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SECOND-ORDER LIMIT LAWS FOR OCCUPATION
TIMES OF FRACTIONAL BROWNIAN MOTION

FANGIJUN XU,* ** East China Normal University and NYU Shanghai

Abstract

We prove a second-order limit law for additive functionals of a d-dimensional fractional
Brownian motion with Hurstindex H = 1/d, using the method of moments and extending
the Kallianpur—Robbins law, and then give a functional version of this result. That is, we
generalize it to the convergence of the finite-dimensional distributions for corresponding
stochastic processes.
Keywords: Fractional Brownian motion; short-range dependence; limit law; method of
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1. Introduction

Let {B" (1) = (B®-1(1),..., B"4(t)), t > 0} be a d-dimensional fractional Brownian
motion (FBM) with Hurst index H in (0, 1). If Hd = 1 then the local time of an FBM B H
does not exist; this is called the critical case. For example, two-dimensional Brownian motion
(H = % and d = 2) does not have local time at the origin. There is much work on limit
theorems for two-dimensional Brownian motion. Kallianpur and Robbins [6] proved that, for
any bounded integrable function f: R?> — R,

1
logn

/nf(B‘/z(s))ds > 3/ fG)dx, n— oo,
0 27‘[ R2

where ‘2’ denotes convergence in law and Z is an exponentially distributed random variable
with mean 1.

Kasahara and Kotani [5] gave a functional version of this result. They also proved the
second-order result that, when fR2 f(x)dx =0andn — oo,

eZnt

nt
% /0 F(B'(s)) ds

is weakly M-convergent to /()W (£(M~'(t))), where

4
(f)=——/ / S @) f(y)loglx — y|dxdy,
T JR2 JR2

W (t) is a one-dimensional Brownian motion, £(¢) is the local time at 0 of another one-
dimensional Brownian motion b(¢) that is independent of W (¢), and M (¢#) = maxo<s<; b(s).
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Kasahara and Kotani also pointed out that

I F.
ﬁfo FBY2(s)ds = J(AHAWEMT 1), n— oo, (1.1)

E.D. . . . . . .
where ‘—>’ denotes the convergence of finite-dimensional distributions.
The above results were extended to Markov processes (see [2] and [3] and references therein).
Subsequently, Kono [7] extended the Kallianpur—Robbins law to the FBM case:

! ' H D 1

Kasahara and Kosugi [4] obtained the corresponding functional version:

Lo eo, (]

where Z(¢) = £(M~1(¢)). The reason for using the normalizing factor 1/#n instead of 1/logn
was pointed out in Remark 1.1 of [4]. However, the corresponding second-order limit law
(fga f(x)dx = 0) was left open.

In this paper we prove second-order limit laws for the above result in [4]. The following
two theorems are the main results of this paper. One is the limit theorem for random variables.
The other is the convergence of finite-dimensional distributions for stochastic processes.

Theorem 1.1. Suppose that Hd = 1, f is bounded and integrable with [, f (x)dx = 0 and
fRd | £(x)| |x|# dx < oo for some positive constant B > 0. Then, for any t > 0,

nt

%/0 FBH(s))ds > Cray/Z(t)y, n— oo,

where
dr'(d/2)

d=\—5 g

/ (nd/z(Zn)d R
fis the Fourier transform of f, and n is a standard normal random variable independent
of Z(1).

Theorem 1.2. Suppose that Hd = 1, f is bounded and integrable with fRd f(x)dx =0and
/Rd | £(x)] x| dx < oo for some positive constant B > 0. Then

N 1/2
, |f(x>|2|x|"dx> :

nt

%/0 F(BH(s))ds = CraWEM™ (1) n— oo,

where W (1) is a one-dimensional Brownian motion independent of B (-) and ¢(M~(1)).

Remark 1.1. Since the process (M~ (7)) is notin C((0, 0o]), we could not use the Skorokhod
Ji-topology. For properties of the process Z(t) = £(M~'(t)), see [2] and references therein.
So far, we still have no idea how to show the weak M1 -convergence of the result in Theorem 1.2
(this has been proved for two-dimensional Brownian motion).
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Remark 1.2. Since the function f in the above two theorems is bounded, the constant 8 in
Theorems 1.1 and 1.2 can always be assumed to be less than or equal to 1. Also, the Hd < 1
case has been considered in [1, 8].

