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Objective: Substance dependence disorder is a chronically relapsing
condition characterised by neurobiological changes leading to loss of
control in restricting a substance intake, compulsion and withdrawal
syndrome. In the past few years, (endo)cannabinoids have been raised as
a possible target in the aetiology of drug addiction. On the other hand,
although the exact mechanisms of the genesis of addiction remain poorly
understood, it is possible that neuroinflammation might also play a role in
the pathophysiology of this condition. Studies demonstrated that (endo)
cannabinoids act as immunomodulators by inhibiting cytokines
production and microglial cell activation. Thus, in the present review, we
explore the possible role of neuroinflammation on the therapeutic effects
of cannabinoids on drug addiction.
Methods: We conducted an evidence-based review of the literature in
order to assess the role of cannabinoids on the neuroinflammatory
hypothesis of addiction (terms: addiction, cannabinoids and
inflammation). We searched PubMed and BioMedCentral databases up to
April 2014 with no date restrictions.
Results: In all, 165 eligible articles were included in the present review.
Existing evidence suggests that disruption in cannabinoid signalling
during the drug addiction process leads to microglial activation and
neuroinflammation.
Conclusion: The literature showed that inflammation and changes in
endocannabinod signalling occur in drug abuse; however, it remains
uncertain whether these changes are causally or coincidentally associated
with addiction. Additional studies, therefore, are needed to elucidate the
contribution of neuroinflammation on the behavioural and neuroprotective
effects of cannabinoids on drug addiction.

Summations

∙ Psychostimulants induce microglia activation and the expression of different pro-inflammatory cytokines.
∙ Modulation of the endocannabinoid system is involved in the control of drug abuse and neuroinflammation.
∙ In the present review, we explore the hypothesis that a disruption in endocannabinoid signalling and CB2

activation lead to microglial activation and neuroinflammation, which might contribute to the process of
addiction.
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Considerations
∙ Evidence suggests the involvement of neuroinflammatory mechanisms mediated by endocannabinoids in
the process of drug addiction, but this possibility has not been tested extensively.

∙ CB1 receptors play a role in the potentiation of reward and drug intake, and this receptor is highly
expressed in the brain. Therefore, its participation in the present hypothesis should carefully studied.

Cannabinoids and addiction

The Diagnostic and Statistical Manual of Mental
Disorders in its fourth edition defines substance
dependence as a chronically relapsing disorder that is
characterised by neurobiological changes that lead to
the loss of control in restricting the intake of a
substance, compulsion and negative emotional states
that are induced by motivational withdrawal syndrome
when drug taking is prevented (1,2).
Marijuana (Cannabis sativa) is the most widely

used illicit drug worldwide. The 2006 Annual Report
on Drug Abuse estimates that 4% of the adult world’s
population consumes Cannabis regularly (3). Cannabis
can induce transient psychotic symptoms in healthy
individuals (4,5) and possibly increase the risk
of psychotic disorders, such as schizophrenia, in a
dose-dependent manner in individuals with special
vulnerability (6). The primary psychoactive ingredient,
Δ9-tetrahydrocannabinol (THC), is largely responsible
for the subjective effects of C. sativa, but other
phyto- and synthetic cannabinoids may also induce
psychotomimetic effects (7). Lower doses of THC (e.g.
1.0 mg/kg) enhance electrical brain stimulation reward
in laboratory animals with electrodes implanted in the
ventral tegmental area-medial forebrain bundle-nucleus
accumbens reward axis (8–11).
The very first hypothesis regarding the mechanism

underlying the subjective effects of THC was based
on the ability of this substance to perturb the
membrane permeability of neural cells (12).
However, a specific receptor for cannabinoids was
proposed in the late 1980s (13), and this receptor was
later cloned and termed cannabinoid CB1 receptor
(14). The CB1 receptor is the major pharmacological
target that is responsible for cannabinoid effects,
including the subjective effects related to THC
abuse (6,15). CB1 receptors are widely expressed in
pre-synaptic terminals where they regulate excitatory
and inhibitory transmission in the brain (e.g.
GABAergic, glutamatergic, serotonergic, cholinergic
and dopaminergic neurotransmission) (16,17).
Endogenous ligands for the CB1 receptor (termed
endocannabinoids) have been identified, and the most
extensively studied ligands are the arachidonic acid
derivatives arachidonoyl ethanolamide (anandamide –
AEA) and 2-arachidonoyl glycerol (2-AG). The
activity of these ligands is terminated by the
enzymes fatty acid amide hydrolase (FAAH) and

monoacylglycerol lipase (MAGL), respectively (18).
A second cannabinoid receptor (CB2) has also been
characterised, and it was initially proposed to be
absent in the central neurons. However, later research
changed this notion (19).

