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This paper studies the smooth transition regression model where regressors are
I (1) and errors aré(0). The regressors and errors are assumed to be dependent
both serially and contemporaneoudlising the triangular array asymptotjdbe
nonlinear least squares estimator is shown to be consistadtits asymptotic
distribution is derivedlt is found that the asymptotic distribution involves a bias
under the regressor-error dependeneich implies that the nonlinear least
squares estimator is inefficient and unsuitable for use in hypothesis teEling

this paper proposes a Gauss—Newton type estimator that uses the nonlinear least
squares estimator as an initial estimator and is based on regressions augmented
by leads and lagdUsing leads and lags enables the Gauss—Newton estimator to
eliminate the bias and have a mixture normal distribution in the Jimhich

makes it more efficient than the nonlinear least squares estimator and suitable
for use in hypothesis testin§imulation results indicate that the results obtained
from the triangular array asymptotics provide reasonable approximations for the
finite-sample properties of the estimators andsts when sample sizes are mod-
erately large The cointegrating smooth transition regression model is applied to
the Korean and Indonesian data from the Asian currency crisis of.1Di9&
estimation results partially support the interest Laffer curve hypothBsisover-

all the effects of interest rate on spot exchange rate are shown to be quite neg-
ligible in both nations
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1. INTRODUCTION

It is often perceived that economic agents may show different behavior depend-
ing on which regions some economic variables belonghough it seems hard

to find explicit economic theory supporting such behavimr exampleinves-

tors and households may make different decisions regarding their investments
and savingsrespectivelywhen interest rates are rising rapidly than when they
are stableAnother possible example is that employees under recession may
behave differently than under boorBconometricians and statisticians have
developed several methods to study such behavior empirieetizh include
among othersswitching regressiofcf. Goldfeld and Quandtl973, threshold
autoregressiolicf. Tong 1983, and smooth transition regressi¢ef. Granger

and Terasvirtal993 Terasvirta 1999.

In this paperwe focus on the smooth transition regressiBAR) model As
argued in Granger and Terasvi(te993, the STR model is useful in explaining
the aggregate-level economy because the economy is likely to show smooth
transition if each economic agent switches sharply at different tithggmp-
totic theory for the STR model involving only stationary variables can be inferred
from standard theory in nonlinear econometries., Newey and McFadden
1994 Potscher and Pruchd997. The reader is also referred to Franses and
van Dijk (2000 and van Dijk Terasvirta and Franse$2002 for detailed dis-
cussions on the STR model

However general asymptotic theory for the STR model witli) variables
has not been developed y&ecent work by Park and Phillipg999 2001
provides methods for studying nonstationary and nonlinear time séxigst
seems difficult to apply these methods in our contéxte of the reasons for
this is that we adopt a more general assumption than martingale difference errors
as in their work In addition Chang and Park1998 study the STR model by
using the methods of Park and Phillips999 2001). However their model
adopts martingale difference errpoesd it seems that their conventional asymp-
totics does not identify threshold parametécss in Section 2 of the current
papej.

Therefore this paper studies asymptotic theory of the nonlinear least squares
(NLLS) estimator for the STR model with(1) regressors ant(0) errors This
model will be called the cointegrating STR model in this paper in most
cointegration mode]sthe regressors and errors are assumed to be dependent
both serially and contemporaneousBecause using the usual asymptotic
scheme of sending sample sizes to infinity seems to be difficult in the case of
the cointegrating STR modeWe will use the triangular array asymptotics
The triangular array asymptotics has been usedong othersin Andrews
and McDermott(1995 for nonlinear econometric models with deterministi-
cally trending variables

The asymptotic distribution of the NLLS estimator for the cointegrating STR
model involves a bias under the regressor-error depengdetieh implies that
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the NLLS estimator is inefficient and unsuitable for use in hypothesis testing
Therefore we propose a Gauss—Newton type estimator that uses the NLLS esti-
mator as an initial estimator and is based on nonlinear regressions augmented
by leads and lagd.inear cointegrating regressions augmented by leads and lags
are studied in Saikkone(1991), Phillips and Loretar(1991), and Stock and
Watson(1993. The Gauss—Newton estimator eliminates the bias and has a mix-
ture normal distribution in the limjtwhich implies that it is efficient and that
standard hypothesis tests can be performed by using the estimator

Because the triangular array asymptotic methods have not often been used in
econometricsone may rightfully question the finite-sample properties of the
tests and estimators using the methodserefore we report some simulation
results which indicate that the results obtained from the triangular array asymp-
totics provide reasonable approximations for the finite-sample properties of the
estimators and tests when sample sizes are moderately large

The cointegrating STR regression model is applied to the Korean and Indo-
nesian data from the Asian currency crisis of 199fe estimation results par-
tially support the interest Laffer curve hypothesighich states that higher
interest rates may depreciate a currency when interest rates are too high because
excessively high interest rates may increase the default risk by increasing the
borrowing cost of corporationd®y depressing the economy and by weakening
the banking system of an econortgf. Goldfajn and Baig1998. But overall
the effects of interest rate on spot rate are shown to be quite negligible in both
nations Considering the ineffectiveness of high interest rates in stabilizing
exchange rates and the high economic cost associated with keeping high inter-
est ratesthe appropriateness of tight monetary policy during the Asian cur-
rency crisis should come into question

The STR model has been used for some economic applicafibesapplica-
tions are Terasvirta and Anders@®92 for modeling business cycle asymme-
tries Grangey Terasvirta and Andersor(1993 for forecasting gross national
product Sarno(1999 and LutkepohlTerasvirtaand Wolterg1999 for money
demand functionsMichael Nobay and Pee(1997) and Tayloy Pee) and Sarno
(2001 for real exchange rateand Jansen and TerasviftE996 for consump-
tion. Besides thesé_uukkonen Saikkonenand Terasvirt&1988 consider test-
ing linearity against the smooth transition autoregression model

The rest of the paper is organized as follo®ection 2 introduces the model
and basic assumptionSection 3 studies asymptotic properties of the NLLS
and Gauss—Newton efficient estimatofection 4 reports some simulation
results Section 5 applies the STR model to the data from the Asian currency
crisis Section 6 contains further remarkBhe Appendixes include auxiliary
results and the proofs of theorems

A few words on our notationall limits are taken a§ — oo. Weak conver-
gence is denoted as. For symmetric matrices the inequality> B (A = B)
means that the differend®— B is positive definite(semidefinitg. For an arbi-
trary matrixA, |A| = [tr(A'A)]Y2
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2. THE MODEL AND ASSUMPTIONS

Consider the cointegrating STR

p
Ve =+ vg((X = €)ooy (X = C)3y) + @ Xj¢
j=1
p
+ 2 8 Xt 9((Xy — Cp),y.eey (X =€), y) + U
j=1

P p
:Iu’+yg(xt;0)+Eajxjt+zéjxjtg(xt’0)+ut5 t:1’27'~~5 (1)
j=1 j=1

wherex;; is thejth component of thé(1) vectorx; (p X 1), u; is a zero-mean
stationary error termnd = [c;...¢/ y']’, andg(x;0) is a smooth real-valued
transition function of the process and the parameter vectdrt Moreover u,
v, aj, andg; are scalar parameters

The STR mode(l) has been used to describe economic relations that change
smoothly depending on the location of some economic variabiesodel(1),
the relationship between andy, may change depending on whegas located
relative to parameters,...,c. Parametey in model(1) determines the smooth-
ness of transition in the economic relatiofitie reader is referred to Granger
and Terasvirtd1993 for more discussions on the STR maodalthough these
authors do not explicitly consider the casel ¢f) processes

We discuss some examples of mod&l by using the following simplified
version of model1) where nonlinearity appears only in the first regressor

Yo = 0+ ag Xy + 81X, 9((Xgy — €1),ey (Xgp — ©)3y)

p
+Eajxjt+ut, t=1,2,... (2)
j=2

Example 1:

(X3t = C1)yens (Xy — ©))3y) = v >0. (3

14 e ¥*u—0)’

Here the transition function is a logistic function that makes the regression coef-
ficient for x,; vary smoothly betweern,; anda, + §,. When the value of the
regressoixy; is sufficiently far below the value of the parametethe regres-
sion coefficient takes a value closedq, and when the value of the regressor
Xy¢ increases and exceeds the value of the parancdtes value of the regres-
sion coefficient changes and approachegst 6.
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Example 2:

1
1+ e*‘Y(Xltfcl)(Xlt*Cz) ’

9((Xgt = €1)yees (Xyy — G )3y) = C; < Cy, y > 0.

(4)

This transition function can be used when one wants to allow for the possibil-
ity that the regression coefficient changes twidéhen| x| is large the func-
tion takes a value close to 1 so that the coefficientdgrapproaches; + 6.
But whenxy; is approximately between, andc,, the function takes a value
close to zerpwhich makes the coefficient fot;; approachy,. Instead of func-
tion (4), one may also use a linear combination of two logistic functions

When y — oo, functions (3) and (4) approach the indicator functions
1{x4; = ¢} and1{c; = x;3; = ¢y}, respectivelyand model2) becomes close to
a threshold regression moddhen the change in the regression coefficient of
Xy is abrupt and not gradual as assumeddn Our results do not apply to
threshold models because the transition function is not allowed to be discontin-
uous Otherwise our treatment is fairly general and applies to any sufficiently
well-behaved transition function

We shall now discuss assumptions required for mddlelAs already men-
tioned we make the following assumption

Assumption 1
X = X1 + vy, t=12,..., (5)

whereu, is a zero-mean stationary process and the initial vajumay be any
random variable with the properfy|xq|* < co.

Moreover it will be convenient to assume that thp + 1)-dimensional pro-
cessw; = [u; v{]’ satisfies the following assumption employed by Hansen
(1992 in a somewhat weaker form

Assumption 2 For somer > 4, w; = [u, v{]’ is a stationaryzero-mean
strong mixing sequence with mixing coefficients of sizer/(r — 4) and
Elw[" < 0.

Assumption 2 is fairly general and covers a variety of weakly dependent pro-
cesseslt also permits the cointegrated system defined(byand (5) to have
nonlinear short-run dynamigcsvhich is convenient because our cointegrating
regression is nonlinear

Choosing the real numbey in Corollary 143 of Davidson(1994 as 2/

(r + 2), we find that Assumption 2 implies that the serial covariances of the
processw; at lag|j| are of size—2. Thus we have the summability condition

o]

2 LilEwwi, | < oo, (6)

j==e0
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This implies that the procesg has a continuous spectral density mafyjx(A)
that we assume satisfies the following assumption

Assumption 3 The spectral density matri,(A) is bounded away from zero
or that

faw(A) = 8|p+1, e>0. (7)

Assumption 3 specialized to the case= 0 implies that the components of
thel (1) processx; are not cointegratedn addition it is required for the esti-
mation theory of Section 2 thd¥) also holds for other values of. Conform-
ably to the partition of the procesg, we writef,(A) = [ f4n(A)] wherea,b €
{u,v}.

