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Abstract

In this paper, a new empirical path loss model based on frequency, distance, and volumetric
occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This
study aims to determine the effect of the volumetric occupancy rate on path loss depending on
the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volu-
metric occupancy rate contributes to the literature in terms of novelty. Both the reference
measurements to generate a model and verification measurements to verify the proposed
models are conducted in three different regions of the forest area with double ridged horn
antennas. These regions of the artificial forest area consist of regularly sorted and identical
pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate
the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983
and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results
are compared with four path loss models which are commonly used in the forest area. The
proposed one has the best performance among the other models with values 3.98 and 3.88
dB for 3.5 and 4.2 GHz.

Introduction

Recently, the usage of wireless communication technologies in the forest and vegetation
regions is significantly increased. It is vital to utilize the accurate propagation models in
these regions to obtain quality communication in terms of sufficient and uninterrupted signal.
These models also play an important role in the efficiency of both military and agricultural
wireless applications in forest and vegetation areas [1–3].

The forest area in the world constitutes about 31% of the global land area with 4 million
hectares [4]. As such rural areas have different geographical features than urban areas; it is
important to focus on the studies that make up the propagation model in these areas.
Studies on this subject and their high depth of analysis contribute directly to the more accurate
radio frequency (RF) planning models to obtain accurate coverage. In a forest area, the signal is
exposed to losses not only due to distance throughout the spread but also due to electromagnetic
(EM) behaviors such as scattering, refracting, reflecting, transmission, absorbing, which occur due
to tree trunk, branches, and leaves. It is even possible that these losses can be affected by the wind.
Since the orientation of the branches and leaves can change due to the wind, the polarization of
the propagating waves also changes [5]. These environment parameters attenuating the signals
are completely non-linear in the measurement environment. Therefore, the empirical models
in various forest types and locations help to obtain a more accurate coverage model.

In the literature, various publications are dealing with the theoretical and empirical propa-
gation in forest areas. In [3], the effects of various tree height (7–12 m) and 30 cm of diameter
tree trunks on path loss at 900, 1800, and 2100MHz frequencies are investigated in the pine
forest. In [6], the measurements are made for the ISM frequencies (900, 2400MHz) in struc-
tures of various tree species when the transmitters and receivers are placed at 1.5 m of the same
height. According to these, it is observed that vegetation density and tree species (i.e. pine, oak,
and palm) have different effects on propagation behaviors. The scenario, which includes the
receiver and transmitter at different heights, determines the effect of ground effect on the
path loss. Besides, some studies are shown that the antenna height should be particularly
taken into account [7–9]. Also, at higher frequencies, since the branches and leaves of the
trees are larger than the wavelength, there can be more scattering, and propagation loss
increase [2, 9]. It should be noted that whether the trees in the forest have regular distribution
effects the level of the path loss [10]. In general, even though most of the studies are carried out
for foliage depths ranging from ∼10 to 800 m, there is also one study that measures path loss
up to 8 km [11]. However, while scenarios with higher foliage depth are expected to increase
the path loss, it is found to decrease due to the lateral wave effect [1]. While the studies are
generally carried out throughout the forest, there are also limited studies carried out with a
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single tree. In this way, the effects of the trunk, branches, and
leaves on a single tree on EM propagation behaviors are revealed
[12–14].

It is important to guide the coverage planning studies in 5G
technology. To the best of our knowledge, studies in the 5G fre-
quency band in forest areas are very limited [15, 16]. It is
worth mentioning that both foliage density and moisture content
of soil contribution play an important role in RF propagation as
remote sensing applications [17]. In this study, the measurements
are carried at 3.5 and 4.2 GHz in the 5G frequency region in the
pine trees environment near Golcuk Lake, Turkey. Using the
measurement results, a new empirical path loss model based on
the frequency, distance, and the volumetric occupancy rate (v)
is generated. This study aims to determine the effect of v on
path loss depending on the foliage density in the forest area
consisting of pine trees, unlike the models in the literature.
Section ‘Fundamentals of foliage path loss models’ mentions
the theoretical background of path loss models in propagation
studies. Section ‘Measurement environment’ includes the test
and measurement environment to generate the path loss model
while Section ‘The generation of the new path loss model’
reports on the results of measurement and verification of the
proposed model. Section ‘The results and model performance’
concludes the comparison of the performance of the models.

