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In this paper, we consider a ring of neurons with self-feedback and delays. As a result
of our approach based on global bifurcation theorems of delay differential equations
coupled with representation theory of Lie groups, the coexistence of its asynchronous
periodic solutions (i.e. mirror-reflecting waves, standing waves and discrete waves),
bifurcated simultaneously from the trivial solution at some critical values of the
delay, will be established for delay not only near to but also far away from the critical
values. Therefore, we can obtain wave solutions of large amplitudes. In addition, we
consider the coincidence of these periodic solutions.

1. Introduction

In the field of neural networks, rings are studied to gain insight into the mechanisms
underlying the behaviours of recurrent networks [17, 22]. Moreover, ring networks
belong to the class of cyclic feedback systems whose asymptotic behaviour has
been investigated in more detail [1,2,5,8,13,15,19,24,25,27,29,30]. These theoret-
ical results help in better understanding the system’s dynamics and are important
complements to experimental and numerical investigations using analog circuits
and digital computers. On the other hand, time delays are unavoidably encoun-
tered in the implementation of artificial neural networks, due to the finite speeds
of switching and transmission of signals. It is well known that time delays in the
response of neurons can influence the stability of a network creating oscillatory and
unstable characteristics, and can dramatically increase the number of co-existent
attractors, even in the simplest case of a recurrent inhibitory loop composed of a
single excitatory and inhibitory neuron [9, 10].

By means of the general symmetric local Hopf bifurcation theorem [30, theo-
rem 2.1] coupled with representation theory of standard dihedral groups, Guo and
Huang [13,15] studied the influence of the delay on the behaviour of a ring of cou-
pled oscillators in which each neuron receives self-excitatory feedback and from its
nearest neighbours, inhibitory feedback:

u̇i(t) = −ui(t) + f(ui(t − τ)) − [g(ui−1(t − τ)) + g(ui+1(t − τ))], (1.1)

where i(mod N), f, g ∈ C1(R; R) with f(0) = g(0) = 0. Such a network has been
found in a variety of neural structures, such as the hippocampus [3], cerebellum [7],
neocortex [28], and even in chemistry and electrical engineering. System (1.1) can
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be regarded as a special example of the general Hopfield model [14,18] for artificial
neural networks with electronic circuit implementation. According to the Cohen–
Grossberg–Hopfield convergence theorem [6,18], under some standard assumptions
on the transfer functions, a network modelled by (1.1) without delay (namely, τ = 0)
relaxes towards the set of equilibria. However, the presence of a large delay τ may
cause some stable nonlinear oscillations and lead to a completely different computa-
tional performance of the network [4,12,13,16,20,22,23,25,26,30]. Moreover, most
of these nonlinear oscillations may appear in the form of periodic solutions with
certain spatio-temporal structures and, if they are stable under small perturbation,
may represent memory of the network to be stored and retrieved. Therefore, it is of
great interest in many applications to discuss the spatio-temporal patterns of these
periodic solutions and to describe the mode interaction along multiple branches of
such periodic solutions.

In [13], Guo and Huang not only investigated the effect of synaptic delay of signal
transmission on the pattern formation, but also obtained some important results
about the spontaneous bifurcation of multiple branches of asynchronous periodic
solutions and their spatio-temporal patterns:

(i) mirror-reflecting waves of the form xj(t) = xN+2−j(t), t ∈ R, j(mod N);

(ii) standing waves of the form xj(t) = xN+2−j(t − 1
2ω), t ∈ R, j(mod N), where

ω > 0 is a period of x;

(iii) discrete waves of the form xj(t) = xj+1(t ± kω/N), t ∈ R, j(mod N), where
ω > 0 is a period of x.

In particular, the discrete waves are also called phase-locked oscillations, as each
neuron oscillates just like the others, except that they are not necessarily in phase
with each other. These wave solutions are special cases of the so-called ‘coherent
oscillation’ observed by Marcus and Westervelt [22]. Depending on the value of
the neurons’ gain and the topology and size of the interconnection matrix, the
aforementioned oscillations can be either stable or unstable. In [22], it has been
observed that some systems of neural networks with delay possess multiple basins
of attraction for coexisting equilibria and oscillatory attractors. Based on the normal
form approach and the centre manifold theory, Guo and Huang [15] derived some
formulae for determining the properties of Hopf bifurcating periodic orbit for a ring
of neurons with delays, such as the direction of Hopf bifurcation and stability of
the Hopf bifurcating periodic orbits.

The purpose of this paper is to study the global continuation of the aforemen-
tioned wave solutions, i.e. their coexistence for delay not only near to but also
far away from the critical values. Therefore, we can obtain wave solutions of large
amplitudes.

Throughout this paper, we always assume the following hypothesis holds.
(H1) There exists some k ∈ {1, 2, . . . , [ 12 (N − 1)]} such that |γ+4ηsin2(kπ/N)| > 1,

where γ = f ′(0) − 2g′(0), η = g′(0), and [·] is the greatest integer function.
For convenience, we use the transformation xi(t) = ui(τt) for i(mod N) and

h = f − 2g, and then rewrite (1.1) as the system of delay differential equations

τ−1ẋi(t) = −xi(t)+h(xi(t−1))−[g(xi−1(t−1))+g(xi+1(t−1))−2g(xi(t−1))], (1.2)

where i(mod N).
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The rest of this paper is organized as follows. In § 2, we discuss the associated
characteristic equation and collect some results from [13, 20]. By using the global
bifurcation theory established by Krawcewicz and Wu [20], we show in § 3 that
these bifurcations of periodic solutions exist for large delays (global continuation).
Section 4 is devoted to the coincidence of these periodic solutions.