The reward circuitry of the mammalian brain
consists of synaptically interconnected neurons that
link several brain regions through mainly by
dopaminergic circuitries (20). GABAergic and
glutamatergic neural inputs also contribute to the
core reward system, which have come to be recognised
as critically important in the regulation of reward
processes and reward-driven behaviours. Cannabinoids
were largely considered a separate class from other
addictive drugs in terms of addictive potential and the
neurobiological substrates that are involved during
cannabinoid drug abuse effects (11,20). However,
accumulating evidence now implicates brain
endocannabinoid signalling in the aetiology of drug
addiction (21), and several studies support the view
that the endocannabinoid system represents a new
candidate for the control of drug rewarding properties
(22), because there is dense CB1 receptor expression in
brain regions that are involved in the motivational and
addictive properties of abused drugs, including the
ventral tegmental area, nucleus accumbens and
prefrontal cortex (23). The endocannabinoids AEA
and 2-AG (12), and the enzymes responsible for their
catabolism (24), are expressed in dopaminergic
neurons. Moreover, endocannabinoids can be
released following the depolarisation of neurons in
brain areas related to reward circuitry (25).

CB1 receptors are abundant in the brain reward
circuitry, and they participate in the addictive
properties of different drugs of abuse (26). CB1

receptors in these circuits are expressed on
glutamatergic and GABAergic interneurons in the
reward circuitry of the mesolimbic system, which
modulate the firing of dopaminergic neurons. In vivo
microdialysis experiments showed that CB1 receptor
activation increases dopamine (DA) release in the
nucleus accumbens (27). The CB2 receptor, which is
believed to control neuroinflammatory mechanisms,
is also expressed in microglia and neurons (25) in the
striatum and midbrain, which are areas related to
reward and addiction (19). However, the presence of
CB2 receptor in neurons is controversial because
of questions regarding the specificity of CB2R
antibodies (28).
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It has been difficult to establish sensitive
paradigms to evaluate the reward properties of
cannabinoids. In contrast to other drugs, cannabinoids
produce false negative results in some behavioural
methods for investigations of abused drugs (7). For
example, some investigations failed to establish
cannabinoid intravenous self-administration in non-
human primates (29). However, a new reliable
method was developed recently to induce self-
administration of the phytocannabinoid Δ9-THC
(30) and the endocannabinoids AEA or 2-AG by
monkeys (31,32). Justinova et al. (31) trained
monkeys with no history of exposure to other drugs
to learn to press a device connected to pump that
delivered THC intravenously in a constant ratio.
The self-administered THC doses in these studies
are comparable to doses found in human marijuana
users (33,34). The effects of cannabinoid self-
administration were prevented by pretreatment with
rimonabant, which shows involvement of CB1

receptors in reward. Intravenous AEA administration
increases extracellular DA levels in the nucleus
accumbens of rats in a CB1 receptor-dependent
manner (35), which contributes to the reinforcing
effects of exogenous AEA.

The abuse liability of drugs that inhibit
endocannabinoid hydrolysis has also been
investigated. Mice given daily injections of the
FAAH inhibitors, URB597 or PF-3845, for 6 days
and challenged with the CB1 antagonist SR141716A
displayed no withdrawal symptoms (36). However,
treatment for 6 days with high doses of the selective
MAGL inhibitor JZL184 significantly reduced CB1

function and expression and SR141716A-induced
somatic withdrawal symptoms (36). These findings
suggest that inhibitors of endocannabinoid hydrolysis
may present a lower abuse liability compared with
direct CB1 agonists (21,22,37).

In addition to the obvious role of the
endocannabinoid system on C. sativa abuse, this
system may also been involved in the control of the
intake of other drugs of abuse (e.g. cocaine, alcohol).
Moreover, evidence in the literature support the
modulation of the endocannabinoid system as a
possible target for the treatment of drug abuse. The
present review summarised the evidence that
supports the hypothesis that neuroinflammatory
mechanisms promote an integrative concept that
links cannabinoids to the addictive properties of
different drugs.

