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1. INTRODUCTION

It is often perceived that economic agents may show different behavior depend-
ing on which regions some economic variables belong in, though it seems hard
to find explicit economic theory supporting such behavior+ For example, inves-
tors and households may make different decisions regarding their investments
and savings, respectively, when interest rates are rising rapidly than when they
are stable+ Another possible example is that employees under recession may
behave differently than under boom+ Econometricians and statisticians have
developed several methods to study such behavior empirically, which include,
among others, switching regression~cf+ Goldfeld and Quandt, 1973!, threshold
autoregression~cf+ Tong, 1983!, and smooth transition regression~cf+ Granger
and Teräsvirta, 1993; Teräsvirta, 1998!+

In this paper, we focus on the smooth transition regression~STR! model+ As
argued in Granger and Teräsvirta~1993!, the STR model is useful in explaining
the aggregate-level economy because the economy is likely to show smooth
transition if each economic agent switches sharply at different times+ Asymp-
totic theory for the STR model involving only stationary variables can be inferred
from standard theory in nonlinear econometrics~e+g+, Newey and McFadden,
1994; Pötscher and Prucha, 1997!+ The reader is also referred to Franses and
van Dijk ~2000! and van Dijk, Teräsvirta, and Franses~2002! for detailed dis-
cussions on the STR model+

However, general asymptotic theory for the STR model withI ~1! variables
has not been developed yet+ Recent work by Park and Phillips~1999, 2001!
provides methods for studying nonstationary and nonlinear time series, but it
seems difficult to apply these methods in our context+ One of the reasons for
this is that we adopt a more general assumption than martingale difference errors
as in their work+ In addition, Chang and Park~1998! study the STR model by
using the methods of Park and Phillips~1999, 2001!+ However, their model
adopts martingale difference errors, and it seems that their conventional asymp-
totics does not identify threshold parameters~ci ’s in Section 2 of the current
paper!+

Therefore, this paper studies asymptotic theory of the nonlinear least squares
~NLLS! estimator for the STR model withI ~1! regressors andI ~0! errors+ This
model will be called the cointegrating STR model in this paper+ As in most
cointegration models, the regressors and errors are assumed to be dependent
both serially and contemporaneously+ Because using the usual asymptotic
scheme of sending sample sizes to infinity seems to be difficult in the case of
the cointegrating STR model, we will use the triangular array asymptotics+
The triangular array asymptotics has been used, among others, in Andrews
and McDermott~1995! for nonlinear econometric models with deterministi-
cally trending variables+

The asymptotic distribution of the NLLS estimator for the cointegrating STR
model involves a bias under the regressor-error dependence, which implies that
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the NLLS estimator is inefficient and unsuitable for use in hypothesis testing+
Therefore, we propose a Gauss–Newton type estimator that uses the NLLS esti-
mator as an initial estimator and is based on nonlinear regressions augmented
by leads and lags+ Linear cointegrating regressions augmented by leads and lags
are studied in Saikkonen~1991!, Phillips and Loretan~1991!, and Stock and
Watson~1993!+ The Gauss–Newton estimator eliminates the bias and has a mix-
ture normal distribution in the limit, which implies that it is efficient and that
standard hypothesis tests can be performed by using the estimator+

Because the triangular array asymptotic methods have not often been used in
econometrics, one may rightfully question the finite-sample properties of the
tests and estimators using the methods+ Therefore, we report some simulation
results, which indicate that the results obtained from the triangular array asymp-
totics provide reasonable approximations for the finite-sample properties of the
estimators and tests when sample sizes are moderately large+

The cointegrating STR regression model is applied to the Korean and Indo-
nesian data from the Asian currency crisis of 1997+ The estimation results par-
tially support the interest Laffer curve hypothesis, which states that higher
interest rates may depreciate a currency when interest rates are too high because
excessively high interest rates may increase the default risk by increasing the
borrowing cost of corporations, by depressing the economy and by weakening
the banking system of an economy~cf+ Goldfajn and Baig, 1998!+ But overall
the effects of interest rate on spot rate are shown to be quite negligible in both
nations+ Considering the ineffectiveness of high interest rates in stabilizing
exchange rates and the high economic cost associated with keeping high inter-
est rates, the appropriateness of tight monetary policy during the Asian cur-
rency crisis should come into question+

The STR model has been used for some economic applications+ The applica-
tions are Teräsvirta and Anderson~1992! for modeling business cycle asymme-
tries; Granger, Teräsvirta, and Anderson~1993! for forecasting gross national
product; Sarno~1999! and Lütkepohl, Teräsvirta, and Wolters~1999! for money
demand functions; Michael, Nobay, and Peel~1997! and Taylor, Peel, and Sarno
~2001! for real exchange rates; and Jansen and Teräsvirta~1996! for consump-
tion+ Besides these, Luukkonen, Saikkonen, and Teräsvirta~1988! consider test-
ing linearity against the smooth transition autoregression model+

The rest of the paper is organized as follows+ Section 2 introduces the model
and basic assumptions+ Section 3 studies asymptotic properties of the NLLS
and Gauss–Newton efficient estimators+ Section 4 reports some simulation
results+ Section 5 applies the STR model to the data from the Asian currency
crisis+ Section 6 contains further remarks+ The Appendixes include auxiliary
results and the proofs of theorems+

A few words on our notation: all limits are taken asT r `+ Weak conver-
gence is denoted asn+ For symmetric matrices the inequalityA . B ~A $ B!
means that the differenceA 2 B is positive definite~semidefinite!+ For an arbi-
trary matrixA, 7A7 5 @tr~A'A!#102+

COINTEGRATING SMOOTH TRANSITION REGRESSIONS 303

https://doi.org/10.1017/S0266466604202031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604202031


2. THE MODEL AND ASSUMPTIONS

Consider the cointegrating STR

yt 5 m 1 ng~~xt 2 c1!, + + + , ~xt 2 cl !;g! 1 (
j51

p

aj xjt

1 (
j51

p

dj xjt g~~xt 2 c1!, + + + , ~xt 2 cl !,g! 1 ut

5 m 1 ng~xt ;u! 1 (
j51

p

aj xjt 1 (
j51

p

dj xjt g~xt ,u! 1 ut , t 5 1,2, + + + , (1)

wherexjt is the j th component of theI ~1! vectorxt ~ p 3 1!, ut is a zero-mean
stationary error term, u 5 @c1

' + + +cl
' g '# ' , and g~xt ;u! is a smooth real-valued

transition function of the processxt and the parameter vectoru+1 Moreover, m,
n, aj , anddj are scalar parameters+

The STR model~1! has been used to describe economic relations that change
smoothly depending on the location of some economic variables+ In model~1!,
the relationship betweenxt andyt may change depending on wherext is located
relative to parametersc1, + + + ,cl + Parameterg in model~1! determines the smooth-
ness of transition in the economic relations+ The reader is referred to Granger
and Teräsvirta~1993! for more discussions on the STR model, although these
authors do not explicitly consider the case ofI ~1! processes+

We discuss some examples of model~1! by using the following simplified
version of model~1! where nonlinearity appears only in the first regressor:

yt 5 m 1 a1 x1t 1 d1 x1t g~~x1t 2 c1!, + + + , ~x1t 2 cl !;g!

1 (
j52

p

aj xjt 1 ut , t 5 1,2, + + + (2)

Example 1:

g~~x1t 2 c1!, + + + , ~x1t 2 cl !;g! 5
1

11 e2g~x1t2c! , g . 0+ (3)

Here the transition function is a logistic function that makes the regression coef-
ficient for x1t vary smoothly betweena1 anda1 1 d1+ When the value of the
regressorx1t is sufficiently far below the value of the parameterc the regres-
sion coefficient takes a value close toa1, and when the value of the regressor
x1t increases and exceeds the value of the parameterc the value of the regres-
sion coefficient changes and approachesa1 1 d1+
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Example 2:

g~~x1t 2 c1!, + + + , ~x1t 2 cl !;g! 5
1

11 e2g~x1t2c1!~x1t2c2! , c1 , c2, g . 0+

(4)

This transition function can be used when one wants to allow for the possibil-
ity that the regression coefficient changes twice+ When 6x1t 6 is large, the func-
tion takes a value close to 1 so that the coefficient forx1t approachesa1 1 d1+
But whenx1t is approximately betweenc1 and c2, the function takes a value
close to zero, which makes the coefficient forx1t approacha1+ Instead of func-
tion ~4!, one may also use a linear combination of two logistic functions+

When g r `, functions ~3! and ~4! approach the indicator functions
1$x1t $ c% and1$c1 # x1t # c2%, respectively, and model~2! becomes close to
a threshold regression model+ Then the change in the regression coefficient of
x1t is abrupt and not gradual as assumed in~2!+ Our results do not apply to
threshold models because the transition function is not allowed to be discontin-
uous+ Otherwise our treatment is fairly general and applies to any sufficiently
well-behaved transition function+

We shall now discuss assumptions required for model~1!+ As already men-
tioned, we make the following assumption+

Assumption 1+

xt 5 xt21 1 vt , t 5 1,2, + + + , (5)

wherevt is a zero-mean stationary process and the initial valuex0 may be any
random variable with the propertyE7x074 , `+

Moreover, it will be convenient to assume that the~ p 1 1!-dimensional pro-
cesswt 5 @ut vt'# ' satisfies the following assumption employed by Hansen
~1992! in a somewhat weaker form+

Assumption 2+ For somer . 4, wt 5 @ut vt'# ' is a stationary, zero-mean,
strong mixing sequence with mixing coefficients of size24r0~r 2 4! and
E7wt7r , `+

Assumption 2 is fairly general and covers a variety of weakly dependent pro-
cesses+ It also permits the cointegrated system defined by~1! and ~5! to have
nonlinear short-run dynamics, which is convenient because our cointegrating
regression is nonlinear+

Choosing the real numberp in Corollary 14+3 of Davidson~1994! as 2r0
~r 1 2!, we find that Assumption 2 implies that the serial covariances of the
processwt at lag 6 j 6 are of size22+ Thus, we have the summability condition

(
j52`

`

6 j 6 7Ewt wt1j
' 7 , `+ (6)
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This implies that the processwt has a continuous spectral density matrixfww~l!
that we assume satisfies the following assumption+

Assumption 3+ The spectral density matrixfww~l! is bounded away from zero
or that

fww~l! $ «Ip11, « . 0+ (7)

Assumption 3 specialized to the casel 5 0 implies that the components of
the I ~1! processxt are not cointegrated+ In addition, it is required for the esti-
mation theory of Section 2 that~7! also holds for other values ofl+ Conform-
ably to the partition of the processwt , we write fww~l! 5 @ fab~l!# wherea,b [
$u, v%+

Assumption 2 also implies the multivariate invariance principle

T2102 (
j51

@Ts#

wj n B~s!, 0 # s# 1, (8)

whereB~s! is a Brownian motion with covariance matrixV 5 2pfww~0! ~see
Hansen, 1992, proof of Theorem 3+1!+ We partitionB~s! 5 @Bu~s! Bv~s!'# ' and

V 5 Fvu
2 vuv

vvu Vvv
G

conformably with the partition of the processwt +
As for the transition functiong~x;u!, we make the following assumption+

Assumption 4+

~i! The parameter spaceQ of u is a compact subset of an Euclidean space+
~ii ! g~x;u! is three times continuously differentiable onRp 3 Q* whereQ* is an

open set containingQ+

This assumption may not be the weakest possible, but it is satisfied by the
most commonly used transition functions and simplifies exposition+ Thus, we
shall not try to weaken it+ The compactness of the parameter spaceQ is a stan-
dard assumption in nonlinear regression, but no such assumption is needed for
other parameters+

3. ESTIMATION PROCEDURES

The cointegrating regression~1! assumes serial and contemporaneous correla-
tion between theI ~1! regressorxt and the error termut + Adverse consequences
of this on linear least squares estimation are well known, and various modifi-
cations have therefore been devised+ In this paper, we extend the leads and lags
procedure of Saikkonen~1991! to the STR model discussed in the previous
section+ Because there are some theoretical difficulties with a direct extension
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of this procedure, we will first consider the NLLS estimation that can be uti-
lized to develop a Gauss–Newton type leads and lags estimation+