It is known that FBM with Hurst index not equal to % is neither a Markov process nor a
semimartingale. Therefore, the methods that have been applied for two-dimensional Brownian
motion and Markov processes cannot be used here to prove Theorems 1.1 and 1.2. In proving
limit theorems for (additive) functionals of FBM, one often uses the method of moments.
Another possible candidate is the Malliavin calculus.

In order to prove Theorems 1.1 and 1.2, we shall utilize the method of moments combined
with a chaining argument. The chaining argument was first developed in [8] to prove the
central limit theorem for an additive functional of a d-dimensional FBM with Hurst index
H € (1/(d 4 2), 1/d). It has been proved to be very powerful when obtaining the asymptotic
behaviour of moments. To some extent, it reveals the essential difference between the first-
and second-order limit laws. However, the situation here is very different from that in [8]: we
consider FBMs in the critical case and use a completely different normalizing factor. So, many
key techniques applied in [1] and [8] do not work here. For example, we cannot use the scaling
technique. Moreover, to use the chaining argument in [8], major modifications and new ideas
are required.

The main difficulty when applying the method of moments comes from the convergence of
even moments. The techniques used in [1] and [8] fail here. To overcome this difficulty, we
first estimate the covariance between two increments of FBM with Hurst index H < % and
then show that, under certain conditions, these covariances do not contribute to the limit of
even moments (see Lemma 2.3 and Step 3 in the proof of Proposition 3.2 for more details).
Roughly speaking, the short-range dependence for FBM with Hurst index H < % and proper
normalizing factor give us a kind of weak independence. This leads to connections with the
Brownian motion case in [4].

After some preliminaries in Section 2, Sections 3 and 4 are devoted to the proof of Theo-
rems 1.1 and 1.2, respectively. Throughout the paper, if not mentioned otherwise, ¢, with or
without a subscript, denotes a generic positive finite constant whose exact value is independent
of n and may change from line to line. Further, x - y denotes the usual inner product in R¢.

2. Preliminaries

Let {BH(t) = (B"1(t),..., BH4(t)), t > 0} denote a d-dimensional FBM with Hurst
index H in (0, 1), defined on some probability space (2, F, P), i.e. the components of B are
independent centered Gaussian processes with covariance function

E[B# (1)BH i (s)] = 1t + 527 — |t — 5?1,

Our first lemma gives comparable upper and lower bounds for the increments of d-dimen-
sional FBM on n adjacent intervals (for the proof, see, e.g. [1]).

Lemma 2.1. Givenn > 1, there exist two positive constants k1 and k> depending only onn, H,
and d, such that, forany 0 = sg < 1 < --- < sy and x; € Rd, 1<i<n,

K1 Z lxi |2 (si — si—1)*H < var(Zx,- B (s;) — BH(Sil)]) < k2 Z xi |2 (si — si—1)*H.

i=1 i=1 i=1
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The inequalities in Lemma 2.1 can be reformulated as

n n 2 n n
k1Y | D x| (s —sic) fVar<in‘BH(Si)> <Ky
i=1 i=1

j= i=1

noo2
2H
D x| s — 5o

j=i

The next lemma (for the proof, see [9]) gives a formula for the moments of /Z(¢)n, where
Z(t) is an exponential random variable with parameter ¢ and 7 is a standard normal random
variable independent of Z(z).

Lemma 2.2. Foranym € Nandt > 0,

m 2m)! ™
Bl/Zon ™" = P2

Remark 2.1. This result says that v/ Z(#)n has the Laplace distribution.

We also need the following lemma; it plays a very important role in proving the convergence
of finite-dimensional distributions.

Lemma 2.3. Forany H < %, O<ti<thh<B<ty<ooand Ati =t —ti—1 fori =2,3,4,
a = BB (tg) — B (1)) (B! (1) — BH1 (1)) satisfies

1/2—H 1)2-H
(i)ang(%> (At‘*) (A (A",

At3 At
.. A A A\ P H H
ii <2 —— At At
(i) a < (Atzv At4> (Ar)" (Atg)

Proof. Kdno [7] noted (ii), so it suffices to prove (i). Since H < % and) <t <--- <y,
it is easy to see that

la] = (Aty + AR + (A + An)?H — (Aty + Az + An)?H — (A)*H
= A A+ w + 1+ — A +u+v)? -1,

where u = At/ Atz and v = At4/At3. From Taylor’s expansion and H < %, it follows that
A+ + 1 +v)* — A4 u+v)2" — 1] < 2H min{u, v}.
Hence, |a| < 2H (At)* Juv = 2H (uv) V> H (A1) (Aty)H, and (i) follows. O

3. Proof of Theorem 1.1

Since f is bounded, we only need to consider the convergence of the random variables

F, = i/ F(BH(s))ds
n — \/’Tl . .