2. Preliminaries

Let C([−1, 0], RN ) denote the Banach space of continuous mapping from [−1, 0]
into R

N equipped with the supremum norm

‖φ‖ = sup
−1�θ�0

|φ(θ)| for φ ∈ C([−1, 0], RN ).

In what follows, if σ ∈ R, A � 0 and x : [σ − 1, σ + A] → R
N is a continuous

mapping, then xt ∈ C([−1, 0], RN ), t ∈ [σ, σ + A], is defined by xt(θ) = x(t + θ) for
−1 � θ � 0. We denote a symmetric circulant matrix by J = circ(a1, a2, . . . , aN ),
where Jij = aj−i+1 and ai = aN−i+2, i(mod N).

We introduce three compact Lie groups in order to explore the possible (spatial)
symmetry of the system (1.2). One is the cycle group S1, another is Zn, the cyclic
group of order n (the order of a finite group is the number of the elements it
contains) and the third is the dihedral group Dn of order 2n, which is generated
by Zn together with the flip κ of order 2 (see [11] for more details). Denote by ρ
the generator of the cyclic subgroup Zn, and by κ the flip. Define the action of DN

on R
N by

(ρx)i = xi+1, (κx)i = xN+2−i for all i(mod N) and x ∈ R
N . (2.1)

In [13], we showed that system (1.2) is DN -equivariant.
Next, the linearization of (1.2) at the origin leads to

ẋi = −τxi(t) + τγxi(t − 1) − τη[xi−1(t − 1) + xi+1(t − 1) − 2xi(t − 1)], (2.2)

where i(mod N). It is well known that the associated characteristic equation of (2.2)
takes the form

det ∆(τ, λ) = 0,

where the characteristic matrix ∆(τ, λ) is given by

∆(τ, λ) = (λ + τ) Id−τMe−λ, λ ∈ C, (2.3)

with Id denoting the identity matrix and M = circ(γ + 2η,−η, 0, . . . ,−η).
We put χ = e2iπ/N and

vk = (1, χk, χ2k, . . . , χ(N−1)k)T, 0 � k � N − 1.

Clearly, v0 = (1, 1, . . . , 1)T and vk = v̄N−k. Let

Ck = {vkz; z ∈ C}, k = 0, 1, 2, . . . , N − 1.

Then
C

N = C0 ⊕ C1 ⊕ · · · ⊕ CN−1 (2.4)
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and

(∆(τ, λ)vk)j = (λ + τ)χ(j−1)k − τe−λ[(γ + 2η)χ(j−1)k − η(χ(j−2)k + χjk)]

= {λ + τ − τe−λ[γ + 2η − η(χ−k + χk)]}χ(j−1)k

=
[
λ + τ −

(
γ + 4η sin2 kπ

N

)
τe−λ

]
(vk)j .

Thus, we obtain the following results.

Lemma 2.1.

det ∆(τ, λ) =
N−1∏
k=0

[
λ + τ −

(
γ + 4η sin2 kπ

N

)
τe−λ

]
.

Thus, λ ∈ C is a zero of det ∆(τ, λ) if and only if there exists a k ∈ {0, 1, 2, . . . , N−
1} such that

pk(τ, λ) := λ + τ −
(

γ + 4η sin2 kπ

N

)
τe−λ = 0. (2.5)

Lemma 2.2 (Guo and Huang [13]). Let A(τ) denote the infinitesimal generator of
the semigroup generated by system (2.2). Assume that hypothesis (H1) holds. Define

βk,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2sπ + arccos
(

γ + 4η sin2 kπ

N

)−1

if γ + 4η sin2 kπ

N
< −1,

2(s + 1)π − arccos
(

γ + 4η sin2 kπ

N

)−1

if γ + 4η sin2 kπ

N
> 1;

τk,s = βk,s

{(
γ + 4η sin2 kπ

N

)2

− 1
}−1/2

for all s ∈ N0 := {0, 1, 2, . . . }. Then we have the following results.

(i) At (and only at) τ = τk,s, s ∈ N0, A(τ) has purely imaginary eigenvalues.
These eigenvalues are given by ±iβk,s with βk,s ∈ ((2s + 3

2 )π, 2(s + 1)π)
provided that γ + 4η sin2 kπ/N > 1 and βk,s ∈ ((2s + 1

2 )π, (2s + 1)π) provided
that γ + 4η sin2 kπ/N < −1.

(ii) All other eigenvalues of A(τk,s) are not integer multiples of ±iβk,s.

(iii) For each fixed s ∈ N0, there exist δk,s > 0 and C1-mapping λk,s : (τk,s −
δk,s, τk,s + δk,s) → C such that λk,s(τk,s) = iβk,s and det ∆(τ, λk,s(τ)) = 0 for
all τ ∈ (τk,s − δk,s, τk,s + δk,s). Moreover,

d
dτ

Re{λk,s(τ)}
∣∣∣∣
τ=τk,s

> 0.