3.1. Triangular Array Asymptotics

Before embarking on the subject of NLLS estimation, we will explain the moti-
vation for the employed asymptotic methods in this section+ There are two types
of asymptotics that can be considered in nonlinear regressions withI ~1! regres-
sors+ One is the usual asymptotics, and the other is the so-called triangular array
asymptotics in which the actual sample size is fixed atT0, say, and the model
is imbedded in a sequence of models depending on a sample sizeT that tends
to infinity+ The imbedding is obtained by replacing theI ~1! regressor by
~T00T !102xt + This makes the regressand dependent onT and, whenT 5 T0, the
original model is obtained+ Thus, if T0 is large, the triangular array asymptotics
can be expected to give reasonable approximations for finite-sample distribu-
tions of estimators and test statistics+ The triangular array asymptotics is also
used in Andrews and McDermott~1995! for nonlinear econometric models with
deterministically trending variables+ Related references can also be found in
Andrews and McDermott~1995!+

We will use the triangular array asymptotics for our cointegrating model,
because we expect it to provide quite reasonable approximations for estimators
and test statistics and because some parameters cannot be identified when the
usual asymptotics is used+ The identification issue can be explained intuitively
by using a special case of model~1!—the model in Example 1+When the model
in Example 1 is applied, a typical situation is that the observations can be divided
into three groups with each group containing a reasonably large proportion of
the data+ In the first and third group the values of the regression coefficient for
x1t are essentiallya1 anda1 1 d1, respectively, whereas the second group con-
tains part of the sample where the value of the regression coefficient changes
between these two values+ Becausex1t is an I ~1! process, the use of conven-
tional asymptotics means that the variation ofx1t increases so that the propor-
tion of observations in the first and third groups increases and that in the second
group decreases+ Eventually the proportion of observations in the second group
becomes negligible+ This suggests that these parameters are unidentifiable in
the limit, because only observations in the second group provide information
about the parametersg andc+ This can also be seen by noting that, for T large,

g~g~x1t 2 c!! 5 g~T 102g~T2102x1t 2 T2102c!! ' 1$T2102x1t $ 0%+

Thus, asymptotically the parametersg andc vanish from the model and become
unidentifiable+ This discussion implies that the use of conventional asymptotics
leads to a situation that is very different from what happens in the sample where
a reasonably large proportion of observations belongs to the second group+
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However, the triangular array asymptotics takes the second group and,
therefore, the parametersg andc into account+ Recall thatg~{;u! is the logistic
function+ Basing the asymptotic analysis ong~g~~T00T !102x1t 2 c!! 5
g~T2102g~T0

102x1t 2 T 102c!! instead ofg~g~x1t 2 c!! means that the slope of
the logistic function is assumed to decrease so that the proportion of observa-
tions in the three groups remains essentially the same even though the variation
of x1t increases+ In this respect the situation for the triangular array asymptotics
remains the same as for the sample+ It also makes sense that parameterc has to
be of orderO~T 102!, because, due to the increasing variation ofx1t , a nonzero
value of c could otherwise be indistinguishable from zero+ Finally, note that
wheng~g~~T00T !102x1t 2 c!! is used in asymptotic analysis the processx1t is
standardized in such a way that it remains bounded in probability+ In this con-
text a possible interpretation is that whenT tends to infinity observations of the
standardized version of the seriesx1t are obtained denser and denser within its
observed range in the sample, and thereby the proportion of observations in
each of the three groups remains essentially the same, which makes informa-
tion about parametersg andc retained even asymptotically+

Although the preceding discussion gives a reasonable motivation for using
the triangular array asymptotics, it would be imprudent to claim that the trian-
gular array asymptotics would always work well+ For instance, we already noted
that problems may occur if the value of the parameterg in model ~2! with
specification~3! is large so that the model is close to a threshold model+

3.2. NLLS Estimation

This section considers the triangular array asymptotics of the NLLS estimator
for model~1!+ To use the triangular array asymptotics, we imbed model~1! in a
sequence of models

ytT 5 f ~xtT ;u!'f 1 ut , t 5 1, + + + ,T, (9)

where xtT 5 ~T00T !102xt , f ~xtT;u! 5 @1 g~xtT ;u! xtT
' g~xtT ;u!xtT

' # ' and
f 5 @m n a ' d '# ' with a 5 @a1+ + +ap# ' andd 5 @d1+ + +dp# '+2

In what follows we setq 5 @u ' f '# ' and letq0 5 @u0
' f0

' # ' stand for the
true value ofq+ The NLLS estimator of parameterq0 is obtained by minimiz-
ing the function

QT~q! 5 (
t51

T

~ ytT 2 f ~xtT ;u!'f!2 (10)

with respect toq+
The assumptions made so far do not ensure that a minimum of function~10!

exists, even asymptotically+ To be able to introduce further assumptions, we
first use the multivariate invariance principle~8! to conclude thatxtT n
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T0
102Bv~s! 5

def

Bv
0~s! asT r `+ This fact and a standard application of the con-

tinuous mapping theorem show that, for everyu [ Q,

T21 (
t51

T

f ~xtT ;u! f ~xtT ;u!' n E
0

1

f ~Bv
0~s!;u! f ~Bv

0~s!;u!' ds+

An assumption that together with our previous assumptions ensures that the
function QT~q! has a minimum forT large enough is as follows+

Assumption 5+ For some« . 0,

inf
u[Q

lminSE
0

1

f ~Bv
0~s!;u! f ~Bv

0~s!;u!' dsD $ « . 0 ~a+s+!, (11)

wherelmin~{! signifies the smallest eigenvalue of a square matrix+

Assumption 5 guarantees that, with probability approaching one, a minimum
of the functionQT~q! exists as shown in Appendix B+3 Because we are inter-
ested in asymptotic results, we may as usual assume that a minimum exists for
all values ofT and is attained atEqT 5 @ DuT

' EfT
' # ' +

In addition to Assumption 5, the following assumption is needed for the con-
sistency of the least squares estimatorEqT +

Assumption 6+ For somes [ @0,1# and all~u,f! Þ ~u0,f0!,

f ~Bv
0~s!;u!'f Þ f ~Bv

0~s!;u0!'f0 ~a+s+!+ (12)

This is an identification condition that ensures that the parametersu andf
can be separated in the productf ~xtT;u!'f+ Taken together, Assumptions 5 and
6 ensure the identifiability of the parameter vectorq+

The identification conditions~11! and ~12! depend on the sample paths of
the Brownian motionBv

0~s! and are therefore different from the identification
conditions used by Chang and Park~1998!, Chang, Park and Phillips~1999!,
and Park and Phillips~2001!+ However, conditions~11! and~12! are still fairly
easy to use+ For instance, it can be checked by the conditions that model~2!
with specification~3! is identified whend1 Þ 0 andg . 0+

It may also be argued that it makes sense to use identification conditions that
depend on the sample paths of the Brownian motionBv

0~s! when the triangular
array asymptotics is used+ Indeed, in applications of model~2! with specifica-
tion ~3!, one can typically divide the observations into three groups in such a
way that a fair amount of observations belongs to each group and, when the
triangular array asymptotics is used, this state of affairs prevails even asymp-
totically+ Thus, becausextT n Bv

0~s!, the triangular array asymptotics in a
sense conditions on such sample paths ofBv

0~s! for which the shape of the
functiong~g~Bv

0~s! 2 c!! is similar to what is observed in the sample+ Because
of this “conditioning,” it seems quite reasonable to use identification con-
ditions that depend on the sample paths of the Brownian motionBv

0~s! and
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ensure identifiability when the specified nonlinearity is related to the sample
paths ofBv

0~s! in the same way as to the observed realizations ofxtT within the
sample+ This means, for instance, that in the case of model~2! with specifica-
tion ~3! we are not interested in identification in cases where sample paths of
Bv

0~s! are such that the functiong~g~Bv
0~s! 2 c!! is effectively constant and

identifiability is very weak although it is still achieved whend1 Þ 0 andg . 0+
This point could be made even stronger by replacing the logistic function by a
piecewise continuous analog so that for some realizations ofBv

0~s! the func-
tion g~g~Bv

0~s! 2 c!! would actually be constant and identifiability would fail+
Clearly, such cases would be of no interest ifg~g~xtT 2 c!! is highly nonlinear
within the sample+

The following theorem shows the existence and consistency of the least
squares estimatorEqT +

THEOREM 1+ Suppose that Assumptions 1–6 hold. Then, aNLLS estimator
EqT exists with probability approaching one and is consistent.

Theorem 1 shows the existence and consistency of the least squares estima-
tor EqT when the triangular array asymptotics is used+ The following theorem
shows the limiting distribution of the estimatorEqT + For this theorem we need
an additional assumption+

Assumption 7+

E
0

1

K~Bv
0~s!!K~Bv

0~s!!' ds. 0 ~a+s+!, (13)

where

K~x! 5 F~n0 1 d0
' x!]g~x;u0!0]u

f ~x;u0! G +
THEOREM 2+ Suppose that Assumptions 1–7 hold and thatu0 is an interior

point of Q. Then,

T 102~ EqT 2 q0! n SE
0

1

K~Bv
0~s!!K~Bv

0~s!!' dsD21

3 SE
0

1

K~Bv
0~s!! dBu~s! 1E

0

1

K1~Bv
0~s!! dskvuD,

where K1~x! 5 ]K~x!0]x ' and kvu 5 (j50
` Ev0uj.

The limiting distribution given in Theorem 2 depends on nuisance param-
eters in a complicated way that renders the NLLS estimator inefficient and, in
general, makes it unsuitable for hypothesis testing+ This difficulty is removed
in a special case where the processesvt andut are totally uncorrelated, because
then the limiting distribution becomes mixed normal as can be easily checked+
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In its general form, Theorem 2 shows that the NLLS estimator is consistent
of orderOp~T2102!+ This will be used to obtain an efficient two-step estimator
based on the leads and lags modification+ The reason why the order of consis-
tency differs fromOp~T21! obtained in previous linear cases is that we employ
the triangular array asymptotics in which the regressand is made bounded+

3.3. Efficient Estimation

This section considers efficient estimation of model~1! by using a leads and
lags regression+ As in Saikkonen~1991!, we can express the error termut as

ut 5 (
j52`

`

pj
' vt2j 1 et , (14)

whereet is a zero-mean stationary process such thatEet vt2j
' 5 0 for all j 5

0,61, + + + , and

(
j52`

`

~11 6 j 6!7pj 7 , `+ (15)

That this summability condition holds follows from condition~6! and Theo-
rem 3+8+3 in Brillinger ~1975!+ Expressions for the spectral density function
and long-run variance of the processet can be obtained from the well-known
formulas fee~l! 5 fuu~l! 2 fuv~l! fvv

21~l! fvu~l! and ve
2 5 vu

2 2 vuvVvv
21vvu,

respectively+
Using equations~5! and ~14!, we can write the cointegrating regression~1!

as

yt 5 m 1 ng~xt ;u! 1 a 'xt 1 d 'xt g~xt ;u!

1 (
j52K

K

pj
'Dxt2j 1 eKt , t 5 K 1 1, + + + ,T 2 K, (16)

whereD signifies the difference operator and

eKt 5 et 1 (
6 j 6.K

pj
' vt2j +

To eliminate errors caused by truncating the infinite sum in~14! we have to
consider asymptotics in which the integerK tends to infinity withT+ The con-
dition K 5 o~T 3! used in the linear case by Saikkonen~1991! can also be used
here+

Because we continue with the same triangular array asymptotics as in the
previous section, we imbed model~16! in a sequence of models

ytT 5 f ~xtT ;u!'f 1 Vt
'p 1 eKt , t 5 K 1 1, + + + ,T 2 K, (17)
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whereVt 5 @Dxt2K
' + + +Dxt1K

' # ' and p 5 @p2K
' + + +pK

' # '+ Combining the regres-
sors asq~xtT;u! 5 @ f ~xtT ;u!' Vt

'# ' we can write this model more com-
pactly as

ytT 5 q~xtT ;u!'b 1 eKt , t 5 K 1 1, + + + ,T 2 K, (18)

whereb 5 @f ' p '# '+
Instead of proper nonlinear least squares estimators of the parameters in~18!

we shall consider two-step estimators based on the NLLS estimator of the pre-
vious section+ These estimators are defined by

F ZqT
~1!

