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SECOND-ORDER LIMIT LAWS FOR OCCUPATION
TIMES OF FRACTIONAL BROWNIAN MOTION
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Abstract

We prove a second-order limit law for additive functionals of a d-dimensional fractional
Brownian motion with Hurst index H = 1/d, using the method of moments and extending
the Kallianpur–Robbins law, and then give a functional version of this result. That is, we
generalize it to the convergence of the finite-dimensional distributions for corresponding
stochastic processes.
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1. Introduction

Let {BH (t) = (BH,1(t), . . . , BH,d(t)), t ≥ 0} be a d-dimensional fractional Brownian
motion (FBM) with Hurst index H in (0, 1). If Hd = 1 then the local time of an FBM BH

does not exist; this is called the critical case. For example, two-dimensional Brownian motion
(H = 1

2 and d = 2) does not have local time at the origin. There is much work on limit
theorems for two-dimensional Brownian motion. Kallianpur and Robbins [6] proved that, for
any bounded integrable function f : R

2 → R,

1

log n

∫ n

0
f (B1/2(s)) ds

d−→ Z

2π

∫
R2

f (x) dx, n → ∞,

where ‘
d−→’ denotes convergence in law and Z is an exponentially distributed random variable

with mean 1.
Kasahara and Kotani [5] gave a functional version of this result. They also proved the

second-order result that, when
∫

R2 f (x) dx = 0 and n → ∞,

1√
n

∫ nte2nt

0
f (B1/2(s)) ds

is weakly M1-convergent to
√〈f 〉W(�(M−1(t))), where

〈f 〉 = − 4

π

∫
R2

∫
R2

f (x)f (y) log |x − y| dx dy,

W(t) is a one-dimensional Brownian motion, �(t) is the local time at 0 of another one-
dimensional Brownian motion b(t) that is independent of W(t), and M(t) = max0≤s≤t b(s).
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Kasahara and Kotani also pointed out that

1√
n

∫ ent

0
f (B1/2(s)) ds

f.d.−−→ √〈f 〉W(�(M−1(t))), n → ∞, (1.1)

where ‘
f.d.−−→’ denotes the convergence of finite-dimensional distributions.

The above results were extended to Markov processes (see [2] and [3] and references therein).
Subsequently, Kôno [7] extended the Kallianpur–Robbins law to the FBM case:

1

log t

∫ t

0
f (BH (s)) ds

d−→
(

1

(2π)d/2

∫
Rd

f (x) dx

)
Z, t → ∞.

Kasahara and Kosugi [4] obtained the corresponding functional version:

1

n

∫ ent

0
f (BH (s)) ds

f.d.−−→
(

1

(2π)d/2

∫
Rd

f (x) dx

)
Z(t), n → ∞, (1.2)

where Z(t) = �(M−1(t)). The reason for using the normalizing factor 1/n instead of 1/log n

was pointed out in Remark 1.1 of [4]. However, the corresponding second-order limit law
(
∫

Rd f (x) dx = 0) was left open.
In this paper we prove second-order limit laws for the above result in [4]. The following

two theorems are the main results of this paper. One is the limit theorem for random variables.
The other is the convergence of finite-dimensional distributions for stochastic processes.

Theorem 1.1. Suppose that Hd = 1, f is bounded and integrable with
∫

Rd f (x) dx = 0 and∫
Rd |f (x)| |x|β dx < ∞ for some positive constant β > 0. Then, for any t > 0,

1√
n

∫ ent

0
f (BH (s)) ds

d−→ Cf,d

√
Z(t)η, n → ∞,

where

Cf,d =
(

d�(d/2)

πd/2(2π)d

∫
Rd

|f̂ (x)|2|x|−d dx

)1/2

,

f̂ is the Fourier transform of f , and η is a standard normal random variable independent
of Z(t).

Theorem 1.2. Suppose that Hd = 1, f is bounded and integrable with
∫

Rd f (x) dx = 0 and∫
Rd |f (x)| |x|β dx < ∞ for some positive constant β > 0. Then

1√
n

∫ ent

0
f (BH (s)) ds

f.d.−−→ Cf,dW(�(M−1(t))) n → ∞,

where W(t) is a one-dimensional Brownian motion independent of BH (·) and �(M−1(t)).

Remark 1.1. Since the process �(M−1(t)) is not in C((0, ∞]), we could not use the Skorokhod
J1-topology. For properties of the process Z(t) = �(M−1(t)), see [2] and references therein.
So far, we still have no idea how to show the weak M1-convergence of the result in Theorem 1.2
(this has been proved for two-dimensional Brownian motion).
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Remark 1.2. Since the function f in the above two theorems is bounded, the constant β in
Theorems 1.1 and 1.2 can always be assumed to be less than or equal to 1. Also, the Hd < 1
case has been considered in [1, 8].

It is known that FBM with Hurst index not equal to 1
2 is neither a Markov process nor a

semimartingale. Therefore, the methods that have been applied for two-dimensional Brownian
motion and Markov processes cannot be used here to prove Theorems 1.1 and 1.2. In proving
limit theorems for (additive) functionals of FBM, one often uses the method of moments.
Another possible candidate is the Malliavin calculus.