Under hypothesis (H1), Guo and Huang [13] show that near τ = τk,s, for each
s ∈ N0, there exist 2(n + 1) branches of asynchronous periodic solutions of period
near (2π/βk,s), bifurcated simultaneously from the zero solution of system (1.2) and
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these are two phase-locked oscillations, N mirror-reflecting waves and N standing
waves. In what follows, we need the general global symmetric Hopf bifurcation
theorem developed in [20] to show that these bifurcations of periodic solutions
exist for all τ > τk,s (i.e. these bifurcations are supercritical and global). Namely,
we consider the following one-parameter family of retarded functional differential
equations (FDEs)

ẋ(t) = τF (xt), (2.6)

where x ∈ R
N , τ ∈ (0,∞) and F : C([−τ, 0]; RN ) → R

N is continuously differen-
tiable and completely continuous. Furthermore, we make the following assumptions.

(A1) There exists some positive integer n such that the cyclic group Γ := Zn acts
on R

N and F : C([−τ, 0]; RN ) → R
N is Γ -equivariant.

(A2) For every x0 ∈ MΓ := {x ∈ R
N ; γx = x for γ ∈ Γ, F (x̄) = 0}, where x̄ ∈ C

is the constant mapping with the constant value x ∈ R
N , det DF̂ (x0) �= 0,

where F̂ is the C1 mapping from R
N into R

N , induced by F according to
F̂ (x) = F (x̄) for x ∈ R

N .

(A3) For every τ0 > 0 and x0 ∈ MΓ such that the generator A(τ0, x0) of the
linearized system of (2.6) with τ = τ0 at x = x0 has a pair of purely imaginary
eigenvalues ±iβ0, there exist positive constants b, c and δ such that:

(i) the only possible eigenvalue u + iv of A(τ0, x0) with (u, v) ∈ ∂Ω is iβ0,
where Ω := (0, b) × (β0 − c, β0 + c);

(ii) for (τ, β) ∈ [τ0 − δ, τ0 + δ]× [β0 − c, β0 + c], iβ is an eigenvalue of A(τ, x0)
if and only if τ = τ0 and β = β0.

(A4) M∗ := {(τ, x, β) ∈ (0,∞) × MΓ × (0,∞); ±iβ are eigenvalues of A(τ, x)} is a
discrete set.

Note that the action of Γ on R
N induces an action on C

N = R
N + iRN , with

respect to which we have the isotypical decomposition

C
N = C

N
0 ⊕ C

N
1 ⊕ · · · ⊕ C

N
j ⊕ · · · ,

where C
N
j , j � 0, is the direct sum of all one-dimensional Γ -irreducible subspaces V

of C
N such that the restricted action Γ on V is isomorphic to the Γ -action on C

defined by ρ · z = ρjz for the generator ρ ∈ Zn � S1 and for z ∈ C. Let

∆x0(τ, λ) := λIN − τDφF (x̄0)(eλ·IN ) (2.7)

for τ > 0, x0 ∈ MΓ and λ ∈ C. By assumption (A1), we have ∆x0(τ, λ)CN
j ⊂ C

N
j

for j � 0 and for λ ∈ C. Put

∆x0,j(τ, λ) = ∆x0(τ, λ)|CN
j

, j � 0. (2.8)

Clearly, ∆x0(τ, λ) is analytic in λ ∈ C and continuous in τ > 0. So, under assump-
tion (A3), we may assume that det ∆x0(τ0±δ, u+iv) �= 0 for (u, v) ∈ ∂Ω. Therefore,
det ∆x0,j(τ0±δ, u+iv) �= 0 for (u, v) ∈ ∂Ω and for j � 0. Consequently, the following
integers are well defined:

cj(x0, τ0, β0) = degB(det ∆x0,j(τ0 − δ, ·), Ω) − degB(det ∆x0,j(τ0 + δ, ·), Ω),
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where degB is the Brouwer degree. Let

ε(x0) = (−1)N sgn det DF̂ (x0). (2.9)

We have the following global symmetric Hopf bifurcation theorem due to [20].

Lemma 2.3. Assume that (A1)–(A4) are satisfied and that cj(x0, τ0, β0) �= 0 for
some integer j � 0 and some (τ0, x0, β0) ∈ (0,∞)×MΓ × (0,∞). Let Sj denote the
closure in [0,∞)×C(R; Rn)× [0,∞) of the set of all (τ, z, β) ∈ [0,∞)×C(R; Rn)×
R \ M∗ such that

x(t) := z

(
β

2π
t

)

is a 2π/β-periodic solution of (2.6) with

ρx(t) = x

(
t − 2π

β

j

n

)
for t ∈ R.

Then for each connected component Ej of Sj, at least one of the following conditions
holds.

(i) Ej is unbounded, i.e.

sup
{

τ + β + β−1 + sup
t∈R

|x(t)|; (τ, x, β) ∈ Ej

}
= ∞.

