
denoted by a.b,c.d, ...

2. RS-formulas are constructed from literals a € b,a € b by propositional con-
nectives V, A, bounded quantifiers 3x € a,Vx € a and unbounded quantifiers
3x,Vx. Unbounded quantifiers x, Vx are denoted by Ix € Lg.Vx € Ly, resp.

3. For RS-terms and RS-formulas 1, k(z) denotes the set of ordinal terms « such
that the constant L, occurs in 1.

4. For a set-theoretic X,-formula w(xi,...,x,) in {€} and ay,....a, € Tm(k),
wle(ay,....ay) is a X,(k)-formula, where n =0,1,2,... and x < K. I1,(k)-
formulas are defined dually.

5. For 0 =yl (ay.....ay) € ,(k) and /. < &, 0% = yli(ay,....ay).

Note that the level |7| = max({0} Uk(z)) for RS-terms 7. In what follows we need
to consider sentences. Sentences are denoted A, C possibly with indices.
The assignment of disjunctions and conjunctions to sentences is defined as in [7].
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DerINITION 4.3. 1. For b.a € Tm(K) with || < |a|.

(bea) '_{ Ab)  ifa=[xeLy:AXx)].

"~ beLy ifa=L,

and (a=b) :=(Vxcalxcb)AVxc b(x€a)).
2. For b,a € Tm(K) and J := Tm(|al)

(bea):~ \/(csa/\c =b).cyjand (b ¢ a) i~ /\(c davec#Db)eey.

3. (AgVv Ay) :=\/(A4,),es and (Ag A Ay) := N\(A,),es for J :=2.
4. Forae Tm(K)U{Lx} and J := Tm(|a|)

Ixcad(x):~ \/(bga/\A(b))bej and Vx € aA(x) 1~ /\(b gav Ab))pey.

The rank rk(z) of sentences or terms 7 is defined as in [7].

DerINITION 4.4, 1. rk(=A4) :=rk(A4).

rk(Ly) = wa.

tk([x € Ly : A(x)]) = max{wa + 1.tk (A4(Ly)) + 2}.

tk(a € b) = max{rk(a) +6,1k(b) + 1}.

tk(A4gV Ay) .= max{rk(4).tk(41)} +1.

rk(Ix € a A(x)) := max{wrk(a),rk(A(Ly)) +2} for a € Tm(K)U{Lx}.

PROPOSITION 4.5, Let A be a sentence with A ~\/(A,),c; or A~ \(4,),e;.

1. tk(4) < K+ .

2. |A| <r1k(A4) € {w|A|+i:icw}.
3. Vi€ J(rk(4,) < 1k(4)).

4. tk(A) < A= A€ Zp(A)

ANl

4.2. Operator controlled derivations. By an operator we mean a map H, H :
P(OT) — P(OT). such that

1. VX C OT[X C H(X)].

2. VX, Y C OT[Y CH(X) = H(Y) C H(X)].

For an operator H and ©,0; C OT, H[®](X) := H(X U®), and H[O][O] :=
(H[O])[O1]. i.e., H[O][O](X) = H(XUOUO,).

Obviously H,, in Definition 2.5.1 is an operator for any «, and if 7 is an operator,
then so is H[O].

Sequents are finite sets of sentences, and inference rules are formulated in one-
sided sequent calculus. Let % = H, (y € OT) be an operator, © a finite set of K. I’
asequent,a € OT and b € OTN (K+w).

We define a relation (’Hy .0) i T which is read ‘there exists an infinitary derivation
of I' which is @-controlled by H,, and whose height is at most @ and its cut rank is
less than b’

K,2,0,7T,7 ranges over regular ordinal terms.

DEFINITION 4.6. (H,.©) H¢ T holds if
k(M) u{a} Cc H,[0] (5)

https://doi.org/10.1017/js1.2020.23 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2020.23

A SIMPLIFIED ORDINAL ANALYSIS OF FIRST-ORDER REFLECTION 1177

and one of the following cases holds:
(/) A~ \/{A4,:1€J}, A €T and there exist 1 € J and a(1) < a such that

il <a (6)

and (#,.0) " T 4,.