Assumption 2 also implies the multivariate invariance principle

[Ts]
T 723> w = B(s), 0=s=1, (8)
=1

whereB(s) is a Brownian motion with covariance matrix = 2#f,,,(0) (see
Hansen 1992 proof of Theorem 3). We partitionB(s) = [By(s) B,(s)’]’ and

o [@F eu

wUU QUU
conformably with the partition of the process.

As for the transition functioy(x; #), we make the following assumption

Assumption 4

(i) The parameter spad® of 4 is a compact subset of an Euclidean space
(ii) g(x;0) is three times continuously differentiable &P X ©* where ®* is an
open set containing@.

This assumption may not be the weakest possitlg it is satisfied by the
most commonly used transition functions and simplifies exposifitus we
shall not try to weaken ifThe compactness of the parameter spade a stan-
dard assumption in nonlinear regressibaot no such assumption is needed for
other parameters

3. ESTIMATION PROCEDURES

The cointegrating regressigi) assumes serial and contemporaneous correla-
tion between thé (1) regressok, and the error terna,. Adverse consequences
of this on linear least squares estimation are well knoand various modifi-
cations have therefore been deviskdthis paperwe extend the leads and lags
procedure of Saikkonefil991) to the STR model discussed in the previous
section Because there are some theoretical difficulties with a direct extension
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of this procedurgwe will first consider the NLLS estimation that can be uti-
lized to develop a Gauss—Newton type leads and lags estimation

3.1. Triangular Array Asymptotics

Before embarking on the subject of NLLS estimatiae will explain the moti-
vation for the employed asymptotic methods in this secfldrere are two types
of asymptotics that can be considered in nonlinear regressions ithegres-
sors One is the usual asymptotiaand the other is the so-called triangular array
asymptotics in which the actual sample size is fixed@tsay and the model

is imbedded in a sequence of models depending on a samplé& #iet tends

to infinity. The imbedding is obtained by replacing thél) regressor by
(To/T)¥?x,. This makes the regressand dependenT @md whenT = T, the
original model is obtainedrhus if Ty is large the triangular array asymptotics
can be expected to give reasonable approximations for finite-sample distribu-
tions of estimators and test statistidhe triangular array asymptotics is also
used in Andrews and McDermd{t995 for nonlinear econometric models with
deterministically trending variablefRelated references can also be found in
Andrews and McDermott1995.

We will use the triangular array asymptotics for our cointegrating model
because we expect it to provide quite reasonable approximations for estimators
and test statistics and because some parameters cannot be identified when the
usual asymptotics is usedhe identification issue can be explained intuitively
by using a special case of mod&)—the model in Example.MWhen the model
in Example 1 is appliech typical situation is that the observations can be divided
into three groups with each group containing a reasonably large proportion of
the dataln the first and third group the values of the regression coefficient for
Xy; are essentiallyy; ande; + 84, respectivelywhereas the second group con-
tains part of the sample where the value of the regression coefficient changes
between these two valueBecausexy, is anl (1) processthe use of conven-
tional asymptotics means that the variationxgfincreases so that the propor-
tion of observations in the first and third groups increases and that in the second
group decrease&ventually the proportion of observations in the second group
becomes negligibleThis suggests that these parameters are unidentifiable in
the limit, because only observations in the second group provide information
about the parametersandc. This can also be seen by noting thimir T large

9y (Xy — ©)) = g(T Y2y (T~ 2%y — T~Y2¢)) = L{T V2%, = O}.
Thus asymptotically the parameteysandc vanish from the model and become
unidentifiable This discussion implies that the use of conventional asymptotics

leads to a situation that is very different from what happens in the sample where
a reasonably large proportion of observations belongs to the second group
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However the triangular array asymptotics takes the second group and
therefore the parameterg andc into accountRecall thatg(-;0) is the logistic
function Basing the asymptotic analysis og(y((To/T)¥?%x;; — €)) =
g(T Y2y (T4/2x,, — TY2c)) instead ofg(y (X, — ¢)) means that the slope of
the logistic function is assumed to decrease so that the proportion of observa-
tions in the three groups remains essentially the same even though the variation
of X4 increasesln this respect the situation for the triangular array asymptotics
remains the same as for the samplelso makes sense that parametéias to
be of orderO(T ¥/?), becausgdue to the increasing variation &f;, a nonzero
value of c could otherwise be indistinguishable from zeFonally, note that
wheng(y((To/T)¥?xy, — ¢)) is used in asymptotic analysis the procesgsis
standardized in such a way that it remains bounded in probabiiityhis con-
text a possible interpretation is that wh&mends to infinity observations of the
standardized version of the serieg are obtained denser and denser within its
observed range in the sampknd thereby the proportion of observations in
each of the three groups remains essentially the samieh makes informa-
tion about parameterg andc retained even asymptotically

Although the preceding discussion gives a reasonable motivation for using
the triangular array asymptoticis would be imprudent to claim that the trian-
gular array asymptotics would always work wélbr instancewe already noted
that problems may occur if the value of the parameten model (2) with
specification(3) is large so that the model is close to a threshold model

3.2. NLLS Estimation

This section considers the triangular array asymptotics of the NLLS estimator
for model(1). To use the triangular array asymptotiege imbed mode(1) in a
sequence of models

ytT:f(XtT;B)’(l)—’—ut’ t:]-’-'-7T’ (9)

where X = (To/T)Y?x;, f(xr30) = [1 9(Xr360) X+ 9(Xer;0)xr]" and
o=[p v a &) witha=1[a;...a,]' andé = [51...5p]'.2

In what follows we sety = [0’ ¢']’ and letdy, = [6§ (]’ stand for the
true value ofd. The NLLS estimator of parameték, is obtained by minimiz-
ing the function

.
Qr(9) = Z (Yer — F(Xer30) )2 (10)

with respect tod.

The assumptions made so far do not ensure that a minimum of fur@n
exists even asymptoticallyTo be able to introduce further assumptipmnse
first use the multivariate invariance princip(8) to conclude thatx; =
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T&2B,(s) = BY(s) asT — co. This fact and a standard application of the con-
tinuous mapping theorem show théir everyf € 0,

T 1
TS ) xri6) = | 1(B(9:6) 1(B(s):0) ds
t=1 0

An assumption that together with our previous assumptions ensures that the
function Q+(+%) has a minimum fofT large enough is as follows

Assumption 5 For somes > 0,
1
inf )\min<f f(B2(s);0) f(BY(s);0)’ ds) =g>0 (as), (11)
0E0 0

wherenin(+) signifies the smallest eigenvalue of a square matrix

Assumption 5 guarantees thaitith probability approaching op@ minimum
of the functionQy(+}) exists as shown in Appendix.BBecause we are inter-
ested in asymptotic resujt&e may as usual assume that a minimum exists for
all values ofT and is attained aflr = [0} ¢]".

In addition to Assumption Bhe following assumption is needed for the con-
sistency of the least squares estimaler

Assumption 6 For somes € [0,1] and all(8, ) # (6o, do),
f(BJ(s);0)'¢p # f(BY(S);00) b (as.). (12)

This is an identification condition that ensures that the paramétarsd ¢
can be separated in the prodfiCk.r;0) ¢. Taken togetheAssumptions 5 and
6 ensure the identifiability of the parameter vector

The identification conditiongl1l) and (12) depend on the sample paths of
the Brownian motiorB2(s) and are therefore different from the identification
conditions used by Chang and Pdf®98, Chang Park and Phillipg1999,
and Park and Phillip§2001). However conditions(11) and(12) are still fairly
easy to useFor instanceit can be checked by the conditions that mo@a|
with specification(3) is identified whens; # 0 andy > 0.

It may also be argued that it makes sense to use identification conditions that
depend on the sample paths of the Brownian moBS(s) when the triangular
array asymptotics is usethdeed in applications of mode(2) with specifica-
tion (3), one can typically divide the observations into three groups in such a
way that a fair amount of observations belongs to each groupwanen the
triangular array asymptotics is usdtis state of affairs prevails even asymp-
totically. Thus becausex; = B2(s), the triangular array asymptotics in a
sense conditions on such sample pathBffs) for which the shape of the
functiong(y (B2(s) — ¢)) is similar to what is observed in the sampBzcause
of this “conditioning” it seems quite reasonable to use identification con-
ditions that depend on the sample paths of the Brownian mdjis) and
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ensure identifiability when the specified nonlinearity is related to the sample
paths ofB2(s) in the same way as to the observed realizationsofvithin the
sample This meansfor instancethat in the case of modéR) with specifica-
tion (3) we are not interested in identification in cases where sample paths of
B2(s) are such that the functiog(y(B2(s) — c)) is effectively constant and
identifiability is very weak although it is still achieved whép+ 0 andy > 0.
This point could be made even stronger by replacing the logistic function by a
piecewise continuous analog so that for some realizatiorB0¢d) the func-
tion g(y(B?2(s) — ¢)) would actually be constant and identifiability would fail
Clearly such cases would be of no interesgify (x;r — ¢)) is highly nonlinear
within the sample

The following theorem shows the existence and consistency of the least
squares estimatad.

THEOREM 1 Suppose that Assumptions 1-6 hold. TheNL&S estimator
J+ exists with probability approaching one and is consistent.

Theorem 1 shows the existence and consistency of the least squares estima-
tor 91 when the triangular array asymptotics is us&te following theorem
shows the limiting distribution of the estimatd¥. For this theorem we need
an additional assumption

Assumption 7

1
fK(BS(S))K(BS(S))’dS>O (as.), (13)
0

where

[+ 86029(x:6)/26
K00 = l £(x:60)

THEOREM 2 Suppose that Assumptions 1-7 hold and tas an interior
point of ®. Then,

TY2(F; — 90) = U
0

1 1
x ( J K(BO(s)) dBy(9) + f Ky(BO(S)) ds«)

1

K(BA(S)K(BY(S)’ ds)l

where K(x) = 0K(x)/ox" and k,, = 2% Evou;.