" m! o
i [, ([r(w)) o]
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where Dy, 1 = {(S1,...,Sm) € Dp:si—si—1=n"",i=2,3,...,m}and D,, = {1 < s1 <
- < s < €™}, Then, recalling that f is bounded, we obtain

IEL(F)™ — I < m/zz [fD (]_[If(B”(Si))|>ds]
i=1
' m—1
<1t se| [ (TTurcem oo )as
m-1 \ =]

m{|sj—sj—1|<n™™}

Thus, by (1.2), we obtain
1

IE[(F)™] = 1] < T

@3.1)

Taking Fourier transforms, we can write

oM O Vol LS o gt
Iy, = () Jn]” med /DmJ(Ef(x,)) exp[ 2var(l;:x, B (&))]dsdx.

Making the change of variables y; = Z ;xjfori=1,2,..., myields

[n [
m (271),1\/—] /RM/MI(]_[f(y y+1)>

X exp[—% var<z yi - (B (si) — BH(S,'_l)]):| dsdy.

i=1

SetI,';O:I” and fork =1, ..., m, define

m
I = / / I [] Foi =y
k= <2n>df 1" Jana Jo,, ,111 S

x exp[—%var(Z vi - [BH (s) — BH(si_1>])} ds dy,

i=1

where
(k=1)/2
[T 1702 PF(=yis1) ifkis odd,
_ ) =
Iy = /2
[T1F02nP if k is even.

The following proposition, which is similar to Proposition 4.1 in [8], controls the difference
between /" , | and I ,. Fix a positive constant A strictly less than %

Proposition 3.1. Fork = 1,2, ..., m, there exists a positive constant ¢, which depends only
on A, such that

—A
|1 kl_I k|<cn .
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Proof. Consider first the case that k is odd. Making the change of variables u; = s,

uj =s; — si—1 for2 < i < m, and then applying Lemma 2.1, it follows that |1} , , — I} ,|is

less than a constant multiple of

nin/z Amd ,/[ —m nt]m( 1_[ |fA(yl - yl+1)|>|f()’k - )’k+l) - f(_yk+l)|

i=k+1
k=1)/2 1 m
x( [1 If(yzj)l2> exp<—5x12|yi|2u%f’> du dy
Jj=1 i=1

with the convention y,,+1 = 0. The assumptions on f imply that |f(x)| < cq(|x|% A 1) for
any « € [0, 8], so |I;‘1,k_1 — I;7k| is less than a constant multiple of

Lm/2]
n_’”/Z/Rdf[ | ™ [T (ol 4 1y2j11®)
. n—m’en m

j=(k+1)/2
(k=1)/2 1 m
X < 1_[ |f(y2j)|2> eXp(—zlq Z |yi|2ul-2H> dudy.
i=1

j=1

Integrating with respect to the y; and u; withi <k — 1, [I} , | — I, | is bounded above by

c1 lm/2]
173 lyi|® Uy2;1* + 1y2j+119)
I’l(m k+1)/2 /R(m—k+l)d /[n—m’ ent]m—k+1 ‘/:(1:[1)/2

R o
X exp<—§/q Z |yi|2ul-2H> du dy,
i=k

where du = duy - - - duy, and dy = dyy - - - dyy,. After some calculus,
11" el — " = Czn—(m—k+1)/2+(\_(m—k+l)/2j+l)(mHot)+(m—k—|_(m—k+1)/2j)
m,k— mkl —

— ¢y n™/2=lm /2= (L —k+ 1) /2] + 1) (m He).

Choose o so small that 3m — [3m| — 1+ ([3(m —k + 1)| + )(mHa) = —A; then
A (3.2)

|Ir’,ll,k_l - In';’k| <con~t.

Now let k be even. By Lemma 2.1, |1}, | — I, ;| is less than a constant multiple of

2 /ﬂ;f[ T EmT O —yk+1)—f(yk>|( [T 170 —yl-+1)|>

i=k+1
k/2—1 Lom
X ( l_[1 If(yzj)|2> exp(—ilq 21: IyilzuizH> dudy.
J= i=
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Using arguments similar to those for the case of odd k&,

Lm/2]
" o T
k-1 — = n’"/2 /Rmd /[n_m i [yel® [ ye11* 1_[ (Uy2; 1" + ly2j+11%)

j=k/24+1
k/2—1

(1"[ |f(yz,)|2) exp(——Zm2 2”) dudy

< ¢qn~ M= *=2)/24(L0n=k) [2]+2) (n Ha)+(m—k=L(m—k)/2])

= nm/2— Lm/ZJ—1+(L(m—k)/2J+2)(mHa).