In order to prove Theorems 1.1 and 1.2, we shall utilize the method of moments combined
with a chaining argument. The chaining argument was first developed in [8] to prove the
central limit theorem for an additive functional of a d-dimensional FBM with Hurst index
H ∈ (1/(d + 2), 1/d). It has been proved to be very powerful when obtaining the asymptotic
behaviour of moments. To some extent, it reveals the essential difference between the first-
and second-order limit laws. However, the situation here is very different from that in [8]: we
consider FBMs in the critical case and use a completely different normalizing factor. So, many
key techniques applied in [1] and [8] do not work here. For example, we cannot use the scaling
technique. Moreover, to use the chaining argument in [8], major modifications and new ideas
are required.

The main difficulty when applying the method of moments comes from the convergence of
even moments. The techniques used in [1] and [8] fail here. To overcome this difficulty, we
first estimate the covariance between two increments of FBM with Hurst index H < 1

2 and
then show that, under certain conditions, these covariances do not contribute to the limit of
even moments (see Lemma 2.3 and Step 3 in the proof of Proposition 3.2 for more details).
Roughly speaking, the short-range dependence for FBM with Hurst index H < 1

2 and proper
normalizing factor give us a kind of weak independence. This leads to connections with the
Brownian motion case in [4].

After some preliminaries in Section 2, Sections 3 and 4 are devoted to the proof of Theo-
rems 1.1 and 1.2, respectively. Throughout the paper, if not mentioned otherwise, c, with or
without a subscript, denotes a generic positive finite constant whose exact value is independent
of n and may change from line to line. Further, x · y denotes the usual inner product in R

d .

2. Preliminaries

Let {BH (t) = (BH,1(t), . . . , BH,d(t)), t ≥ 0} denote a d-dimensional FBM with Hurst
index H in (0, 1), defined on some probability space (�, F , P), i.e. the components of BH are
independent centered Gaussian processes with covariance function

E[BH,i(t)BH,i(s)] = 1
2 (t2H + s2H − |t − s|2H ).

Our first lemma gives comparable upper and lower bounds for the increments of d-dimen-
sional FBM on n adjacent intervals (for the proof, see, e.g. [1]).

Lemma 2.1. Given n ≥ 1, there exist two positive constants κ1 and κ2 depending only on n, H ,
and d, such that, for any 0 = s0 < s1 < · · · < sn and xi ∈ R

d , 1 ≤ i ≤ n,

κ1

n∑
i=1

|xi |2(si − si−1)
2H ≤ var

( n∑
i=1

xi · [BH (si) − BH (si−1)]
)

≤ κ2

n∑
i=1

|xi |2(si − si−1)
2H .
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The inequalities in Lemma 2.1 can be reformulated as

κ1

n∑
i=1

∣∣∣∣ n∑
j=i

xj

∣∣∣∣2

(si − si−1)
2H ≤ var

( n∑
i=1

xi · BH (si)

)
≤ κ2

n∑
i=1

∣∣∣∣ n∑
j=i

xj

∣∣∣∣2

(si − si−1)
2H .

The next lemma (for the proof, see [9]) gives a formula for the moments of
√

Z(t)η, where
Z(t) is an exponential random variable with parameter t and η is a standard normal random
variable independent of Z(t).

Lemma 2.2. For any m ∈ N and t > 0,

E[(√Z(t)η)
2m] = (2m)! tm

2m
.

Remark 2.1. This result says that
√

Z(t)η has the Laplace distribution.

We also need the following lemma; it plays a very important role in proving the convergence
of finite-dimensional distributions.

Lemma 2.3. For any H < 1
2 , 0 < t1 < t2 < t3 < t4 < ∞, and 	ti = ti − ti−1 for i = 2, 3, 4,

a := |E(BH,1(t4) − BH,1(t3))(B
H,1(t2) − BH,1(t1))| satisfies

(i) a ≤ 2H

(
	t2

	t3

)1/2−H (
	t4

	t3

)1/2−H

(	t2)
H (	t4)

H ,

(ii) a ≤ 2

(
	t2 ∧ 	t4

	t2 ∨ 	t4

)H

(	t2)
H (	t4)

H .

Proof. Kôno [7] noted (ii), so it suffices to prove (i). Since H < 1
2 and 0 < t1 < · · · < t4,

it is easy to see that

|a| = (	t4 + 	t3)
2H + (	t3 + 	t2)

2H − (	t4 + 	t3 + 	t2)
2H − (	t3)

2H

= (	t3)
2H [(1 + u)2H + (1 + v)2H − (1 + u + v)2H − 1],

where u = 	t2/	t3 and v = 	t4/	t3. From Taylor’s expansion and H < 1
2 , it follows that

[(1 + u)2H + (1 + v)2H − (1 + u + v)2H − 1] ≤ 2H min{u, v}.
Hence, |a| ≤ 2H(	t3)

2H
√

uv = 2H(uv)1/2−H (	t2)
H (	t4)

H , and (i) follows. �

3. Proof of Theorem 1.1

Since f is bounded, we only need to consider the convergence of the random variables

Fn = 1√
n

∫ ent

1
f (BH (s)) ds.