The limiting distribution given in Theorem 2 depends on nuisance param-
eters in a complicated way that renders the NLLS estimator inefficientiand
general makes it unsuitable for hypothesis testifgpis difficulty is removed
in a special case where the procesgsendu; are totally uncorrelatedecause
then the limiting distribution becomes mixed normal as can be easily checked
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In its general formTheorem 2 shows that the NLLS estimator is consistent
of orderOp(Tfl/z). This will be used to obtain an efficient two-step estimator
based on the leads and lags modificatibhe reason why the order of consis-
tency differs fromO,(T ~*) obtained in previous linear cases is that we employ
the triangular array asymptotics in which the regressand is made baunded

3.3. Efficient Estimation

This section considers efficient estimation of mo¢El by using a leads and
lags regressiarAs in Saikkonen1991), we can express the error teupas

Uy = _2 T+ &, (14)
j=—o0

whereeg, is a zero-mean stationary process such thav{_; = 0 for all j =

0,£1,..., and

> @+ jDlml < oo, (15)

j=—o0

That this summability condition holds follows from conditi¢6) and Theo-
rem 38.3 in Brillinger (1975. Expressions for the spectral density function
and long-run variance of the procegscan be obtained from the well-known
formulasfed(A) = fuu(A) — fuv()\)fu;l(/\)fuu()\) and wg = “)S - wqu;ulwuu’
respectively

Using equationg5) and(14), we can write the cointegrating regressidn
as

Vi = m+vg(X;0) + a'x + 8% 9(X;6)
K

+ E 7Tj,AXt_j+Q([7 t=K+1...,T-K, (16)
j=—K

whereA signifies the difference operator and

=&+ > 7o
[il>K

To eliminate errors caused by truncating the infinite sungli) we have to
consider asymptotics in which the integértends to infinity withT. The con-
dition K = o(T3) used in the linear case by Saikkon@®91) can also be used
here

Because we continue with the same triangular array asymptotics as in the
previous sectioowe imbed mode[16) in a sequence of models

ytT:f(XtT;e),¢+\/t/7T+eKt7 t:KJ’_l"'-’T_K’ (17)
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whereV, = [AX{_k...AX{,x]" and7 = [7'«...7m¢]. Combining the regres-
sors asq(xg;0) = [ f(X7;0) V/] we can write this model more com-
pactly as

ytT:q(xtT’e)/B—'_Q(t’ t:K+1”T_K’ (18)
whereg =[¢' ']
Instead of proper nonlinear least squares estimators of the paramet&8s in

we shall consider two-step estimators based on the NLLS estimator of the pre-
vious sectionThese estimators are defined by

H 5, T-K -1 1«
[ .ol | o +{ 2 Prhir > PG, (29)
T L t=K+1 t=K+1

wherelr = yir — f (X3 67) ¢ andpr = [K(xr) V'] with

(7 + S+XtT)ag(XtT;éT)/801

K(XtT) = f(XtT;éT)

The latter term on the right-hand side 9) is obviously the least squares
estimator obtained from a regression ®f on p.r. The estimator defined in
(19) will be called the Gauss—Newton estimator

To see the motivation of the Gauss—Newton estimatabtract (X, ;1) dr
from both sides 0f17) and apply the mean value approximatidx.r;0) ¢ —
f(Xe;67) b1 ~ K(Xer)' (9 — J7) to the right-hand sideThus after lineariza-
tion, we get the auxiliary regression model

O = K(Xq)' (9 — 97) + V| 7 + error,

which in conjunction with standard least squares theory gives estir(te@pr

The following theorem describes asymptotic properties of the estimators
3P and #\". The limiting distribution of the estimatof” requires a stan-
dardization by the square root ®f— 2K, the effective number of observations
in the regression ofi on Pr. For conveniencewe denoteN = T — 2K.

THEOREM 3 Suppose that the assumptions of Theorem 2 hold and that
K — oo in such a way that R/'T — 0 and T2 3 ; -« [ 7;| — 0. Then,

1 1

0 N - 00 = ( [ ket as) [ kst .
0 0

where B(s) is a Brownian motion that is independent of(B and has
variancew?.

(i) 14 — 7ol = Op(KVZNY2).
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The independence of the Brownian motidaigs) andB,(s) implies that the
limiting distribution in Theorem 3 is mixed normdfurthermorewe can con-
clude from Saikkoneri1991) that the Gauss—Newton estimaﬁ@?) is asymp-
totically more efficient than the least squares estimatgiin general In the
same way as in Saikkondi991), we have also here been forced to supple-
ment the previously mentioned conditish= o(T %) by an additional condition
that implies that the integdf may not increase too slowly

Theorem 3 indicates that we can estimab@ consistently (see e.g.,
Andrews 1991 by using the residuals from the regression modd) with
estimator(19). Thus conventional tests like Wald andtests can be con-
structed in a straightforward manner and shown to have standard distributions
in the limit.

4. SIMULATION

Implications of the theoretical results in Section 3 can be summarized as fol-
lows. (i) The NLLS and Gauss—Newton estimators are consistenin large
samplesthe Gauss—Newton estimator eliminates the bias in the limiting distri-
bution of the NLLS estimator and is more efficient than the NLLS estimator
(iii) Thet-test based on the Gauss—Newton estimator follows a standard nor-
mal distribution in the limit Because these results are based on the triangular
array asymptotics where the sample size of the embedding model goes to infin-
ity, it may not seem quite obvious whether these results hold when the sample
sizeT, is large Therefore this section examines the aforementioned results by
using simulation

Data were generated by

= u + aX, + X + U,
y[ M ARy [1+exp(_(xt_c)) t

n=a=06=1 c=25; X; = X1 T U3

Uy 0
= g + Bgi_q; B= 0 o ; w =0.2,0.5,0.8;

" 1 op
&, ~ iidN ( 0, . o,=05 (20)
012 1

Largerw implies that the regressors and errors are more correlated both seri-

ally and contemporaneoushve plotted a typicalsimulated data set wittkh =

0.5 in Figure 1 It shows that the relation between the regressor and regressand

gradually changes as the value of the regressor becomes closer to 5
Unreported simulation results indicate that it is difficult to estimate param-

etery accurately by the NLLS method unless either sample sizes are very large

or parametec is located close to the median pf;}, and the results also indi-
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FIGURE 1. Data under smooth transitigii = 150 6§ = 1, ¢ = 5).

cate that other parameter estimates are quite adversely affected by poor esti-
mates ofy. No doubi the occasional poor performance of the NLLS estimator
for unknowny is neither related to the use of triangular array asymptotics nor
due to the presence @f1) variables It may also occur when a given STR
model involves onlyt (0) variables for which standard asymptotics can be used
Because the purpose of this section is to check the implications of the triangu-
lar array asymptoticave do not want our simulation results to be affected by
outliers produced by poor estimates of parameterherefore we assume that
the value of the transition parametgiis known to be 1Also, {x;} were gen-
erated such that is located in between the 15th and 85th percentileéxgt
The purpose of this scheme is the same as that of fixing the valyeWhenc
is near endpoints of the samplkextremely poor estimates of parameteare
sometimes produceavhich affects other parameter estimates to the extent that
evaluating their finite-sample performance at different sample sizes becomes
meaningless

The estimators considered are the NLloBe-step Gauss—Newtoand two-
step Gauss—Newton estimatdrghe values of the leads and lags parameter for
the Gauss—Newton estimators were séf at 1,2,3. Table 1 reports the empir-
ical biases and root mean squared er(&®MSES9 of the estimators at sample
sizes 150 and 309The numbers of replications & = 150 andT, = 300 were
5,000 and 300, respectivelyAs for the method of minimizatiarthe Polak—
Ribiere conjugate gradient metHowas usedThe results in Table 1 can be
summarized as follows

» As sample sizdy grows the RMSEs of all the estimators decreasbich may be
interpreted as evidence for consistency
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TaBLE 1. Biases and root mean squared errors

o ) c
Estimator Bias RMSE Bias RMSE Bias RMSE
(a) To =150

NLLS 0.048 Q122 —0.026 Q113 Q029 Q421

GN1(K=1) —0.008 Q103 Q007 Q098 —0.009 Q339

GN1(K=2) —0.005 Q106 Q005 Q100 —0.007 Q344

w=0.2 GN1(K =23 —0.005 Q109 Q005 Q103 —0.007 Q349
GN2(K=1) -0.010 Q103 Q010 Q098 -0.010 Q330

GN2(K=2) —0.007 Q106 Q008 Q100 —0.008 Q335

GN2 (K =13) —0.007 Q110 Q008 Q103 —0.007 Q341

NLLS 0.060 Q143 —0.033 Q136 Q008 Q598

GN1(K=1) -0.010 Q115 Q007 Q113 —0.005 Q463

GN1(K=2) 0.002 Q121 Q001 Q119 Q001 Q469

w =05 GN1(K =23 —0.003 Q127 Q003 Q125 —0.000 Q474
GN2 (K =1) —-0.015 Q112 Q012 Q111 -0.012 Q451

GN2(K=2) —0.003 Ql14 Q006 Q113 —0.006 Q456

GN2 (K =3) —0.008 Q118 Q008 Q115 -0.007 Q462

NLLS 0.068 Q159 —0.036 Q153 —0.048 Q871

GN1(K=1) —0.012 Q121 Q007 Q123 -0.033 Q644

GN1(K=2) 0.005 Q132 —0.002 Q133 —0.025 Q657

=028 GN1(K =23 —0.006 Q138 Q003 Q139 —-0.029 Q663
GN2(K=1) —-0.019 Q119 Q014 Q121 —0.044 Q600

GN2 (K =2) —0.001 Q121 Q005 Q123 -0.034 Q618

GN2 (K =3) -0.013 Q124 Q011 Q126 —0.042 Q620

(b) To = 300

NLLS 0.030 Q067 -0.017 Q064 -0.004 Q336

GN1(K=1) —0.003 Q053 Q003 Q054 —0.009 Q0264

GN1(K=2) —0.001 Q053 Q001 Q054 —0.008 Q266

=02 GN1(K = 3) —0.001 Q054 Q002 Q055 —0.008 Q0267
GN2(K=1) —0.003 Q053 Q003 Q054 —0.009 Q251

GN2(K=2) —0.002 Q053 Q002 Q054 —0.009 Q253

GN2(K =13) —0.002 Q054 Q002 Q055 —0.008 Q254

NLLS 0.033 Q078 -0.019 Q078 —0.036 Q486

GN1(K=1) —0.006 Q058 Q004 Q061 -0.012 Q366

GN1(K=2) 0.000 Q058 Q001 Q061 -0.013 Q370

w =05 GN1(K =23 —0.003 Q058 Q002 Q061 —-0.012 Q371
GN2(K=1) —0.007 Q059 Q005 Q061 -0.014 Q345

GN2(K=2) —0.001 Q058 Q002 Q061 -0.015 Q352

GN2 (K =3) —0.004 Q059 Q003 Q062 -0.015 Q351

NLLS 0.038 Q078 -0.021 Q078 —0.046 Q636

GN1(K=1) —0.006 Q056 Q003 Q060 —0.006 Q464

GN1(K=2) 0.003 Q056 —0.002 Q060 —0.003 Q468

w =028 GN1(K =23) —0.003 Q056 Q001 Q061 —0.004 Q469
GN2(K=1) —0.007 Q056 Q005 Q060 -0.014 Q432

GN2(K=2) 0.002 Q055 —0.000 Q059 —0.009 Q436

GN2 (K =3) —-0.004 Q056 Q003 Q060 -0.011 Q438

Notes:(i) GN1 and GN2 denote the one-step and two-step Gauss—Newton estimespectively(ii) The num-
bers of replications af, = 150 andT, = 300 were 5000 and 300, respectively(iii) Parametew signifies the
degree of serial and contemporaneous correlation in the regressors andlearges» implies that the regres-
sors and errors are more correlated both serially and contemporane@asiyneteK denotes the numbers of
leads and lags
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» The Gauss—Newton estimators reduce the magnitudes of bias and RMSE substan-
tially in relation to the NLLS estimator as predicted by Theorem 3