Choose o so small that 3m — [m]| — 1+ (|3 (m — k)| +2)(mHa) = —A; then
|Ir2,k—1 m k| = c4n A' (3.3)

Combining (3.2) and (3.3) gives the desired estimates. O

Proposition 3.2. Under the assumptions of Theorem 1.1, for any t > 0,

%/le FBH(s)ds > Cray/Z(t)n, n— oo,

where
dr(d/2)
Cra= ( /

172
Yy 2 —d
_ )7 lx] "¢ dx ,
el ULl )

f is the Fourier transform of f, Z(t) is an exponential random variable with parameter t,
and n is a standard normal random variable independent of Z (t).

Proof. We give the proof in several steps.
Step 1. First we show tightness. Let F, = (1//n) fl f(BH(s)) ds. Using Fourier
transforms,

2

2_;/“’/”/ P Fi [_1 ( H)}
EUEYV= g | ] fos 0T Gy exp| =5 var Zx, B (s;) ) | ds dx.

i=1

Since | f(x)| < ca(]x|* A 1) for all x € RY and any « € [0, 8], by Lemma 2.1, E[(F,)?] is
bounded above by

/ : / / |f(x2)| exp< bl (S2 D - = +2x1 |2S%H) ds dx
< —</ ds1)</ |f(X2)||X2| dx2>
n \Ji

<c3t.

Step 2. We show the convergence of moments when m is odd. Recall the estimate (3.1),
which allows us to replace E[(F;,)"] by 1]}. By Proposition 3.1, we only need to show that
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limy— o0 1, ,, = 0, where tn1))2
m—
n m‘

1 e ry - o~ 2
e r)d n]" /Rmd - S m) Jlj[1 Lf (y2,)1

x exp[—% var(Z yi- (B (s1) - BH(Sil)])} ds dy.

i=1

Make the change of variables uy = sy, u; = s; — s;j—1 for2 <i <m. By Lemma 2.1,

(m—1)/2 m
m! ~ —~ K1 2 2H
ol € ——— m/ / 1Foml ] |f<yzj>|2exp<——§j|yi| ;™) dudy,
[@m)d/nl" Jena Jo, i 2 &

where, much as for Dy, 1 and D,, in the proof of Theorem 1.1,
m
O, = {(ul,...,um): 1 <up, E i <e" n " < u; <e’”,i=2,...,m}.
1=

Since O,, C [1,eM] x [n™™, e"t]m_l, |1} | is bounded above by

. (m—1)/2 o
4 Y 7 2 1 2 2H
17wl FoapPexp (=23 il )dudy
nm/2 /Rmd /[1,6"’]><[n_’",e’”]”’_1 " ]1:[1 J 2 ; i i
Cs ~ s 4 et ] (m—1)/2 R y
= m—/z[/ LFODIIIyI™ dy/ u” du] / LfOD)I Iyl dy
n R4 n—m R4
c6
= a2

Combining these estimates gives lim,,_, oo E[(F};)™] = 0 when m is odd.
Step 3. Now we show the convergence of moments when m is even. Recall the estimate
(3.1). By Proposition 3.1, it suffices to show that

dr(d/2 ~ m/2
lim 75, = [%(Zmd fR @R dx} El(V/Z@On"),  (34)

n—o00

where
m/2

m! R
= . 2) )
m,m [(2n)dﬁ]m /R’”d \/;)n“ (jl:[l |f(y2])|

1 m
X exp |: —3 var(i; Vi - [BH(si) — BH(S,'_l)])] dsdy.
1=
3.6)
Fori =1,2,...,m,set As; = s; — s;_1 with the convention sg = 0. Define
m/2

m m! Tron N2
lnm = {amd 7oy /R fAm (]1:[1|f(yz,)| )

X exp [ - %var(z vi 1B (s1) - BH(sH)]ﬂ dsdy,
i=l1

m

where O,, = {(s1,52,...,5m): 1 < Asy <00, n™™ < As; <e™,i=2,...,m}.
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Observe that D, | € Om, sol) . < T”
Define I, m n much as I I above except that O is replaced by

O = {(sl,sz,...,sm): n? < Aszig <€ nl < Asy <n, i = 1,2,...,%m}.
Then, by Lemma 2.1, -
lim sup I, , =lim sup I .. 3.7
n—0oo n—od