For any m ∈ N, let

In
m = m!

nm/2 E

[∫
Dm,1

( m∏
i=1

f

(
BH (si)

))
ds

]
,
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where Dm,1 = {(s1, . . . , sm) ∈ Dm : si − si−1 ≥ n−m, i = 2, 3, . . . , m} and Dm = {1 < s1 <

· · · < sm < ent }. Then, recalling that f is bounded, we obtain

|E[(Fn)
m] − In

m| ≤ m!
nm/2

m∑
j=1

E

[∫
Dm∩{|sj −sj−1|<n−m}

( m∏
i=1

|f (BH (si))|
)

ds

]

≤ ‖f ‖∞
mm!
n3m/2 E

[∫
Dm−1

(m−1∏
i=1

|f (BH (si))|
)

ds

]
.

Thus, by (1.2), we obtain

|E[(Fn)
m] − In

m| ≤ c1

n1+m/2 . (3.1)

Taking Fourier transforms, we can write

In
m = m!

[(2π)d
√

n]m
∫

Rmd

∫
Dm,1

( m∏
i=1

f̂ (xi)

)
exp

[
−1

2
var

( m∑
i=1

xi · BH (si)

)]
ds dx.

Making the change of variables yi = ∑m
j=i xj for i = 1, 2, . . . , m yields

In
m = m!

[(2π)d
√

n]m
∫

Rmd

∫
Dm,1

( m∏
i=1

f̂ (yi − yi+1)

)

× exp

[
−1

2
var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)]

ds dy.

Set In
m,0 = In

m, and for k = 1, . . . , m, define

In
m,k = m!

[(2π)d
√

n]m
∫

Rmd

∫
Dm,1

Ik

m∏
i=k+1

f̂ (yi − yi+1)

× exp

[
−1

2
var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)]

ds dy,

where

Ik =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(k−1)/2∏
j=1

|f̂ (y2j )|2f̂ (−yk+1) if k is odd,

k/2∏
j=1

|f̂ (y2j )|2 if k is even.

The following proposition, which is similar to Proposition 4.1 in [8], controls the difference
between In

m,k−1 and In
m,k . Fix a positive constant λ strictly less than 1

2 .

Proposition 3.1. For k = 1, 2, . . . , m, there exists a positive constant c, which depends only
on λ, such that

|In
m,k−1 − In

m,k| ≤ cn−λ.
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Proof. Consider first the case that k is odd. Making the change of variables u1 = s1,
ui = si − si−1 for 2 ≤ i ≤ m, and then applying Lemma 2.1, it follows that |In

m,k−1 − In
m,k| is

less than a constant multiple of

n−m/2
∫

Rmd

∫
[n−m, ent ]m

( m∏
i=k+1

|f̂ (yi − yi+1)|
)

|f̂ (yk − yk+1) − f̂ (−yk+1)|

×
((k−1)/2∏

j=1

|f̂ (y2j )|2
)

exp

(
−1

2
κ1

m∑
i=1

|yi |2u2H
i

)
du dy

with the convention ym+1 = 0. The assumptions on f imply that |f̂ (x)| ≤ cα(|x|α ∧ 1) for
any α ∈ [0, β], so |In

m,k−1 − In
m,k| is less than a constant multiple of

n−m/2
∫

Rmd

∫
[n−m, ent ]m

|yk|α
�m/2�∏

j=(k+1)/2

(|y2j |α + |y2j+1|α)

×
((k−1)/2∏

j=1

|f̂ (y2j )|2
)

exp

(
−1

2
κ1

m∑
i=1

|yi |2u2H
i

)
du dy.

Integrating with respect to the yi and ui with i ≤ k − 1, |In
m,k−1 − In

m,k| is bounded above by

c1

n(m−k+1)/2

∫
R(m−k+1)d

∫
[n−m, ent ]m−k+1

|yk|α
�m/2�∏

j=(k+1)/2

(|y2j |α + |y2j+1|α)

× exp

(
−1

2
κ1

m∑
i=k

|yi |2u2H
i

)
du dy,

where du = duk · · · dum and dy = dyk · · · dym. After some calculus,

|In
m,k−1 − In

m,k| ≤ c2n
−(m−k+1)/2+(�(m−k+1)/2�+1)(mHα)+(m−k−�(m−k+1)/2�)

= c2 nm/2−�m/2�−1+(�(m−k+1)/2�+1)(mHα).

Choose α so small that 1
2m − � 1

2m� − 1 + (� 1
2 (m − k + 1)� + 1)(mHα) = −λ; then

|In
m,k−1 − In

m,k| ≤ c2n
−λ. (3.2)

Now let k be even. By Lemma 2.1, |In
m,k−1 − In

m,k| is less than a constant multiple of

n−m/2
∫

Rmd

∫
[n−m, ent ]m

|f̂ (−yk)||f̂ (yk − yk+1) − f̂ (yk)|
( m∏

i=k+1

|f̂ (yi − yi+1)|
)

×
(k/2−1∏

j=1

|f̂ (y2j )|2
)

exp

(
−1

2
κ1

m∑
i=1

|yi |2u2H
i

)
du dy.
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Using arguments similar to those for the case of odd k,

|In
m,k−1 − In

m,k| ≤ c3

nm/2

∫
Rmd

∫
[n−m, ent ]m

|yk|α|yk+1|α
�m/2�∏

j=k/2+1

(|y2j |α + |y2j+1|α)

×
(k/2−1∏

j=1

|f̂ (y2j )|2
)

exp

(
−κ1

2

m∑
i=1

|yi |2u2H
i

)
du dy

≤ c4 n−(m−(k−2))/2+(�(m−k)/2�+2)(mHα)+(m−k−�(m−k)/2�)

= c4 nm/2−�m/2�−1+(�(m−k)/2�+2)(mHα).