 As the regressors and errors are more correlated both serially and contemporane-
ously the two-step Gauss—Newton estimator tends to improve on the one-step Gauss—
Newton estimator in terms of RMSBut the two-step Gauss—Newton estimator is
sometimes more biased than the one-step Gauss—Newton esttimaigh the degree
of the biases for both the estimators is quite mild

» The choice of the paramet&rdoes not seem to affect the results significantly

» The nonlinear parameteris subject to higher RMSE than other linear parameters
which may reflect the computational difficulties associated with estimating the non-
linear parameter

Table 2 reports empirical sizes of the t-ratios using the Gauss—Newton esti-
mators under the null hypotheses= 1, § = 1, andc = 5. Nominal sizes were
chosen to be 5% and 1Q%nd the same experimental format as for Table 1
was usedThe results in Table 2 can be summarized as follows

» Thet-ratios reject more often than they should in p@t But increasing the sam-
ple sizeT, to 300 improves the performance of theatios’

* When there are fewer serial and contemporaneous correlations between the regres-
sors and errors af = 300 empirical sizes get closer to the corresponding nominal
sizes But this is not noticeable af, = 150

» The one-step and two-step Gauss—Newton estimators show similar performance

» ChoosingK =1 andK = 2 atT, = 150 andT, = 300, respectivelytends to provide
the best results

In summary the simulation results in Tables 1 and 2 seem to confirm that
the results from the triangular array asymptotics in Section 2 can provide rea-
sonable approximations for the finite-sample properties of the estimators and
tests when the sample size is moderately large

5. AN EMPIRICAL EXAMPLE

One of the substantial controversies regarding the Asian currency crisis of 1997
has been whether tight monetary policy was effective in stabilizing foreign
exchange rates during and in the aftermath of the ci&8e Goldfajn and Baig
(1998, Kaminsky and Schmuklef1998, Ghosh and Phillipg1998, Kraay
(1998, Deklg Hsiag and Wang(1999, Park Wang and Chung(1999, and
Choi and Park2000 for empirical results regarding this issua fact tight
monetary policy constituted an essential part of the IMF rescue package for
Asian countriesbecause it has conventionally been believed that higher inter-
est rates reduce capital outflows by raising the cost of currency speculation and
induce capital inflows by making domestic assets more attractive in the short
run and also that they improve current account balance by reducing domestic
absorption in the long run

However as discussed in Goldfajn and BditP98), higher interest rates may
depreciate a currency when interest rates are too high because excessively high
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TaBLE 2. Empirical sizes of th&-ratios

1o 1) c

Estimator 5% 10% 5% 10% 5% 10%

(@ To =150
GN1(K=1) 0.089 Q152 Q084 Q143 Q075 Q129
GN1(K=2) 0.090 Q156 Q085 Q148 Q080 Q132
=02 GN1(K=3) 0.09 Q161 Q090 Q159 Q084 Q139
GN2(K=1) 0.087 0148 Q082 Q142 Q077 Q135
GN2(K=2) 0.089 Q153 0086 Q148 Q083 0139
GN2(K=3) 0.097 Q157 Q090 Q157 Q085 Q143

GN1(K=1) 0.086 Q147 Q093 Q151 Q077 Q134
GN1(K=2) 0.089 Q152 Q096 Q154 Q078 Q134
o =05 GN1(K=3) 0094 Q155 Q100 Q157 Q081 Q134
GN2(K=1) 0.082 Q143 Q088 Q149 Q079 Q141
GN2(K=2) 0.088 Q0148 Q092 Q148 0082 (0141
GN2(K=3) 0.091 Q154 Q096 Q154 Q085 Q146

GN1(K=1) 0.089 Q155 Q089 Q149 Q085 Q138
GN1(K=2) 0095 Q152 Q093 Q149 Q087 Q142
=038 GN1(K=3) 0098 Q161 Q096 Q158 Q090 Q140
GN2(K=1) 0.088 Q154 Q084 Q150 Q089 Q141
GN2(K=2) 0090 Q149 Q091 Q147 Q086 Q142
GN2(K=3) 0.095 Q159 Q094 Q155 Q091 Q145

(b) To = 300
GN1(K=1) 0069 Q128 Q065 Q123 Q064 Q111
GN1(K=2) 0068 Q132 Q067 Q126 Q064 Q117
w =02 GN1(K=3) 0069 0131 Q066 Q127 Q064 Q117
GN2(K=1) 0.067 Q129 Q065 Q119 Q068 Q117
GN2(K=2) 0.065 Q130 Q066 Q123 Q068 Q118
GN2(K=3) 0.066 Q133 Q065 Q124 Q067 Q121

GN1(K=1) 0.078 Q137 Q075 Q126 Q061 Q118
GN1(K=2) 0.076 Q132 Q073 Q127 Q068 Q114
o =05 GN1(K=3) 0077 Q132 Q073 Q132 Q067 Q122
GN2(K=1) 0.081 Q137 Q078 Q127 Q064 Q119
GN2(K=2) 0.077 Q131 Q073 Q124 Q068 Q121
GN2(K=3) 0.078 Q133 Q075 Q131 Q069 Q122

GN1(K=1) 0.079 Q138 Q070 Q124 Q063 Q121
GN1(K=2) 0.072 Q130 Q067 Q122 Q060 Q118
o =0.8 GN1(K=3) 0075 Q136 Q069 Q124 Q060 Q121
GN2(K=1) 0081 Q142 Q067 Q128 Q065 Q120
GN2(K=2) 0072 Q129 Q065 Q123 Q064 Q120
GN2(K=3) 0.075 Q134 Q068 Q127 Q067 Q125

Notes: (i) The same experimental format as for Table 1 was u§edThe long-run variance was estimated by
using the methods of Andrew4991) with an AR(4) approximation for the prefilter
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interest rates may increase the default risk by increasing the borrowing cost of
corporationsby depressing the economy and by weakening the banking sys-
tem of an econom¥ This hypothesis may be called the “interest Laffer curve”
hypothesis because the effects of interest rates on spot exchange rates are hypoth-
esized to depend on the levels of the interest rafbss section employs the
model and asymptotic theory developed in previous sections to study the inter-
est Laffer curve hypothesis and reports the magnitudes of interest elasticity of
the spot rate for Korea and Indonesia during the Asian currency .crisis

The uncovered interest rate parity relation predicts that log spot rate is related
to the difference of domestic and foreign interest rates and log expected future
spot rat€ Though the relation predicted by the interest rate parity condition is
approximately linearit indicates that the difference of the domestic and for-
eign interest rates and the log expected future spot rate may be considered as
major variables explaining the spot ralénis consideration leads us to employ
the difference of the domestic and foreign interest rates and the log expected
future spot rate as regressors in our nonlinear regres@ah because the
expected future spot rate is not observabdeward exchange rate can be used
as its substituteOne may wonder at this point why we did not invoke the cov-
ered interest parity relation from the beginnidpwevery in Koreg there has
been no well-developed forward exchange markéthout such a markett
would be nonsensical to consider the covered interest parity relation

More specifically the STR model we use in this section is

Vi = o+ agXg T ap X + 8%y (21)

11e 0mo Tl
wherey, and x,; are the spot and forward rategspectively and x,, is the
difference between the domestic and foreign interest ratesi; — i;"). Be-
cause we are interested only in the nonlinear relation between the spot rate and
the interest rate differentiathe transition function includes only the interest
rate differential Equation(21) signifies that the relation between the spot rate
and the interest rate differential changes when the latter is well above the level
¢ unlessvy is zera Thus the model is appropriate for studying the relation
between the spot rate and the interest rate differemttich may change depend-
ing on the level of the interest rate differential

The spot exchange rate data that we use are daily nominal exchange rates of
Korea and Indonesia vis-a-vis the.&J dollar. For forward exchange rates
1-month maturity data are uselflor Korea we use the forward exchange rate
from the nondeliverable forwartNDF) market® For Indonesiawe use data
from their onshore forward exchange markétgor domestic interest ratese
use the overnight call rates of each counBgcause the overnight call rates
are the main monetary policy instruments of each counkryy seem to best
reflect monetary policy stances of each country and could be regarded as exog-
enous policy variabledThe U.S. federal funds rate is used as the foreign inter-
est rate

https://doi.org/10.1017/50266466604202031 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604202031

COINTEGRATING SMOOTH TRANSITION REGRESSIONS 319

3200 T T T T T T T T T T
M * -

2800} :: - - —-100+(Call-Federal Fund) | |
| l“ —— Spot Rate
v h

24001 : ‘h, B

| oy

Lo

2000 [ " i

1600

Rate

1200

800},

400

-

1
ap b
MR

Y
C L L L L L L L L L ] L 1 1 | " L 1
0 22 44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396

FiGURE 2. Interest rate differential and spot rafti€orea).

The whole sample covers the 19-month period$/4997-10'30/1998 for
Korea and 13/1997-724/1998 for Indonesialhe sample period for each coun-
try begins at about 6 to 7 months before the eruption of its own currency.crisis
The sample sizes for Korea and Indonesia are 386 andré8pectivelyFig-
ures 2 and 3 plot the Korean and Indonesian .dakteese figures demonstrate
the volatility of the data during the sampling period
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The Dickey—Fuller-GLS8 test of Elliot Rothenbergand Stock(1996 and
the LM test of Choi(1994 were applied to the spot and forward rates and the
interest differentials for both Korea and Indonedike results support the pres-
ence of a unit root at conventional leveind hence the theoretical results in
previous sections are relevant hefeuly, the interest differentials should be
I (0) under normal circumstanceStherwisethere are unrealistically many arbi-
trage opportunitiesBut during the currency crisis peripthe test results indi-
cate that they look like (1) at least in Korea and Indonesi@robably market
participants during the period did not perceive the diverging interest differen-
tials as arbitrage opportunities in the light of the huge risks invalved

The results of the one-step and two-step Gauss—Newton estimation of model
(21) are reported in Table.®¥ The Polak—Ribiere conjugate gradient method
was used for initial estimation as in SectionThe results for Korea in Table 3
show that the forward rate and interest rate differential are significant at con-
ventional levels excepting a couple of cas&Bor the parameters inducing non-
linearity, conventional hypothesis testing is difficiftWhens = 0, c andy are
not identified In addition wheny = 0, § andc are not identified Thus con-
ventional testing procedures cannot be usedfandy. Testing the null hypoth-
esess = 0 andy = 0 is equivalent to testing the null of linearityhe standard
errors for the parameteyr are relatively highwhich indicates the difficulty of
estimating the parameterhe location parameteris estimated to lie between