[pT
~1!G 5 F EqT

0 G1 S (
t5K11

T2K

IptT IptT
' D21

(
t5K11

T2K

IptT
' IutT , (19)

where IutT 5 ytT 2 f ~xtT; DuT!' EfT and IptT 5 @ EK~xtT!' Vt
'# ' with

EK~xtT ! 5 F~ InT 1 DdT
' xtT !]g~xtT ; DuT !0]u

f ~xtT ; DuT ! G +
The latter term on the right-hand side of~19! is obviously the least squares
estimator obtained from a regression ofIutT on IptT + The estimator defined in
~19! will be called the Gauss–Newton estimator+

To see the motivation of the Gauss–Newton estimator, subtractf ~xtT; DuT!' EfT

from both sides of~17! and apply the mean value approximationf ~xtT;u!'f 2
f ~xtT; DuT!' EfT ' EK~xtT!'~q 2 EqT! to the right-hand side+ Thus, after lineariza-
tion, we get the auxiliary regression model

IutT 5 EK~xtT !'~q 2 EqT ! 1 Vt
'p 1 error,

which in conjunction with standard least squares theory gives estimator~19!+
The following theorem describes asymptotic properties of the estimators
ZqT
~1! and [pT

~1!+ The limiting distribution of the estimatorZqT
~1! requires a stan-

dardization by the square root ofT 2 2K, the effective number of observations
in the regression ofIutT on IptT + For convenience, we denoteN 5 T 2 2K+

THEOREM 3+ Suppose that the assumptions of Theorem 2 hold and that
K r ` in such a way that K30T r 0 and T102 (6 j 6.K 7pj 7 r 0. Then,

(i) N 102~ ZqT
~1! 2 q0! n SE

0

1

K~Bv
0~s!!K~Bv

0~s!!' dsD21E
0

1

K~Bv
0~s!! dBe~s!,

where Be~s! is a Brownian motion that is independent of Bv~s! and has
varianceve

2.

(ii) 7 [pT 2 p07 5 Op~K 1020N102!+
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The independence of the Brownian motionsBe~s! andBv~s! implies that the
limiting distribution in Theorem 3 is mixed normal+ Furthermore, we can con-
clude from Saikkonen~1991! that the Gauss–Newton estimatorZqT

~1! is asymp-
totically more efficient than the least squares estimatorEqT in general+ In the
same way as in Saikkonen~1991!, we have also here been forced to supple-
ment the previously mentioned conditionK 5 o~T 3! by an additional condition
that implies that the integerK may not increase too slowly+

Theorem 3 indicates that we can estimateve
2 consistently ~see, e+g+,

Andrews, 1991! by using the residuals from the regression model~16! with
estimator~19!+ Thus, conventional tests like Wald andt-tests can be con-
structed in a straightforward manner and shown to have standard distributions
in the limit+

4. SIMULATION

Implications of the theoretical results in Section 3 can be summarized as fol-
lows+ ~i! The NLLS and Gauss–Newton estimators are consistent+ ~ii ! In large
samples, the Gauss–Newton estimator eliminates the bias in the limiting distri-
bution of the NLLS estimator and is more efficient than the NLLS estimator+
~iii ! The t-test based on the Gauss–Newton estimator follows a standard nor-
mal distribution in the limit+ Because these results are based on the triangular
array asymptotics where the sample size of the embedding model goes to infin-
ity, it may not seem quite obvious whether these results hold when the sample
sizeT0 is large+ Therefore, this section examines the aforementioned results by
using simulation+

Data were generated by

yt 5 m 1 axt 1 dxt

1

11 exp~2~xt 2 c!!
1 ut , t 5 1, + + + ,T0;

m 5 a 5 d 5 1; c 5 5; xt 5 xt21 1 vt ;

Sut

vt
D 5 «t 1 B«t21; B 5 Fv v

0 vG; v 5 0+2,0+5,0+8;

«t ; iidNS0,F 1 s12

s12 1 GD; s12 5 0+5+ (20)

Largerv implies that the regressors and errors are more correlated both seri-
ally and contemporaneously+ We plotted a typical, simulated data set withv 5
0+5 in Figure 1+ It shows that the relation between the regressor and regressand
gradually changes as the value of the regressor becomes closer to 5+

Unreported simulation results indicate that it is difficult to estimate param-
eterg accurately by the NLLS method unless either sample sizes are very large
or parameterc is located close to the median of$xt % , and the results also indi-
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cate that other parameter estimates are quite adversely affected by poor esti-
mates ofg+ No doubt, the occasional poor performance of the NLLS estimator
for unknowng is neither related to the use of triangular array asymptotics nor
due to the presence ofI ~1! variables+ It may also occur when a given STR
model involves onlyI ~0! variables for which standard asymptotics can be used+
Because the purpose of this section is to check the implications of the triangu-
lar array asymptotics, we do not want our simulation results to be affected by
outliers produced by poor estimates of parameterg+ Therefore, we assume that
the value of the transition parameterg is known to be 1+ Also, $xt % were gen-
erated such thatc is located in between the 15th and 85th percentiles of$xt %+
The purpose of this scheme is the same as that of fixing the value ofg+Whenc
is near endpoints of the sample, extremely poor estimates of parameterc are
sometimes produced, which affects other parameter estimates to the extent that
evaluating their finite-sample performance at different sample sizes becomes
meaningless+

The estimators considered are the NLLS, one-step Gauss–Newton, and two-
step Gauss–Newton estimators+4 The values of the leads and lags parameter for
the Gauss–Newton estimators were set atK 5 1,2,3+ Table 1 reports the empir-
ical biases and root mean squared errors~RMSEs! of the estimators at sample
sizes 150 and 300+5 The numbers of replications atT0 5 150 andT0 5 300 were
5,000 and 3,000, respectively+ As for the method of minimization, the Polak–
Ribiere conjugate gradient method6 was used+ The results in Table 1 can be
summarized as follows+

• As sample sizeT0 grows, the RMSEs of all the estimators decrease, which may be
interpreted as evidence for consistency+

Figure 1. Data under smooth transition~T 5 150, d 5 1, c 5 5!+
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Table 1. Biases and root mean squared errors

a d c

Estimator Bias RMSE Bias RMSE Bias RMSE

~a! T0 5 150
NLLS 0+048 0+122 20+026 0+113 0+029 0+421

GN1 ~K 5 1! 20+008 0+103 0+007 0+098 20+009 0+339
GN1 ~K 5 2! 20+005 0+106 0+005 0+100 20+007 0+344

v 5 0+2 GN1 ~K 5 3! 20+005 0+109 0+005 0+103 20+007 0+349
GN2 ~K 5 1! 20+010 0+103 0+010 0+098 20+010 0+330
GN2 ~K 5 2! 20+007 0+106 0+008 0+100 20+008 0+335
GN2 ~K 5 3! 20+007 0+110 0+008 0+103 20+007 0+341

NLLS 0+060 0+143 20+033 0+136 0+008 0+598
GN1 ~K 5 1! 20+010 0+115 0+007 0+113 20+005 0+463
GN1 ~K 5 2! 0+002 0+121 0+001 0+119 0+001 0+469

v 5 0+5 GN1 ~K 5 3! 20+003 0+127 0+003 0+125 20+000 0+474
GN2 ~K 5 1! 20+015 0+112 0+012 0+111 20+012 0+451
GN2 ~K 5 2! 20+003 0+114 0+006 0+113 20+006 0+456
GN2 ~K 5 3! 20+008 0+118 0+008 0+115 20+007 0+462

NLLS 0+068 0+159 20+036 0+153 20+048 0+871
GN1 ~K 5 1! 20+012 0+121 0+007 0+123 20+033 0+644
GN1 ~K 5 2! 0+005 0+132 20+002 0+133 20+025 0+657

v 5 0+8 GN1 ~K 5 3! 20+006 0+138 0+003 0+139 20+029 0+663
GN2 ~K 5 1! 20+019 0+119 0+014 0+121 20+044 0+600
GN2 ~K 5 2! 20+001 0+121 0+005 0+123 20+034 0+618
GN2 ~K 5 3! 20+013 0+124 0+011 0+126 20+042 0+620

~b! T0 5 300
NLLS 0+030 0+067 20+017 0+064 20+004 0+336

GN1 ~K 5 1! 20+003 0+053 0+003 0+054 20+009 0+264
GN1 ~K 5 2! 20+001 0+053 0+001 0+054 20+008 0+266

v 5 0+2 GN1 ~K 5 3! 20+001 0+054 0+002 0+055 20+008 0+267
GN2 ~K 5 1! 20+003 0+053 0+003 0+054 20+009 0+251
GN2 ~K 5 2! 20+002 0+053 0+002 0+054 20+009 0+253
GN2 ~K 5 3! 20+002 0+054 0+002 0+055 20+008 0+254

NLLS 0+033 0+078 20+019 0+078 20+036 0+486
GN1 ~K 5 1! 20+006 0+058 0+004 0+061 20+012 0+366
GN1 ~K 5 2! 0+000 0+058 0+001 0+061 20+013 0+370

v 5 0+5 GN1 ~K 5 3! 20+003 0+058 0+002 0+061 20+012 0+371
GN2 ~K 5 1! 20+007 0+059 0+005 0+061 20+014 0+345
GN2 ~K 5 2! 20+001 0+058 0+002 0+061 20+015 0+352
GN2 ~K 5 3! 20+004 0+059 0+003 0+062 20+015 0+351

NLLS 0+038 0+078 20+021 0+078 20+046 0+636
GN1 ~K 5 1! 20+006 0+056 0+003 0+060 20+006 0+464
GN1 ~K 5 2! 0+003 0+056 20+002 0+060 20+003 0+468

v 5 0+8 GN1 ~K 5 3! 20+003 0+056 0+001 0+061 20+004 0+469
GN2 ~K 5 1! 20+007 0+056 0+005 0+060 20+014 0+432
GN2 ~K 5 2! 0+002 0+055 20+000 0+059 20+009 0+436
GN2 ~K 5 3! 20+004 0+056 0+003 0+060 20+011 0+438

Notes:~i! GN1 and GN2 denote the one-step and two-step Gauss–Newton estimators, respectively+ ~ii ! The num-
bers of replications atT0 5 150 andT0 5 300 were 5,000 and 3,000, respectively+ ~iii ! Parameterv signifies the
degree of serial and contemporaneous correlation in the regressors and errors+ Largerv implies that the regres-
sors and errors are more correlated both serially and contemporaneously+ ParameterK denotes the numbers of
leads and lags+
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• The Gauss–Newton estimators reduce the magnitudes of bias and RMSE substan-
tially in relation to the NLLS estimator as predicted by Theorem 3+

• As the regressors and errors are more correlated both serially and contemporane-
ously, the two-step Gauss–Newton estimator tends to improve on the one-step Gauss–
Newton estimator in terms of RMSE+ But the two-step Gauss–Newton estimator is
sometimes more biased than the one-step Gauss–Newton estimator, though the degree
of the biases for both the estimators is quite mild+

• The choice of the parameterK does not seem to affect the results significantly+
• The nonlinear parameterc is subject to higher RMSE than other linear parameters,

which may reflect the computational difficulties associated with estimating the non-
linear parameter+

Table 2 reports empirical sizes of the t-ratios using the Gauss–Newton esti-
mators under the null hypothesesa 5 1, d 5 1, andc 5 5+ Nominal sizes were
chosen to be 5% and 10%, and the same experimental format as for Table 1
was used+ The results in Table 2 can be summarized as follows+