Choose α so small that 1
2m − � 1

2m� − 1 + (� 1
2 (m − k)� + 2)(mHα) = −λ; then

|In
m,k−1 − In

m,k| ≤ c4n
−λ. (3.3)

Combining (3.2) and (3.3) gives the desired estimates. �

Proposition 3.2. Under the assumptions of Theorem 1.1, for any t > 0,

1√
n

∫ ent

1
f (BH (s))ds

d−→ Cf,d

√
Z(t)η, n → ∞,

where

Cf,d =
(

d�(d/2)

πd/2(2π)d

∫
Rd

|f̂ (x)|2|x|−d dx

)1/2

,

f̂ is the Fourier transform of f , Z(t) is an exponential random variable with parameter t ,
and η is a standard normal random variable independent of Z(t).

Proof. We give the proof in several steps.
Step 1. First we show tightness. Let Fn = (1/

√
n)

∫ ent

1 f (BH (s)) ds. Using Fourier
transforms,

E[(Fn)
2] = 2

(2π)2dn

∫ ent

1

∫ s2

1

∫
R2d

f̂ (x1)f̂ (x2) exp

[
−1

2
var

( 2∑
i=1

xi · BH (si)

)]
ds dx.

Since |f̂ (x)| ≤ cα(|x|α ∧ 1) for all x ∈ R
d and any α ∈ [0, β], by Lemma 2.1, E[(Fn)

2] is
bounded above by

c1

n

∫ ent

1

∫ s2

1

∫
R2d

|f̂ (x2)| exp

(
−κ1|x2|2(s2 − s1)

2H

2
− κ1|x2 + x1|2s2H

1

2

)
ds dx

≤ c2

n

(∫ ent

1
s−1

1 ds1

)(∫
Rd

|f̂ (x2)| |x2|−d dx2

)
≤ c3 t.

Step 2. We show the convergence of moments when m is odd. Recall the estimate (3.1),
which allows us to replace E[(Fn)

m] by In
m. By Proposition 3.1, we only need to show that
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limn→∞ In
m,m = 0, where

In
m,m = m!

[(2π)d
√

n]m
∫

Rmd

∫
Dm,1

f̂ (ym)

(m−1)/2∏
j=1

|f̂ (y2j )|2

× exp

[
−1

2
var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)]

ds dy.

Make the change of variables u1 = s1, ui = si − si−1 for 2 ≤ i ≤ m. By Lemma 2.1,

|In
m,m| ≤ m!

[(2π)d
√

n]m
∫

Rmd

∫
Om

|f̂ (ym)|
(m−1)/2∏

j=1

|f̂ (y2j )|2 exp

(
−κ1

2

m∑
i=1

|yi |2u2H
i

)
du dy,

where, much as for Dm,1 and Dm in the proof of Theorem 1.1,

Om =
{
(u1, . . . , um) : 1 < u1,

∑m

i=1
ui < ent , n−m < ui < ent , i = 2, . . . , m

}
.

Since Om ⊂ [1, ent ] × [n−m, ent ]m−1, |In
m,m| is bounded above by

c4

nm/2

∫
Rmd

∫
[1,ent ]×[n−m,ent ]m−1

|f̂ (ym)|
(m−1)/2∏

j=1

|f̂ (y2j )|2 exp
(

− κ1

2

m∑
i=1

|yi |2 u2H
i

)
du dy

≤ c5

nm/2

[∫
Rd

|f̂ (y)|2|y|−ddy

∫ ent

n−m

u−1 du

](m−1)/2 ∫
Rd

|f̂ (y)| |y|−d dy

≤ c6

n1/2 .

Combining these estimates gives limn→∞ E[(Fn)
m] = 0 when m is odd.

Step 3. Now we show the convergence of moments when m is even. Recall the estimate
(3.1). By Proposition 3.1, it suffices to show that

lim
n→∞ In

m,m =
[
d�(d/2)

πd/2 (2π)d
∫

Rd

|f̂ (x)|2|x|−d dx

]m/2

E[(√Z(t)η)m], (3.4)

where

(3.5)
In
m,m = m!

[(2π)d
√

n]m
∫

Rmd

∫
Dm,1

(m/2∏
j=1

|f̂ (y2j )|2
)

× exp

[
− 1

2
var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)]

ds dy.

(3.6)

For i = 1, 2, . . . , m, set 	si = si − si−1 with the convention s0 = 0. Define

Î n
m,m = m!

[(2π)d
√

n]m
∫

Rmd

∫
Ôm

(m/2∏
j=1

|f̂ (y2j )|2
)

× exp

[
− 1

2
var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)]

ds dy,

where Ôm = {(s1, s2, . . . , sm) : 1 < 	s1 < ∞, n−m < 	si < ent , i = 2, . . . , m}.
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Observe that Dm,1 ⊆ Ôm, so In
m,m ≤ Î n

m,m.
Define Ĩ n

m,m much as Î n
m,m above except that Ôm is replaced by

Õm := {
(s1, s2, . . . , sm) : n2 < 	s2i−1 < ent , n−1 < 	s2i < n, i = 1, 2, . . . , 1

2m
}
.