For any constant y > 1, define

m/2

i = - (h)d f]m /R /0 (]"[ | F2))] )
1 m
X eXPI:_E Var(z Vi [BH(Si) — BH(Si_l)]>] dsdy,

i=1
(3.8)

where

~ ~ Asyi_ Asyi_ m
Om,yZOmm{ 211>)/OI' 2j—1 .. }

>ydforalli,j=1,2,..., —
Aszj 1 $2i-1 2

By Lemma 2.1, |I~,;11’m - Zﬁm is less than a constant multiple of (log y)/n. Note that

var(Zyi-[BH<sl~>—BH<s,-_1)J) Z|y,| A +2> (i ypaij,  (39)

i=1 i<j
whereaij = —l[(s, =5 4 (sjo1 =i = (55 —si—)* = (5721 —5:)*"]. Recall that
=1/d <5 By Lemma 2.3, the following estimates hold on the domain Om !
e if both i and j are even then

(As)™ (Asp*
laij] < c7(1 — ZH)W;
e if both i and j are odd then

Asi A As;
As; V As;

NH NH
Jasj| < er(1 =2 )" @ asp” < er0 —%0%;

e if just one of i and j is odd then

As; N As;

(Aspf(AaspH
Asi V As; ’

nH

H
laij| < c7(1 — 2H>< ) (Asp)T(AsHH < ¢7(1 —2H)

Let6 = (1 —2H) A H. It follows from the Cauchy—Schwarz inequality and the estimates
above that the variance at (3.9) satisfies

<1_c_8 e >Z|y,| (As,)2H<Var(Zy, (B (s;) — B (s;— 1)])

14

(1 +—+ ) Z i > (Asi)*H.
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Substituting the lower bound above in (3.8) yields

W fou, (11
" [(2n)df 1 Jgma J3,

1 C
x exp[—5<1 -8 —) 3 il (As,>2H] ds dy

i=1

m/2

|f(yz,-)|2)

m/2

~ 0
< o o |- m(j]i[lu(yzm)
xexp[—%(l—c—Z——)Zlm (As; )ZHj| ds dy.

Evaluation via calculus shows that lim sup,,_, m’fn is bounded above by

1 4m/2 1 00 m/2 1 R m/2
m 2 4y — | FoPdx) .
(1 — cg/yHymd/2\ 2m)d/% ), 2m)d Jra

Trivially, lim sup,,_, o, 1, ,, < limsup,,_, ., 7:,117;1 + limsup,,_, |7,;’1m - ;;"n’,m. Combining

these inequalities with (3 7) gives

n

li <m! "2 ! /oo —utl/2 4
1m su m: € u
n—)oop mm (27T)d/2 0

~ m/2
n)d /Rdlf(x)lzlxl_ddx} . (3.10)

Recall the definition of 7, ,, in (3.6). Integrating with respect to y,,— and then using the
inequality

dj2
/ e*|x1\2u2H/27vx|x2 dx; > @2n) / , (3.11)
R4 u

leads to

Iz m!
mm = (27.[)(m 1/2)d,;m/2

m/2

/R(m hd /Dml<l_[ 17 (2))] )(Asm N~

xexp[—%var( > yi~[BH(si>—BH<s,-1>1)]

i=1,i#m—1

S deyl "'dym—Zdym-
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Repeating the above procedure for all the other y; with i odd gives

m!
Il”:l m Z A \3md/A.m/D
. (27 )3md/4pm/2
m/2 m/2
x / / (1'[ If(yzj)I2> <H(AS2,'—1)_1)
Rmd/2 Jp, 5 i
dNj=1 j=1
1 m/2
x exp[—i var(Z vaj - [BH (s2)) — B”(szj_l)]>] ds dy,
j=1
where dy = dy>dys - - - dyy,.
Define
5 et . . m
Dpo=101,82,....,8m):n" < As3j 1< —,n <Asy<n, j= 1,2,...,3 .
m