• The t-ratios reject more often than they should in part~a!+ But increasing the sam-
ple sizeT0 to 300 improves the performance of thet-ratios+7

• When there are fewer serial and contemporaneous correlations between the regres-
sors and errors atT0 5 300, empirical sizes get closer to the corresponding nominal
sizes+ But this is not noticeable atT0 5 150+

• The one-step and two-step Gauss–Newton estimators show similar performance+
• ChoosingK 5 1 andK 5 2 atT0 5 150 andT0 5 300, respectively, tends to provide

the best results+

In summary, the simulation results in Tables 1 and 2 seem to confirm that
the results from the triangular array asymptotics in Section 2 can provide rea-
sonable approximations for the finite-sample properties of the estimators and
tests when the sample size is moderately large+

5. AN EMPIRICAL EXAMPLE

One of the substantial controversies regarding the Asian currency crisis of 1997
has been whether tight monetary policy was effective in stabilizing foreign
exchange rates during and in the aftermath of the crisis+ See Goldfajn and Baig
~1998!, Kaminsky and Schmukler~1998!, Ghosh and Phillips~1998!, Kraay
~1998!, Dekle, Hsiao, and Wang~1999!, Park, Wang, and Chung~1999!, and
Choi and Park~2000! for empirical results regarding this issue+ In fact, tight
monetary policy constituted an essential part of the IMF rescue package for
Asian countries, because it has conventionally been believed that higher inter-
est rates reduce capital outflows by raising the cost of currency speculation and
induce capital inflows by making domestic assets more attractive in the short
run and also that they improve current account balance by reducing domestic
absorption in the long run+

However, as discussed in Goldfajn and Baig~1998!, higher interest rates may
depreciate a currency when interest rates are too high because excessively high
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Table 2. Empirical sizes of theT-ratios

a d c

Estimator 5% 10% 5% 10% 5% 10%

~a! T0 5 150
GN1 ~K 5 1! 0+089 0+152 0+084 0+143 0+075 0+129
GN1 ~K 5 2! 0+090 0+156 0+085 0+148 0+080 0+132

v 5 0+2 GN1 ~K 5 3! 0+096 0+161 0+090 0+159 0+084 0+139
GN2 ~K 5 1! 0+087 0+148 0+082 0+142 0+077 0+135
GN2 ~K 5 2! 0+089 0+153 0+086 0+148 0+083 0+139
GN2 ~K 5 3! 0+097 0+157 0+090 0+157 0+085 0+143

GN1 ~K 5 1! 0+086 0+147 0+093 0+151 0+077 0+134
GN1 ~K 5 2! 0+089 0+152 0+096 0+154 0+078 0+134

v 5 0+5 GN1 ~K 5 3! 0+094 0+155 0+100 0+157 0+081 0+134
GN2 ~K 5 1! 0+082 0+143 0+088 0+149 0+079 0+141
GN2 ~K 5 2! 0+088 0+148 0+092 0+148 0+082 0+141
GN2 ~K 5 3! 0+091 0+154 0+096 0+154 0+085 0+146

GN1 ~K 5 1! 0+089 0+155 0+089 0+149 0+085 0+138
GN1 ~K 5 2! 0+095 0+152 0+093 0+149 0+087 0+142

v 5 0+8 GN1 ~K 5 3! 0+098 0+161 0+096 0+158 0+090 0+140
GN2 ~K 5 1! 0+088 0+154 0+084 0+150 0+089 0+141
GN2 ~K 5 2! 0+090 0+149 0+091 0+147 0+086 0+142
GN2 ~K 5 3! 0+095 0+159 0+094 0+155 0+091 0+145

~b! T0 5 300
GN1 ~K 5 1! 0+069 0+128 0+065 0+123 0+064 0+111
GN1 ~K 5 2! 0+068 0+132 0+067 0+126 0+064 0+117

v 5 0+2 GN1 ~K 5 3! 0+069 0+131 0+066 0+127 0+064 0+117
GN2 ~K 5 1! 0+067 0+129 0+065 0+119 0+068 0+117
GN2 ~K 5 2! 0+065 0+130 0+066 0+123 0+068 0+118
GN2 ~K 5 3! 0+066 0+133 0+065 0+124 0+067 0+121

GN1 ~K 5 1! 0+078 0+137 0+075 0+126 0+061 0+118
GN1 ~K 5 2! 0+076 0+132 0+073 0+127 0+068 0+114

v 5 0+5 GN1 ~K 5 3! 0+077 0+132 0+073 0+132 0+067 0+122
GN2 ~K 5 1! 0+081 0+137 0+078 0+127 0+064 0+119
GN2 ~K 5 2! 0+077 0+131 0+073 0+124 0+068 0+121
GN2 ~K 5 3! 0+078 0+133 0+075 0+131 0+069 0+122

GN1 ~K 5 1! 0+079 0+138 0+070 0+124 0+063 0+121
GN1 ~K 5 2! 0+072 0+130 0+067 0+122 0+060 0+118

v 5 0+8 GN1 ~K 5 3! 0+075 0+136 0+069 0+124 0+060 0+121
GN2 ~K 5 1! 0+081 0+142 0+067 0+128 0+065 0+120
GN2 ~K 5 2! 0+072 0+129 0+065 0+123 0+064 0+120
GN2 ~K 5 3! 0+075 0+134 0+068 0+127 0+067 0+125

Notes:~i! The same experimental format as for Table 1 was used+ ~ii ! The long-run variance was estimated by
using the methods of Andrews~1991! with an AR~4! approximation for the prefilter+

COINTEGRATING SMOOTH TRANSITION REGRESSIONS 317

https://doi.org/10.1017/S0266466604202031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604202031


interest rates may increase the default risk by increasing the borrowing cost of
corporations, by depressing the economy and by weakening the banking sys-
tem of an economy+8 This hypothesis may be called the “interest Laffer curve”
hypothesis because the effects of interest rates on spot exchange rates are hypoth-
esized to depend on the levels of the interest rates+ This section employs the
model and asymptotic theory developed in previous sections to study the inter-
est Laffer curve hypothesis and reports the magnitudes of interest elasticity of
the spot rate for Korea and Indonesia during the Asian currency crisis+

The uncovered interest rate parity relation predicts that log spot rate is related
to the difference of domestic and foreign interest rates and log expected future
spot rate+9 Though the relation predicted by the interest rate parity condition is
approximately linear, it indicates that the difference of the domestic and for-
eign interest rates and the log expected future spot rate may be considered as
major variables explaining the spot rate+ This consideration leads us to employ
the difference of the domestic and foreign interest rates and the log expected
future spot rate as regressors in our nonlinear regression+ But because the
expected future spot rate is not observable, forward exchange rate can be used
as its substitute+ One may wonder at this point why we did not invoke the cov-
ered interest parity relation from the beginning+ However, in Korea, there has
been no well-developed forward exchange market+ Without such a market, it
would be nonsensical to consider the covered interest parity relation+

More specifically, the STR model we use in this section is

yt 5 m 1 a1 x1t 1 a2 x2t 1 dx2t

1

11 e2g~x2t2c! 1 ut , (21)

where yt and x1t are the spot and forward rates, respectively, and x2t is the
difference between the domestic and foreign interest rates~i+e+, i t 2 i t

*!+ Be-
cause we are interested only in the nonlinear relation between the spot rate and
the interest rate differential, the transition function includes only the interest
rate differential+ Equation~21! signifies that the relation between the spot rate
and the interest rate differential changes when the latter is well above the level
c unlessg is zero+ Thus, the model is appropriate for studying the relation
between the spot rate and the interest rate differential, which may change depend-
ing on the level of the interest rate differential+

The spot exchange rate data that we use are daily nominal exchange rates of
Korea and Indonesia vis-à-vis the U+S+ dollar+ For forward exchange rates,
1-month maturity data are used+ For Korea, we use the forward exchange rate
from the nondeliverable forward~NDF! market+10 For Indonesia, we use data
from their onshore forward exchange markets+11 For domestic interest rates, we
use the overnight call rates of each country+ Because the overnight call rates
are the main monetary policy instruments of each country, they seem to best
reflect monetary policy stances of each country and could be regarded as exog-
enous policy variables+ The U+S+ federal funds rate is used as the foreign inter-
est rate+

318 PENTTI SAIKKONEN AND IN CHOI

https://doi.org/10.1017/S0266466604202031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604202031


The whole sample covers the 19-month periods 40101997–1003001998 for
Korea and 10301997–702401998 for Indonesia+ The sample period for each coun-
try begins at about 6 to 7 months before the eruption of its own currency crisis+
The sample sizes for Korea and Indonesia are 386 and 406, respectively+ Fig-
ures 2 and 3 plot the Korean and Indonesian data+ These figures demonstrate
the volatility of the data during the sampling period+

Figure 2. Interest rate differential and spot rate~Korea!+

Figure 3. Interest rate differential and spot rate~Indonesia!+
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The Dickey–Fuller-GLSm test of Elliot, Rothenberg, and Stock~1996! and
the LM test of Choi~1994! were applied to the spot and forward rates and the
interest differentials for both Korea and Indonesia+ The results support the pres-
ence of a unit root at conventional levels, and hence the theoretical results in
previous sections are relevant here+ Truly, the interest differentials should be
I ~0! under normal circumstances+ Otherwise, there are unrealistically many arbi-
trage opportunities+ But during the currency crisis period, the test results indi-
cate that they look likeI ~1! at least in Korea and Indonesia+ Probably, market
participants during the period did not perceive the diverging interest differen-
tials as arbitrage opportunities in the light of the huge risks involved+

The results of the one-step and two-step Gauss–Newton estimation of model
~21! are reported in Table 3+12 The Polak–Ribiere conjugate gradient method
was used for initial estimation as in Section 4+ The results for Korea in Table 3
show that the forward rate and interest rate differential are significant at con-
ventional levels excepting a couple of cases+13 For the parameters inducing non-
linearity, conventional hypothesis testing is difficult+14 Whend 5 0, c andg are
not identified+ In addition, wheng 5 0, d andc are not identified+ Thus, con-
ventional testing procedures cannot be used ford andg+ Testing the null hypoth-
esesd 5 0 andg 5 0 is equivalent to testing the null of linearity+ The standard
errors for the parameterg are relatively high, which indicates the difficulty of
estimating the parameter+ The location parameterc is estimated to lie between

Table 3. Gauss–Newton estimation results

K a1 a2 d g c

~a! Korea~T0 5 386!
O0S 1 0+97 ~0+023! 20+0059~0+0031! 0+0055~0+0030! 0+3540~0+439! 14+01 ~2+28!

2 0+96 ~0+023! 20+0063~0+0032! 0+0060~0+0031! 0+2775~0+444! 13+85 ~2+32!
3 0+96 ~0+024! 20+0064~0+0032! 0+0062~0+0031! 0+2621~0+447! 13+80 ~2+34!

T0S 1 0+97 ~0+024! 20+0046~0+0045! 0+0041~0+0045! 0+4879~0+301! 15+06 ~3+69!
2 0+97 ~0+026! 20+0035~0+0066! 0+0030~0+0067! 0+4808~0+275! 16+26 ~6+03!
3 0+97 ~0+027! 20+0033~0+0073! 0+0028~0+0076! 0+4752~0+278! 16+43 ~6+94!

~b! Indonesia~T0 5 406!
O0S 1 1+01 ~0+004! 20+0014~0+0007! 0+0006~0+0007! 0+9843~1+727! 13+65 ~6+84!

2 1+01 ~0+004! 20+0015~0+0007! 0+0006~0+0006! 1+029 ~1+719! 13+90 ~6+83!
3 1+01 ~0+004! 20+0014~0+0007! 0+0006~0+0006! 1+129 ~1+715! 14+15 ~6+80!