(A\): A= N\{A4,:1€J}. AT and for every 1 € J there exists an a(1) < a such
that (1,0 U{k(1)}) F"' T, 4,.

(cut) : There exist ap < a and C such that rk(C) < b and (#,.0) +° T',.~C and
(H,.0) % C.T.

(Q € M;) : There exist ordinals a;. a,(«) and a sentence C € I1,(Q) such
that sup{a, + 1.a,(a)+1:a<Q} <a. b>Q, (H,.0) ' T.C and (H,.0U
{wa}) I—Z"(“> -C@Y T for any o < Q.

(tfi(z, k.E. %)) : There exist a Mahlo ordinal K > 7 € H,[0]N(b+1), aninteger
2 < k < N and sequences V = (vz,...,vN,l),fz (&5,....¢En21) € SD of ordinals
vi.&; € E, ordinals ay.a,(p).ao. and a finite set A of Ty n_) -sentences enjoying
the following conditions: When 7 = K, k = N and v = 0 with h( ) -1
hold. Also let é 0 in this case. When 7 < K, & #£ 0 with k < N, 0 =+ f dnd

Vi(&; <gp mi(n)).
1. When 7 < K, cf.Definitions 2.1.9,

Vi<k(vi=&)& (vi.....vvo1) < &k &K(V)UK(E) C H,[0] (7)
and
v:u € VUgUﬁ’l(ﬂ)(K(ﬂ) C HmaxK(,u)[@)]) (8)

cf.(4).
2. Foreachd € A, (H,.0) ¢ I, 4.
3. H(V.n.y.0) denotes the resolvent class for v, m, y and @ defined as follows:

C(r.y.0):={p<n:H,(p)NnCp&ONTC p} 9)
pe H(V,n,y,@) = Vi(Vi Ssp le(/?) /\K(ml(/))) C 7-[n'laxK(m,'(p))(p))

for p € RegN C(n.y.0).
Then for each p € H(V.7.y.0). (H,.0U{p}) F, ) Al

sup{as.a,(p): p e HV.7.y.0)} <ap € H,[O]Na. (10)

In the inference rule (rfl(z.k. &, 7)) for 7 = wi(c) < K. we have 7 € th(f) In
particular, 7 € (");,_, Mh¢ (&) N MhS(Er). Also we are assuming (vg. ... vn-1) < Sk
a fortiori (vi.....vy-1) < &. Since 7 € (M), Mh{(v;) is a ITi-sentence holding on
L,. we obtain = € Mi(Mh5(v)). Thus the reflection rule (rfl(z.k.v)) says that =
is T1j-reflecting on the class H(V,7,7.70.®) for the club subset C(x,y,0) of 7, cf.
Proposition 2.13. On the other side we see p € Mh3(V) from Proposition 2.9 if
Vi(v; < my(p)) for p € MR (im(p)).

We will state some lemmas for the operator controlled derivations. These can be
shown as in [7]. In what follows by an operator  we mean an H, for an ordinal }.
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LemMA 4.7. Let (H,.0) ¢ T.

1. (H,,.0U0) I—Z; I, A for any v' >y, any ®y, and any a’ > a, b’ > b such that
k(A)u{d'} CH,[OUB].
2. Assume ©1U{c} =0, c € H,[O1]. Then (H,.0;) H4 T

LemMA 4.8 (Tautology). (H.k(TU{4})) Fo* ) T, -4., 4.

Lemma 4.9 (Inversion). Let A ~ N\(A4,),ey. and (H.©) H4 T with A € T'. Then for
any1€J, (H.OUk(1)) H4 T, 4, holds.

LemMA 4.10 (Boundedness). Suppose (H.©) F¢ T, C fora C € (), anda<b e
HN A Then (H.0) T, CA),

LemMA 4.11 (Persistency). Suppose (#.0) F¢ T.C"") for a C € 21(2) and a
b < )€ H[O). Then (H.©) T, C.

Lemma 4.12 (Predicative Cut-elimination). Suppose (H.®) - I, ac H[O]

and |c,c+ )N Reg = 0. Then (H.©) F¢° T

L+(u"

LemMa 4.13 (Embedding of Axioms).
For each axiom A in KPIly, there is an m < w such that for any operator H =H,.