Cannabinoids and alcohol

The endocannabinoid system may play a role in
addictive properties of different drugs of abuse.
Alcohol (or ethanol) is a widely abused substance

that is associated with diverse social problems.
A growing body of biochemical and pharmacological
evidence has established a role for the endocannabi-
noid system in the neurobiology of alcohol (38). Rats
exposed chronically to alcohol had increased AEA
content in the limbic forebrain, which is a key area
for the reinforcement of psychoactive drugs (39–41).
FAAH knockout (KO) mice display increased
preference for alcohol and consume more ethanol
than wild type mice (42). These studies suggest that
CB1 receptors are involved in ethanol addiction.
Acute CB1 receptor agonist exposure increases
motivation for drinking beer (43). Similarly, the
genetic deletion of CB1 receptors reduces alcohol
consumption in rodents. CB1 receptor KO mice
exhibit reduced voluntary alcohol consumption
and do not release DA in the nucleus accumbens
after alcohol consumption (44). Further, there is a
reduction in ethanol self-administration and ethanol
conditioned place preference in mice lacking CB1

receptors (45).
Preclinical evidence indicates that the CB1

antagonist rimonabant suppresses alcohol-related
behaviours, such as alcohol drinking and seeking
behaviour, and alcohol self-administration in rats and
mice (38,46,47). In constrast, clinical studies reveal
controversial data. Subjects in one study were treated
with rimonabant (20 mg/day for 12 weeks), and no
significant benefits were observed, except a delayed
time to have a first drink and relapse were noted (48).
Another study showed that rimonabant in the same
treatment regimen did not change alcohol self-
administration or endocrine measures during a
laboratory session in non-treatment-seeking heavy
alcohol drinkers (49). However, all clinical trials
of rimonabant were discontinued due to adverse
psychiatric effects.

As an alternative, CB2 receptors have also
emerged as a potential target for alcohol abuse.
CB2 receptor activation enhances alcohol intake in
stressed mice, and a CB2 antagonist may induce the
opposite behaviour (19). However, a more recent
work shows that deletion of the CB2 receptor gene
increased preference for and vulnerability to ethanol
consumption (50).

Therefore, the picture is not entirely clear, and the
endocannabinoid system may favour or counteract
neural changes that mediate alcohol abuse through a
mechanism that is dependent on a predominant
activity of CB1 or CB2 receptors.

Cannabinoids and psychostimulants

Several studies suggest the involvement of the
endocannabinoid system in behaviours related to
psychostimulants (51,52). CB1 and CB2 receptors are

Rodrigues et al.

336

https://doi.org/10.1017/neu.2014.24 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2014.24


expressed in glutamatergic and GABAergic inter-
neurons in the reward circuitry of the mesolimbic
system, which modulates dopaminergic neurons that
are responsible for most effects of cocaine and
amphetamine (25,53–55).
One important animal model that is currently used

to study the addictive behaviour of psychostimulants is
behavioural sensitisation (56). This test is characterised
by a progressive increase in a particular response,
such as locomotion, after repeated exposures to a
drug (56). Motor sensitisation to cocaine is impaired in
CB1-deficient mice or after pharmacological blockade
of these receptors (57,58). Furthermore, genetic
ablation of CB1 receptors decreases cocaine self-
administration (45). Treatment with antagonists
impairs self-administration behaviour and inhibits
cocaine-enhanced brain stimulation reward (59,60).
The stress-induced reinstatement of cocaine seeking
is also prevented by blockade of CB1 receptors (61).
Reductions in CB1 receptor expression and signalling
in the prefrontal cortex from human cocaine addicts
and animal rodents have also been reported (39,62).
Evidence also suggests that CB2 receptors

modulate processes related to cocaine addiction.
Recent studies showed a decrease in cocaine motor
sensitisation and self-administration in mice
overexpressing cannabinoid CB2 receptors, which
suggests that this receptor is involved in cocaine-
evoked behaviours (62,63). Moreover, Xi et al. (64)
demonstrated that CB2 receptors modulate the
rewarding and locomotor activity of cocaine via a
dopaminergic neurotransmission-dependent mechanism
in KO mice. However, new studies are necessary to
investigate the mechanisms of the role of CB2

receptors in cocaine reward, and whether this
mechanism is applicable to other drugs of abuse.
Acute and chronic cocaine administration also