Fundamentals of foliage path loss models

Theoretical formulations explaining propagation behaviors in
non-line-of-sight (NLOS) measurements, which depend on
various attenuation parameters, are very complicated to under-
stand [10, 18–22]. For this purpose, models based on empirical
formulation generated from the measurement results at differ-
ent frequencies are quite common. These models are classified
into two categories such as mainly modified exponential decay
(MED) and log-normal models. Some studies measure the size
of foliage depth and create a model with location-based image
processing [22]. In MED models such as Weissberger, ITU
Recommendation (ITU- R), LITU-R, FITU-R, and COST235
[23–29], the path loss changes as an exponential function of fre-
quency and distance. It should be noted that these five models
are made in areas with foliage depths <1 km. The general
form of the path loss in forest areas can be shown in (1).

PL forest(dB) = a× f b dc (1)

where a, b, and c values are constants. In the Weisberger model, f is
the frequency in GHz, while in the other four models, f represents
the frequency in MHz, and d is the distance in meters for all.
Weisberger model in (2) is obtained by measuring in dry air
from leafy trees in temperate climates. Here, this model is valid
for two distance intervals (0m < d < 14m and 14m < d < 400m).

PLW dB( ) = 1.33× f 0.284d0.588 14m < d < 400m
0.45× f 0.284d 0m < d < 14m

{
(2)

The ITU-R model obtained by measuring the UHF frequency
in an area with a depth of 400 m is given in (3).This model is
applied between 200MHz and 95 GHz [28].

PLITU-R(dB) = 0.2× f 0.3d0.6 (3)

The FITU-R model is obtained from with leaf and without leaf
palm in the 11.2–20 GHz band as given in (4).

PLFITU-R(dB) = 0.39× f 0.39 d0.25 in leaf
0.37 × f 0.18 d0.59 out of leaf

{
(4)

The LITU-R model is developed for leafy trees and also takes
into account the effect of the lateral wave. It is obtained by modi-
fying the ITU-R model as given in (5).

PLLITU-R(dB) = 0.48× f 0.43 d0.13 (5)

The COST235 model is developed by measuring the leafy and
leafless trees and is obtained by measurements in the range of 9.6–
57.6 GHz as given in (6).

PLCOST (dB) = 15.6× f −0.009 d0.26 in leaf
26.6× f −0.2 d0.5 out of leaf

{
(6)

Measurement environment

According to the data gathered in a research in 2019 [30], about
30% of Turkey (22.621 million hectares) is covered by forests. The
reference measurements conducted to create a path loss model are
carried out in Golcuk Nature Park, located 1300 m above sea level,
in the southwest of Isparta. The coordinates of this region are 37°
44′ 03.70′′N and 30° 29′59.00′′E. As seen in Fig. 1, three areas with
flat ground and covered with pine trees are selected to carry out
measurements. In Fig. 1, the location of the reference measure-
ments made to generate a new path loss model is given. To
increase the accuracy of the measurements, they are conducted
in three different locations with similar features in this region,
and their average values are taken Fig. 2. Tx and Rx are abbrevia-
tions of transmit and receive antenna, respectively. While Tx is
stable, Rx is moved in the main direction of Tx.

The block diagram containing the test equipment used in mea-
surements for both 3.5 and 4.2 GHz is given in Fig. 2. While the
Signal Hound VSG60A model operating in the 50MHz–6 GHz
range is used as a vector signal generator, the Minicircuit
ZVA-183X-S+ model operating in the range of 700MHz–18GHz
and having a gain of 26 dB is used as an RF pre-amplifier. A-info
LB-10180 double-ridged horn antennas with 1–18GHz frequency
range and 11 dBi of gain are used as transmitter and receiver anten-
nas with horizontal polarization. Signal Hound USB-SA44B model
operating in the range of DC-4.4 GHz is preferred as a spectrum ana-
lyzer. Also, the new path loss model based on the reference measure-
ment data is obtained by using the curve-fitting method in Matlab®.

The signals received from the spectrum analyzer are obtained
on the computer thanks to Spike software. While the strength of
the received signal for 3.5 GHz is −51.78 dBm and the frequency
span 100MHz, amplitude reference level is −10 dBm and ampli-
tude division is 10 dB. It should also be noted that the noise level
is −90 dBm.