(H.0) H§2,, A holds.

Proor. The axiom —A4, 3249 for TI y-reflection follows fgogn A,—~A and
3249 =4 for regular ordinals p < K by an inference (rfl(K, N.0.0)). -

LemMa 4.14 (Embedding). If KPI1y =T for aset I of sentences, there are m.k <

such that for any operator H =H,, (H.0) F%ﬁ;k I holds

§5. Lowering and eliminating higher Mahlo operations. In this section inferences
(rfl(K, N, 0, O)) for ITy-reflecting ordinals K are eliminated from operator controlled
derivations of T;-sentences pl@ over Q.

a#f denotes the natural (commutative) sum of ordinal terms o, 5.

Lemma S5.1. For a Mahlo term n € OT, f € SD denotes a sequence with Ih( §

Ol”

9
N -2.and2 <k < N — 1 aninteger for which the following hold: Whenn =K, let { =
andk =N -1. f (Euve Enr) %0 with Eiy # 0 such that Vi < k+1(& <y, mi(n)).
For ordinal terms y.a € OT let_us define a sequence {(a) == (&(a). .. ( )) %0

with Ih(C(a)) = N -2 as follows C(a) = 0% (y +a) when n =K. Ol‘herWlse Le(a)
&+ A%+ (y +a) and {i(a) = &; for i < k.

Let k € H(((a).m.7.0) for a finite set ® C OT.

Now suppose (H,.0) F2 T where {y,n} UK (& = H,[0]. © C 7, Vi(K(&) C
HmaxK [®]) andT" C Hk-H( )

Let y(a b) = y#a#th, B(a.b) = w.(y(a.b)). and ¢ > y(a.k). Then the following
holds:

(K. OU{k}) HAlar) plem), (11)
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ProOF. By induction on a. Let k € H((a). 7. 7.0). We see {(a) € SD, and from
(5) and © C & that

k(D)Nzn C H,(k) N7 C k. (12)

For any a € H,[®]. we obtain {y.n.a.x} C H,(n) by ®U{x} C n. Hence for
y(a.k) = y#a#te. {y(a.x).n} C H,(n). and {y(a.k).7} C H, . (B(a.k)) by the
definition (3). Therefore x € H,,(, ) (f(a.x)) N7 C fi(a.x) by Proposition 2.6, and
O C B(a.k) < m. Thus we obtain

{ao,al} CH,[OUO)&ay < a1 &BOy C k = ﬂ(a(),fi) < ﬁ(al.,lﬁ).

Cask 1. First consider the case when the last inference is a (rfl(z, k + 1,5 V).
We have a; € H,[O]Na. a,(p) € H,[OU{p}]Na. and a finite set A of Xy ;(n)-
sentences. We have for eachd € A

(H,.0) ' T. =6 (13)
and for each p € H(V,7,7,0)
(H,.0U{p}) kW) T APm), (14)

When 7 < K, ¥V = (v2.....vy1) € SD is a sequence such that Vi < k+1(v; = &).
(et o) <Gt KGVUKE) € 3100 and K)o 1)
and (8).

Let o = TNZ(n) and {Vx € L, 0;(x) :i=1,....n} (n > 0) = T\ Iy for Zy(x)-

formulas 0;(x). Letusfixd = {dy.....d,} C Tm(k) arbitrarily. Put k(d) = U{k(d) :

i=1,....n}and T'(d) =ToU{6;(d;) :i=1,....n}.
By Inversion lemma 4.9 from (13) we obtain for each § € A

(H,.0Uk(d)) 2 T(d). 6. (15)

Let p € Clk.c.@U{k}Uk(d)). We see p < k. and k(d) < p from k(d) < k. By
®ONn C H,(k)N7 Ck and y < ¢ we obtain C(k.c,®U{x}Uk(d)) C C(r,7.0).
Namely, cf. (9)

pEH(ﬁ,ﬂ,C,@U{n}Uk(a))épEH(U,n,y,@). (16)