TABLE 3. Gauss—Newton estimation results

K aq ap o Y c
(a) Korea(Ty = 386)
0O/S 1 Q97(0.023 -0.0059(0.0031) 0.0055(0.0030 0.3540(0.439 14.01(2.28
2 096(0.023 —0.0063(0.0032 0.0060(0.003) 0.2775(0.444) 1385(2.32
3 0.96(0.0249 —0.0064(0.0032 0.0062(0.0031) 0.2621(0.447) 13.80(2.34)
T/S 1 Q97(0.024 —0.0046(0.0045 0.0041(0.0045 0.4879(0.301) 15.06 (3.69)
2 097(0.0260 —0.0035(0.0066 0.0030(0.0067) 0.4808(0.275 16.26 (6.03)
3 097(0.027 —0.0033(0.0073 0.0028(0.0076 0.4752(0.278) 16.43(6.94)
(b) Indonesia(T, = 406
O/S 1 101(0.004 —0.0014(0.0007 0.0006(0.0007) 0.9843(1.727) 13.65(6.84)
2 101(0.004 —0.0015(0.0007 0.0006(0.0006 1.029(1.719 13.90 (6.83)
3 101(0.004 —0.0014(0.0007 0.0006(0.0006 1.129(1.715  14.15(6.80)
T/S 1 101(0.004 —0.0015(0.0007 0.0007(0.0007 0.3600(3.095 14.81(3.67)
2 1.01(0.0049 —0.0015(0.0007 0.0007(0.0006 0.3908(3.104) 14.98(3.67)
3 1.01(0.0049 —0.0016(0.0007 0.0007(0.0006 0.2958(3.394 15.18(3.66)

Notes:(i) Daily data covering the periods/#/1997-10'30/1998 and 13/1997-724/1998 were used for Korea
and Indonesiarespectively(ii) O/S and 7S denote one-step and two-step Gauss—Newton estimetigpectively

(iii) ParameteK denotes the numbers of leads and la@e) The numbers in parentheses denote standard
errors
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13.80 and 1643 depending on the choice of the leads and lags paraideted
the estimation methot?

For Indonesianonlinear effects of the interest differentials seem to be weak
relative to Koreathough coefficients for the forward rate and the interest dif-
ferential(«; andas,) are significant at conventional levelBhe estimates of the
location parameter are similar in magnitudes to those for Koyéfaough Indo-
nesia experienced much higher interest rates than Korea during the period of
currency crisig®

The results in Table 3 indicate that the future rates are quite important in
explaining the spot rates given the magnitudes of the coefficient estinates
the coefficient estimates for the terms involving the interest differentials are
close to zeroTo visualize the nonlinear effects of the interest differentiais
draw the interest differential elasticity of spot rate in Figures 4 and 5 by assum-
ing that the estimation results in Tabldsing the one-step estimation method
with K = 1) represent the true relatidh
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FiGURE 5. Interest elasticity of spot raténdonesia.
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Figures 4 and 5 show that when the interest differentials take values lower
than approximately 11% and 12% for Korea and Indonesipectivelythe con-
ventional wisdom that increasing interest rate helps stabilize spot rate seems to
be supportedBut when the interest differentials take higher values up to approx-
imately 28% and 16% for Korea and Indonegsiespectivelythe elasticities
become positivewhich implies that increasing interest rate has negative effects
on stabilizing spot rataVhen the interest differentials are above 28% and 16%
for Korea and Indonesjaespectivelythe elasticities become negative again

Figures 4 and 5 partially support the interest Laffer curve hypoth&sis
they also indicate that tight monetary policy is effectitteough very weakly
when interest rates are very higRotwithstanding this remarkwe conclude
from the magnitudes of the elasticities shown in Figures 4 and 5 that the effects
of interest rate on the spot rate are negligible in either diredfiGior example
when the interest differential is 30% for Korethe elasticity is only—0.007.

This implies that raising the interest differential from 30% to 3@%, a 10%
increase has the effect of appreciating the Korean currency by on®7%
Considering the fact that the currency was depreciated by approximately 30%
on the average during the sampling perisdch a meager effect is certainly
unsatisfactory to the Korean econarnifis is more so when one considers the
negative effects of an interest rate increase of such magnitude on the corpora-
tions and banking system of the economy

6. FURTHER REMARKS

We have analyzed and applied the cointegrated STR model in this. péper

evet there are a couple of topics that deserve our attention but were not studied
in this paperFirst, methods for testing linearity in the presencel ¢f) vari-

ables are not yet available but are useful for empirical analy®esause non-
linear models are flexiblehey may give a good in-sample fit even when the
true model is linearThus testing linearity prior to nonlinear model fitting is
important Secondtesting for cointegration for the STR model should precede
estimation but relevant methods are not yet availabe hope that these top-

ics can be studied in the future by the authors and other researchers

NOTES

1. Although model(1) assumes that all the regressors have a nonlinear effect on the regres-
sand our theoretical results can readily be modified to the case where the nonlinearity only appears
in some of the regressort addition our setup does not allow for the possibility that different
transition functions are used for different regressa@st it would not be difficult to extend our
results to that case alsdo simplify exposition we have preferred to work with a single transition
function

2. In practice we always choosk = Ty, so that the transformatioxr is not required The
transformation is made only to facilitate the development of asymptotic analysis

3. See Lemma 5 in Appendix A and the proof of Theorem 1 in Appendix B
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4. The one-step Gauss—Newton and two-step Gauss—Newton estimators use the NLLS and
one-step Gauss—Newton estimators as initial estimatespectively

5. We do not report the results for the estimatorgobecause these are not the main concern
in most applications

6. It was found that quasi-Newton methods tend to give more outlidre maximum number
of iterations for optimization was set at 1,000

7. Increasing the sample size to 500 further improves the empirical size ¢f#ti®, though
the results are not reported here

8. In addition Feldstein(1998, Furman and Stiglit1998, and Radelet and Sacli$998a
1998h, among othersargue that tight monetary policy in Asia either was ineffective in stabilizing
exchange rates or may have even exacerbated the situation

9. The uncovered interest rate parity relation is written asil = (1 + i;")S%.,/S, wherei;
andi;* denote the domestic and the foreign interest rates at tdaéspectivelyand § and S¢ ;
denote the spot exchange rate at dasad the expected future spot exchange rate at daté,
respectively Taking logs of both sides of the interest parity relation yieldsSlh= In(1 + i;*) —
IN(L+ i) +In(S8) ~ i — i + In(S5).

10. The NDFs are nondeliverable forwards traded in the offshore malkdike the onshore
forward exchange ratewhich have been influenced by direct regulation and heavy intervention of
the Korean governmentve believe that the NDF rates better reflect expectations of market
participants

11 Because Indonesia had already liberalized domestic foreign exchange meré&dtglone-
sian rupiah was not traded in the NDF market

12. Prior to estimating the STR modset is proper to perform linearity test8ut the linearity
tests for models with (1) variables are not yet availahblso we bypass the stage of hypothesis
testing

13. Needless to sayhis statement assumes that the given nonlinear model represents the true
data generating process

14. We thank Bruce Hansen for pointing out this problem

15. These results are based on the assumptions that the error term in ed@afienl (0) and
that regressors are not cointegratedrmal tests for cointegration for the STR model are not yet
available But fitting the AR(1) regression for the residuals from equati@i) using the parameter
values in the first row of Table,3ve obtained AR1) coefficient estimate 857 and corresponding
standard error.043 Similar results were obtained for other parameter vallibes it seems unlikely
that the residuals ark(1). In addition we tested for cointegration between the future rates and
interest differentials but found no evidence of cointegration

16. Indonesia’s maximum call rate during the sample period waS%land the average was
29.4%. But the maximum and average for Korea were 35% ané%b5respectively

17. Ignoring the error term in equatiof21) and assuming that the parameter estimates are the
true parameter valugshe elasticity was calculated by using the formalg/(1/Xat)dXar = dyi/
dIn(xz) . Here the partial derivative is multiplied by, because log was taken for the spot rate
but not for the interest differential

18. Choi and Park2000 also report that interest differential did not cause spot rate in both the
short and long runs during the Asian currency crisis
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APPENDIX A: AUXILIARY LEMMAS

We shall first prove some auxiliary results that may also have applications elsewhere
Recall the notatiomN = T — 2K and note that &possibly matrix-valued functiorh(x)
defined onRY is said to be locally bounded jfh(x)| is bounded on compact subsets

of RY,

LEMMA 1. Let h(x) be a locally bounded, vector-valued function definedRsh
(d < o0) and let{e,, A<} be a square integrable martingale difference sequence such
that sSURE| e < oo. Let P (d X 1) and {2 (t = 1,...,T) be random vectors de-
fined on the same probability space as Assume thamax,_,_ || = Op(1) and
sup.1 E[£? ] < co. Then,
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() max Hh(a”)ﬂ = 0,(1),

(i) N~2/2 2 E Ih(ZNNZZ 1] = Oy(K/N*2), and

j=—Kt=K+1

NS hE®)er,

t=K+1

= Op(K/NY2),

i) S
=1

wheng is measurable with respect to tlvealgebra 7<. The third result also holds
with g(l) replaced byZ\ T} .

Proof. To prove the first assertionlet ¢ > 0 and use the assumption
max,——1 |4 | = Op(2) to choosem > 0 such thaP{max,__1 || > m} < & for all
T large Next, use the assumption thatx) is locally bounded to conclude thét,, =
supxj=ml h(x)|| is finite. Then the desired result follows because for @llarge

P{ max |h(¢&)| > Hm} = P{ max 2] > m} <e.
1=t=T 1=t=T
The second result is an immediate consequence of the first result and the moment

condition imposed o2 . To prove the third assertiofirst note that an application of
the triangular inequality yields

K
.21 N~* 2 h(gtl))6t+1
i=

t=K+1

K
=2
j=1

Nt 2 HIZP = mh(c)er,

t=K+1

T-K
N7t 3 1ed ] > mh(cd)er,
1

K
+ 2
=1

def

= Agr + Aot

Now, let ¢ > 0 and definem andH,,, in the same way as in the proof @Gf. Then for
everyM > 0 andT large

PUNY/K)| Agr| > M/2} = P{ maxigip’| > m} <

As for A;t, use the assumptions thid;, 7} is a square integrable martingale differ-
ence sequence and thﬁ{? is measurable with respect to thealgebraZ:< to obtain

K 2\1/2
E|A1T|<2< ‘ )

ji=1
K - 1/2
=2 (N-Z 2 E({I47 ] = mbh(Ze)’ h(;“))e{ﬂetﬂ))

t=K+1

N~ E &P = mh(e el

t=K+1

1/2
=H 2<N 2 E E(€t+]5t+])>

t=K+1

= CH,K/N¥2  C<oo.
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Hence P{(NY?/K)|A.r| > M/2} = 2CH,,/M by Markov's inequalityand we can con-
clude that for everyM andT large

P{NYZ/K)[Arr + Agr| > M} = P{(NVZ/K)|Arr| > M/2}
+ P{ANYZ/K)|Agr| > M/2}

< 2CH,/M + &.