T0S 1 1+01 ~0+004! 20+0015~0+0007! 0+0007~0+0007! 0+3600~3+095! 14+81 ~3+67!
2 1+01 ~0+004! 20+0015~0+0007! 0+0007~0+0006! 0+3908~3+104! 14+98 ~3+67!
3 1+01 ~0+004! 20+0016~0+0007! 0+0007~0+0006! 0+2958~3+394! 15+18 ~3+66!

Notes:~i! Daily data covering the periods 40101997–1003001998 and 10301997–702401998 were used for Korea
and Indonesia, respectively+ ~ii ! O0S and T0S denote one-step and two-step Gauss–Newton estimation, respectively+
~iii ! ParameterK denotes the numbers of leads and lags+ ~iv! The numbers in parentheses denote standard
errors+
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13+80 and 16+43 depending on the choice of the leads and lags parameterK and
the estimation method+15

For Indonesia, nonlinear effects of the interest differentials seem to be weak
relative to Korea, though coefficients for the forward rate and the interest dif-
ferential~a1 anda2! are significant at conventional levels+ The estimates of the
location parameterc are similar in magnitudes to those for Korea, though Indo-
nesia experienced much higher interest rates than Korea during the period of
currency crisis+16

The results in Table 3 indicate that the future rates are quite important in
explaining the spot rates given the magnitudes of the coefficient estimates+ But
the coefficient estimates for the terms involving the interest differentials are
close to zero+ To visualize the nonlinear effects of the interest differentials, we
draw the interest differential elasticity of spot rate in Figures 4 and 5 by assum-
ing that the estimation results in Table 3~using the one-step estimation method
with K 5 1! represent the true relation+17

Figure 4. Interest elasticity of spot rate~Korea!+

Figure 5. Interest elasticity of spot rate~Indonesia!+
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Figures 4 and 5 show that when the interest differentials take values lower
than approximately 11% and 12% for Korea and Indonesia, respectively, the con-
ventional wisdom that increasing interest rate helps stabilize spot rate seems to
be supported+ But when the interest differentials take higher values up to approx-
imately 28% and 16% for Korea and Indonesia, respectively, the elasticities
become positive, which implies that increasing interest rate has negative effects
on stabilizing spot rate+When the interest differentials are above 28% and 16%
for Korea and Indonesia, respectively, the elasticities become negative again+

Figures 4 and 5 partially support the interest Laffer curve hypothesis+ But
they also indicate that tight monetary policy is effective, though very weakly,
when interest rates are very high+ Notwithstanding this remark, we conclude
from the magnitudes of the elasticities shown in Figures 4 and 5 that the effects
of interest rate on the spot rate are negligible in either direction+18 For example,
when the interest differential is 30% for Korea, the elasticity is only20+007+
This implies that raising the interest differential from 30% to 33%~i+e+, a 10%
increase! has the effect of appreciating the Korean currency by only 0+07%+
Considering the fact that the currency was depreciated by approximately 30%
on the average during the sampling period, such a meager effect is certainly
unsatisfactory to the Korean economy+ This is more so when one considers the
negative effects of an interest rate increase of such magnitude on the corpora-
tions and banking system of the economy+

6. FURTHER REMARKS

We have analyzed and applied the cointegrated STR model in this paper+ How-
ever, there are a couple of topics that deserve our attention but were not studied
in this paper+ First, methods for testing linearity in the presence ofI ~1! vari-
ables are not yet available but are useful for empirical analyses+ Because non-
linear models are flexible, they may give a good in-sample fit even when the
true model is linear+ Thus, testing linearity prior to nonlinear model fitting is
important+ Second, testing for cointegration for the STR model should precede
estimation, but relevant methods are not yet available+ We hope that these top-
ics can be studied in the future by the authors and other researchers+

NOTES

1+ Although model~1! assumes that all the regressors have a nonlinear effect on the regres-
sand, our theoretical results can readily be modified to the case where the nonlinearity only appears
in some of the regressors+ In addition, our setup does not allow for the possibility that different
transition functions are used for different regressors+ But it would not be difficult to extend our
results to that case also+ To simplify exposition, we have preferred to work with a single transition
function+

2+ In practice we always chooseT 5 T0, so that the transformationxtT is not required+ The
transformation is made only to facilitate the development of asymptotic analysis+

3+ See Lemma 5 in Appendix A and the proof of Theorem 1 in Appendix B+
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4+ The one-step Gauss–Newton and two-step Gauss–Newton estimators use the NLLS and
one-step Gauss–Newton estimators as initial estimators, respectively+

5+ We do not report the results for the estimators ofm, because these are not the main concern
in most applications+

6+ It was found that quasi-Newton methods tend to give more outliers+ The maximum number
of iterations for optimization was set at 100,000+

7+ Increasing the sample size to 500 further improves the empirical size of thet-ratio, though
the results are not reported here+

8+ In addition, Feldstein~1998!, Furman and Stiglitz~1998!, and Radelet and Sachs~1998a,
1998b!, among others, argue that tight monetary policy in Asia either was ineffective in stabilizing
exchange rates or may have even exacerbated the situation+

9+ The uncovered interest rate parity relation is written as 11 i t 5 ~1 1 i t
*!St11

e 0St , wherei t
and i t

* denote the domestic and the foreign interest rates at datet, respectively, and St and St11
e

denote the spot exchange rate at datet and the expected future spot exchange rate at datet 1 1,
respectively+ Taking logs of both sides of the interest parity relation yields ln~St ! 5 ln~1 1 i t

*! 2
ln~1 1 i t ! 1 ln~St11

e ! ' i t
* 2 i t 1 ln~St11

e !+
10+ The NDFs are nondeliverable forwards traded in the offshore market+ Unlike the onshore

forward exchange rates, which have been influenced by direct regulation and heavy intervention of
the Korean government, we believe that the NDF rates better reflect expectations of market
participants+

11+ Because Indonesia had already liberalized domestic foreign exchange markets, the Indone-
sian rupiah was not traded in the NDF market+

12+ Prior to estimating the STR model, it is proper to perform linearity tests+ But the linearity
tests for models withI ~1! variables are not yet available, so we bypass the stage of hypothesis
testing+

13+ Needless to say, this statement assumes that the given nonlinear model represents the true
data generating process+

14+ We thank Bruce Hansen for pointing out this problem+
15+ These results are based on the assumptions that the error term in equation~21! is I ~0! and

that regressors are not cointegrated+ Formal tests for cointegration for the STR model are not yet
available+ But fitting the AR~1! regression for the residuals from equation~21! using the parameter
values in the first row of Table 3, we obtained AR~1! coefficient estimate 0+557 and corresponding
standard error 0+043+ Similar results were obtained for other parameter values+ Thus, it seems unlikely
that the residuals areI ~1!+ In addition, we tested for cointegration between the future rates and
interest differentials but found no evidence of cointegration+

16+ Indonesia’s maximum call rate during the sample period was 91+5%, and the average was
29+4%+ But the maximum and average for Korea were 35% and 15+6%, respectively+

17+ Ignoring the error term in equation~21! and assuming that the parameter estimates are the
true parameter values, the elasticity was calculated by using the formula]yt0~10x2t !]x2t 5 ]yt0
] ln~x2t ! + Here the partial derivative is multiplied byx2t , because log was taken for the spot rate
but not for the interest differential+

18+ Choi and Park~2000! also report that interest differential did not cause spot rate in both the
short and long runs during the Asian currency crisis+
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APPENDIX A: AUXILIARY LEMMAS

We shall first prove some auxiliary results that may also have applications elsewhere+
Recall the notationN 5 T 2 2K and note that a~possibly! matrix-valued functionh~x!
defined onRd is said to be locally bounded if7h~x!7 is bounded on compact subsets
of Rd+

LEMMA 1 + Let h~x! be a locally bounded, vector-valued function defined onRd

~d , `! and let $et ,Ft
e% be a square integrable martingale difference sequence such

that supt E7et72 , `. Let ztT
~1! ~d 3 1! and ztT

~2! ~t 5 1, + + + ,T ! be random vectors de-
fined on the same probability space aset. Assume thatmax1#t#T7ztT

~1!7 5 Op~1! and
supt,T E7ztT

~2!7 , `. Then,
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(i) max
1#t#T

7h~ztT
~1!!7 5 Op~1!,

(ii) N 2302 (
j52K

K

(
t5K11

T2K

7h~ztT
~1!!77zt1j,T

~2! 7 5 Op~K0N102!, and

(iii) (
j51

K

**N21 (
t5K11

T2K

h~ztT
~1!!et1j

' ** 5 Op~K0N102!,

whenztT
~1! is measurable with respect to thes-algebraFt

e. The third result also holds
with ztT

~1! replaced byzt1j21,T
~1! .

Proof. To prove the first assertion, let « . 0 and use the assumption
max1#t#T7ztT

~1!75 Op~1! to choosem . 0 such thatP$max1#t#T7ztT
~1!7 . m% , « for all

T large+ Next, use the assumption thath~x! is locally bounded to conclude thatHm 5
sup7x7#m7h~x!7 is finite+ Then, the desired result follows because for allT large

PH max
1#t#T

7h~ztT
~1!!7 . HmJ # PH max

1#t#T
7ztT

~1!7 . mJ , «+

The second result is an immediate consequence of the first result and the moment
condition imposed onztT

~2! + To prove the third assertion, first note that an application of
the triangular inequality yields

(
j51

K

**N21 (
t5K11

T2K

h~ztT
~1!!et1j

' **
# (

j51

K

**N21 (
t5K11

T2K

1$7ztT
~1!7# m%h~ztT

~1!!et1j
' **

1 (
j51

K

**N21 (
t5K11

T2K

1$7ztT
~1!7 . m%h~ztT

~1!!et1j
' **

5
def

A1T 1 A2T +

Now, let « . 0 and definem andHm in the same way as in the proof of~i!+ Then, for
everyM . 0 andT large

P$~N1020K !6A2T 6 . M02% # PH max
1#t#T

7ztT
~1!7 . mJ , «+

As for A1T , use the assumptions that$et ,Ft
e% is a square integrable martingale differ-

ence sequence and thatztT
~1! is measurable with respect to thes-algebraFt

e to obtain

E6A1T 6 # (
j51

K SE**N21 (
t5K11

T2K

1$7ztT
~1!7# m%h~ztT

~1!!et1j
' **

2D102

5 (
j51

K SN22 (
t5K11

T2K

E~1$7ztT
~1!7# m%h~ztT

~1!!'h~ztT
~1!!et1j

' et1j !D102

# Hm (
j51

K SN22 (
t5K11

T2K

E~et1j
' et1j !D102

# CHmK0N102, C , `+
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Hence, P$~N1020K !6A1T 6 . M02% # 2CHm0M by Markov’s inequality, and we can con-
clude that for everyM andT large

P$~N1020K !6A1T 1 A2T 6 . M % # P$~N1020K !6A1T 6 . M02%

1 P$~N1020K !6A2T 6 . M02%

, 2CHm0M 1 «+

For M . 2CHm0« the last expression is smaller than 2«, which proves the stated result+
A similar proof shows the final assertion+ n

Note that the first two results of Lemma 1 obviously hold whenh~x! andzt1j,T
~2! are

matrix-valued and that the third result improves Lemma A+4~c! of Park and Phillips
~2001! by relaxing the exponentially boundedness assumption used therein to local
boundedness+

The first two results of Lemma 1 can be applied with the process

zt 5 zt21 1 wt , t 5 1,2, + + + , (A.1)

wherewt is as in Assumption 2 andz0 may be any random vector such thatE7z074 , `+
In this caseztT

~1! 5 ztT 5 T2102zt and max1#t#T7ztT7 5 Op~1! is an immediate conse-
quence of the invariance principle~8!+ This definition of ztT will be assumed in sub-
sequent lemmas+ The proofs of these lemmas make use of the fact that, as a result of
Assumption 2, we can write

wt 5 ht 2 Djt , (A.2)

where

ht 5 (
j50

`

~Et wt1j 2 Et21wt1j ! and jt 5 (
j51

`

Et wt1j

with Et the conditional expectation operator with respect to thes-algebraFt 5 s~ws,s# t !
~cf+ Hansen, 1992!+ Because$ht ,Ft % is a stationary martingale difference sequence equa-
tion ~A+2! is analogous to the so-called Beveridge–Nelson decomposition, which has been
used extensively in asymptotic analysis of linear processes~see, e+g+, Phillips and Solo,
1992!+ Therefore, we shall refer to equation~A+2! as the Beveridge–Nelson decomposi-
tion also in the present context+ In our applications of the third result of Lemma 1 the mar-
tingale difference sequenceet will be ht + For these applications, and also for other
subsequent derivations, it is worth noting that the~stationary! processesht andjt have
finite moments of order 4~see Hansen, 1992, the proof of Theorem 3+1!+

LEMMA 2 + Let h~x;u! be a (possibly) vector-valued continuously differentiable func-
tion defined onRp11 3 Q* whereQ* is an open set in an Euclidean space. Suppose that
]h~x;u!0]x is also continuously differentiable and letQ , Q* be a compact set contain-
ing the pointu0 in its interior. Then, as K20T r 0,
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(i) (
j52K

K

**N21 (
t5K11

T2K

h~ztT ;u!wt1j
' ** 5 Op~K0N102! for every fixedu [ Q, and

(ii) (
j52K

K

**N21 (
t5K11

T2K

h~ztT ; ûT !wt1j
' ** 5 Op~K !7ûT 2 u071 Op~K0N102!,

whereûT is a random vector such thatûT 5 u0 1 op~1!.