For each p € H(V,m,c,@U{n}Uk(Zi)), IH with (14) and (16) yields for ¢ >

N

(@ (p).x) and k € H({(a,(p)).7.7.©@U{p})
(H.OU{p.x}) |_£(ar(p)-n) r(n-n)’A(pﬂ). (17)

Let p € M, := {p € Reg : Vi({i(ar) <y mi(p))} NH(Y.k.c.OU{k}U k(d)). Then
M, c H({(a;).7.7.©Uk(d)) and ® Uk(d) C p. For each § € A, IH with (15) yields
for ¢ > y(ayp. p)

-

(He-@UKA U {p}) ) D), 50, (18)

From (17) and (18) by several (cut)’s of 0™ with tk(6»™) < k we obtain for
a(p) = max{as.a,(p)} and some p < w

{((H.©UK(d) U {k. p}) FE@D R0 0 (g)pm) TRm) ) e by (19)
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On the other hand we have by Tautology lemma 4.8 for each 0(d)*® € T'(d)*®

D @), ()= 20)

(H,, © Uk(d) U{r}) 2
where 2rk(0(d)*%)) < +p for some p < w.

Moreover we have sup{2rk(0(d)"*™). B(a(p).x) +p:p € My} < Blay.k)+p €
H,[®U{k}]. where sup{as.a,(p): p € HV.%.7.0)} < ay < aby (10).

Now let i = (uz,....un-1) = max{f(ag),ﬁ} with u; = max{{;(a;),v;}. Since
(ilag) i<k
Vi i>k.
M, = H(li.5,c,0 U {k} U k(Zi)) Moreover we have Vi < k(u; = & = {i(a))
and  (ug.....un1) = (Glae)) * igr.oeovver) <sa Gla). Also Vi(K(Li(a)) C
HmaxK (¢ila [®]) and VZ( (,u,) C HmaxK (ui) [8]) For _‘F(a’)(’“Z> - Hk( ) by an
inference rule (k. k.C(a), )) with its resolvent class Mg, we conclude from (20)
and (19) that (H..© U {r}Uk(d)) FE@= 71 P (@) 10 Since d ¢ Tin(x) is
arbitrary, several (A\)’s yield (11).

CasE 2. Second consider the case when the last inference is a (rfl(7. ., E.7)) for a
Jj <k+1. We have (H,.0) b I'. =6 for eaché € A C %;(n) with a, € H,[®]Na. and
(H,.0U{p}) F”) T.A™ for each p € H(¥.7.7.0) with a,(p) € H,[OU{p}]Na.
V € SD is a sequence such that Vi <j(v; =&;) and (v;,....vn-1) < &

We see that the resolvent class H(V.x,c;,® U{k}) is a subclass of H(V.7,7,0).
By IH we have (H.© U {s}) F{“" ren —5®n for each § € A, and
(He.® U {k.p}) I—g(“"(”)'”) r=m AP for each p € H(V.k,c.0U {k}) with
AP®) = (A=) (P%) We claim that Vi < j(&; <, m;(k)). Consider the case when
i =j=k. Then we have & <, mi(n) and (i(a) <, mi(k) with & <, (i(a). We
obtain & <, my(x). Hence by an inference rule (rfl(x.j. 5(/) V/)) for the sequence
g(]) =(&.....8) %0 € SD, cf. Proposition 2.21.1, we obtain (11).

CasE 3. Third consider the case when the last inference is a (rfl(g.j, ji.V)) for a
o <. We have (H,.0) k' I',= for each § € A C Z(0). and (H,.0@U{p}) -ar(p)
I, A% for each p € H(¥,0.7,0). We obtain ¢ < & by (12) for o € H,[®]. Hence
Acxl(o) CZ(k) and6"™ = foranyd € A. Let H(V,a,c,®U{x}) be the resolvent
class for o, v, cand @ U{k}. Then H(V.0,c,OU{k}) C H(V,5.7,0).

From IH we have (H..@U {x}) HAlek) plsn) g for each § € A, and (H..OU
{k.p}) B p)r) pem) Alpa) for each peEHW.0,c,0U{k}). We obtain (11) by an
inference rule (rfl(o./, i, V)) with the resolvent class H(V.a,¢,®@ U{k}).