ForM > 2CH,,/¢ the last expression is smaller thag, hich proves the stated result
A similar proof shows the final assertion u

Note that the first two results of Lemma 1 obviously hold whgx) and {t(f)j,T are
matrix-valued and that the third result improves Lemmd(8) of Park and Phillips
(2001 by relaxing the exponentially boundedness assumption used therein to local
boundedness

The first two results of Lemma 1 can be applied with the process

Zi =271+ W, t=12,..., (A1)

wherew is as in Assumption 2 anzh, may be any random vector such titzy|* < co.
In this case/" = zr = T Y2z, and max—i—t|z+| = Op(1) is an immediate conse-
guence of the invariance principl®). This definition of z will be assumed in sub-
sequent lemmasThe proofs of these lemmas make use of the fact, taia result of
Assumption 2we can write

W = n — A&y, (A.2)
where
N = E (ExWej — E—1Weyj) and &, = 2 E Wiy

j=0 j=1

with E; the conditional expectation operator with respect tasthalgebra%; = o (ws, s=<t)

(cf. Hansen1992. Becausdn;, %} is a stationary martingale difference sequence equa-
tion (A.2) is analogous to the so-called Beveridge—Nelson decompasitltioh has been
used extensively in asymptotic analysis of linear proceg&ssse.g., Phillips and Solp
1992. Therefore we shall refer to equatiofA.2) as the Beveridge—Nelson decomposi-
tion also in the present contekn our applications of the third result of Lemma 1 the mar-
tingale difference sequencg will be 7. For these applicationsand also for other
subsequent derivationi is worth noting that thestationary processes;; and&; have
finite moments of order 4see Hanserl 992 the proof of Theorem .3).

LEMMA 2. Let h(x;0) be a (possibly) vector-valued continuously differentiable func-
tion defined orRP*1 X ®* where®* is an open set in an Euclidean space. Suppose that
dh(x;60)/0x is also continuously differentiable and I@tC ®* be a compact set contain-
ing the pointd, in its interior. Then, as K/T — 0,
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K T-K
@) X [IN* X h(zg;0)W || = O,(K/NY2) for every fixedd € ©, and
j=—K t=K+1
K T-K X .
(i) 2 |IN"Y D Nz bows || = Op(K)|6r = bo] + Op(K/NY2),
j=—K t=K+1

whereér is a random vector such that = 6y + 0p(1).

Proof. We shall first prove the latter assertion and then note how the first one can be
obtained from the employed argumenféithout loss of generalityassume thal(x;6)
is real-valued and use the Beveridge—Nelson decompogific?) in conjunction with
the triangular inequality to obtain

K T-K _ K T-K _
>IN h(zeg:; 6wy || = >INt X N (zZers; 67) 01y
=K t=K+1 =K t=K+1
K T-K )
+ 2 N2 E h(ZtT;HT)Aft,H
=K t=K+1

def

= Agr(0r) + Agr(6r).

First, considerA,r(67) and use partial summation to obtain

T-K

N"t h(ZtT;éT)Af{ﬂ = Nilh(ZT—K,T;H.T)f'}—Kﬂ - Nilh(ZK#—LT;éT)fI{(H

t=K+1
T-K

=N > [h(zg;6r) - h(Zt—LT§9T)]§{—1+j~

t=K+2

Hence using the triangular inequality we find that

K
| A4 (07)] = Nt suplh(zr_w 130)| > l€r—kill
0o =K

K

+ Nt suplh(zg.q730)l E ”fKﬂ”
€6 =

K T-K
+ sup 2 N~* Z [h(zqg;0) — h(zt—l,ﬂe)]f{—uj .
00 j=—K t=K+2

Because supe|h(x;0)| is locally boundedthe first two terms on the right-hand side
are easily seen to be of ordey,(K/N). For the third term we can use a standard mean
value expansion to get

h(zs:;6) —h(z,_,7:0) = Til/zHl(zlfl,T;g)Wt;
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whereH;(x;0) = oh(x;0)/0x’ and |z._1 1 — zerl| = [Z—11 — zer] = T"Y?|w|. Thus
we can write

K T-K
|Asr(67)] = sup E N-¥2 2 Hi(Z— 1 130)We 14 || + Op(K/N)
0€06 j=—K t=K+2
K T-K

=N"¥2 > > SUp[H (21 13 ) IWe &_ 14 + Op(K/N)

j=—Kt=K+2 €0

= O, (K/NV2), (A.3)

Here the latter inequality is justified by the triangular inequality whereas the equality fol-
lows from Lemma 4ii) because sype |H1(x;0)] is locally boundedmax <i=7( z—1 7| =
Op(1), andE[w, £{_1.;] is a finite constantFor later purposes we note that we actually
showed that\sr(0) = Op(K/N/2) holds uniformly ing € ©.

Next, considerAsr(6r). Becausd), is an interior point of® andéy = 6, + 0p(1), we
can use the mean value expansion

h(zer;6r) = N(Zer300) + Hao(Zer;01) (61 — 6),

whereH,(x;0) = dh(x;0)/00' and |01 — 6o = |6+ — 6o|. Thus using the triangular
inequality one obtains

K T—K
|Agr(r)l= X [N X h(Zer;00) M1
=K t=K+1
K T-K o
+ 2 N~ 2 Ho(Zer; 01) (61 — ) mi ||-
=K t=K+1

The first term on the right-hand sideAs(6,), and the second term can be bounded by

K T-K

N~ E 2 supl[Hx(z36)ll |67 — Ol Imesl = Op(K)”éT — 0ol

j=—Kt=K+1 0€06

Here the equality is again obtained from Lemn{i)lbecause sype | H2(x;6)| is locally
boundedmax =1l zir|| = Op(1), andE| 7|l is constantThus to complete the proof
we have to show thahst(6p) = Op(K/NY2).

By the definition ofAsr(6p),

K T-K K T-K
Asr(fp) = 2 IN"Y X h(zer; 00) i+l + 2Nt X h(zer;60) i |
-1 t=K+1 i—o t=K+1

def

= Ag17(0p) + Agor (6o).

Lemma Jiii) implies thatAzir(6p) = On(K/N¥2), so we need to show that the same
holds true forAz,7(6p). To this end use the Beveridge—Nelson decompositién?) and
the definition ofz to give

Zer = S — T V26, + T Y2(40 — 20),

https://doi.org/10.1017/50266466604202031 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604202031

330 PENTTI SAIKKONEN AND IN CHOI
wheresy = T-¥23/_; ;. Thus a mean value expansion yields

h(zer:60) = h(s_j_11:0) + T Y2Hi (S j_ 11101y,

wherery = z%zontfﬁi — &t éo—and|sjoir — Zl = lsjorr — 2zl =
TY2|ry|. This identity and the triangular inequality imply

K

‘A32T(00)‘ = z

T-K
Nt 2 . h(slfjfLT;ao)ntLj

i=o =K+
K T—-K
+ 2 INT¥2 X Hy(5j-17300) g i ‘
i—o t=Kr1
K T-K
=X (N2 Y Hi(S—j—1,7300) 14 Mi—j +Op(K/N1/2)'
j=o t=K+1

Here the equality is obtained from Lemmaiil), which obviously applies despite the
differences in subscript®Next note thatbecause the functioH(x;#) is continuously
differentiable by assumption and becaysg;—11 — S—j-17| = 2T 2| ry], we have
[H1(8-j-1.71360) — Hi(st-j-1.7560)] = T ?Hir(60)|ry| whereHir(6o) is determined
by the partial derivatives of the functidiy(x;6p) and by Lemma 1i), Hit(6p) = Op(1).
Combing these facts with the preceding upper bounfdgsr(6o)| it is straightforward
to show that

K T-K
|Agr(Bo)| = X N2 Hi(S—j—1,7300) 14 M-
i=o t=K+1
B K T-K
+Hir(6o) 2 N2 X Irg %[l + Op(K/NY2). (A.4)
i=o t=K+1

Consider the second term on the right-hand sRlethe Cauchy—Schwarz inequality
Elrgl2lme—;l = (Elrg|*Elne;12)¥? = c1(j + 1) wherec; is a finite constantTo jus-
tify the latter inequality hereobserve thatfor some finite constants,, cs, and c,,
Ellrgl* = cEIZ}_omj+il* + c3 = ca(j + 1)? where the inequalities can be obtained
from the definitions and Theorem738(i) of Stout(1974. Thus

K T-K
E<2N2 > |rtj|2||7)tj|> = O(K#N),
j=0 t=K+1

and becausd;1(6p) = Op(1), it follows that the second term on the right-hand side of
(A.4) is of orderOp(K/N/2).

To complete the proof of the first assertjome still need to show that the first term
on the right-hand side afA.4) is of orderO,(K/N 2 1t suffices to replacej; in turn
by each of the four components in its definitidthus consider the quantity
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T-K

N~ ¥z 2 Hl(S(J 1T700)277[ J+|77tj
=0

t=K+1

>

i=0

T-K

N-%2 Z Hl(stfjfl,T; ao)ﬂt—j 77{7j

t=K+1

K
=>
j=0

K
+ 2
=1

t=K+1

¥z 2 Hi(s—j- 1T700)E77t j+i M- 1”

Arguments similar to those used fégr(f7) in (A.3) show that the first term on the
right-hand side is of orde®,(K/N/2). These arguments also apply when the last three
terms in the definition of; are consideredrhus we only need to show that the latter
term in the last expression is of ord®p(K/N¥2). Using the triangular inequalitpne

obtains
K _
2 vz 2 Hl(st j— 1T’00)277t J+|77t j ‘
j=1 t=K+1
K T-K
22 N~ 3/2t §+ Hi(s— i— :L,T’HO)nt J+|”’7t i ‘ (A.5)

To show that the last quantity is of ordey,(K/N*/2), we can make use of a similar
truncation argument as in the proof of Lemmg@iil and replace the functioH;(x;6o)
by 1{| x| = m}H(x;6) with an appropriately chosen real numtrar Thus because
H1(x;60) is locally boundedl{||x| = m}H4(x;6,) is boundedTo simplify notation we
proceed by assuming that the functidn(x; 6y) itself is boundedAssuming this shows
that fori = 1

t=K+1

T-K
EHN3/2 2 Hl(sf—j—l,ﬂeo)’fh—jﬂ"lt/—j

2 )1/2

where the equality follows because the terms in the preceding sum are uncorrelated with
bounded second momenThus the right-hand side ofA.5) is of orderO,(K 2/N), which
proves the desired result and completes the proof of the second assertion