promotes alterations in levels of AEA and 2-AG
(65–67). These data suggest that the cannabinoid
system attempts to modulate cocaine-induced
changes. However, pharmacological interventions
that culminate with increases in endocannabinoids
levels have yielded controversial results. For
example, inhibition of MAGL or FAAH does not
alter sensitisation behaviour to cocaine. Furthermore,
blockade of FAAH does not affect self-
administration (67,68). However, inhibition of AEA
hydrolysis prevented reinstatement of cocaine-
seeking behaviours (68).
The involvement of endocannabinoid systems in

the reinforcing effects of amphetamines has also been
studied. Analogous to the results with cocaine,
pharmacological blockade of CB1 receptors reduces
amphetamine self-administration and decreases the
reinstatement of drug seeking (69,70). Depletion of
CB1 receptors also attenuates drug-induced acute

hyperlocomotion. Furthermore, CB1 KO mice did not
sensitise to the locomotor stimulant effects of
amphetamine (6). Results with CB1 antagonists
in motor sensitisation were controversial because
both inhibition and potentiation of this behaviour
occurred (71,72).

Acute or chronic amphetamine treatment increase
anandamide concentrations in the dorsal striatum
and decrease AEA and 2-AG levels in the ventral
striatum (71). In contrast, methamphetamine
administration reduced MAGL activity and
increased 2-AG levels in the limbic forebrain
7 days after neurotoxic doses (73). A recent study
also showed that facilitation of anandamide
neurotransmission attenuated amphetamine-induced
behavioural sensitisation (74).

Cannabinoids and opiates

Several studies demonstrated that the endocannabi-
noid system modulates distinct opioid-induced
responses, such as pain, anxiety and reward
(75,76). A functional and bidirectional interaction
between the endocannabinod and the opioid system
is observed for reward (75). Blockade of opioid
receptors reverses the effects of THC, and con-
versely, blockade of cannabinoid receptors prevents
the development of morphine self-administration and
conditioned place preference in rodents (77,78).
Consistent with these findings, the CB1 receptor
antagonist, rimonabant, reduces the reinforcing
effects of self-administered heroin and inhibits
reinstatement to this opiate (79,80). A very similar
panorama is found in CB1 KO mice, which show
reduced behavioural sensitisation, conditioned place
preference and self-administration induced by opiates
(81,82). The pharmacological and genetic blockade
of CB1 receptors also attenuates opioid withdrawal
syndrome (82).

Interestingly, one recent study suggested that
facilitation of endocannabinoid signalling also
reduces withdrawal in morphine-dependent mice
(83). Although this effect might seem controversial,
a clinical study noted that moderate cannabis use is
associated to better naltrexone treatment adherence
in opiate-dependent patients (84). These data
demonstrated that enhancement of endocannabinoid
levels and blockade of CB1 receptors ameliorate
reward, reinstatement and withdrawal promoted by
opiates.

Cannabinoids and nicotine

Nicotine is the main psychoactive constituent of
tobacco, and it is responsible for the development of
dependence (85). Notably, frequent concomitant
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consumption of marijuana and tobacco is reported
(86), which may reflect a possible interaction
between these systems. Preclinical studies revealed
that co-administration of non-effective doses of
nicotine and THC produced significant conditioned
place preference in mice (87). In addition, alterations
in endocannabinoid levels in distinct brain regions
was observed in animals chronically treated with
nicotine (3).

Cross-talk between nicotine addiction and the
endocannabinoid system was confirmed in
experiments that showed that treatment with a CB1

antagonist reduced nicotine self-administration and
place preference in rodents that was associated with a
decrease in DA release in the nucleus accumbens
(88,89). In agreement with these results, CB1 KO
mice do not express behaviours related to nicotine-
induced CPP or nicotine self-administration (90,91).
Similar responses were observed with pharmacological
and genetic blockade of CB2 receptors (92).

One clinical study also suggested rimonabant as a
potential therapeutic tool for relieving the symptoms
of smoking cessation. Rates of smoking cessation for
subjects who received a major dose of rimonabant
were double the rates of patients who received
placebo (93). Another study suggested that rimonabant
and nicotine patch treatment also decreases smoking
compulsion (94).