Case 4. Fourth consider the case when the last inference (/\) introduces a
i1 (7)-sentence (Vx € L, 0(x)) € . We have (H,.@Uk(d)) b7 44 T 0(d) for each
d € Tm(n). Foreachd € Tm(x), IHwithk(d) < yields (H..OU {K}Uk( ) |-Alald).r)
re=m 0(d)=m, (\) yields (11) for Vx € L, 0(x)"™ = (Vx € L, 0(x)) """ € [%7),

CasE 5. Fifth consider the case when the last inference (/\) introduces a Xy(n)-
sentence (Vx € ¢0(x)) € I for a ¢ € Tm(rn). We have (H,.0© Uk(d)) DT 0(d)
for each d € Tm(|c|). Then we have |d| < |¢| < & by (12). IH yields (H..Q@U{xk}U
k(d) FA@d)R) Pl 0(d), and we obtain (11) by an inference (/).

vi =& <p (iag) for i < k+ 1, we obtain u; = { We see that
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CasE 6. Sixth consider the case when the last inference (\/) introduces a Zy(r)-
sentence (Ix € L, 0(x)) € T'. We have (H,.0) -7 T".0(d) for a d € Tm(n). Without
loss of generality we can assume that k(d) C k(0(d)). Then we see that |d| < &
from (12), and d € Tm(k). Also |d| < k < B(a.x) for (6). IH yields with (Ix €
L 0(x)®™ = (3x € L, 0(x)57) e TE0) (34, @U{k}) Hi ™ T(x7) (d)=m) and
we obtain (11) by an inference (\/).

Cast 7. Seventh consider the case when the last inference is a (cut). We have
(H,.0) k> I',~C and (H,.0) " C.T for ay < a with tk(C) < n. Then C € Zy(n)
by Proposition 4.5.4. On the other side k(C) C 7 holds by Proposition 4.5.2. Then
k(C) C & by (12). Hence C*®) = C and rk( 7)) < k again by Proposition 4.5.2.
IH yields (H..®@U{x}) F£@") [en) k) and (H,,@U{k}) @) clem) plem),
Hence by a (cut) we obtain (11).

CasE 8. Eighth consider the case when the last inference is an (Q € M,). We
have (H,.0) F¥ I'.C and (H,.0 U{wa}) F'® ~C@9) T for each a < Q with
sup{as +1.a,(a) +1:a < Q} <aand C € I1,(Q).

We obtain wa < & for a < Q. IH with C*®) = C yields for each o < Q, (H..®U
{k.wa}) FE@ (@R @) Tn and (H,,0U{x}) F“™ 1D C. An (Q e M)
yields (11)

All other cases are seen easily from IH.

LemMA 5.2. Let A < m be a regular ordinal term such that Vi(K(m;(n)) C
Honax K (mi(x))[@])). and T C Zy(4).
Suppose for an ordinal term a € OT

(H,.9)H.T

where {y. .7} C H,[O].
Assume

Vp € [A.7]Vd[® C y,(y#d)]. (21)
Let &= y#0™ ' and f = y;(a). Then the following holds
(Has1.©) H4 T (22)

ProOOF. By main induction on 7 with subsidiary induction on a. We can assume
a>0.
We see that ©® C 8 = y;(a) from (21). Hence

ap € H,[O1Na = y;(ay) < w,(a)

Let é € SD be a sequence of ordinals and k a number for which the following hold:
If 7 =K, then let & = 0w1thlh(é) N-land k=N 1. Let = < K. If () # 0,
then K(f) C H,[0]. £ <m(n) and k = max{k < N —2: & > 0}. Otherwise let

E=0andk=1. By the assumption (21), and (5) we obtain
Vp € [L.7|VDb € K(EVd[k(T)U {y.Aa.n.b} C H,(w,(y#d))] (23)

CasE 1. First consider the case when k > 2.
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Leté = m(n), and C:(a) :=(6(a). ... k(@) *0 be the sequence defined asin Lemma
5.1 from y.a: {(a) = 0% (y +a) when 7 = K, otherwise {;(a) = & + A%+ (y +a) and
(ila) =& for i < k. Also let y(a.b) = y#a#b and B(a.b) = w,y(a.b).