To prove the first assertiomotice that we need to show thagr(6) andA,7(0) are
of orderOp(K/N¥2) for every fixedd. For As;r(6) we showed that this holds even uni-
formly in 6. As for Asr(6), it suffices to consideAz;7(6) andAsz,r(0) separatelyin the
preceding proof we showed thag,t(6p) andAs,r(6o) are of ordeiOy(K/N 2) and an
inspection of the proof reveals thég can be replaced by ary & © without changing
the result This completes the proof of Lemma 2 n

< H e 2 Hl(stj 1T300)7h J+Intj
t=K+1

=O0(N™),

It would be useful to be able to show that the pointwise result of Lem(naa?so
holds uniformly in#, but we have been unable to obtain this extensidre following
result is not difficult to obtainhowever
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LEMMA 3. Suppose the assumptions of Lemma 2 hold and{et R« ...Rir]’
be a (possibly) stochastic matrix such that eagh fRas p+ 1 rows and, for some finite
constant ¢|Rr| = c (as.). Then,

K T-K
supll > N°* > h(zr;0)W R || = 0,(D).
0o || j=—K t=K+1

Proof. Without loss of generality assume that= 1 and thath(x;#) is real-valued
Becausg|Rjr| = 1 for all j, we have for every fixed € ©

K T-K K T-K
‘ 2 Nt 2 h(ZtT;e)Wt’ﬂRjT = 2 N~ E h(ZtT;e)W{+JRJT
j=—K t=K+1 j=—K t=K+1
K T-K
= 2 INT X h(zeo)w,
j=—K t=K+1
= 0p(1),

where the equality is due to Lemma 2 Thus the problem is to strengthen this point-
wise convergence in probability to uniform convergence in probabligcaused is a
compact set it suffices to show that the quantity whose norm is taken is stochastically
equicontinuougseeg e.g., Davidson 1994 p. 337). To this endlet 6, andd, be arbitrary
points of ® and consider the quantity

K T-K K T-K
‘ 2 Nt Z h(ZtT§01)W{+jRjT_ 2 N~* 2 h(ZtT;GZ)Wt,HRiT
=K t=K+1 =K t=K+1

T-K K
Nt D [h(zg;0,) — h(z736,)] > Wi Rir
=K

t=K+1

T-K 1/2 T-K K 2\1/2
= <N1 > |h(ZtT;01)_h(Z[T;02)|2> (Nl > > Wiy Ryt ) )
t=K+1 t=Kk+1 || j=—K

(A.6)

where the inequality follows from the Cauchy—Schwarz inequéfity the difference in
the last expression we can use the mean value expansion

h(zr36,) — h(ze736,) = Ha(2er36) (6, — 6,),

whereH,(x;60) = 0h(x;0)/06’ and |6 — 61| =< |6, — 65|. Thus

T-K 1/2
(Nl 2 |h(ZtT§01)_h(ZtT§92)|2>

t=K+1

T-K 1/2
S|01_02|<N1 > SUp|H2(ZtT;9)||2>

t=K+1 6€0

= [[61 = 6,]0,(D),

where the equality is justified by Lemma(il because suyge|H2(x;6)|? is locally
bounded and max=r|zr| = Op(1). Hence the desired stochastic equicontinuity fol-
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lows in a straightforward manner frofA.6) if we show that the latter factor in the last
expression therein is of ord€@,(1). To see thisdefine the matrix

T-K
FT=[N‘1 > wmwgﬂ], ij=-K,...,K

t=K+1

and letAmay(-) denote the largest eigenvalue of the indicated mawiith these defini-
tions we have

(5

t=K+1

K

E W Rir
j=—K

2\1/2
) = (tr(RyIx Ry)) M2

= (/\max(FT)tr(R‘,r RT))l/2
= AR3dT)

= 0,(1).

Here the last relation is a straightforward consequence of the fact that the spectral den-
sity matrix of the process; is boundedand the preceding one follows from the assump-
tion |Ry| = 1 (as.). Thus the proof is complete n

The results of Lemmas 2 and 3 also hold with a fixed valu&ofin that caseRjr in
Lemma 3 may be replaced by an identity matr@s can easily be checked from the
given proofs

In the following lemma we use the notati@{©)2*® to signify the space of all con-
tinuous functions from the compact s@tto R2*P endowed with the uniform metri¢n
R2*P the usual euclidean metric is assumed

LEMMA 4. Let H(x,0) (a X b) be a matrix-valued continuous function defined on
RP*1 X ©. Then, if KT > 0

T—-K 1
N~t H(ZtT;H)zf H(B(s);6)ds
0

t=K+1

where the convergence holds in the function spate)e<®.

Proof. Becauseyr = B(s) by (8) the proof can be obtained in the same way as the
first result in Theorem A of Park and Phillipg2001). |

Lemma 4 can be used to prove the following lemma

LEMMA 5. Let f(x;0), 6 € 0, and % be as in Section 3.2. Then there exists an
e > 0 such that with probability approaching one

T-K
inf )\min<Nl > f(XtT;O)f(XtT;O)’> =e.
oo

t=K+1

Proof. The stated result follows from conditig¢i1), Lemma 4 and the continuity of
eigenvalues and the infimum function |
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LEMMA 6. Let h(x) be a vector-valued twice continuously differentiable function
defined onRP*1. Then,

1

T 1
T Y23 h(zg)w = f h(B(s)) dB(s)' + f H,(B(s)) dsA,
t=1 0 0

where H(x) = oh(x)/ox’ and A = EinEWOWj'. Moreaer, this weak conergence
holds jointly with that in (8).

Proof. Using the Beveridge—Nelson decompositi@n2), one obtains
T T T
TY? E h(zqz)w = T~Y2 2 h(zqg)n — T2 E h(zqs)Aé. (A7)
t=1 t=1 t=1
First, consider the latter term on the right-hand siBg partial summation

.
~T Y23 h(z) A& = =T Y2 (zrp) €5 + T ¥2h(297) €
t=1
.
+ T Y23 [h(zg) —h(z 1 1)]E L
t=1

.
=T 2 [h(zg7) = h(z_y 1)]E( 1 + 0p(D),

where the latter equality is an immediate consequence of the assumfiigsa stan-
dard mean value expansion and the fazg = T 2w, yield

T T
~T 723 h(z)Ae{ =T 1Y Hi(Z— 1 1)Weéi—1 + 0,(D),
t=1 t=1

where the notation is as before so thh{z,_1 1) signifies a matrix each row of which
is evaluated at a possibly different intermediate point in the line segment betgeen
andz._, t. Because the functioH;(x) is continuously differentiable by assumptjane
have|Hy(z-11) — Hi(z7)| = T~Y2H:r|w,| whereH;r is determined by the second
partial derivatives of the function(x) and as a straightforward consequence of Lemma
1(i), Hit = Op(1). Hence becauseE|w,| [w; & 4| is a finite constantwe can write

T T
-T2 E h(zr)Aél =T 1 2 Hi(zer )W €{—1 + 05(1)
t=1 t=1

T T
=T 2 Hi(zer)W &+ T E H(Zer ) W, wy
t=1 t=1

.
=T Hi(zer)wemy + 0p(2),
=1

where the latter equality follows from the Beveridge—Nelson decompositid?). Theo-
rems 32 and 33 of Hansen(1992 imply that replacingw, &/ in the first term of the last
expression by its expectation causes an error of agld). To see that a similar replace-
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ment can be done in the second term of the last expressimerve thatby Assump-
tion 2 and the mixing inequality in Davidsof1994 p. 211), w,w{ — Eww/ is a
stationarylL ;-mixingale Hence the desired result follows from TheorenB83f Hansen
(1992. As a whole we can thus conclude that

T T T
“T Y2 N(zer)AE = T X Hi(zer)A = T X Hy(zer) Wy + 0p(1), (A.8)
t=1 t=1 t=1

where the resulEw, &/ + Ew,w{ = A is a simple consequence of the definition of the
matrix A and the procesé; (cf. Hansen 1992 proof of Theorem 41).

Now consider the first term on the right-hand side(af7) and use the same mean
value expansion as before to write

T T T

T2 E h(zqg)n =T 2 E h(z_y )i+ T E Hy(z_ o r)wyny. (A.9)
t=1 t=1 t=1

In the same way as previouslye can also here repla¢® (2, 1) by Hy(z+) and com-

bine equation$A.8) and(A.9) with (A.7). This gives

T T T
T Y23 h(ze)w =T Y2 X h(zeyr)ni + T 2 Hy(zp)A + 0p(D).

t=1 t=1 t=1
To complete the proghotice thaty, is a stationary square integrable martingale differ-
ence sequence and that an invariance principle holds jointly for the procasaed
E,-t:mj (see Hansenl992 proof of Theorem 3). Hence the stated result is obtained
from Theorem 2L of Hansen1992. u

APPENDIX B: PROOFS OF MAIN RESULTS

Proof of Theorem 1. We shall first demonstrate the existence of the estimaiprs
and ¢r. For any fixed value of, the least squares estimator ¢f denoted by (6),
exists and is unique with probability approaching oifikis is an immediate conse-
quence of the definition of the estimatéf(6) and Lemma 5Thus we have

Qr(6,¢) = Q(0,d(6)) = {;2]:) Qr (8, $r(0)).

It is straightforward to check thatvhen the estimatothr(6) exists and is unique
Q(60, d1(0)) is a continuous function of so thaf by the assumed compactness of the
parameter space, there existd; such thatQr(fr, ¢1(6r)) equals the preceding infi-
mum Thus 6 and gt = ¢+(f7) are the desired least squares estimators

The next step is to show théi; is bounded in probabilityTo this end notice that

T -1
QT’T = <Tl 2 f(XtT;éT)f(XtT;éT)’>

t=1

.
X T2 F(Xers 0) U + F(Xer360) do .
=1
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Lemma 5 implies that the largest eigenvalue of the inverse on the right-hand side
is of orderOp(1). Thus we have to show that the latter factor on the right-hand side
is of orderOp(1). To see thisnote that the assumptions imply that sagl f(x;0)]
is locally bounded Therefore by Lemma 1i) we have max. | f(Xr;07)] =
max <=1 SUpyeol f (Xer;0)| = Op(1) and similarly withé; replaced byd,. Hence it
follows thatér = O, »(1). Moreover becausdr = O, (1) holds trivially by the compact-
ness of the parameter spa@ewe haved; = Op(1), which means that the sequence of
estimatorsd is tight

To prove the consistency of the estimat¢sand ¢+, use the definitions to write

0=T'Qr(fr,br) — T 1Qr(6o, o)

.
=T1 21[ f(Xer;61) v — F(Xer360) do]?
t=
T ~ ~
-1t 2 [ f(Xer;07) &7 — T (Xer360) o U
=1

T
=Tt 2:1[ f(Xer; 07) B — F(Xer360) bo)® + 0p(1).
t=

Becausepr = O,(1) the latter equality follows from Lemma 3 witk = 0. Now sup-
pose thatdt -5 9, does not holdThen by the tightness of the sequende, we can
find a subsequencéTj that converges weakly td, = [0, ¢.]’, say and, # Jo with a
positive probability(see Billingsley 1968 Theorem 61). Thus we can conclude that