(ii) (Γ × S1)Ej ∩ M∗ is finite and is composed of a finite number of disjoint
Γ -orbits. Moreover, ∑

(τ,x,β)∈(Γ×S1)Ej∩M∗

ε(x)cj(x, τ, β) = 0. (2.10)

3. Global continuation of waves

To obtain large-amplitude periodic solutions of system (1.2) when τ is far away
from τk,s, we need the following assumptions:

(H2) supy∈R |h′(y)| < 1;

(H3) g′(x) > 0 for all x ∈ R;

(H4) there exist positive constants α1 and α2 satisfying α1 + 4α2 < 1, and σi

(i = 1, 2) such that |h(y)| < α1|y| + σ1 and |g(y)| < α2|y| + σ2 for all y ∈ R.

It should be noted that the assumptions on the activation functions in (H4)
are very general. In particular, if the activation functions in system (1.2) are all
bounded on R, i.e. there exist positive constants σi (i = 1, 2) such that |h(x)| < σ1
and |g(x)| < σ2 for all x ∈ R, then (H4) holds with α1 = α2 = 0. For example,
in cellular neural network models, the activation function takes the form f(u) =
1
2 (|u + 1| − |u − 1|), which is bounded. Hence, it is wrong to think that condition
(H4) implies that the zero solution is globally asymptotically stable. In fact, if (H1)
holds, then the zero solution is unstable.
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As a illustrating example, we consider (1.2) with n = 3 and h(x) = 0.5 tanh(x)
and g(x) = tanh(x). Then, (H1) holds because γ + 3η = 3.5 > 1; (H4) holds with
α1 = α2 = 0 and σ1 = σ2 = 3.

Lemma 3.1. Assume that (H1)–(H3) are satisfied. Then system (1.2) has no non-
constant 2-periodic solutions.

Proof. By way of contradiction, assume that x(t) is a 2-periodic solution. Con-
structing a Lyapunov functional,

V (x1, x2, . . . , xN )(t) =
1
τ

N∑
i=1

|xi(t) − xi(t − 1)|, (3.1)

and calculating the upper-right Dini derivative of V along the solutions of (1.2), we
have

D+V (x1, x2, . . . , xN )(t)

�
N∑

i=1

[−|xi(t) − xi(t − 1)| − 2|g(xi(t)) − g(xi(t − 1))| + |h(xi) − h(xi(t − 1))|

+ |g(xi+1(t)) − g(xi+1(t − 1))| + |g(xi−1(t)) − g(xi−1(t − 1))|]

� −
[
1 − sup

θ∈R

|h′(θ)|
] N∑

i=1

|xi(t) − xi(t − 1)|.

This implies that
lim

t→∞
V (x1, x2, . . . , xN )(t) = 0.

Therefore, for a 2-periodic solution x of (1.2), we must have xi(t) = xi(t − 1) for
all i(mod N). Then we obtain a system of ordinary differential equations

1
τ

ẋi(t) = −xi(t) + h(xi(t)) + 2g(xi(t)) − g(xi+1(t)) − g(xi−1(t)). (3.2)

We define an energy function associated with (3.2) as follows:

V (x1, x2, . . . , xn) = −1
2

∑
1�i,j�N

Tijg(xi)g(xj) +
N∑

k=1

∫ xk

0
[s − h(s)]g′(s) ds,

where Tij is the connection weight, i.e. Tij = 2 if i = j, and −1 if i = j + 1 or
i = j − 1, and 0 otherwise. Calculating the derivative of V along the solutions
of (3.2), we find that

V̇ (x1, x2, . . . , xN ) =
N∑

i=1

{g′(xi)ẋi[g(xi−1) + g(xi+1) − 2g(xi) + xi − h(xi)]}

= −τ−1
N∑

i=1

g′(xi)(ẋi)2

� 0.
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Therefore, a standard Lyapunov stability theorem implies that every solution of
(3.2) converges to an equilibrium as t → ∞. In particular, every 2-periodic solution
of (1.2) must be constant. This completes the proof.

We now make an a priori estimate of the periodic solutions of (1.2).

Lemma 3.2. Assume that (H1)–(H4) are satisfied. There then exists H = H(h, g) >

0 such that
∑N

i=1 |xi(t)| � H for all t ∈ R and for all periodic solutions x of (1.2).

Proof. Let x(t) = (x1(t), x2(t), . . . , xN (t))T be an arbitrary periodic solution of
system (1.2). xj(t), j = 1, 2, . . . , N , as the components of x(t), are all continuously
differentiable. Thus, there exist tj such that |xj(tj)| = maxt∈R |xj(t)|. Then ẋj(tj) =
0. That is,

xj(tj) = h(xj(tj − 1)) − [g(xj−1(tj − 1)) + g(xj+1x(tj − 1)) − 2g(xj(tj − 1))].

Thus, we have

|xj(tj)| � |h(xj(tj − 1))| + |g(xj−1(tj − 1))|
+ |g(xj+1(tj − 1))| + 2|g(xj(tj − 1))|

� α1|xj(tj)| + α2|xj−1(tj−1)|
+ α2|xj+1(tj+1)| + 2α2|xj(tj)| + σ1 + 4σ2.

Namely,
|x(t∗)| � W |x(t∗)| + D,

where |x(t∗)| = (|x1(t1)|, |x2(t2)|, . . . , |xN (tN )|)T, D = (σ1 + 4σ2)v0, and W is an
n × n matrix given by W = circ(α1 + 2α2, α2, 0, . . . , α2). In view of α1 + 4α2 < 1,
we have ρ(W ) < 1, and hence (Id−W )T � 0 and B = (Id−W )−1D � 0. Therefore,
|x(t∗)| � B, i.e. |xj(tj)| � Bj for all j = 1, 2, . . . , N , where Bj is the jth component
of B. Thus,

N∑
i=1

|xi(t)| �
N∑

i=1

|xi(ti)| �
N∑

i=1

Bi := H.