Proof. We shall first prove the latter assertion and then note how the first one can be
obtained from the employed arguments+ Without loss of generality, assume thath~x;u!
is real-valued and use the Beveridge–Nelson decomposition~A+2! in conjunction with
the triangular inequality to obtain

(
j52K

K

**N21 (
t5K11

T2K

h~ztT ; ûT !wt1j
' ** # (

j52K

K

**N21 (
t5K11

T2K

h~ztT ; ûT !ht1j
' **

1 (
j52K

K

**N21 (
t5K11

T2K

h~ztT ; ûT !Djt1j
' **

5
def

A3T~ûT ! 1 A4T~ûT !+

First, considerA4T~ûT! and use partial summation to obtain

N21 (
t5K11

T2K

h~ztT ; ûT !Djt1j
' 5 N21h~zT2K,T ; ûT !jT2K1j

' 2 N21h~zK11,T ; ûT !jK1j
'

2 N21 (
t5K12

T2K

@h~ztT ; ûT ! 2 h~zt21,T ; ûT !#jt211j
' +

Hence, using the triangular inequality we find that

6A4T~ûT !6 # N21 sup
u[Q

7h~zT2K,T ;u!7 (
j52K

K

7jT2K1j 7

1 N21 sup
u[Q

7h~zK11,T ;u!7 (
j52K

K

7jK1j 7

1 sup
u[Q

(
j52K

K

**N21 (
t5K12

T2K

@h~ztT ;u! 2 h~zt21,T ;u!#jt211j
' **+

Because supu[Q7h~x;u!7 is locally bounded, the first two terms on the right-hand side
are easily seen to be of orderOp~K0N!+ For the third term we can use a standard mean
value expansion to get

h~ztT ;u! 2 h~zt21,T ;u! 5 T2102H1~ Szt21,T ;u!wt ,
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whereH1~x;u! 5 ]h~x;u!0]x ' and7 Szt21,T 2 ztT7 # 7zt21,T 2 ztT7 5 T21027wt7+ Thus,
we can write

6A4T~ûT !6 # sup
u[Q

(
j52K

K

**N2302 (
t5K12

T2K

H1~ Szt21,T ;u!wt jt211j
' **1 Op~K0N!

# N2302 (
j52K

K

(
t5K12

T2K

sup
u[Q

7H1~ Szt21,T ;u!77wt jt211j
' 71 Op~K0N!

5 Op~K0N102!+ (A.3)

Here the latter inequality is justified by the triangular inequality whereas the equality fol-
lows from Lemma 1~ii ! because supu[Q7H1~x;u!7 is locally bounded,max1#t#T7 Szt21,T75
Op~1!, andE7wt jt211j

' 7 is a finite constant+ For later purposes we note that we actually
showed thatA4T~u! 5 Op~K0N102! holds uniformly inu [ Q+

Next, considerA3T~ûT!+ Becauseu0 is an interior point ofQ and ûT 5 u0 1 op~1!, we
can use the mean value expansion

h~ztT ; ûT ! 5 h~ztT ;u0! 1 H2~ztT ; NuT !~ûT 2 u0!,

whereH2~x;u! 5 ]h~x;u!0]u ' and 7 NuT 2 u07 # 7ûT 2 u07+ Thus, using the triangular
inequality one obtains

6A3T~ûT !6 # (
j52K

K

**N21 (
t5K11

T2K

h~ztT ;u0!ht1j
' **

1 (
j52K

K

**N21 (
t5K11

T2K

H2~ztT ; NuT !~ûT 2 u0!ht1j
' **+

The first term on the right-hand side isA3T~u0!, and the second term can be bounded by

N21 (
j52K

K

(
t5K11

T2K

sup
u[Q

7H2~ztT ;u!77ûT 2 u077ht1j 7 5 Op~K !7ûT 2 u07+

Here the equality is again obtained from Lemma 1~ii ! because supu[Q7H2~x;u!7 is locally
bounded, max1#t#T7ztT75 Op~1!, andE7ht1j7 is constant+ Thus, to complete the proof,
we have to show thatA3T~u0! 5 Op~K0N102!+

By the definition ofA3T~u0!,

A3T~u0! 5 (
j51

K

7N21 (
t5K11

T2K

h~ztT ;u0!ht1j
' 71 (

j50

K

7N21 (
t5K11

T2K

h~ztT ;u0!ht2j
' 7

5
def

A31T~u0! 1 A32T~u0!+

Lemma 1~iii ! implies thatA31T~u0! 5 Op~K0N102!, so we need to show that the same
holds true forA32T~u0!+ To this end, use the Beveridge–Nelson decomposition~A+2! and
the definition ofztT to give

ztT 5 stT 2 T2102jt 1 T2102~j0 2 z0!,
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wherestT 5 T2102 (j51
t hj + Thus, a mean value expansion yields

h~ztT ;u! 5 h~st2j21,T ;u! 1 T2102H1~ Sst2j21,T ;u!rtj ,

where rtj 5 (i50
j ht2j1i 2 jt 1 j0 2 z0 and 7 Sst2j21,T 2 ztT7 # 7st2j21,T 2 ztT7 5

T21027rtj7+ This identity and the triangular inequality imply

6A32T~u0!6 # (
j50

K

**N21 (
t5K11

T2K

h~st2j21,T ;u0!ht2j
' **

1 (
j50

K

**N2302 (
t5K11

T2K

H1~ Sst2j21,T ;u0!rtj ht2j
' **

5 (
j50

K

**N2302 (
t5K11

T2K

H1~ Sst2j21,T ;u0!rtj ht2j
' **1 Op~K0N102!+

Here the equality is obtained from Lemma 1~iii !, which obviously applies despite the
differences in subscripts+ Next note that, because the functionH1~x;u! is continuously
differentiable by assumption and because7 Sst2j21,T 2 st2j21,T7 # 2T21027rtj7, we have
7H1~ Sst2j21,T;u0! 2 H1~st2j21,T;u0!7 # T2102 PH1T~u0!7rtj7 where PH1T~u0! is determined
by the partial derivatives of the functionH1~x;u0! and, by Lemma 1~i!, PH1T~u0! 5 Op~1!+
Combing these facts with the preceding upper bound of6A32T~u0!6 it is straightforward
to show that

6A32T~u0!6 # (
j50

K

**N2302 (
t5K11

T2K

H1~st2j21,T ;u0!rtj ht2j
' **

1 PH1T~u0! (
j50

K

N22 (
t5K11

T2K

7rtj 727ht2j 71 Op~K0N102!+ (A.4)

Consider the second term on the right-hand side+ By the Cauchy–Schwarz inequality,
E7rtj727ht2j7 # ~E7rtj74E7ht2j72!102 # c1~ j 1 1! wherec1 is a finite constant+ To jus-
tify the latter inequality here, observe that, for some finite constantsc2, c3, and c4,
E7rtj74 # c2 E7(i50

j ht2j1i 74 1 c3 # c4~ j 1 1!2 where the inequalities can be obtained
from the definitions and Theorem 3+7+8~i! of Stout~1974!+ Thus,

ES(
j50

K

N22 (
t5K11

T2K

7rtj 727ht2j 7D 5 O~K 20N!,

and, because PH1T~u0! 5 Op~1!, it follows that the second term on the right-hand side of
~A+4! is of orderOp~K0N102!+

To complete the proof of the first assertion, we still need to show that the first term
on the right-hand side of~A+4! is of orderOp~K0N102!+ It suffices to replacerjt in turn
by each of the four components in its definition+ Thus, consider the quantity
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(
j50

K

**N2302 (
t5K11

T2K

H1~st2j21,T ;u0! (
i50

j

ht2j1i ht2j
' **

# (
j50

K

**N2302 (
t5K11

T2K

H1~st2j21,T ;u0!ht2j ht2j
' **

1 (
j51

K

**N2302 (
t5K11

T2K

H1~st2j21,T ;u0! (
i51

j

ht2j1i ht2j
' ** +

Arguments similar to those used forA4T~ûT! in ~A+3! show that the first term on the
right-hand side is of orderOp~K0N102!+ These arguments also apply when the last three
terms in the definition ofrtj are considered+ Thus, we only need to show that the latter
term in the last expression is of orderOp~K0N102!+ Using the triangular inequality, one
obtains

(
j51

K

**N2302 (
t5K11

T2K

H1~st2j21,T ;u0! (
i51

j

ht2j1i ht2j
' **

# (
j51

K

(
i51

j

**N2302 (
t5K11

T2K

H1~st2j21,T ;u0!ht2j1i ht2j
' ** + (A.5)

To show that the last quantity is of orderOp~K0N102!, we can make use of a similar
truncation argument as in the proof of Lemma 1~iii ! and replace the functionH1~x;u0!
by 1$7x7 # m%H1~x;u0! with an appropriately chosen real numberm+ Thus, because
H1~x;u0! is locally bounded1$7x7 # m%H1~x;u0! is bounded+ To simplify notation we
proceed by assuming that the functionH1~x;u0! itself is bounded+ Assuming this shows
that for i $ 1

E**N2302 (
t5K11

T2K

H1~st2j21,T ;u0!ht2j1i ht2j
' **

# SE**N2302 (
t5K11

T2K

H1~st2j21,T ;u0!ht2j1i ht2j
' **

2D102

5 O~N21!,

where the equality follows because the terms in the preceding sum are uncorrelated with
bounded second moments+ Thus, the right-hand side of~A+5! is of orderOp~K 20N!, which
proves the desired result and completes the proof of the second assertion+

To prove the first assertion, notice that we need to show thatA3T~u! andA4T~u! are
of orderOp~K0N102! for every fixedu+ For A4T~u! we showed that this holds even uni-
formly in u+ As for A3T~u!, it suffices to considerA31T~u! andA32T~u! separately+ In the
preceding proof we showed thatA31T~u0! andA32T~u0! are of orderOp~K0N102!, and an
inspection of the proof reveals thatu0 can be replaced by anyu [ Q without changing
the result+ This completes the proof of Lemma 2+ n

It would be useful to be able to show that the pointwise result of Lemma 2~i! also
holds uniformly inu, but we have been unable to obtain this extension+ The following
result is not difficult to obtain, however+
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LEMMA 3 + Suppose the assumptions of Lemma 2 hold and let RT 5 @R2KT
' + + +RKT

' # '

be a (possibly) stochastic matrix such that each RjT has p1 1 rows and, for some finite
constant c, 7RT7 # c ~a+s+!. Then,

sup
u[Q

** (
j52K

K

N21 (
t5K11

T2K

h~ztT ;u!wt1j
' RjT** 5 op~1!+

Proof. Without loss of generality assume thatc 5 1 and thath~x;u! is real-valued+
Because7RjT7 # 1 for all j, we have for every fixedu [ Q