Facilitation of endocannabinoid signalling may also
impact nicotine reward. Pharmacological and genetic
FAAH disruption in mice enhances nicotine reward
and withdrawal (95). However, pharmacological
blockade of FAAH significantly inhibits nicotine
reward but has no effect on nicotine withdrawal in
rats (95). These latter symptoms were not modified
after blockade of cannabinoid receptors (27).

Neuroinflammation and addiction: role of
(endo)cannabinoids

The exact mechanisms of the genesis of addiction are
not well understood, but it is possible to speculate
that neuroinflammation plays a role in the pathophy-
siology of this condition. In fact, evidence in the
literature suggests that psychostimulants induce
microglia activation and the expression of different
cytokines, such as tumour necrosis factor (TNF)α and
interleukins (IL) and nitric oxide in animal models,
and these results may also be present in humans
(96–98). Moreover, these cytokines could, per se,
facilitate addiction development. For example, IL-1β
increases mRNA expression and activity of serotonin
transporters in human JAR choriocarcinoma cells.
This increased activity of serotonin transporters could
enhance the effect of psychostimulants that target
these transporters.

Five-day intraperitoneal (i.p.) injections of IL-2 in
male BALB/c mice enhance the sensitivity of
animals to a selective DA uptake inhibitor 5 weeks
after cytokine treatment (99). These long-lasting
changes induced by IL-2 might be important for
central nervous system (CNS) abnormalities that are
induced by addictive drugs. Similar to the long-
lasting effect observed with IL-2 treatment, 5-day
treatment with IL-6 increased the sensitivity to the
locomotor-stimulating effects of an amphetamine
administered 14 days after the last i.p. administration
of IL-6 (100). Moreover, IL-2 and interferon (IFN)-α
potentiated the response induced by a psychostimulant
drug in a protocol of drug discrimination behavioural
effect using D-amphetamine (101,102). In contrast,
TNF-α might play a different role in addiction.
Methamphetamine increases the expression of this
cytokine, which could attenuate the rewarding
effects and discriminative stimulus effects of this
psychostimulant in rats (103,104). Serum levels of
IL-10 are decreased in human cocaine abusers but
TNF-α expression is increased (77). Cocaine infusions
rapidly increase the production of IFN-γ and decrease
IL-10 secretion from polymorphonuclear cells (105).
Cocaine withdrawal in rats is associated with increases
in plasma levels of corticoids (106). Amphetamine
increases the number of circulating neutrophils but
decreases circulating lymphocytes (107).

Psychostimulants may also increase the activation of
transcription factors. For example, methamphetamine
increases the activation of nuclear factor kappa B
(NF-κB) and activator protein 1 (AP-1) in endothelial
cells (108). Activation of these transcription factors
induces the expression of different inflammatory
mediators, which might be important for the
development of drug dependence.

The immune system is also altered in chronic alcohol
abusers. Changes in circulating immunoglobulin (Ig)
levels were the first described immune system link
with alcohol use disorder (109). Alcohol alters immune
function in part by its effects on neurotransmitter,
neuroendocrine, behavioural and autonomic pathways
(110–114). However, many studies reported that
cytokine levels were altered in alcohol user disorder
patients with or without liver disease (115–117).
Alcohol consumption in moderate or higher levels is
also associated with increased IL-10, type 1 helper T
cell (Th1) activation, decreased macrophage-derived
chemokine concentrations and suppression of the NF-
κB (118–120).

The connection between the immune system and
alcohol abuse is even more pronounced in animal
models. Chronic alcohol administration in rodents
increases TNF-α, IL-1β and IL-6 levels in the brain
(121). Chronic alcohol consumption is also associated
with increases in pro-inflammatory cytokines in glial
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cells for the activation of toll-like receptor 4 (TLR-4).
One study in mice lacking TLR-4 showed that this
receptor prevents neuroinflammation-induced damage
after chronic alcohol consumption (122). Apparently,
these receptors are responsible for the recognition of
several molecules derived from microorganisms and
by stimulation of innate immune responses (123).
Receptor recognition triggers the execution of a
sequence of signals, and genes that encode the pro-
inflammatory cytokines TNF-α, IL-1β and IL-2 are
expressed (124).
Another possible link are microglial cells.