Note that Dy, » € Dy,,1 when n is large enough. Applying Lemma 2.3,
m!
- .
tmind £ = 0t S a2

m/2 m/2

X / f <1"[ |f<yz,-)|2) (H(Asz,-_l)—l)
Rmd/2 Dy i1 i1
j= j=
/2
1 cro(1 —2H)\ ¢ _
X exp|:—§<1 + W) Z y2j P (As2)* | ds dy
j=1
1 00 o m/2 1 R m/2
— !tm/z / —u /2 d / 2 —d d .
" [(2n)d/2 0o "I @y Jpa T
(3.12)
Combining (3.10) and (3.12) gives
/2 1 * 2H 1y T2 d /2
s n — ] m —U —
nlggolm‘m m!t |:(27r)d/2/0 e du @) /I‘Rd | f(x)]"]x] dx:|
= CI EG/ZOm)",
where in the last equality we used Lemma 2.2 and the identity
2 o 2H d d
- w24y = — (2
(27r)d/2/0 e du—nd/2F<2>.
So the statement follows. Using the method of moments completes the proof. (]

Since f is bounded, the proof of Theorem 1.1 now follows easily from Proposition 3.2. [J

Remark 3.1. Recall the convergence of finite-dimensional distributions for two-dimensional
Brownian motion in (1.1). Theorem 1.1 implies that

/ |f(x>|2|x|—2dx=—8n2/ / f)f(y)log|x — yldxdy
R2 RZ ]RZ

for all bounded functions f with compact support such that fRz f(x)dx =0.
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4. Proof of Theorem 1.2

In this section we prove Theorem 1.2, the convergence of finite-dimensional distributions.
Let F,(t) = (1//n) fo f(BH(s))ds. We only need to prove that the finite-dimensional
distributions of F,(¢) converge to the corresponding distributions of C 7,4 W (£(M~ L.

Fix a finite number of disjoint intervals (a;, b;] with i = 1, ,N and b; < ajy1. Let
m = (my, ..., my) be a fixed multi-index with m; € N fori = 1, ..., N. Set|m| = vazlmi
and m! = ]_[fvzlmi !. We need to consider the sequence of random variables

N
Gu = [ [1Fu(B) = Fatanl™

i=1
and compute lim,_, oo E(G,). This expectation can be expressed as

N m;
E(Gy) = min~ ,,,|/2E[/ [TI1rB"G ))ds}

Dm = j=1
where D, = {s € RI™l: ¢nai < si <. < s _ , 1 <i < N}. Here and in the sequel
we denote the coordinates of a point s € RI™! by s = (s ),wherel <i < Nandl < j <m;.
Define
Dpi={s€Dp:s;—s; =n ™ 1<j<m,1<i<N), (4.1)

with the convention thats) = sﬁ,;j (forl <i<N.
For simplicity of notation, define

Jo={(G, j): 1 <i<N,1<j<m}.
For any (i1, j1) and (i3, j2) € Jo, we define the following dictionary ordering:
(i1, j1) < (2, jo)

if iy < ir oriy =iy and j; < jo. For any (i, j) in Jy, under the above ordering, (i, j) is the
(Zk 1Mk + j)th element in Jy and we define #(i, j) = Zk 1mie+ .

Proposition 4.1. Suppose that at least one of the exponents m; is odd. Then
lim E(G,) =0.
Proof. Let M, = m!n~™I2E[ [, 1‘[, T f(BH(sj)) ds].

Itiseasy to see thatlim,_, oo [E(G, ) M,] = O soitis enough to show thatlim,,_, oo M, = 0.
By taking Fourier transforms, we see that M, is equal to

N m;

min~" /2 i 1 S i
m)lmid /R\m\d /Dm1< Hf()g)) exp[—zvar<22yj-BH(sj))] drdy:

=1j=1 i=1 j=1
Making the change of variables x} = Z(Z’k)z(i’j)y,f forl <i<Nandl<j <mj,

N m;

m'n— |m|/2 . i
M, = (zn)\m\d /I‘%lm\d /‘Dmlnl_[f(xj_xj'H)

i=1j=1

1

N m;
x exp[—z var(ZZx;l [BH (s - BH(s;'.l)])] ds dx.
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Applying Proposition 3.1, we obtain

m!
lim M, = ———— lim n~™/2
n—00 (2m)Imld p—o0

A;m‘d /;m 1 ((1 Nede

N m;
x exp[—— var(Z > xh - (BH(sh) - BH(s;_l)]):| ds dx,

i=1 j=I

|f(x;1)|2)1|m|

where J, = {(i, j) € Jo: #(i, j) is even} and

FGN ) if [m) s odd,
Iim) = . .
1 if |[m] is even.