Related measurements

There are some publications in the literature that make path loss
measurements of pine forest areas and suggest a limited number
of models. The summary of the related measurements is given in
Table 1. The studies mostly investigate the effect of tree types,
antenna types [31], the heights of antennas, the distance, and
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frequency on the foliage path loss. In this study, unlike other stud-
ies, the new path loss model based on v in the pine forest is pro-
posed in the 5G frequency band. In measurements, Tx and Rx are
selected as directional horn antennas and both are placed on a 2
m tripod.

The generation of the new path loss model

Most of the models in the literature are insufficient since they
depend only on the frequency and the distance. In addition,
there is a certain foliage density in the regions where the models

Fig. 1. Reference measurement region used to generate a path loss model.

Fig. 2. Block diagram containing test equipment.
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are valid. These models are not valid in regions where there are
different densities. Therefore, unlike the other studies, the new
path loss model including the foliage density (called as volumetric
occupancy rate) in addition to distance and frequency is proposed
in this study. For this, the measurements in Golcuk Lake and
Suleyman Demirel Campus are made to create the model and ver-
ify the performance of the model, respectively.

The path loss model based on volumetric occupancy rate

As EM waves propagate into the foliage environment, they attenu-
ate at a certain distance. The decrease in signal power of EM wave
due to the obstructions of the line of sight (LOS) can be defined as
path loss [1, 3]. This concept is very important to gain insight into
the performance of the system such as a wireless sensor networks.
While the loss in free-space depends on frequency and distance,
the path loss of environments such as vegetation fields also
depends on various EM parameters such as scattering, multipath
fading, diffraction, refraction, and reflection. Also, the EM charac-
teristics of medium (materials, vegetation environment) such as
dielectric constant affect these EM parameters [32–35]. The
path loss can simply be shown in (7).

PPL = Pt − Pr (Watt) (7)

where Pt and Pr are the power values of the transmitter and receiver,
respectively. The path loss in free-space is also given in (8).

PL free-space(dB) = −27.56+ 20 log10 (f )+ 20 log10 (d) (8)

where f is the frequency in GHz and d is the distance between trans-
mitter and receiver in meters.

The near-ground propagation model is used for the scenario
where the height of the receiver (hrx) and the transmitter (htx)
are taken into consideration in the near-ground studies in forest
areas. This model also known as a two-ray model is valid when
hrx and htx are less than the distance (htx≪ d). The path loss

model for plane-earth is given in (9).

PLplane−earth = 40 log10 (d)− 20 log10 (htx)− 20 log10 (hrx) (9)

The plane-earth measurements are conducted on a grassy
ground where no obstruction exists on LOS between transmitter
and receiver antenna in Fig. 3. It should be noted that the anten-
nas are placed at 2 m of height. The simulated results of free-space
and plane-earth models according to (8) and (9), and the mea-
sured results for 3.5 and 4.2 GHz are given in Fig. 3. They are con-
ducted in three different locations with similar features in this

Table 1. Summary of the related measurements.

Tree types in the
forest

The effect on path loss
examined

Frequency
(MHz)

Max.
range
(m)

The height of
Tx and Rx (m) Antenna types

New
model Ref.

Coniferous and
deciduous trees

Effects of antenna
heights

917.5 d < 2500 1.5, 2.5 and
3.5

Folded dipole – [1]

Pine trees Effect of tree trunk
height

900, 1800, and
2100

d < 400 2 Omni-directional Yes [3]

Pine trees Effect of tropical
plants on path loss

700, 750, and
800

d < 100 Tx: 1.5 and
6.12, Rx: 1.5

– Yes [5]

Coniferous and
deciduous trees

Effects of the antenna
types

2400 d < 1000 1.8 Omni- and
directional

– [10]

Pine, oak and
deciduous trees

Antenna heights at the
different frequencies

2400, 3500,
and 5800

d < 150 1.6 Omni-directional – [14]

Coniferous trees Effects of foliage
depth

28 000 d < 100 – – Yes [16]

Pine trees Effect of the scattering 35 000 15 × 25 1.3 Horn – [19]

Pine trees Effect of the
volumetric occupancy
rate

35 000 and 42
000

d < 150 2 Horn Yes This
study

Fig. 3. Simulated results of free-space and plane-earth models and the measured
results (a) at 3.5 GHz and (b) at 4.2 GHz.
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region, and average values of these three measurement environ-
ments with pine trees are taken in Fig. 4.