Let & := w5 “(y(a.0)). By the assumption (21) we have ® C y(y#a). On the other
hand we have y,(y#a) = y(7(a.0)) < k., and O C k. 7 € H,[O] with © C 7 yields
K (&) = K(m(n)) C H,[0] C H,(40)(k). Hence K(&)U{m.y(a.0)} C H,(,0)(x). and
k € OT by y(a.0) = y#a > 0and Definition 3.4.2h such that k < mand H, (k) N7 C k.
Moreover we have Vi(K ((i(a)) C Humax k(c:(a)) [©]) by Vi(K (mi(%)) C Hunax & (i) [©])

-

and {y.a} C H,[®] with ® C «. In other words, x € H({(a).7.y.0).
By Lemma 5.1 we obtain (,,(,.)+1.OU{x}) H4ler) k) and Lemma 4.7.2 with
K€ Hy(u.0)+l[®]

(H, (g 41, ©) FA@R) Tlem), (24)

If J ==, then I'*™ C (k) C (). We have © C y,(a) = . and & € Hz(p).
Hence {y.m.a.k} C Hy(B). and y(a.k) = yHattk < yHw™ ! = 4. Therefore k <
Bla.k) < w,(a) = B. We obtain (22) by Persistency lemma 4.11.

Next consider the case when A < 7. Then A < x and I'"® = T'. We have
for (21), Vdvp € [A.k)(® C y,(y(a.x) + 1#d)). By MIH on (24) we obtain
(Hpy+1.0) I—ﬁg T for fy = w,(by) with by = (y(a.k) + 1)#w"Far)+1  We have

by = y#a#tr#1#ol @ F) ! <y ™ = G by Ba.k) < 7. This yields w; (by) = fo <
B=w;(a)by®C pand {y,k.m.a} C Hy(B). Hence (22) follows.

In what follows suppose k = 1. .

Caskt 2. Consider the case when the last inference rule is a (rfl(z, 2, &,7)).

We have an ordinal term a, € H,[®]Na, and a finite set A of X,(r)-sentences for
which (H,.0) 3 T',—6 holds for each § € A. On the other hand we have sequences
V. (&) +0 € SD such that ¥ <, & and K(®) UK(E) C H,[@®] by (7). and an ordinal

term a,(p) € H,[®@U{p}]Na for which (H,.0@U{p}) () T Av-®) holds for each
p € H.n.y.0), where & <, my(n).

Let p := y!(a#n) for a3 = y#w™ %+, By the assumption (21) we have
O C y(a) C p. KV)U{n.y.a} C H,[0] yields K(v) U{n.a;} C Hzu(p). Next
consider the condition (4). We have Vi(K(v;) C Haxx(,)[©]) by (8). and hence
Vi(K(vi) C Humax k() (p)) by © C p. Therefore p € OT by Definition 3.4.2i. Moreover
p€C(ny.®).ie. H,(p)NnC p&Onn C p. Hence p € H(V,7.y,0).

By Inversion lemma 4.9 we obtain for each ¢ = (3x € L,6;(x)) € A and each
d € Tm(p) with |d| = max({0} Uk(d)). (H,14.© Uk(d)) 7 T. =6, (d).

We have {m.7.|d|} C H,4a(n) by |d| < p < mn. and this yields |d| €
Hosa (o (#1d1)) O C o (#1d]). Hence 1d] < o (7#(d]). and Ve(® Uk(d)
wa(y#|d|#e)). ie. (21) holds for A = and y#|d|. Let Bs = wy(ay) for
G = y#|d[#o™ ) = Gi#ld|. STH yields (Hz1.0 Uk(d)) F)? T.~61(d). which
in turn Boundedness lemma 4.10 yields (Hz 1. © Uk(d)) l—zj T, ﬁél(ﬁd’”) (d) for ay =
yHnHo™ ! = Gy#n. By persistency we obtain (Ha 1. © Uk(d)) I—g" T, ﬂéfﬁ’”)(d)
for B4 < yr(az) = p € H,[@]. Since d € Tm(p) is arbitrary, (/\) yields