Obviously, H is independent of the choice of periodic solution x(t). This completes
the proof.

We now start to apply the global symmetric Hopf bifurcation theorem (lem-
ma 2.3) to investigate the global continuation of standing, mirror-reflecting and
discrete waves.

First of all, note that near τ = τk,s system (1.2) has two bifurcations of discrete
waves satisfying xj−1(t) = xj(t±kω/N), where ω is a period. To look at the global
continuation of such local bifurcations, we regard system (1.2) as an FDE equivari-
ant with respect to the action of Γ = ZN , where the action is cyclic permutation.
We obtain

MΓ = {x ∈ R
N ; x1 = x2 = · · · = xN and x1 = h(x1)} = {0}.

Under assumption (H1), lemma 2.2 implies that

M∗ = {(τk,s, 0, βk,s); s ∈ N0}.

Therefore, M∗ is discrete in R
N .
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Using the definition of ∆(τ, λ) (see (2.3)) and lemma 2.2(iii), for a fixed integer
s ∈ N0, we can show that ∆(τ, λ) is analytic in λ ∈ C and continuous in τ ∈
[τk,s−δ0, τk,s+δ0], where δ0 is an appropriate positive constant. Moreover, it follows
from lemma 2.2(i), (ii) that there exist small positive constants b, c, δ ∈ (0, δ0) so
that the only possible eigenvalue u + iv of A(τk,s) with (u, v) ∈ ∂Ω is iβk,s, where
Ω = (0, b) × (βk,s − c, βk,s + c) and if (τ, β) ∈ [τk,s − δ, τk,s + δ] × [βk,s − c, βk,s + c],
then iβ is an eigenvalue of A(τ) if and only if τ = τk,s and β = βk,s. Then, in
view of lemma 2.2, we can conclude that pk(τ, λ) has no zero in Ω̄ for τ = τk,s ± δ.
Moreover, the above b, c and δ can be chosen so that pk(τk,s − δ, λ) has no zero in
Ω̄, while pk(τk,s + δ, λ) has exactly one zero in Ω̄ and this zero is simple and is in
the interior of Ω̄. Therefore,

degB(pk(τk,s − δ, ·), Ω) = 0 and degB(pk(τk,s + δ, ·), Ω) = 1.

For the isotypical decomposition (2.3) of the complexification of the above Γ = ZN

action on R
N , we have

∆0,j := ∆0(τ, λ)|Cj
= pj(τ, λ), j = 0, 1, 2, . . . , N − 1.

Therefore, from the above discussions we obtain

cj(0, τk,s, βk,s) = degB(pj(τk,s − δ, ·), Ω) − degB(pj(τk,s + δ, ·), Ω)

=

{
0, for j �= k and j �= N − k,

−1, for j = k, N − k,

Let Sj , j = k, N − k, denote the closure in [0,∞) × C(R; RN ) × [0,∞) of the set of
all triples (τ, z, β) /∈ M∗ such that

x(t) := z

(
β

2π
t

)

is a 2π/β-periodic solution of (1.2) with

xi+1(t) = xi

(
t − 2π

β

j

N

)
for t ∈ R and i(mod N).

Then lemma 2.3 implies that Sj must have a non-empty connected component Ej

passing through (τk,s, 0, βk,s) and this component must be unbounded, for otherwise
the summation (2.10) holds, which is clearly impossible because

ε(0) = (−1)N sgn
[N−1∏

j=0

(
γ − 1 + 4β sin2 jπ

N

)]
= (−1)N+1

and cj(0, τk,s, βk,s) = −1, j = k, N − k.
The projection of Ej onto the space C(R; Rn) is bounded due to lemma 3.2.

Assumptions (H1) and (H2) mean that γ + 4η sin2(kπ/N) > 1. This, together with
lemma 2.2(i), implies that

2π

β
∈

(
2π

2(s + 1)π
,

2π

(2s + 3/2)π

)
⊂

(
1

s + 1
,

1
s + 3/4

)
⊂

(
1

s + 1
,
4
3

)
⊂

(
1

s + 1
, 2

)

for (τ, z, β) ∈ Ej .
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On the other hand, because system (1.2) has no non-constant periodic solution of
period 2, it has no non-constant periodic solution of period 1/(s+1) for all s ∈ N0.
Therefore, lemma 3.1 implies that the projection of Ej onto the β-plane can never
reach the lines

2π

β
=

1
s + 1

and
2π

β
= 2.

Therefore, the projection of Ej onto the β-plane always satisfies π < β < 2(s+1)π.
Moreover, the result of [21] shows that there exists α∗ > 0 such that any period p of
a periodic solution of (1.1) must satisfy p � α∗. Consequently, for (τ, z, β) ∈ Ej , we
must have 2πτ/β � α∗. That is, τ � βα∗/(2π) > 1

2α∗ for every τ ∈ I, the projection
of Ej onto the τ -axis which must be an interval. Therefore, I must be unbounded
from above. Clearly, I contains τk,s. This proves the following theorem.