The measurements are repeated three times at the same loca-
tion to increase the accuracy and the results are plotted according
to the average of these three values. Accordingly, the loss in free-
space in the entire frequency region is higher than the loss in the
plane-earth environment because, for the plane-earth, the EM
wave goes to the receiver both directly and by reflecting from
the plane. While the measurement results remain between
free-space and plane-earth up to 100 m, it proceeds around the
plane-earth model between 100–150 m. At a distance greater
than ∼75 m, the path loss becomes almost stable.

Total path loss in the forest areas is expressed as.

PL forest = PLplane-earth + PLveg (10)

where PLveg is the vegetation path loss in dB. The comparison

of empirical models and the measurements for 3.5 and 4.2
GHz are given in Fig. 4. The path loss of plane-earth in
Fig. 3 according to (9) and the foliage path loss in Fig. 4 are
measured to generate the model. Since the lateral wave effect
is out of the aim of this study, the LITU-R model is not calcu-
lated and shown. According to Fig. 4, while the measurement
results are closer to the results of the Weissberger and
FITU-R models, they are far away from the results of the
COST235 and ITU-R models since COST235 and ITU-R mod-
els are obtained from measurements made in humid and tem-
perate climates. In general, path loss increases by increasing
distance and frequency in all models. It is determined that
the measurement results differ from other models as the dis-
tance increases. A similar situation exists among other models
where formulations are seen in [2–6].

Measurement environment near Golcuk Lake and the dimen-
sions of identical trees with trunk and crown are given in Fig. 5. In
order to predict the effect of v in the forest area on the path loss
model more accurately, it is significant that the trees have the
same height and width as given in Fig. 5. The average height
and width of trees are 8 and 4m, respectively. The distance
between the trees is 4 and 6.5 m for reference measurement to
determine v on the model.

The measurement results show that the path loss increases
with the rise of v. Different distances d1 and d2 are taken into
account and the reference measurement is also repeated three
times for each distance. In general, v is a parameter that depends
on not only the height and diameter of the crown but also the
height and diameter of the trunk tree. EM waves propagated
from the transmitter reach the receiver not only directly but
also by multipath due to the reflection and scattering effects.
Accordingly, it is determined that the dimension of the crown
and trunk of all trees between the receiver and the transmitter
affects path loss. The ratio of the unit rectangular prism volume
to a single tree volume is calculated to obtain v as in Fig. 5(b).
Volume of a tree in (11) is found by the sum of the volumes of
the trunk and crown of the tree. Equations (11a) and (11b) give
roughly tree crown and trunk volumes, respectively. Accordingly,
trunk and crown volumes are calculated with cylinder and cone
volume formulas, respectively.

Vtree = Vtrunk + Vcrown (11)

Fig. 4. Comparison of empirical models and the measurement in the forest (a) at 3.5
GHz and (b) at 4.2 GHz.

Fig. 5. (a) Measurement environment in Golcuk and (b) the
dimensions of identical trees with trunk and crown.
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Vcrown = pr2c h1
3

(11a)

Vtrunk = pr2t h2 (11b)

Vtree = pr2t h2 +
pr2c h1

3
(11c)

while rt and rc are the radii of the trunk and crown base, respect-
ively, h1 and h2 are the heights of the trunk and crown, respect-
ively. Also, the volume of the rectangular prism containing a
single tree as in Fig. 5(b) is given as

Vprism = d1d2(h1 + h2) (12)

where d1 and d2 are the distances between two trees on the x- and
y-axis, respectively. Therefore, v is found as the ratio of the total
volume of the tree to the volume of the rectangular prism as

vref = Vtree

Vprism
= pr2t h2 + (pr2c h1 /3)

d21(h1 + h2)
(13)

where vref is the reference volumetric occupancy rate. In the first
reference measurement, d1 = d2 = 4 m. While rt and rc are the
radius of the trunk and crown, respectively, ht and hc are the
height of the trunk and crown, respectively. It is observed that
rt = 15 cm, rc = 3m, h1 = 3 m, h2 = 10 m. Additionally, vex is the
examined volumetric occupancy rate. In the second reference
measurements, while h1 and h2 are the same according to the

first case, d1 = 4 m and d2 = 6.5 m.

vex = Vtree

Vprism2
= pr2t h2 + (pr2c h1 /3)

d1d2(h1 + h2)
(14)

where vprism2 is the rectangular prism volume in the examined
environment. v is obtained by dividing the vref by the vex. This
parameter is non-dimensional and ranges between 0 < v≤1.

v = vref
vex

(15)

The proposed model is generated based on three different
parameters as in (16). Using the measurement data at the three
different frequencies mentioned above, it is determined that the
model changes depend on the function f0.28.