It is easy to see that lim,_, . M,, = 0 when |m| is odd. When |m]| is even we show that
lim;,— 0o M, = 0 as follows:

m!
lim M, = ———— lim n~™/2
n— 00 (27[)|m|d n—00

/‘m‘d /Dml((l el

N m;
x exp[——var(z > xh (B sty — B (s l)])} ds dx.

i=1 j=1

|f<x;l>|2>

Observe that the right-hand side of this equality is positive. By Lemma 2.1,

lim sup | M, |
n—o0
< ¢y limsupn~m12 / / < |f(x5-)|2)
n—00 RImld J D, G j)ede
N m;
X exp|:—K—21 Z Z |x;|2(s;- — 351)2Hi| ds dx
i=1 j=1

:=c1 limsup I,.
n—0oo

Let m, be the first odd exponent of m. If s,i = "%t — nby then integrating with respect to
the proper x;. and s} gives

L+1412
c X
L<=  sup / / et =l
n sl e(enug enb@) R4 018 -

m( Wl*

CH1 2, 041 0 \2HT 4o+l 4o 4 b+]
xexp[——fqlx G — ) Jdsi™ ds,,, dx; !,
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where Q1 = {e"¥+! < st < ebes1 enbe _ pp, < s,‘;l < ebe, f” — sf;,zfl > n_l'”'}. Inte-

grating with respect to s, +1and xé‘H gives
nby 14
c3 ds c4
Iy<—  sup / T =, @by,
n o (e enbe) y l+n7\ml)v(e"bz_nb@) Simg = sze—l n

’”Z 1
If, on the other hand, sfn , = et —nby, integrating with respect to the proper x§ and sj. gives
L4152
cs If (x; )
I, < — sup
n 5h, 1 €(E" &0 R JQ, S m// - Mg—l
1 CH1 2, b+1 6 \2HT g l+1 g € q,.0+1
X exp[—ifqlx1 [“(s; Smg) ]ds1 ds,,, dx; ™,

where 0, = {e"%+! < sf“ < e g z ,t+n —lml < s mp < e"’t — nby).
Recall from the proof of Proposition 3.1 that | f X)) <cp |x|ﬂ for all x € RY,

6 Z-‘rl |2/3
I, < — sup
n Y[ le(enal e”b() R4 Q2 —

“mp— mg—l

s

E+1| (sf-‘rl _ fll)ZH] ds(-l—l ds dxl-‘rl

x exp[— %k |x|

IA

c7 1 41
Py sup / T ¢ V19205 dsy " ds,,
C (et enbey J Q2 (Sm( - DGy Smg)

Smp—1 mg -

nb,
cg /' e 1 ds?

Q502 sup —)—das
1+2H 4 nme

nl+ B an e(e"“f” nb() mg— |+~ |m| SK sme—l

IA

€9
[ —
= 2HB"
Therefore, lim,,_, 5o M, = 0 and, thus, lim,,_, . E(G,) = 0. O
Consider now the convergence of moments when all exponents m; are even.

Proposition 4.2. Suppose that all exponents m; are even. Then

lim E(Gy) = '""E[H[W(E(M](b ) - W(E(Ml(az)))]'"}

i=1
Proof. Recall the domain Dy, | in (4.1). Define

N m;/2

n m'n_|m|/2 .
= (2ﬂ)|m|d fR\mw/D ; l_[ 1—[ If(ka)|2

i=1 k=1

N m;
x exp[—% var(Z > ot B (sh) - BH(S;])]):| dsdx.

i=1 j=1
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The proof of Propos_ition'3.1 includes the result lim,,, oo [E(G,) — I,;,] = 0. Make the change
of variables u'. = s'. — s;.fl forl < j<mjand1 <i < N.Recallthatd = (1 —2H) A H.
Repeating the procedure for the proof of the inequality (3.10) gives

lim sup 1;,
n—oo
m!
< ——— limsup n~lml/2
(27[)|m\d n— 00

N m;/2

/leld /Dm . H [T17e50r

=1 k=1
N m;
1 c1(1 = 2H) o
X expl:—z(l —)Zch 1? (sj —s;_l)zH] ds dx
i=1 j=1

m! . -
lim sup n ™1/

= (2 )3mld/a =70

2 .
N il If(xék)lz

—
A.Q"”"”z /Dm 2ict k=1 Y2k-1

N m;/
X exp[—%(l — ad - 2H)> Z

i=1 k=1

2
|x§k|2(uék)2H} du dx,
4.2)

where dx = [T, 17/ dxi,_, and

Dm,zz{e”""< Z u£<e”b",u32n|m|,1§i§N,1§j§m,~}.