Then, by Lemma 2.1,
lim sup

n→∞
In
m,m = lim sup

n→∞
Ĩ n
m,m. (3.7)

For any constant γ > 1, define

Ĩ
n,γ
m,m = m!

[(2π)d
√

n]m
∫

Rmd

∫
Õm,γ

(m/2∏
j=1

|f̂ (y2j )|2
)

× exp

[
−1

2
var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)]

ds dy,

(3.8)

where

Õm,γ = Õm ∩
{

	s2i−1

	s2j−1
> γ or

	s2j−1

	s2i−1
> γd for all i, j = 1, 2, . . . ,

m

2

}
.

By Lemma 2.1, |Ĩ n
m,m − Ĩ

n,γ
m,m| is less than a constant multiple of (log γ )/n. Note that

var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)

=
m∑

i=1

|yi |2(	si)
2H + 2

∑
i<j

(yi, yj )aij , (3.9)

where aij = − 1
2 [(sj − si)

2H + (sj−1 − si−1)
2H − (sj − si−1)

2H − (sj−1 − si)
2H ]. Recall that

H = 1/d ≤ 1
2 . By Lemma 2.3, the following estimates hold on the domain Õm,γ :

• if both i and j are even then

|aij | ≤ c7(1 − 2H)
(	si)

H (	sj )
H

n(1−2H)
;

• if both i and j are odd then

|aij | ≤ c7(1 − 2H)
(	si ∧ 	sj

	si ∨ 	sj

)H

(	si)
H (	sj )

H ≤ c7(1 − 2H)
(	si)

H (	sj )
H

γ H
;

• if just one of i and j is odd then

|aij | ≤ c7(1 − 2H)

(
	si ∧ 	sj

	si ∨ 	sj

)H

(	si)
H (	sj )

H ≤ c7(1 − 2H)
(	si)

H (	sj )
H

nH
.

Let θ = (1 − 2H) ∧ H . It follows from the Cauchy–Schwarz inequality and the estimates
above that the variance at (3.9) satisfies(

1 − c8

γ H
− c9

nθ

) m∑
i=1

|yi |2(	si)
2H ≤ var

( m∑
i=1

yi · [BH (si) − BH (si−1)]
)

≤
(

1 + c8

γ H
+ c9

nθ

) m∑
i=1

|yi |2(	si)
2H .
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Substituting the lower bound above in (3.8) yields

Ĩ
n,γ
m,m ≤ m!

[(2π)d
√

n]m
∫

Rmd

∫
Õm,γ

(m/2∏
j=1

|f̂ (y2j )|2
)

× exp

[
−1

2

(
1 − c8

γ H
− c9

nθ

) m∑
i=1

|yi |2(	si)
2H

]
ds dy

≤ m!
[(2π)d

√
n]m

∫
Rmd

∫
Õm

(m/2∏
j=1

|f̂ (y2j )|2
)

× exp

[
−1

2

(
1 − c8

γ H
− c9

nθ

) m∑
i=1

|yi |2(	si)
2H

]
ds dy.

Evaluation via calculus shows that lim supn→∞ Ĩ
n,γ
m,m is bounded above by

m! tm/2

(1 − c8/γ H )md/2

(
1

(2π)d/2

∫ ∞

0
e−u2H /2 du

)m/2( 1

(2π)d

∫
Rd

|f̂ (x)|2|x|−d dx

)m/2

.

Trivially, lim supn→∞ Ĩ n
m,m ≤ lim supn→∞ Ĩ

n,γ
m,m + lim supn→∞ |Ĩ n

m,m − Ĩ
n,γ
m,m|. Combining

these inequalities with (3.7) gives

lim sup
n→∞

In
m,m ≤ m! tm/2

[
1

(2π)d/2

∫ ∞

0
e−u2H /2 du

1

(2π)d

∫
Rd

|f̂ (x)|2|x|−d dx

]m/2

. (3.10)

Recall the definition of In
m,m in (3.6). Integrating with respect to ym−1 and then using the

inequality ∫
Rd

e−|x1|2u2H /2−vx1x2 dx1 ≥ (2π)d/2

u
, (3.11)

leads to

In
m,m ≥ m!

(2π)(m−1/2)dnm/2

×
∫

R(m−1)d

∫
Dm,1

(m/2∏
j=1

|f̂ (y2j )|2
)

(	sm−1)
−1

× exp

[
− 1

2
var

( m∑
i=1, i �=m−1

yi · [BH (si) − BH (si−1)]
)]

× ds dy1 · · · dym−2 dym.
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Repeating the above procedure for all the other yi with i odd gives

In
m,m ≥ m!