Theorem 3.3. Assume that hypothesis (H1)–(H4) hold. Then, for each τ > τk,s,
s ∈ N0, system (1.2) always has two discrete waves satisfying

xj+1(t) = xj

(
t ± kω

N

)
for t ∈ R and j(mod N),

where ω is a period of x(t) and satisfies the condition that 1/(s + 1) < ω < 2.

Next, near τ = τk,s, system (1.2) has several bifurcations of mirror-reflecting
waves satisfying xj(t) = xN+2−j(t) and standing waves satisfying

xj(t) = xN+2−j(t − 1
2ω),

where ω is a period. Similarly, in order to study the global continuation of such
local bifurcations, we regard system (1.2) as an FDE equivariant with respect to
the action of Γ = Z2, where the action is the flip. Namely, the action of Γ = Z2 on
R

N is defined by

(ρx)j = xN+2−j for j(mod N), x ∈ R
N .

In this case,

MΓ = {x ∈ R
N ; xj = h(xj) − g(xj−1) − g(xj+1) + 2g(xj)

and xj = xN+2−j for j(mod N)}.

Obviously, MΓ contains at least one element 0. Moreover, the following assumption
plays an important role in describing the structure of MΓ .

(H5) If system (1.2) has a non-zero stationary point x∗ = (x∗
1, x

∗
2, . . . , x

∗
N )T sat-

isfying x∗
j = x∗

N+2−j for j(mod N), then the spectral radius ρ(DF (x∗)) < 1,
where F (x) = (F1(x), F2(x), . . . , FN (x))T and

Fj(x) = h(xj) + 2g(xj) − g(xj−1) − g(xj+1), j = 1, 2, . . . , N.

Thus, if MΓ contains a non-zero element x∗ = (x∗
1, x

∗
2, . . . , x

∗
N )T, then x∗ is also

a non-zero stationary point of system (1.2). The linearization of (1.2) at x∗ =
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(x∗
1, x

∗
2, . . . , x

∗
N )T takes the form

ẋi = −τxi(t) + τh′(x∗
i )xi(t − 1)

− τ [g′(x∗
i−1)xi−1(t − 1) + g′(x∗

i+1)xi+1(t − 1) − 2g′(x∗
i )xi(t − 1)],

where i(mod N), and the characteristic matrix becomes

∆x∗(τ, λ) = (λ + τ) IdN −τDF (x∗)e−λ.

We may assume that qj , j = 1, 2, . . . , N are eigenvalues of matrix DF (x∗). Then

det ∆x∗(τ, λ) =
N∏

j=1

[λ + τ − τqje−λ].

Recall that ρ(DF (x∗)) < 1, i.e. |qj | < 1 for j = 1, 2, . . . , N . We see that every zero
of λ+ τ − τqje−λ has a negative real part, and hence all zeros of det ∆x∗(τ, λ) have
negative real parts. This shows that (A2) is satisfied. Therefore, when Γ = Z2, we
have

M∗ = {(τk,s, 0, βk,s); s ∈ N0}.

Thus, M∗ is discrete in R
N .

The isotypical decomposition of C
N with respect to the above Γ = Z2 action is

C
N = C

N
0 ⊕ C

N
1 ,

where

C
N
0 = {(x1, x2, . . . , xN )T; xj ∈ C, xj = xN+2−j for j(mod N)},

C
N
1 = {(x1, x2, . . . , xN )T; xj ∈ C, xj = −xN+2−j for j(mod N)}.

Therefore,

∆0,0(τ, λ) := ∆0(τ, λ)|CN
0

= (λ + τ) Id[N/2]+1 −τM1e−λ,

∆0,1(τ, λ) := ∆0(τ, λ)|CN
1

= (λ + τ) Id[(N−1)/2] −τM2e−λ,

where M1 and M2 are ([ 12N ]+1)× ([ 12N ]+1) and [12 (N −1)]× [ 12 (N −1)] matrices,
respectively, i.e.

M1 =

⎛
⎜⎜⎜⎝

γ + 2η −2η 0 · · · 0 0
−η γ + 2η −η · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1

2η[3 + (−1)N ] γ + 1
2η[3 + (−1)N ]

⎞
⎟⎟⎟⎠

and

M2 =

⎛
⎜⎜⎜⎝

γ + 2η −η 0 · · · 0 0
−η γ + 2η −η · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −η γ + [2 − (−1)N ]η

⎞
⎟⎟⎟⎠ .
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Moreover, it is easy to see that