£,k =@, J)
Define
m!
Up = ———— limsupn~ ™12
m = gymid LR
N m;/2
x | f sl
A\M\d /Dm’] E ]!:[] 2k
N m;
1 1-— 2H . ; )
xexp|:—§<1 Cl( )>ZZ| (s} s;-l)ZH:|dsdx.
i=1j=1
Th
en N mi/2 dii
Un < C‘fmg}/ m! lim supn"m‘/zf H : ,
=00 Om i1 ket Y2kt
where

. o _ , . om;
0m={ena‘< Z ”gk71<e"b’,u12j712” lml,]SlSN,1§J<—l}
(€.k)=(,j)
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and dit = [T, TT7/? dub, _,. On the other hand,

mi /2
m! .
U lim sup n |m|/2/ / xh )2
™= o L it S, LLTT 17650
| N
xexp( EZ |x | (u' )QH) du dx
i=1j=1
m' m,-/2
> _——  limsu n*|m|/2/ / |A(xi )2
= Qmymid MSP Rimld DMEH 2
N m;
Xexp(——zzpc | u' )2H> du dx,
i=1j=1
where Dm;_szﬁ{n <“2k 1 1/n <”2k <n, 1<i<N,1<k< %m,} Deﬁlning
Om.1 = Om O p1y<iijy Uap—y < €' — |min, wh; = n* 1 <i<N1<j<gzm
yields N m2
mj
mi/2 f|m|/2/ o
Un>C m! lim sup n . du
m =~ fd YHOOP o E H iy
N m1/2
:C‘fm‘/ m! hmsupn |m|/2/ du.
Om i1 k= 1”2k 1
Therefore,
N m;/2
\m\/ . —|m|/2 g 1 —
Un = C m! lim sup n ; du. 4.3)
=00 Om j—1 k=1 “2k—1

Repeated application of (3.11) yields

m:
iminf Iy = iz iminfn-

lm|/2

’”'/2 TGP

/ / i
RII/2 S Dy 1 i e 1S2k 1= 2

1 N mi2 . .
x exp[—- var(Z > b 1B (sh) - BH(sék_l)]ﬂ dsdy.

[\

i=1 k=1
By Lemma 2.3,
m!
0 m|/2
liminf £, > o Spazs liminf n™
N m;/2

If(yék)lz

i
/|mw2 /szl Liol U

N m;/
o] (14 20Z20) S

i=1 k=1

2
|y§k|2(u§k>”’] dudy

4.4)
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m!
= —— lm|/2
= Qysmiaa iminfr
N /2
/ / gl |f(y2k>|2
RIMA2 I Dms i k=1 Uy
N m;/2
1 c2(1 —2H)
) eXpI:—§<1 t——or T pl2H Z Z |)’2k| (MZk)zH dudy
i=1 k=1
N m,-/2
1
> C""'/ m! liminfn— |m|/2/ 1
A Om1 i1 k=1 “2k—1
N m;i/2
1
= '™/ m! lim inf n 172 / i
’ n—00 i
Om i1 k=1 "2k—1
Let
m!
—_— |m|/2
Lm = Q)33 hnrglor}]fn
N 2 .
/ / gt |f<y’2k>|2
Rlmld/2 Dm3, 1k | uék_l
1 C (1 2H) N m,-/2
2(1 — ) ‘
XGXP[_§<” )Z |y§k|2<uak>2ﬂ]du dy.
i=1 k=1
Then
m!
_— |m|/2
Lm = s m it
N mi/2 - N mif2
|f(y§k)| |: 1 Do i on
i eXp| —5 |yar | () dudy
/R\mld/Z /Dm; il U1 2 ;kZl 2k (Mo
N m,-/2 1
= ™21 tim inf /2 / -
Js n— 00 O ; U B
m1 =] k=1 “2k—1
N m,~/2 1
C‘ l/ m! liminf n~ |’”|/2f : i,
A Om i1 j=1 "2k—1
Therefore,
N m; /2

du. 4.5)

Lm —Cl;"l/ m! liminfn™ |m|/2/
e 0mi1k1”2k1

When H = 2, inequalities (4.2) and (4.4) become identities. Recall the convergence of
finite-dimensional distribution for two-dimensional Brownian motion in (1.1), Remark 3.1,
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(4.3), and (4.5). We can easily obtain

N m;/2 dii N
m! lim n "”'/2/ IT11 E[H[W(Z(M‘l(bi))) -~ W(Z(M_l(ai)))]m"].
e Om i1 et M2k i=1
(4.6)
Combining (4.2)—(4.6) gives the required result. U
The proof of Theorem 1.2 now follows easily from Propositions 4.1 and 4.2. |
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