Microglia are an important source of inflammatory
mediators in the CNS, and these cells might be
associated to addiction-related processes. Importantly,
it has been hypothesised that primed microglia
could release inflammatory mediators that are
induced by different stressors during the early
recovery period from addiction, which induces
sickness behaviour syndromes that could function
as a first step for relapse behaviour (96). Microglia
activation and the production of inflammatory
mediators might also play important roles in the
plasticity that accompanies the development and
maintenance of drug abuse (125–127). Moreover,
increases in dopaminergic neurotransmission are
also involved in microglial activation. DA depletion
caused by α-MPT prevented the activation
of mesencephalic microglia and the subsequent
TH neuron loss induced by an intranigral injection
of LPS. Moreover, psychostimulants, such as
methamphetamine, induce neurotoxic effects by
increasing microglial activation and inflammation
that is dependent on DA release (128,129).
Recently, Zhao et al. (121) suggested that exposure

to short cycles of alcohol administration (4 days) and
periods of withdrawal (6 days) increases the activation
of microglia, and the neurodegeneration that is
associated with declines in learning and memory
processes. In addition, methamphetamine increases the
production of IL-6 and IL-18 in cultures of human
foetal glial cells (130). However, this result is not clear
and deserves further investigation.
Therefore, it could be assumed in this context that

(endo)cannabinoids could modulate addiction
through its effects on microglia activation and the
production of inflammatory mediators. Importantly,
different papers have demonstrated the presence of
CB1 and CB2 receptors on immune cells (131) and
that cannabinoids reduced the binding of the
respective transcription factors to CRE and NF-κB
in these cells (132). Cannabinoids may act as
immunomodulators by inhibiting cytokine and
chemokine production, the cell proliferation and
expansion of regulatory T cells, and the induction
of apoptosis in these cells (133,134).

Evidence has been presented that 2-AG protects
neurons exposed to harmful insults, such as
inflammation, by acting as an endogenous inhibitor
of cyclooxygenase-2 (135). AEA inhibits TNF-α-
induced NF-κB activation by direct inhibition
of the IκB kinase (136). However, AEA and 2-AG
degradation increased the production of
prostaglandins in activated glial cells (137,138).
This effect might be due to the hydrolysis of AEA
and 2-AG to arachidonic acid, which leads to
enhanced levels of substrate for the formation of
prostaglandins (138). The apparent contradictory pro-
inflammatory effect of endocannabinoids seems to be
mediated by a CB1/CB2 receptor-independent
mechanism, and it is prevented by endocannabinoid
hydrolysis inhibitors (FAAH and MAGL inhibitors)
(137,138). In addition, it is important to stress that
the enhanced levels of prostaglandins in the brain
should not be interpreted as a mere pro-inflammatory
signal, because these mediators also possess anti-
inflammatory effects (139).

Treatment with WIN55,212-2, a CB1/CB2 receptor
agonist, reduced mRNA expression of pro-
inflammatory cytokines, TNF-α, IL-1β, IL-6 and
IFN-γ, in the CNS in a viral model of multiple
sclerosis (140). The pharmacological inhibition
of AEA hydrolysis reduces microglial activation,
nitric oxide levels and the production of several
inflammatory mediators, such as TNF-α, IL-6, IL-1β
and IL-12, most likely due to the activation of CB2

receptors (141–143).
Another possible mechanism of inhibition of

cannabinoid receptor-dependent inflammatory
response might involve the activation of peroxisome
proliferator-activated receptors (PPARs). Several
studies in the last decade reported non-CB1 and
non-CB2-mediated cannabinoid effects, and several
cannabinoids interact with PPARs but in a complex
manner (144). The PPAR family (PPARα, PPARβ
and PPARγ) plays important roles in the maintenance
of lipid metabolism, peroxisomal enzyme expression,
insulin sensitivity, glucose homoeostasis, cell
proliferation, apoptosis and inflammation (145).
Indeed, a large body of evidence suggests that
PPAR-γ mediates some of the modulatory effects of
cannabinoids on neuroinflammation (146,147).
Activation of PPARs inhibits the transcription of
pro-inflammatory genes that prevent the signalling
pathway of NF-κB (147–150). In particular, several
protective effects of PPARγ have been demonstrated
in the brain (151,152). For example, it was
demonstrated recently that neuroinflammatory
mechanisms and PPAR-γ are involved in the
behavioural sensitisation that is induced by the
synthetic cannabinoid WIN55,212-2 (147). In
addition, the endocannabinoid 2-AG may decrease

Cannabinoids, neuroinflammation and addiction

339

https://doi.org/10.1017/neu.2014.24 Published online by Cambridge University Press

https://doi.org/10.1017/neu.2014.24


IL-2 production via PPAR-γ activation (153). The
PPAR receptors may also play a role in addiction.
Coincidentally, major findings of the putative role of
PPARs in addiction come from studies conducted
with cannabinoids (154). Currently, several pieces of
evidence suggest that PPAR-α and PPAR-γ agonists
play a role in relapse, sensitisation, conditioned place
preference, withdrawal and drug intake induced by
psychostimulants (154).