** (
j52K

K

N21 (
t5K11

T2K

h~ztT ;u!wt1j
' RjT** # (

j52K

K

**N21 (
t5K11

T2K

h~ztT ;u!wt1j
' RjT**

# (
j52K

K

**N21 (
t5K11

T2K

h~ztT ;u!wt1j
' **

5 op~1!,

where the equality is due to Lemma 2~i!+ Thus, the problem is to strengthen this point-
wise convergence in probability to uniform convergence in probability+ BecauseQ is a
compact set it suffices to show that the quantity whose norm is taken is stochastically
equicontinuous~see, e+g+, Davidson, 1994, p+ 337!+ To this end, let u1 andu2 be arbitrary
points ofQ and consider the quantity

** (
j52K

K

N21 (
t5K11

T2K

h~ztT ;u1!wt1j
' RjT 2 (

j52K

K

N21 (
t5K11

T2K

h~ztT ;u2!wt1j
' RjT**

5 **N21 (
t5K11

T2K

@h~ztT ;u1! 2 h~ztT ;u2!# (
j52K

K

wt1j
' RjT**

# SN21 (
t5K11

T2K

7h~ztT ;u1! 2 h~ztT ;u2!72D102SN21 (
t5K11

T2K

** (
j52K

K

wt1j
' RjT**

2D102

,

(A.6)

where the inequality follows from the Cauchy–Schwarz inequality+ For the difference in
the last expression we can use the mean value expansion

h~ztT ;u1! 2 h~ztT ;u2! 5 H2~ztT ; Nu!~u1 2 u2!,

whereH2~x;u! 5 ]h~x;u!0]u ' and7 Nu 2 u17 # 7u1 2 u27+ Thus,

SN21 (
t5K11

T2K

7h~ztT ;u1! 2 h~ztT ;u2!72D102

# 7u1 2 u27SN21 (
t5K11

T2K

sup
u[Q

7H2~ztT ;u!72D102

5 7u1 2 u27Op~1!,

where the equality is justified by Lemma 1~i! because supu[Q7H2~x;u!72 is locally
bounded and max1#t#T7ztT7 5 Op~1!+ Hence, the desired stochastic equicontinuity fol-
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lows in a straightforward manner from~A+6! if we show that the latter factor in the last
expression therein is of orderOp~1!+ To see this, define the matrix

GT 5 FN21 (
t5K11

T2K

wt1i wt1j
' G , i, j 5 2K, + + + ,K

and letlmax~{! denote the largest eigenvalue of the indicated matrix+ With these defini-
tions we have

SN21 (
t5K11

T2K

** (
j52K

K

wt1j
' RjT**

2D102

5 ~ tr~RT
' GT RT !!102

# ~lmax~GT !tr~RT
' RT !!102

# lmax
102 ~GT !

5 Op~1!+

Here the last relation is a straightforward consequence of the fact that the spectral den-
sity matrix of the processwt is bounded, and the preceding one follows from the assump-
tion 7RT7 # 1 ~a+s+!+ Thus, the proof is complete+ n

The results of Lemmas 2 and 3 also hold with a fixed value ofK+ In that caseRjT in
Lemma 3 may be replaced by an identity matrix, as can easily be checked from the
given proofs+

In the following lemma we use the notationC~Q!a3b to signify the space of all con-
tinuous functions from the compact setQ to Ra3b endowed with the uniform metric+ In
Ra3b the usual euclidean metric is assumed+

LEMMA 4 + Let H~x,u! ~a 3 b! be a matrix-valued continuous function defined on
Rp11 3 Q. Then, if K0T r 0

N21 (
t5K11

T2K

H~ztT ;u! n E
0

1

H~B~s!;u! ds,

where the convergence holds in the function space C~Q!a3b.

Proof. BecauseztT n B~s! by ~8! the proof can be obtained in the same way as the
first result in Theorem 3+1 of Park and Phillips~2001!+ n

Lemma 4 can be used to prove the following lemma+

LEMMA 5 + Let f~x;u!, u [ Q, and xtT be as in Section 3.2. Then there exists an
« . 0 such that with probability approaching one

inf
u[Q

lminSN21 (
t5K11

T2K

f ~xtT ;u! f ~xtT ;u!'D $ «+

Proof. The stated result follows from condition~11!, Lemma 4, and the continuity of
eigenvalues and the infimum function+ n
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LEMMA 6 + Let h~x! be a vector-valued twice continuously differentiable function
defined onRp11. Then,

T2102 (
t51

T

h~ztT !wt
'n E

0

1

h~B~s!! dB~s!' 1E
0

1

H1~B~s!! dsL,

where H1~x! 5 ]h~x!0]x ' and L 5 (j50
` Ew0wj

'. Moreover, this weak convergence
holds jointly with that in (8).

Proof. Using the Beveridge–Nelson decomposition~A+2!, one obtains

T2102 (
t51

T

h~ztT !wt
' 5 T2102 (

t51

T

h~ztT !ht
'2 T2102 (

t51

T

h~ztT !Djt
' + (A.7)

First, consider the latter term on the right-hand side+ By partial summation,

2T2102 (
t51

T

h~ztT !Djt
' 5 2T2102h~zTT!jT

' 1 T2102h~z0T !j0
'

1 T2102 (
t51

T

@h~ztT ! 2 h~zt21,T !#jt21
'

5 T2102 (
t51

T

@h~ztT ! 2 h~zt21,T !#jt21
' 1 op~1!,

where the latter equality is an immediate consequence of the assumptions+ Thus, a stan-
dard mean value expansion and the factDztT 5 T2102wt yield

2T2102 (
t51

T

h~ztT !Djt
' 5 T21 (

t51

T

H1~ Szt21,T !wt jt21
' 1 op~1!,

where the notation is as before so thatH1~ Szt21,T! signifies a matrix each row of which
is evaluated at a possibly different intermediate point in the line segment betweenztT

andzt21,T + Because the functionH1~x! is continuously differentiable by assumption, we
have7H1~ Szt21,T! 2 H1~ztT!7 # T2102 PH1T7wt7 where PH1T is determined by the second
partial derivatives of the functionh~x! and, as a straightforward consequence of Lemma
1~i!, PH1T 5 Op~1!+ Hence, becauseE7wt77wt jt21

' 7 is a finite constant, we can write

2T2102 (
t51

T

h~ztT !Djt
' 5 T21 (

t51

T

H1~ztT !wt jt21
' 1 op~1!

5 T21 (
t51

T

H1~ztT !wt jt
'1 T21 (

t51

T

H1~ztT !wt wt
'

2 T21 (
t51

T

H1~ztT !wt ht
'1 op~1!,

where the latter equality follows from the Beveridge–Nelson decomposition~A+2!+ Theo-
rems 3+2 and 3+3 of Hansen~1992! imply that replacingwt jt

' in the first term of the last
expression by its expectation causes an error of orderop~1!+ To see that a similar replace-

334 PENTTI SAIKKONEN AND IN CHOI

https://doi.org/10.1017/S0266466604202031 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604202031


ment can be done in the second term of the last expression, observe that, by Assump-
tion 2 and the mixing inequality in Davidson~1994, p+ 211!, wt wt

' 2 Ewt wt
' is a

stationaryL1-mixingale+ Hence, the desired result follows from Theorem 3+3 of Hansen
~1992!+ As a whole we can thus conclude that

2T2102 (
t51

T

h~ztT !Djt
' 5 T21 (

t51

T

H1~ztT !L 2 T21 (
t51

T

H1~ztT !wt ht
'1 op~1!, (A.8)

where the resultEwt jt
' 1 Ewt wt

' 5 L is a simple consequence of the definition of the
matrix L and the processjt ~cf+ Hansen, 1992, proof of Theorem 4+1!+

Now consider the first term on the right-hand side of~A+7! and use the same mean
value expansion as before to write

T2102 (
t51

T

h~ztT !ht
' 5 T2102 (

t51

T

h~zt21,T !ht
'1 T21 (

t51

T

H1~ Szt21,T !wt ht
' + (A.9)

In the same way as previously, we can also here replaceH1~ Szt21,T! by H1~ztT! and com-
bine equations~A+8! and~A+9! with ~A+7!+ This gives

T2102 (
t51

T

h~ztT !wt
' 5 T2102 (

t51

T

h~zt21,T !ht
'1 T21 (

t51

T

H1~ztT !L 1 op~1!+

To complete the proof, notice thatht is a stationary square integrable martingale differ-
ence sequence and that an invariance principle holds jointly for the processeszt and
(j51

t hj ~see Hansen, 1992, proof of Theorem 3+1!+ Hence, the stated result is obtained
from Theorem 2+1 of Hansen~1992!+ n

APPENDIX B: PROOFS OF MAIN RESULTS
Proof of Theorem 1. We shall first demonstrate the existence of the estimatorsDuT

and EfT + For any fixed value ofu, the least squares estimator off, denoted by EfT~u!,
exists and is unique with probability approaching one+ This is an immediate conse-
quence of the definition of the estimatorEfT~u! and Lemma 5+ Thus, we have

QT~u,f! $ QT~u, EfT~u!! $ inf
u[Q

QT~u, EfT~u!!+

It is straightforward to check that, when the estimator EfT~u! exists and is unique,
QT~u, EfT~u!! is a continuous function ofu so that, by the assumed compactness of the
parameter spaceQ, there exists DuT such thatQT~ DuT , EfT~ DuT!! equals the preceding infi-
mum+ Thus, DuT and EfT 5 EfT~ DuT! are the desired least squares estimators+

The next step is to show thatEfT is bounded in probability+ To this end, notice that

EfT 5 ST21 (
t51

T

f ~xtT ; DuT ! f ~xtT ; DuT !'D21

3 T21 (
t51

T

f ~xtT ; DuT !@ut 1 f ~xtT ;u0!'f0# +
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Lemma 5 implies that the largest eigenvalue of the inverse on the right-hand side
is of orderOp~1!+ Thus, we have to show that the latter factor on the right-hand side
is of order Op~1!+ To see this, note that the assumptions imply that supu[Q7 f ~x;u!7
is locally bounded+ Therefore, by Lemma 1~i! we have max1#t#T7 f ~xtT ; DuT !7 #
max1#t#T supu[Q7 f ~xtT;u!7 5 Op~1! and similarly with DuT replaced byu0+ Hence, it
follows that EfT 5 Op~1!+ Moreover, because DuT 5 Op~1! holds trivially by the compact-
ness of the parameter spaceQ, we have EqT 5 Op~1!, which means that the sequence of
estimators EqT is tight+

To prove the consistency of the estimatorsDuT and EfT , use the definitions to write

0 $ T21QT~ DuT , EfT ! 2 T21QT~u0,f0!