0= TilQ'ﬁ(éﬁ’fg‘n) - TilQ‘rj(Ho, 4’0)
1
= [ 0162106, (85004017 05

where the weak convergence is justified by Lemma 4 and Lemraof Saikkonen
(200)). (The latter lemma requires that the relevant quantities converge joiviigh

can be guaranteed by redefining the subsequence if neces¥agn 9. # ¥, it follows
from condition(12) that the difference in the weak limit in the preceding expression is
nonzero for some value afand by continuity in an open intervalThus the last expres-
sion is positive with a positive probabilitfhis gives a contradictigrso we must have

Y, = 9. This completes the proof u

Proof of Theorem 2. For simplicity denoteh(xqr;) = f(X¢;60)'¢ so thatQr (1)) =
EtT:l[ytT — h(x¢r;9)]2 Becaused, is assumed to be an interior point @f the consis-
tency of the estimatod+ justifies the mean value expansion

aQ‘r(ﬂo)/619 = _(32QT(1§T)/319919’)(5T - 190)7 (B-l)
where the notation is as before so thaQ(d+)/d999" signifies a matrix each row of

which is evaluated at a possibly different intermediate point in the line segment between
Jr andd,. The partial derivatives can be expressed as
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T
IQr (/99 = =2 2 (I (Xer; N/IN [ Yer — h(Xer;9)]
t=1
and

.
02Q(9)/9908" = 2> (I (Xer;9)/99) (9h()/99")
t=1

T
-2 E (02 (Xer 3 9)/3909") [ Yer — h(Xer; D).
t=1
Next, note that

.
T 2 (920 (Xer 3 97)/0909") [ Yer — h(Xer; 97 )]
t=1

.
=T (02N (Xer; 97)/90999" ) U,

t=1

.
= T (02 (Xer; 91)/3999 ) [N (Xer; D) — h(Xer; 90)].

t=1

Because the functiof(x; ) is three times continuously differentiable by assumptibn
follows from the consistency of the estimat®f and Lemma i) with K = 0 that the

first term on the right-hand side is of ordey(1). It can be seen that the same is true for

the second term by taking a mean value expansion of the difference in the brackets and
using the local boundedness of the resulting summands in conjunction with Lefima 1
and the consistency of the estimaidf. Thus we can write

.
T 20%Qr(F1)/0998" = 2T 1 X (dh(Xer; D7) /09) (0h(F+1)/399") + 0,(1)
t=1

1
=>2J K(BJ(s)K(BJ(s)) ds (B.2)
0

Here the weak convergence can be justified by using the consistency of the estimator
J+1, Lemma 4 and Lemma A2 of Saikkonen(2001). The expression of the limit fol-
lows from the definitions

To complete the proofuse Lemma 6 and the definitions to conclude that

.
T Y29Q:(90)/00 = —2T Y2 (dh(Xer; 90)/09) Uy
t=1

1

1
= o [ koo [ @) @3
0 0

where the weak convergence holds jointly with thatB12). Thus because the weak
limit in (B.2) is positive definite(a.s.) by assumption the result of the theorem is an
immediate consequence @.1)—(B.3) and the continuous mapping theorem n

https://doi.org/10.1017/50266466604202031 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604202031

338 PENTTI SAIKKONEN AND IN CHOI

Proof of Theorem 3. Denote agairf (xir;0)¢ = h(xg;9) and conclude from the
definitions that

Oer = Uy — [N(Xer; O1) — h(Xer; 90)]
=V 7o+ 8 — Ha(Xer; 1) (91 — 9),

whereH,(xir;9) = oh(x;9)/09" and|d+ — do| = | I+ — Jo|. For simplicity denote

_ T-K
Mr=N"" > PP
t=K+1
Then
3(1) _ 3 _ _
191— 'l?o 191— 190 . T-K _ T-K
a = +MPINTY X prVW o+ MeINT X Py e
Y — ) t=K+1 t=k+1
- M:INT! Z Ber Ho(Xer 3 97) (91 — Do)
t=K+1
_ T-K
=M:IN"T Y Preg
t=K+1
= M:INTY Y Per[Hao(Xers 91) = Ha(Xer; 90)] (97 — D). (B.4)
t=K+1

The latter equality is obtained by replacitty(xr;J7) in the second expression by
Ho(xer; 91) = K(xg) and observing thar = [K(xr)' V/']". We shall show next that

T-K
” N~* 2 ptT[HZ(X[T;;’T) - H2(XtT§5T)] H = Op(K/Nl/Z)' (B.5)
t=K+1
To this end notice that because the functioH,(x;#) is continuously differentiable by
assumptiona mean value expansion and an application of Lemiashow that

max  [Hy(Xer;91) — Ha(Xer; 91)] = Op(1)||1_9T -9 = Op(Til/z),
K+1=t=T—K
where the latter equality is due to tAe”2-consistency of the estimatat; obtained
from Theorem 2 Thus becauseK(x) = Ha(Xer; 1), the local boundedness of
SUpeo[H2(x; )| and Lemma &) similarly yield maxc1=e=1-« [ K(Xr)| = Op(1).
Hence (B.5) holds withpr replaced byK(x.), and we need to show that it also holds
with per replaced by;. This can be seen by observing that

T-K 2
H Nt E Vi [Ha(Xer; 97) = Ha(Xer; 91)]

t=K+1

K T-K ~ N 2
= E [\ 2 Ut [Ho(Xer397) — Hao(Xers 91)]

j=—K t=K+1
K T-K ~ ~ 2

= < > [N Ve [Ha(Xer397) — Ho(Xer s O7)] )

=K t=K+1
= 0,(K%N),
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where the last relation follows from Lemmadid and theT */?-consistency of the esti-
mator 1. Thus we have establishe(B.5).
The next step is to observe that

M7 =M, = O p(K/NY2), (B.6)

where denotingAma(A) as the largest eigenvalue of matdx [Al; = (Amax(A'A))Y?
and
_ T-K _ _ T-K
My = diag[N_l > Kxo)K(xr) N7' Y VtVt’]
t=K+1 t=K+1

To see thisfirst note that

T-K 2 K T-K - 2
HN_l > RKixo)V| = 2 INTt X Ho(Xer; O1)v(4
t=K+1 =K t=K+1
K - B 2
S( Z E HZ(XIT;ﬂT)Ut’ﬂ )
j=—K t=K+1
= 0,(K¥N)

again by Lemma @i) and theT /2-consistency of the estimatdkr;. This and the well-
known fact|-[; =< | -| imply that My — M+ [; = Op(K/N¥/2), and we need to show that
a similar result holds for the corresponding inverdgs Lemma A2 of Saikkonen and
Lutkepohl (1998, this holds true if[M1 [, = Ouy(1) or if J(N"* 58 K(xer) X
K(xr))1t = 0p(1) and [(N"* 258 1 VW) 72, = Op(2). The former requirement
can be obtained from conditidii3), the consistency of the estimatd#, Lemma 5 and
Lemma A2 of Saikkonen(2001) whereas the latter can be deduced from Lemmas A2-A4
of Saikkonen(1991). Because the assumptions used in Saikkai®91) were slightly
different from the present ones we note that these lemerabsalso Lemmas A5 and A6
of that papercan also be proved under the present assumptlemsLemmas A3 and
A5 the previous proofs applywhereas Lemma A2 andonsequentlyLemmas A4 and
A6 can be proved by using LemmadiRof this paper and the fact the&br some finite
constantC independent of = —K,..., K,

—K
EHN1 > (vl — By || =NTIC

t=K+1

This follows from Assumption 2 and Lemmal® of White (1984). For later purposes
we also note that the precedmg discussion implies fWgtt[, = O (D).

Next note thatN"Y23 8 K(xq)e = Op(1) and [N 1/22 KaiVieql =
O,(K¥2). The former result will become ewdent subsequentipereas the latter is
obtained from Lemmas A5 and A6 of Saikkon€r991). Because|My |, = Oy(1) we
can use(B.5), (B.6), and theT V2-consistency of the estimatat; to conclude from
(B.4) that

ﬁ(Tl)_ﬂo - T-K
=MINTE Y Per ke + Op(K¥#/N).

~ (1)
Tt — o t=K+1
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BecauseK ¥?/NV2 — 0 by assumption this implies that

t=K+1 t=K+1

T-K -1 T-K
Nl/Z(éQ—ﬁo):(Nl > K(xm(xw)/) N2 3 R(Xr)ee + 0p(1)
(B.7)

and

1 T-K —1 T—-K
|7 — ol = H(N-l > \4\4') NT 3 Vieg

t=K+1 t=K+1

+ 0, (K¥YN)

= Op((K/N)¥2).

Here the last equality follows from results obtained in the Appendix of Saikk¢h@®)
and already used earliéfo show that the limiting distribution oﬂ” is as stated in the
theorem and thereby to complete the prdokt note that the arguments used f@&.2)
in the proof of Theorem 2 show that the inverse on the right-hand sid8.@j con-

verges weakly to the inverse in the theoréfhus we need to consider

T-K T-K
N"Y2 > K(Xr)ew=N"2 3 K(XtT)et"'Op(l)
t=K+1 t=K+1
T-K
=N""2 3 Hy(Xr:90)& + 0y(D), (B.8)
t=K+1

where the equalities can be justified as followgst, recall that

&=+ > T U & € + ay

[i1>K
and note thak |ax[| > = 0,(T %) for all t, as shown in the proof of Lemma A5 of Saikkonen
(1991). Thus the first equality in(B.8) follows because max 1=i=1_ | K(x1)| = Op(1),
as already notedlo justify the second equalityecall thatK () = Ha(X;J7), take a
mean value expansion ¢,(x.r;J7) aboutd,, and use theT ¥2-consistency of the
estimatordy in conjunction with Lemma 3 with = 0.

To complete the proof we have to show that the first term in the last expression of
(B.8) converges weakly to the stochastic integral in the theorem and that this holds jointly
with the weak convergence of the inverse on the right-hand sidB.aj. If the process
[v{ €] fulfilled the conditions of Assumption 2 this would follow from Lemma 6
but because the processis not guaranteed to be strong mixjripis reasoning does
not apply directlyHowever usingL to denote the usual lag operator we may weite=
a(L)'w; wherea(L) =377 __ a/lLl =[1 —=(L)]and#w (L) = X2__ ;L. In view
of the summability conditior15) and Lemma 6 we can use Theorer@ 4f Saikkonen
(1993 and obtain the needed weak convergence resiitits assumptions required to
apply this theorem are straightforward consequences of Assumptiwhih, in addi-
tion to the summability conditio6) and the invariance principlg), also implies that
the first and second sample momentswpfare consistent estimators of their theoretical
counterpartsThis completes the proof u
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