(2π)3md/4nm/2

×
∫

Rmd/2

∫
Dm,1

(m/2∏
j=1

|f̂ (y2j )|2
)(m/2∏

j=1

(	s2j−1)
−1

)

× exp

[
−1

2
var

(m/2∑
j=1

y2j · [BH (s2j ) − BH (s2j−1)]
)]

ds dy,

where dy = dy2 dy4 · · · dym.
Define

Dm,2 =
{
(s1, s2, . . . , sm) : n2 ≤ 	s2j−1 ≤ ent

m
, n−1 < 	s2i < n, j = 1, 2, . . . ,

m

2

}
.

Note that Dm,2 ⊆ Dm,1 when n is large enough. Applying Lemma 2.3,

lim inf
n→∞ In

m,m ≥ lim inf
n→∞

m!
(2π)3md/4nm/2

×
∫

Rmd/2

∫
Dm,2

(m/2∏
j=1

|f̂ (y2j )|2
)(m/2∏

j=1

(	s2j−1)
−1

)

× exp

[
−1

2

(
1 + c10(1 − 2H)

n1−2H

) m/2∑
j=1

|y2j |2(	s2j )
2H

]
ds dy

= m! tm/2
[

1

(2π)d/2

∫ ∞

0
e−u2H /2 du

]m/2[ 1

(2π)d

∫
Rd

|f̂ (x)|2|x|−d dx

]m/2

.

(3.12)

Combining (3.10) and (3.12) gives

lim
n→∞ In

m,m = m! tm/2
[

1

(2π)d/2

∫ ∞

0
e−u2H /2 du

1

(2π)d

∫
Rd

|f̂ (x)|2|x|−d dx

]m/2

= Cm
f,dE(

√
Z(t)η)m,

where in the last equality we used Lemma 2.2 and the identity

2

(2π)d/2

∫ ∞

0
e−u2H /2 du = d

πd/2 �

(
d

2

)
.

So the statement follows. Using the method of moments completes the proof. �
Since f is bounded, the proof of Theorem 1.1 now follows easily from Proposition 3.2. �

Remark 3.1. Recall the convergence of finite-dimensional distributions for two-dimensional
Brownian motion in (1.1). Theorem 1.1 implies that∫

R2
|f̂ (x)|2|x|−2 dx = −8π2

∫
R2

∫
R2

f (x)f (y) log |x − y| dx dy

for all bounded functions f with compact support such that
∫

R2 f (x) dx = 0.
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4. Proof of Theorem 1.2

In this section we prove Theorem 1.2, the convergence of finite-dimensional distributions.
Let Fn(t) = (1/

√
n)

∫ ent

0 f (BH (s)) ds. We only need to prove that the finite-dimensional
distributions of Fn(t) converge to the corresponding distributions of Cf,dW(�(M−1(t))).

Fix a finite number of disjoint intervals (ai, bi] with i = 1, . . . , N and bi ≤ ai+1. Let
m = (m1, . . . , mN) be a fixed multi-index with mi ∈ N for i = 1, . . . , N . Set |m| = ∑N

i=1mi

and m! = ∏N
i=1mi !. We need to consider the sequence of random variables

Gn :=
N∏

i=1

[Fn(bi) − Fn(ai)]mi

and compute limn→∞ E(Gn). This expectation can be expressed as

E(Gn) = m! n−|m|/2
E

[∫
Dm

N∏
i=1

mi∏
j=1

f (BH (si
j )) ds

]
,

where Dm = {s ∈ R
|m| : enai < si

1 < · · · < si
mi

< enbi , 1 ≤ i ≤ N}. Here and in the sequel
we denote the coordinates of a point s ∈ R

|m| by s = (si
j ), where 1 ≤ i ≤ N and 1 ≤ j ≤ mi .

Define
Dm,1 = {s ∈ Dm : si

j − si
j−1 ≥ n−|m|, 1 ≤ j ≤ mi, 1 ≤ i ≤ N}, (4.1)

with the convention thatsi
0 = si−1

mi−1
for 1 ≤ i ≤ N .

For simplicity of notation, define

J0 = {(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ mi}.
For any (i1, j1) and (i2, j2) ∈ J0, we define the following dictionary ordering:

(i1, j1) ≤ (i2, j2)

if i1 < i2 or i1 = i2 and j1 ≤ j2. For any (i, j) in J0, under the above ordering, (i, j) is the
(
∑i−1

k=1mk + j)th element in J0 and we define #(i, j) = ∑i−1
k=1 mk + j .

Proposition 4.1. Suppose that at least one of the exponents mi is odd. Then

lim
n→∞ E(Gn) = 0.

Proof. Let Mn = m! n−|m|/2
E[∫

Dm,1

∏N
i=1

∏mi

j=1f (BH (si
j )) ds].

It is easy to see that limn→∞[E(Gn)−Mn] = 0, so it is enough to show that limn→∞ Mn = 0.
By taking Fourier transforms, we see that Mn is equal to

m! n−|m|/2

(2π)|m|d

∫
R|m|d

∫
Dm,1

( N∏
i=1

mi∏
j=1

f̂ (yi
j )

)
exp

[
−1

2
var

( N∑
i=1

mi∑
j=1

yi
j · BH (si

j ))

]
ds dy.