5 T21 (
t51

T

@ f ~xtT ; DuT !' EfT 2 f ~xtT ;u0!'f0# 2

2 2T21 (
t51

T

@ f ~xtT ; DuT !' EfT 2 f ~xtT ;u0!'f0#ut

5 T21 (
t51

T

@ f ~xtT ; DuT !' EfT 2 f ~xtT ;u0!'f0# 2 1 op~1!+

Because EfT 5 Op~1! the latter equality follows from Lemma 3 withK 5 0+ Now sup-
pose that EqT

p
&& q0 does not hold+ Then, by the tightness of the sequenceEqT , we can

find a subsequenceEqTj
that converges weakly toq*5 @u*

' f*
' # ', say, andq*Þ q0 with a

positive probability~see Billingsley, 1968, Theorem 6+1!+ Thus, we can conclude that

0 $ T21QTj
~ DuTj
, EfTj

! 2 T21QTj
~u0,f0!

n E
0

1

@ f ~Bv
0~s!;u* !'f*2 f ~Bv

0~s!;u0!'f0# 2 ds,

where the weak convergence is justified by Lemma 4 and Lemma A+2 of Saikkonen
~2001!+ ~The latter lemma requires that the relevant quantities converge jointly, which
can be guaranteed by redefining the subsequence if necessary+! Whenq*Þ q0 it follows
from condition~12! that the difference in the weak limit in the preceding expression is
nonzero for some value ofs and, by continuity, in an open interval+ Thus, the last expres-
sion is positive with a positive probability+ This gives a contradiction, so we must have
q* 5 q0+ This completes the proof+ n

Proof of Theorem 2. For simplicity, denoteh~xtT;q! 5 f ~xtT;u!'f so thatQT~q! 5

(t51
T @ ytT 2 h~xtT;q!# 2+ Becauseu0 is assumed to be an interior point ofQ, the consis-

tency of the estimatorEqT justifies the mean value expansion

]QT~q0!0]q 5 2~]2QT~ OqT !0]q]q' !~ EqT 2 q0!, (B.1)

where the notation is as before so that]2QT~ OqT!0]q]q' signifies a matrix each row of
which is evaluated at a possibly different intermediate point in the line segment between
EqT andq0+ The partial derivatives can be expressed as
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]QT~q!0]q 5 22 (
t51

T

~]h~xtT ;q!0]q!@ ytT 2 h~xtT ;q!#

and

]2QT~q!0]q]q' 5 2 (
t51

T

~]h~xtT ;q!0]q!~]h~q!0]q' !

2 2 (
t51

T

~]2h~xtT ;q!0]q]q' !@ ytT 2 h~xtT ;q!# +

Next, note that

T21 (
t51

T

~]2h~xtT ; OqT !0]q]q' !@ ytT 2 h~xtT ; OqT !#

5 T21 (
t51

T

~]2h~xtT ; OqT !0]q]q' !ut

2 T21 (
t51

T

~]2h~xtT ; OqT !0]q]q' !@h~xtT ; OqT ! 2 h~xtT ;q0!# +

Because the functionf ~x;u! is three times continuously differentiable by assumption, it
follows from the consistency of the estimatorEqT and Lemma 2~ii ! with K 5 0 that the
first term on the right-hand side is of orderop~1!+ It can be seen that the same is true for
the second term by taking a mean value expansion of the difference in the brackets and
using the local boundedness of the resulting summands in conjunction with Lemma 1~i!
and the consistency of the estimatorEqT + Thus, we can write

T21]2QT~ OqT !0]q]q' 5 2T21 (
t51

T

~]h~xtT ; OqT !0]q!~]h~ OqT !0]q' ! 1 op~1!

n 2E
0

1

K~Bv
0~s!!K~Bv

0~s!!' ds+ (B.2)

Here the weak convergence can be justified by using the consistency of the estimator
EqT , Lemma 4, and Lemma A+2 of Saikkonen~2001!+ The expression of the limit fol-

lows from the definitions+
To complete the proof, use Lemma 6 and the definitions to conclude that

T2102]QT~q0!0]q 5 22T2102 (
t51

T

~]h~xtT ;q0!0]q!ut

n 22SE
0

1

K~Bv
0~s!! dBu~s! 1E

0

1

K1~Bv
0~s!! dskvuD, (B.3)

where the weak convergence holds jointly with that in~B+2!+ Thus, because the weak
limit in ~B+2! is positive definite~a+s+! by assumption the result of the theorem is an
immediate consequence of~B+1!–~B+3! and the continuous mapping theorem+ n
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Proof of Theorem 3. Denote againf ~xtT;u!f 5 h~xtT;q! and conclude from the
definitions that

IutT 5 ut 2 @h~xtT ; EqT ! 2 h~xtT ;q0!#

5 Vt
'p0 1 eKt 2 H2~xtT ; OqT !~ EqT 2 q0!,

whereH2~xtT;q! 5 ]h~x;q!0]q' and7 OqT 2 q07 # 7 EqT 2 q07+ For simplicity, denote

GMT 5 N21 (
t5K11

T2K

IptT IptT
' +

Then,

F ZqT
~1! 2 q0

[pT
~1! 2 p0

G 5 F EqT 2 q0

2p0
G1 GMT

21N21 (
t5K11

T2K

IptT Vt
'p0 1 GMT

21N21 (
t5k11

T2K

IptT eKt

2 GMT
21N21 (

t5K11

T2K

IptT H2~xtT ; OqT !~ EqT 2 q0!

5 GMT
21N21 (

t5K11

T2K

IptT eKt

2 GMT
21N21 (

t5K11

T2K

IptT @H2~xtT ; OqT ! 2 H2~xtT ; EqT !# ~ EqT 2 q0!+ (B.4)

The latter equality is obtained by replacingH2~xtT; OqT! in the second expression by
H2~xtT; EqT! 5 EK~xtT! and observing thatIptT 5 @ EK~xtT!' Vt

'# '+ We shall show next that

**N21 (
t5K11

T2K

IptT @H2~xtT ; OqT ! 2 H2~xtT ; EqT !#** 5 Op~K0N102!+ (B.5)

To this end, notice that, because the functionH2~x;u! is continuously differentiable by
assumption, a mean value expansion and an application of Lemma 1~i! show that

max
K11#t#T2K

7H2~xtT ; OqT ! 2 H2~xtT ; EqT !7 5 Op~1!7 OqT 2 EqT75 Op~T2102!,

where the latter equality is due to theT 102-consistency of the estimatorEqT obtained
from Theorem 2+ Thus, because EK ~xtT ! 5 H2~xtT ; EqT !, the local boundedness of
supu[Q7H2~x;q!7 and Lemma 1~i! similarly yield maxK11#t#T2K 7 EK~xtT!7 5 Op~1!+
Hence, ~B+5! holds with IptT replaced by EK~xtT!, and we need to show that it also holds
with IptT replaced byVt + This can be seen by observing that

**N21 (
t5K11

T2K

Vt @H2~xtT ; OqT ! 2 H2~xtT ; EqT !#**
2

5 (
j52K

K

**N21 (
t5K11

T2K

vt1j @H2~xtT ; OqT ! 2 H2~xtT ; EqT !#**
2

# S (
j52K

K

**N21 (
t5K11

T2K

vt1j @H2~xtT ; OqT ! 2 H2~xtT ; EqT !#**D2

5 Op~K 20N!,
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where the last relation follows from Lemma 2~ii ! and theT 102-consistency of the esti-
mator EqT + Thus, we have established~B+5!+

The next step is to observe that

7 GMT
21 2 RMT

2171 5 Op~K0N102!, (B.6)

where, denotinglmax~A! as the largest eigenvalue of matrixA, 7A71 5 ~lmax~A'A!!102

and

RMT 5 diagFN21 (
t5K11

T2K

EK~xtT ! EK~xtT !' N21 (
t5K11

T2K

Vt Vt
'G +

To see this, first note that

**N21 (
t5K11

T2K

EK~xtT !Vt
'**

2

5 (
j52K

K

**N21 (
t5K11

T2K

H2~xtT ; EqT !vt1j
' **

2

# S (
j52K

K

**N21 (
t5K11

T2K

H2~xtT ; EqT !vt1j
' **D2

5 Op~K 20N!

again by Lemma 2~ii ! and theT 102-consistency of the estimatorEqT + This and the well-
known fact7{71 # 7{7 imply that7 GMT 2 RMT71 5 Op~K0N102!, and we need to show that
a similar result holds for the corresponding inverses+ By Lemma A+2 of Saikkonen and
Lütkepohl ~1996!, this holds true if7 RMT

2171 5 Op~1! or if 7~N21 (t5K11
T2K EK~xtT ! 3

EK~xtT !' !7121 5 Op~1! and 7~N21 (t5K11
T2K Vt Vt

'!2171 5 Op~1!+ The former requirement
can be obtained from condition~13!, the consistency of the estimatorEqT , Lemma 5, and
Lemma A+2 of Saikkonen~2001! whereas the latter can be deduced from Lemmas A2–A4
of Saikkonen~1991!+ Because the assumptions used in Saikkonen~1991! were slightly
different from the present ones we note that these lemmas, and also Lemmas A5 and A6
of that paper, can also be proved under the present assumptions+ For Lemmas A3 and
A5 the previous proofs apply, whereas Lemma A2 and, consequently, Lemmas A4 and
A6 can be proved by using Lemma 2~i! of this paper and the fact that, for some finite
constantC independent ofj 5 2K, + + + ,K,

E**N21 (
t5K11

T2K

~vt vt1j
' 2 Evt vt1j

' !** # N21C+

This follows from Assumption 2 and Lemma 6+19 of White ~1984!+ For later purposes
we also note that the preceding discussion implies that7 GMT

2171 5 Op~1!+
Next, note that N2102 (t5K11

T2K EK~xtT !eKt 5 Op~1! and 7N2102 (t5K11
T2K Vt eKt7 5

Op~K 102!+ The former result will become evident subsequently, whereas the latter is
obtained from Lemmas A5 and A6 of Saikkonen~1991!+ Because7 GMT

2171 5 Op~1! we
can use~B+5!, ~B+6!, and theT 102-consistency of the estimatorEqT to conclude from
~B+4! that

F ZqT
~1! 2 q0

[pT
~1! 2 p0

G 5 RMT
21N21 (

t5K11

T2K

IptT eKt 1 Op~K 3020N!+
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BecauseK 3020N102 r 0 by assumption this implies that

N102~ ZqT
~1! 2 q0! 5 SN21 (

t5K11

T2K

EK~xtT ! EK~xtT !'D21

N2102 (
t5K11

T2K

EK~xtT !eKt 1 op~1!

(B.7)

and

7 [pT
~1! 2 p07 5 **SN21 (

t5K11

T2K

Vt Vt
'D21

N21 (
t5K11

T2K

Vt eKt**1 Op~K 3020N!

5 Op~~K0N!102!+

Here the last equality follows from results obtained in the Appendix of Saikkonen~1991!
and already used earlier+ To show that the limiting distribution ofZqT

~1! is as stated in the
theorem and thereby to complete the proof, first note that the arguments used for~B+2!
in the proof of Theorem 2 show that the inverse on the right-hand side of~B+7! con-
verges weakly to the inverse in the theorem+ Thus, we need to consider

N2102 (
t5K11

T2K

EK~xtT !eKt 5 N2102 (
t5K11

T2K

EK~xtT !et 1 op~1!

5 N2102 (
t5K11

T2K

H2~xtT ;q0!et 1 op~1!, (B.8)

where the equalities can be justified as follows+ First, recall that

eKt 5 et 1 (
6 j 6.K

pj
' vt2j 5

def

et 1 aKt

and note thatE7aKt72 5 op~T21! for all t, as shown in the proof of Lemma A5 of Saikkonen
~1991!+ Thus, the first equality in~B+8! follows because maxK11#t#T2K7 EK~xtT!75 Op~1!,
as already noted+ To justify the second equality, recall that EK~xtT! 5 H2~xtT; EqT!, take a
mean value expansion ofH2~xtT; EqT! about q0, and use theT 102-consistency of the
estimator EqT in conjunction with Lemma 3 withK 5 0+

To complete the proof we have to show that the first term in the last expression of
~B+8! converges weakly to the stochastic integral in the theorem and that this holds jointly
with the weak convergence of the inverse on the right-hand side of~B+7!+ If the process
@vt' et

'# ' fulfilled the conditions of Assumption 2 this would follow from Lemma 6,
but, because the processet is not guaranteed to be strong mixing, this reasoning does
not apply directly+ However, usingL to denote the usual lag operator we may writeet 5
a~L!'wt wherea~L!' 5 (j52`

` aj
'L j 5 @1 2p~L!'# andp~L! 5 (j52`

` pj L
j+ In view

of the summability condition~15! and Lemma 6 we can use Theorem 4+2 of Saikkonen
~1993! and obtain the needed weak convergence results+ The assumptions required to
apply this theorem are straightforward consequences of Assumption 2, which, in addi-
tion to the summability condition~6! and the invariance principle~8!, also implies that
the first and second sample moments ofwt are consistent estimators of their theoretical
counterparts+ This completes the proof+ n
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