PLf (dB) = v Lveg(d) f
0.28 (16)

where Lveg is the distance-dependent vegetation loss factor and PLf
is total path loss in the forest including foliage effect and the
plane-earth. The proposed model is obtained using the curve fit-
ting method in Matlab®. Curve Fitting Toolbox in Matlab is an
easy-to-use application to create any function to fit curves and
surfaces to data. This toolbox enables calculating ERMS and
R-squared values automatically. Before curve fitting, the v coeffi-
cient in (16) for the measurement environment is calculated as
0.61. Also, the effect of the frequency on the path loss is deter-
mined using the measurement results made at different frequen-
cies and thus the exponent of the frequency is calculated as 0.28 in
(16). After determining v and the exponent of the frequency, the
model consists of a distance-dependent function. Firstly, this tool-
box can be opened with the command called cftool at the Matlab

Fig. 6. Measurement region to verify the generated path loss model.
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prompt. At its interface, while the distance data are imported as X
data, the result of reference measurement for each frequency is
imported as Y data. Then, any function type at the interface
can be added for curve fitting. However, to have more accuracy
of the model, Lveg is determined as a two-term exponential func-
tion containing four different constant coefficients to obtain best-
fit parameters in (17). Even if the function type of the model can
be considered as a polynomial (quadratic or cubic) or force func-
tion, it is expressed as the exponential function since the error is
less [the root mean square error (RMSE) value is very close to 1].
These coefficients are found as x = 83.51, y = 0.002, z =−64.91,
and t =−0.034. This model is valid where vegetation area is cov-
ered by equidistant, identical trees.

Lveg(d) = x e(yd) + z e(td) (17)

As aforementioned, the proposed model depends on distance,
frequency, and v. The path loss value increases by increasing dis-
tance and frequency. Since the measurements are made between 5
and 150 m, the model does not work properly at distances more
than 150 m. According to the measurement results, the model
can be used in 1–7 GHz frequency ranges with a maximum
error of ±4 dB. In this range, the error is about ±4 dB at frequen-
cies close to the lower and upper limits, while it is less at the cen-
ter of this frequency range. In addition, v coefficient depends on
the dimension of the trunk and crown in the pine tree. As a result,
the proposed model is valid for only pine forest and the height of
trees varies between roughly 5 and 20 m.

The verification of the proposed model

To verify the proposed path loss model shown in Fig. 6, the region
with pine trees located in Süleyman Demirel University Campus,
which is a different region from Golcuk, is selected and verifica-
tion measurements are carried out in three different areas of this
region. It should be noted that the coordinates of this region are
37° 50′ 22.61′′ N and 30° 31′ 42.01′′ E. The ground is completely
flat and the trees are in a straight line. More than one measure-
ment results are evaluated both to generate the model and to ver-
ify this model.

All measurement environments for two different frequencies
are given in Fig. 7. Figures 7(a) and 7(b) show the reference mea-
surements in the Golcuk to generate model at 3.5 and 4.2 GHz.
The distances between trees in Figs 7(a) and 7(b) are 4 and 6.5
m, respectively. Figure 7(d) includes verification measurements
made to verify the generated model on the Campus at the same
frequency. The distance between trees is 6.5 m and the total meas-
urement length is 150 m. Since the measurement interval is 1 m,
there are 150 different points in the test region. In the verification
measurement, d1 = 4 m and d2 = 6.5 m. While rt and rc are the
radii of the trunk and crown, respectively, ht and hc are the heights
of the trunk and crown, respectively. It is observed that rt = 10 cm,
rc = 2m, h1 = 1.75 m, h2 = 7 m. Figure 7(c) shows the measure-
ment test-setup. The verification measurements are made at
both 3.5 and 4.2 GHz. It should be noted that v is nearly 0.61
for both reference and verification test regions.