(Hiz41.0) 0 T =), (25)
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Now pick the pth branch from the right upper sequents
(Ha1.0U{p} l—ﬁ’(” | NG
By p € Hz+1[®] and Lemma 4.7.2 we obtain
(Hp11.0) ) T AP, (26)

Case 2.1. First consider the case 4 = . Then A»™ c Zy(4). Let By = (b))
with b, = @ #1#0™ P+ = o™+t o eV ga# ] Then fi, > p and Vd[OU
{p} C wr(ay+ 1#d)]. SIH yields for (26)

B 0.TT
(Hp,1.©) 1y T AP, (27)

Several (cut)’s with (27), (25) yield (Hz41.9) I—Zﬂ’ I for f, > p. @ <b, < aand
some p < w, where f, < f = y,(a) by b, < a. (22) follows.
CASE 2.2. Next consider the case when A < 7. Then 4 < p and A»®) C 2, (p*) with

p =Q,.1. SIH with (26) yields (H;,+1.0U{p}) Fﬁj’: LAV for B, = (b)) >
p, and by Lemma 4.7.2 we obtain

Byt (p.m)
(pr+1,®) l_ﬁp+ | VAN (28)

By++p

Several (cut)’s with (25), (28) yield (Hpy11.0) =
P

yH(@™ et 2)#o™ P HI#] > max{by.b,}. Predicative cut-elimination lemma
4.12 yields for 1 = o (f,+)(B,+ +p) < p™

(Hpys1.0) I T (29)

I for B,+ > p and by =

We obtain 4 < p € Hpy+1[O] by y < d@; < bp. MIH with (29) yields (H.1.0©) ke
I for ¢ = by#l#w’ P+l We obtain ¢ = by’ P1H1#] = p#(w™tet! .
2)#™ PPt At #) < p#o ! = G since ag.a,(p) < a and p.fy < pT < 7.
Hence y;c < y;(a) = B. and (22) follows.

Caske 3. Third consider the case when the last inference introduces a X (1)-sentence
(Vx € ¢0(x)) € T for ¢ € Tm(1). We have (H,.© Uk(d)) F4 T, 0(d) for each d €
Tm(|c|). Then we see from (23) that |d| < |c| € H, (w,(y#e)) N p C w,(yi#e) for any
p € [A.m) and any e. Hence |d| € y,(y#e). (21) is enjoyed for ® Uk(d). SIH yields
(Har1.©UK(d)) Hj T.0(d) for = w;(ald)). (A) yields (22) for f = w;(a) > fa.

Cast 4. Fourth consider the case when the last inference introduces a X1(A)-
sentence (Ix € L; 0(x)) € I'. We have (H,.0) 7’ T".0(d) forad € Tm(%). SIH yields
(Hzv1.9) l—ﬁg I.0(d) for B =y, (a) > w,(ag) = Po. Without loss of generality we can
assume that k(d) C k(0(d)). Then we see from (23) that [10] |d| € 1, (w,(y +1))NA C
w;(y +1) < B. Thus is enjoyed in the following inference rule (\/). We obtain
(Hay1.0©) }—g I" by a (\/). which enjoys (6).

CasE 5. Fifth consider the case when the last inference is a (rfl(z,j, ii,V)) for a
7 € H,[@]N7n. We have an ¢, < a and a finite set A of X,;(r)-sentences such that
(H,.©) 3t T, =0 for each & € A. On the other hand we have a sequence v and
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an ordinal term a,(p) < a for each p € H(V.7.7,0) such that (H,.0U{p}) ar(p)
[.A»7) By (23). for any p € H(V.7.7.0) we obtain

VeVk[max{t+ 1.2} <k <m=p <t €N, (y.(y#e)) Nk C w,(y#e)]. (30)

CasE 5.1. First consider the case when t < A. Then p < y,. (y#e) for any « € [A, ] and
. From STH with (30) we obtain (H;.,1,©) ! T, for eachd € A with f = (@),

and (Hz,1,.0U{p}) '_%ﬁ; I, A7) foreach p € H(V.7.y.0) with f.(p) = l//i(ai(\p)).
We see max{f.p,(p).t} < p = w,(a), and an inference rule (rfl(z.j. i, V)) yields
(Ha41.©) 4 T.