Making the change of variables xi
j = ∑

(�,k)≥(i,j)y
�
k for 1 ≤ i ≤ N and 1 ≤ j ≤ mi ,

Mn = m! n−|m|/2

(2π)|m|d

∫
R|m|d

∫
Dm,1

N∏
i=1

mi∏
j=1

f̂ (xi
j − xi

j+1)

× exp

[
−1

2
var

( N∑
i=1

mi∑
j=1

xi
j · [BH (si

j ) − BH (si
j−1)]

)]
ds dx.
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Applying Proposition 3.1, we obtain

lim
n→∞ Mn = m!

(2π)|m|d lim
n→∞ n−|m|/2

×
∫

R|m|d

∫
Dm,1

( ∏
(i,j)∈Je

|f̂ (xi
j )|2

)
I|m|

× exp

[
−1

2
var

( N∑
i=1

mi∑
j=1

xi
j · [BH (si

j ) − BH (si
j−1)]

)]
ds dx,

where Je = {(i, j) ∈ J0 : #(i, j) is even} and

I|m| =
{

f̂ (xN
mN

) if |m| is odd,

1 if |m| is even.

It is easy to see that limn→∞ Mn = 0 when |m| is odd. When |m| is even we show that
limn→∞ Mn = 0 as follows:

lim
n→∞ Mn = m!

(2π)|m|d lim
n→∞ n−|m|/2

×
∫

R|m|d

∫
Dm,1

( ∏
(i,j)∈Je

|f̂ (xi
j )|2

)

× exp

[
−1

2
var

( N∑
i=1

mi∑
j=1

xi
j · [BH (si

j ) − BH (si
j−1)]

)]
ds dx.

Observe that the right-hand side of this equality is positive. By Lemma 2.1,

lim sup
n→∞

|Mn|

≤ c1 lim sup
n→∞

n−|m|/2
∫

R|m|d

∫
Dm,1

( ∏
(i,j)∈Je

|f̂ (xi
j )|2

)

× exp

[
−κ1

2

N∑
i=1

mi∑
j=1

|xi
j |2(si

j − si
j−1)

2H

]
ds dx

:= c1 lim sup
n→∞

In.

Let m� be the first odd exponent of m. If s�
m�

≥ enb� − nb� then integrating with respect to
the proper xi

j and si
j gives

In ≤ c2

n
sup

s�
m�−1∈(ena� ,enb� )

∫
Rd

∫
Q1

|f̂ (x�+1
1 )|2

s�
m�

− s�
m�−1

× exp
[− 1

2κ1|x�+1
1 |2(s�+1

1 − s�
m�

)2H
]

ds�+1
1 ds�

m�
dx�+1

1 ,
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where Q1 = {ena�+1 < s�+1
1 < enb�+1 , enb� − nb� ≤ s�

m�
< enb�, s�

m�
− s�

m�−1
≥ n−|m|}. Inte-

grating with respect to s�+1
1 and x�+1

1 gives

In ≤ c3

n
sup

s�
m�−1∈(ena� ,enb� )

∫ enb�

(s�
m�−1+n−|m|)∨(enb�−nb�)

ds�
m�

s�
m�

− s�
m�−1

≤ c4

n
ln(1 + n|m|+1b�).

If, on the other hand, s�
m�

≤ enb� −nb�, integrating with respect to the proper xi
j and si

j gives

In ≤ c5

n
sup

s�
m�−1∈(ena� ,enb� )

∫
Rd

∫
Q2

|f̂ (x�+1
1 )|2

s�
m�

− s�
m�−1

× exp
[− 1

2κ1|x�+1
1 |2(s�+1

1 − s�
m�

)2H
]

ds�+1
1 ds�

m�
dx�+1

1 ,

where Q2 = {ena�+1 < s�+1
1 < enb�+1 , s�

m�−1
+ n−|m| ≤ s�

m�
≤ enb� − nb�}.

Recall from the proof of Proposition 3.1 that |f̂ (x)| ≤ cβ |x|β for all x ∈ R
d ,

In ≤ c6

n
sup

s�
m�−1∈(ena� ,enb� )

∫
Rd

∫
Q2

|x�+1
1 |2β

s�
m�

− s�
m�−1

× exp
[− 1

2κ1|x�+1
1 |2(s�+1

1 − s�
m�

)2H
]

ds�+1
1 ds�

m�
dx�+1

1

≤ c7

n
sup

s�
m�−1∈(ena� ,enb� )

∫
Q2

1

(s�
m�

− s�
m�−1)(s

�+1
1 − s�

m�
)1+2Hβ

ds�+1
1 ds�

m�

≤ c8

n1+2Hβ
sup

s�
m�−1∈(enaell ,enb� )

∫ enb�

s�
m�−1+n−|m|

1

s�
m�

− s�
m�−1

ds�
m�

≤ c9

n2Hβ
.

Therefore, limn→∞ Mn = 0 and, thus, limn→∞ E(Gn) = 0. �
Consider now the convergence of moments when all exponents mi are even.

Proposition 4.2. Suppose that all exponents mi are even. Then

lim
n→∞ E(Gn) = C

|m|
f,dE

[ N∏
i=1

[W(�(M−1(bi))) − W(�(M−1(ai)))]mi

]
.