To verify the performance of the proposed model, the meas-
urement results, and the proposed model at 3.5 and 4.2 GHz

Fig. 7. Reference and verification measurement environ-
ments for 3.5 and 4.2 GHz.
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are given in Fig. 8. R-squared value between the measurement and
the model for the first frequency is calculated as 0.967 and its
accuracy is at an acceptable level. RMSE value between them is
calculated as 3.983. Then, the performance of this model is com-
pared with the performance of other models in Table 1. For 4.2
GHz, R-squared and RMSE values are also obtained as 0.963
and 3.883, respectively.

After the verification, the effect of v on the performance is
depicted in Fig. 9. Accordingly, it is seen that v has a significant
effect on model performance. According to (15), v is equal to
0.615. As seen in Fig. 9, the result of verification measurement
and the result of the proposed method with 0.6 of v agree with
each other.

The results and model performance

The concept of error in the measurement is defined as the difference
between the measured and calculated values. To evaluate the model
performance, various common metrics such as the mean absolute
error, the mean squared error, mean absolute percentage error,
and RMSE can be used. However, the RMS method is the most
commonly used performance metric in the literature to evaluate
the model performance. RMS errors (Erms) for proposed model
and other empirical models such as Weissberger, ITU-R, Kurnaz
and Helhel [3], and Chen and Kuo [27] models can be defined as

Erms =
�������������������∑n

i=1 (Ep − Em)
2

n

√
(18)

where n is the number of measurement points, Ep is value from the
proposed model or the values from other empirical models, and Em
is the measured value at ith measurement point in dB.

The comparison of the proposed model and other empirical
models for 3.5 and 4.2 GHz is given in Fig. 10. Accordingly, the
closest model among empirical models to the proposed model
is Kurnaz and Helhel model in 3.5 GHz, while it is Chen and

Kuo model in 4.2 GHz. It is observed that the results of the pro-
posed one and the Chen and Kuo models overlap in the range of
5–70 m. It is determined that the average path loss difference of
the models between the two frequencies is 2.58 dB. ITU-R and
Weissberger models overestimate the path loss when the foliage
depth is increased. This can be caused by two possible reasons.
The first reason is that these two models are generated into the
environment with very dense foliage density in the forest, unlike
the other models. The second one is that these two models have
only better performance at frequencies lower than those measured
in this study.

RMS errors and R-squared values between models and verifi-
cation measurements are given in Table 2. The results of verifica-
tion measurement specified before are obtained between 5 and
150 m. According to the table, the model with the highest RMS
error with our proposed model is the ITU-R model for both fre-
quency values. Also, Weisberger and ITU-R models are not suit-
able for pine forests with different foliage densities because the
error is higher than the expected one. Since in the Kurnaz and
Helhel and Chen and Kuo models, k (the ratio of heights of the
trunk of the tree) in [3] and n (exponent constant depending

Fig. 9. Effect of v on the performance of the proposed model.

Fig. 10. Comparison of the proposed model and other empirical models (a) at 3.5
GHz and (b) 4.2 GHz.

Fig. 8. Measurement data for verification and the proposed model at (a) 3.5 GHz and
(b) 4.2 GHz.
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on the foliage density) in [27] variables vary depending on the
foliage density in the forest, these two models can be used in dif-
ferent environments. Since the v parameter includes the distance
between trees, the dimensions of the trunk, and the crown, the
proposed model has more accuracy and is more comprehensive
than other models. Therefore, it gives better results compared
to other models in different frequencies and various forest areas.

Conclusion

In the LOS scenario where there is no obstacle between the trans-
ceiver, EM wave propagated from the transmitter reaches the
receiver directly. For the forest area, in the absence of some obstacles
as considered NLOS, there are various dominant propagation modes
such as multipath reflections, diffraction, scattering, and/or refrac-
tion. These modes due to the trees, trunks, leaves, and so on create
an NLOS path. In this paper, the new empirical path loss model
based on the frequency, distance, and the volumetric occupancy
rate is proposed at the 3.5 and 4.2 GHz in the scope of 5G frequency
bands. This study is focused to determine the effect of v on path loss
depending on the foliage density. The artificial forest area consists of
regularly sorted and identical pine trees. The results of the proposed
model are compared with four different path loss models and aver-
age Erms at 3.5 GHz occur as 3.98, 8.08, 15.20, 5.84, and 5.87 dB for
the proposed model, Weissberger, ITU-R, Kurnaz and Helhel, Chen
and Kuo models, respectively. Therefore, the proposed model gives
better performance than other models.
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