CASE 5.2. Second consider the case when 4 < 7. Then AUA®® c £,(z%), and p <
i (y#e) for T < x <7 and e by (30). SIH yields (Hg+1.0) i—% I, -0 foreachd € A,

where > = .+ (a7). On the other side SIH yields (Hmﬂ"@U {r}) I—Z AP
for each p € H(v.7.7.0). where f, = .+ (@) Predicative cut-elimination

lemma 4.12 yields (Hg+1.9©) F2 T,—5 and (”HmH,G)U {r}) F? AP for

02 = (f2)(p2) andd, = ¢(,)(f,). From these with the inference rule (rfl(z./, i.V))
we obtain

(Hz11.0) FOH' T (31)

0

where sup{d».0, : p € H(V.7.dp + 1.0)} < do := ¢(fo)(fo) € Hay+1[O] with
sup{f. f,:p € H(V.7,7.0)} < fo:=y+ (do). and sup{as.a,(p): p € H(V.7,7.0)} <
ap € H,[O]Na, cf. (10).

MIH with (31) yields (Hz,1.©) F3 T for 6 = y;((@ + D)#w™0"2) and (@5 +
1)#w %2 < 4. We have 6 = y; (@y#1#w™02) < w;(a) = f by @y < @ and 7.5y <
tt <mand T € H,[O]. (22) follows.

CasE 6. Sixth consider the case when the last inference is a (cut). For an ag < a
and a C with tk(C) < =, we have (H,,0) 7 I',—~C and (H,.0) +° C.T.

CASE 6.1. First consider the case when rk(C) < 4. Then C € Z(4). SIH yields the
lemma.

CASE 6.2. Second consider the case when A < 1k(C) < #. Let p* = (rk(C))* =
min{x € Reg : 1k(C) < k}. Then C € Zy(p™) and 4 < p € H,[@]N=. SIH yields
(Hay+1.0) l—gg I'.~Cand (Hz+1.9) l—ﬁg C.T for fo = ,+ (@) € Hay+1[O]. By a (cut)
we obtain (Hz11.0) F/;i I for f; =max{fy.tk(C)}+1with p < f; < p*. Predicative

cut-elimination lemma 4.12 yields (Hg;+1.0) I—il I for 61 = o(B1)(B1). where a €
Ha 1[0]. and VeVt € [ p][® C y.(@#e)] hold. Hence MIH with p € Hg 11[6]
yields (Hp41.9) I—Z‘Ez; I for b = Gp#1#w? 17! Wesee b < aand y;(b) < w,(a) = .
and (22) follows.

CasE 7. Seventh consider the case when the last inference is an (Q € M,). We have
(H,.0) ' T, C for an ay < a. and (H,.0U{a}) Far@) @) T for an a,(a) < a
for each o < Q, where C € I1,(Q).

The case 1 > Qs seen as in CASE 5.1. The case A = Q is seen as in CASE 5.2.

Let us conclude Theorem 1.1. Let Q = Q.
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PrOOF OF THEOREM 1.1. Let KPIly - 0 for a X;(Q)-sentence . By Embedding

lemma 4.14 pick an m so that (H,,0) I—%ﬁg’" 0. Predicative cut-elimination lemma

4.12 yields (Ho.0) FE’”*“KH) 0 for w,(K-24+m) < w1 (K+1). Lemma 5.2
yields (Hqy1.0) }—/ﬁ} 0 for a = @¥tom1®E+D+1 and B = yqo(a). Predicative cut-

elimination lemma 4.12 yields (Hq11.0) Fowf)(ﬂ) 0. We obtain ¢(B)(f) < o :=
walw,(K+1)) forn=m+3, and hence (H,,, k. 1).9) -§ 6. Boundedness lemma 4.10

yields (H,,x1)-9) F§ 09 Since each inference rule other than reflection rules

(tfl(r. k. &, 7)) and (Q € M>) is sound, we see by induction up to a = wq(w,(K+1))
that L, = 6.
This completes a proof of Theorem 1.1.
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