It has been proposed that chronic activation
of microglia plays a major role in disorders that are
characterised by nervous tissue inflammation (155).
CB1 is expressed constitutively in microglia,
and CB2 is expressed in microglia during activation
states (143,155,156). However, CB1 receptors have
been suggested to modulate inflammation (157,158),
but it could also play a role in potential addictive
properties of C. sativa, which is a potential
contradiction. However, CB1 activation by Cannabis
consumption would increase dopaminergic
neurotransmission, which could lead to the
activation of microglia via a CB1-independent
mechanism (128).

CB2 is predominantly expressed in the immune
system and, in our opinion, it might be a key mediator
of cannabinoid regulation of immune functions during
addiction via microglia activation (159–161). Primed
microglia could release inflammatory mediators
and contribute to the maintenance of drug abuse
(125,126,147), and cannabinoids would be involved in
the attenuation of this effect. However, CB1 activation
would control DA release due to its primarily pre-
synaptic location, and CB2 activation would affect
DA neurotransmission by decreasing inflammatory
responses (pro-inflammatory cytokines, nitric oxide,
etc.) (162).

CB2 receptor stimulation reduced morphine-
induced production of inflammatory mediators from
activated microglia (163). Deletion of the CB2R gene

increases the preference for ethanol consumption.
This effect could be mediated by the increase in
mRNA expression of tyrosine hydroxylase and µ
opioid receptors in the ventral tegmental area and
nucleus accumbens, respectively (50). However,
other mechanisms might also contribute to this
action. Moreover, activation of CB2 receptors also
reduced the rewarding and locomotor-stimulating
effects of cocaine. One possibility to explain this
effect is that activation of CB2 receptors on astrocytes
or microglia could alter the production of pro-
inflammatory mediators, which would inhibit DA
release from the nucleus accumbens (164). Therefore,
we speculate that impaired CB2 receptor signalling
would contribute to the reinforcing effects of
different drugs because CB2 receptors regulate the
expression of inflammatory mediators, which possess
important roles in addiction. Therefore, it is reasonable
to suggest that the effects of cannabinoids on drug
abuse might be mediated by neuroinflammatory
mechanisms via CB2 receptors on microglia.

Perspectives and conclusions

The present paper reviewed the possible role of
neuroinflammation in the mechanism of cannabi-
noids on drug addiction. We explored the hypothesis
that a disruption in cannabinoid signalling during
drug addiction processes would involve microglial
activation and a consequent neuroinflammation
(Fig. 1).

Several pieces of evidence suggested that abused
drugs, such as psychostimulants drugs or alcohol,
induce microglia activation and the expression of
inflammatory mediators, such as cytokines and
transcription factors. (Endo)cannabinoids may act
as immunomodulators by inhibiting cytokine
production and microglia activation. This latter
mechanism seems particularly important because

Fig. 1. Role of microglial CB2 receptor in the possible mechanism linking neuroinflammation, (endo)cannabinoids and addiction.
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CB2 receptors on activated microglia might play a
major role in neuroinflammatory processes related to
addiction. Notably, several studies support a role of
PPAR receptors in the anti-inflammatory effects
of cannabinoids, mainly in the CNS. Activation
of PPARs exerts anti-inflammatory effects by
inhibiting the expression of pro-inflammatory genes
and reducing the production of cytokines,
metalloproteases and acute-phase proteins. An
increasing body of evidence shows that (endo)
cannabinoids activate PPARs, which have anti-
inflammatory activities, and the activation of these
nuclear receptors may represent a novel mechanism
by which cannabinoids modulate inflammatory
conditions. However, additional studies designed to
test this hypothesis are needed to elucidate the
contribution of neuroinflammation on the behavioural
and neuroprotective effects of cannabinoids on drug
addiction.
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