C
N
0 = span{vj + vN−j ; 0 � j � [ 12N ]},

C
N
1 = span{vj − vN−j ; 1 � j � [ 12 (N − 1)]},

where vj = (1, χj , χ2j , . . . , χ(N−1)j)T with χ = e2iπ/N , j = 0, 1, 2, . . . , N − 1. Due
to the proof of lemma 2.1, we have

det ∆0,0(τ, λ) =
[N/2]∏
j=0

pj(τ, λ) and det ∆0,1(τ, λ) =
[(N−1)/2]∏

j=1

pj(τ, λ),

where pj(τ, λ) is defined as (2.5). Using a similar argument as in the proof of
theorem 3.3, we can choose positive constants b, c and δ so that the only possible
eigenvalue u + iv of A(τk,s) with (u, v) ∈ ∂Ω is iβk,s, where Ω = (0, b) × (βk,s − c,
βk,s +c), and if (τ, β) ∈ [τk,s −δ, τk,s +δ]× [βk,s −c, βk,s +c], then iβ is an eigenvalue
of A(τ) if and only if τ = τk,s and β = βk,s. By lemma 2.2, the above b, c and δ can
be chosen so that, for the analytic function pk(τ, λ), we find that pk(τk,s − δ, λ) has
no zero in Ω̄, while pk(τk,s + δ, λ) has exactly one zero in Ω̄ and this zero is simple
and is in the interior of Ω̄. Thus,

degB(pk(τk,s − δ, ·), Ω) = 0 and degB(pk(τk,s + δ, ·), Ω) = 1.

Hence,

c0(0, τk,s, βk,s) = degB(det ∆0,0(τk,s − δ, ·), Ω)
− degB(det ∆0,0(τk,s + δ, ·), Ω)

=
[N/2]∑
j=0

degB(pj(τk,s − δ, ·), Ω) −
[N/2]∑
j=0

degB(pj(τk,s + δ, ·), Ω)

= −1

and

c1(0, τk,s, βk,s) = degB(det ∆0,1(τk,s − δ, ·), Ω)
− degB(det ∆0,1(τk,s + δ, ·), Ω)

=
[(N−1)/2]∑

j=1

degB(pj(τk,s − δ, ·), Ω) −
[(N−1)/2]∑

j=1

degB(pj(τk,s + δ, ·), Ω)

= −1.

Let Sj , j = 0, 1, denote the closure in [0,∞)×C(R; RN )× [0,∞) of the set of all
triples (τ, z, β) /∈ M∗ such that

x(t) := z

(
β

2π
t

)

is a 2π/β-periodic solution of (1.2) with

xi(t) = xN+2−i

(
t − 2π

β

j

2

)
for t ∈ R and i(mod N).
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Then, as discussed in the proof of theorem 3.3, lemma 2.3, together with the test of
equation (2.10), implies that Sj must have a non-empty connected component Ej

passing through (τk,s, 0, βk,s) and this component must be unbounded. Moreover,
we can also conclude that the projection of cj(0, τk,s, βk,s) on the τ -axis includes
[τk,s,∞) and period

ω =
2π

β
∈

(
1

s + 1
, 2

)
.

Namely, we have the following two conclusions.

Theorem 3.4. Assume that (H1)–(H5) hold. Then, for each τ > τk,s, s ∈ N0,
system (1.2) has one standing wave satisfying xj(t) = xN+j−2(t − 1

2ω) for t ∈ R

and j(mod N), where ω is a period of x and satisfies that 1/(s + 1) < ω < 2.

Theorem 3.5. Assume that (H1)–(H5) hold. Then, for each τ > τk,s, s ∈ N0,
system (1.2) has one mirror-reflecting wave satisfying xj(t) = xN+2−j(t) for t ∈ R

and j(mod N), with period ω ∈ (1/(s + 1), 2).

Remark 3.6. Due to the DN -symmetry, theorems 3.3–3.5 in fact imply the exis-
tence of N standing waves, N mirror-reflecting waves and two discrete waves for
each τ > τk,s. It follows from (H1) and (H2) that γ + 4β sin2(jπ/N) > 1 for all
j ∈ {k, k + 1, . . . , [ 12 (N − 1)]}. Thus, for j ∈ {k, k + 1, . . . , [ 12 (N − 1)]} and s ∈ N0,
τj,s is a critical value of the delay, at each one of which (2(N + 1)) branches of
phase-locked oscillations, standing waves and mirror-reflecting waves may bifurcate
simultaneously from the trivial solution. Note that, for s ∈ N0,

τk,s > τk+1,s > τk+2,s > · · · > τ[(N−1)/2],s.

Note also that
τk,0 < τk,1 < τk,2 < · · · .

The above results establish the existence of (Ns) standing waves, (Ns) mirror-
reflecting waves and (2s) discrete waves.

Remark 3.7. Theorems 3.3–3.5 mean that all (2(N + 1)) branches of waves are
global, i.e. all branches of waves exist for τ > τk,s.

Remark 3.8. It should be mentioned that in the above theorems, ω is not nec-
essarily the minimal period and several branches of waves may coincide at some
values of τ . We will further discuss the coincidence of these waves in next section.

4. Coincidence of waves

In this section, we discuss whether several branches of waves may coincide at some
values of τ .

Theorem 4.1. If N is an odd number, then a branch of non-trivial discrete waves
and a branch of mirror-reflecting waves cannot coincide at any value of τ .

Proof. If not, there exists a non-trivial ω-periodic solution x of (1.2) such that

xi(t) = xi−1

(
t ± kω

N

)
for i(mod N) and xj(t) = xl(t)

https://doi.org/10.1017/S0308210505000521 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505000521


1012 S. Guo and L. Huang

for some j �= k. Without loss of generality, we assume that

xi(t) = xi−1

(
t +

kω

N

)
and xi(t) = xN+2−i(t) for i(mod N) and t ∈ R.

Then

x[N/2]+1(t) = x[N/2]+2(t) = x[N/2]+1

(
t +

kω

N

)
,

which implies that kω/N is also a period of x. Thus, xi(t) = y(t) for all i =
1, 2, . . . , N , where y(t) satisfies the scalar equation

y′(t) = −τy(t) + τh(y(t − 1)). (4.1)

Namely, x is a synchronous periodic solution of (1.2). However, under assump-
tion (H2), it is easy to see that system (4.1) takes y = 0 as its global attractor
and hence has no non-constant periodic solutions, which is a contradiction. This
completes the proof.

Theorem 4.2. If N is an odd number, then a branch of non-trivial discrete waves
and a branch of standing waves cannot coincide at any value of τ .

Proof. If not, there exists a non-trivial ω-periodic solution x of (1.2) such that

xi(t) = xi−1

(
t ± kω

N

)
for i(mod N)

and xj(t) = xl(t + 1
2ω) for some j �= k. Without loss of generality, we assume that

xi(t) = xi−1(t + kω/N) and xi(t) = xN+2−i(t + 1
2ω) for i(mod N) and t ∈ R. Then

x[N/2]+2(t) = x[N/2]+1

(
t +

kω

N

)
= x[N/2]+1(t + 1

2ω),

which implies that (1
2ω − kω/N) is also a period of x. Hence, for all i(mod N),

x[N/2]+i+2(t) = x[N/2]+2

(
t +

kω

N

)
= x[N/2]+i+1

(
t +

kω

N
− ω

)

= x[N/2]+i+1(t − 1
2ω) = x[N/2]+i(t).

Namely, x[N/2]+i+2(t) = x[N/2]+i(t) for all i(mod N). In view of the fact that N is
an odd number, it is not difficult to verify that xi(t) = y(t) for all i = 1, 2, . . . , N ,
where y(t) satisfies the scalar equation (4.1). Using a similar argument to that
above, we can obtain a contradiction and complete the proof.

Theorem 4.3. If N is an odd number, then a branch of non-trivial discrete waves
of the form xi(t) = xi−1(t − kω/N) and a branch of discrete waves of the form
xi(t) = xi−1(t + kω/N) for i(mod N) and t ∈ R cannot coincide at any value of τ .

Proof. If not, there exists a non-trivial ω-periodic solution x of (1.2) such that

xi(t) = xi−1

(
t − kω

N

)
and xi(t) = xi−1

(
t +

kω

N

)
for i(mod N) and t ∈ R.
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Then 2kω/N is also a period of x. Thus,

xi+2(t) = xi+1

(
t +

kω

N

)
= xi

(
t +

2kω

N

)
= xi(t) for all i(mod N) and t ∈ R.

In view of the fact that N is an odd number, it is not difficult to verify that
xi(t) = y(t) for all i = 1, 2, . . . , N , where y(t) satisfies the scalar equation (4.1).
Using a similar argument to that above, we can obtain a contradiction and complete
the proof.

On the other hand, if N is an even number, then we have some different proper-
ties. In fact, if at some value of τ , the system

τ−1y′(t) = −y(t) + h(y(t − 1)) + 2g(y(t − 1)) − 2g(z(t − 1)),

τ−1z′(t) = −z(t) + h(z(t − 1)) + 2g(z(t − 1)) − 2g(y(t − 1)),

}
(4.2)

has phase-locked 2kω/N -periodic solutions (y(t), z(t))T satisfying y(t) = z(t +
kω/N), then a branch of non-trivial discrete waves of system (1.2) may coincide
with a branch of mirror-reflecting waves of system (1.2) such that x2j−1(t) = y(t)
and x2j(t) = z(t) for all j = 1, 2, . . . , 1

2N . However, if for any τ > 0, there exist
no phase-locked 2kω/N -periodic solutions (y(t), z(t))T of system (4.2) satisfying
y(t) = z(t+kω/N), then it is easy to see that a branch of non-trivial discrete waves
of system (1.2) and a branch of mirror-reflecting waves of system (1.2) do not coin-
cide at any value of τ . Similarly, we can see that the coincidences between a branch
of non-trivial discrete waves and a branch of standing waves, between a branch
of non-trivial discrete waves of the form xi(t) = xi−1(t − kω/N) and a branch of
discrete waves of the form xi(t) = xi−1(t + kω/N), are completely determined by
the existence of phase-locked 2kω/N -periodic solutions (y(t), z(t))T of system (4.2)
satisfying y(t) = z(t + kω/N).

Because (4.1) has no non-trivial synchronous periodic solutions, we have the
following result whatever the value of N .

Theorem 4.4. A branch of non-trivial mirror-reflecting waves satisfying xi(t) =
xj(t) for some i �= j and a branch of mirror-reflecting waves satisfying xl(t) = xm(t)
for some l �= m cannot coincide at any value of τ if (i, j) �= (l, m).

Unfortunately, the above arguments cannot be extended to rule out the possibility
of the coincidence of a branch of non-trivial ω-periodic mirror-reflecting waves with
xi(t) = xj(t) for some i �= j and a branch of ω-periodic standing waves with
xi(t) = xj(t + 1

2ω) for some i �= j. In fact, such a coincidence may occur at some
value of τ where period doubling happens: xi(t) = xi(t + 1

2ω), i(mod N), t ∈ R.
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