Proof. Recall the domain Dm,1 in (4.1). Define

In
m = m! n−|m|/2

(2π)|m|d

∫
R|m|d

∫
Dm,1

N∏
i=1

mi/2∏
k=1

|f̂ (xi
2k)|2

× exp

[
−1

2
var

( N∑
i=1

mi∑
j=1

xi
j · [BH (si

j ) − BH (si
j−1)]

)]
ds dx.
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The proof of Proposition 3.1 includes the result limn→∞[E(Gn) − In
m] = 0. Make the change

of variables ui
j = si

j − si
j−1 for 1 ≤ j ≤ mi and 1 ≤ i ≤ N . Recall that θ = (1 − 2H) ∧ H .

Repeating the procedure for the proof of the inequality (3.10) gives

lim sup
n→∞

In
m

≤ m!
(2π)|m|d lim sup

n→∞
n−|m|/2

×
∫

R|m|d

∫
Dm,1

N∏
i=1

mi/2∏
k=1

|f̂ (xi
2k)|2

× exp

[
−1

2

(
1 − c1(1 − 2H)

nθ

) N∑
i=1

mi∑
j=1

|xi
j |2(si

j − si
j−1)

2H

]
ds dx

= m!
(2π)3|m|d/4 lim sup

n→∞
n−|m|/2

×
∫

R|m|d/2

∫
Dm,2

N∏
i=1

mi/2∏
k=1

|f̂ (xi
2k)|2

ui
2k−1

× exp

[
−1

2

(
1 − c1(1 − 2H)

nθ

) N∑
i=1

mi/2∑
k=1

|xi
2k|2(ui

2k)
2H

]
du dx,

(4.2)

where dx = ∏N
i=1

∏mi/2
k=1 dxi

2k−1 and

Dm,2 =
{

enai <
∑

(�,k)≤(i,j)

u�
k < enbi , ui

j ≥ n−|m|, 1 ≤ i ≤ N, 1 ≤ j ≤ mi

}
.

Define

Um = m!
(2π)|m|d lim sup

n→∞
n−|m|/2

×
∫

R|m|d

∫
Dm,1

N∏
i=1

mi/2∏
k=1

|f̂ (xi
2k)|2

× exp

[
−1

2

(
1 − c1(1 − 2H)

nθ

) N∑
i=1

mi∑
j=1

|xi
j |2(si

j − si
j−1)

2H

]
ds dx.

Then

Um ≤ C
|m|/2
f,d m! lim sup

n→∞
n−|m|/2

∫
Om

N∏
i=1

mi/2∏
k=1

du

ui
2k−1

,

where

Om =
{

enai <
∑

(�,k)≤(i,j)

u�
2k−1 < enbi , ui

2j−1 ≥ n−|m|, 1 ≤ i ≤ N, 1 ≤ j ≤ mi

2

}
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and du = ∏N
i=1

∏mi/2
k=1 dui

2k−1. On the other hand,

Um ≥ m!
(2π)|m|d lim sup

n→∞
n−|m|/2

∫
R|m|d

∫
Dm,2

N∏
i=1

mi/2∏
k=1

|f̂ (xi
2k)|2

× exp

(
−1

2

N∑
i=1

mi∑
j=1

|xi
j |2(ui

j )
2H

)
du dx

≥ m!
(2π)|m|d lim sup

n→∞
n−|m|/2

∫
R|m|d

∫
Dm,3

N∏
i=1

mi/2∏
k=1

|f̂ (xi
2k)|2

× exp

(
−1

2

N∑
i=1

mi∑
j=1

|xi
j |2(ui

j )
2H

)
du dx,

where Dm,3 = Dm,2 ∩ {n2 < ui
2k−1, 1/n < ui

2k < n, 1 ≤ i ≤ N, 1 ≤ k ≤ 1
2mi}. Defining

Om,1 = Om ∩ {∑(�,k)≤(i,j) u�
2k−1 < enbi − |m|n, ui

2j−1 ≥ n2, 1 ≤ i ≤ N, 1 ≤ j ≤ 1
2mi}

yields

Um ≥ C
|m|/2
f,d m! lim sup

n→∞
n−|m|/2

∫
Om,1

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du

= C
|m|/2
f,d m! lim sup

n→∞
n−|m|/2

∫
Om

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du.

Therefore,

Um = C
|m|/2
f,d m! lim sup

n→∞
n−|m|/2

∫
Om

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du. (4.3)

Repeated application of (3.11) yields

lim inf
n→∞ In

m ≥ m!
(2π)3|m|d/4 lim inf

n→∞ n−|m|/2

×
∫

R|m|d/2

∫
Dm,1

N∏
i=1

mi/2∏
k=1

|f̂ (yi
2k)|2

si
2k−1 − si

2k−2

× exp

[
−1

2
var

( N∑
i=1

mi/2∑
k=1

yi
2k · [BH (si

2k) − BH (si
2k−1)]

)]
ds dy.

By Lemma 2.3,

lim inf
n→∞ In

m ≥ m!
(2π)3|m|d/4 lim inf

n→∞ n−|m|/2

×
∫

R|m|d/2

∫
Dm,2

N∏
i=1

mi/2∏
k=1

|f̂ (yi
2k)|2

ui
2k−1

× exp

[
−1

2

(
1 + c2(1 − 2H)

n1−2H

) N∑
i=1

mi/2∑
k=1

|yi
2k|2(ui

2k)
2H

]
du dy

(4.4)
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= m!
(2π)3|m|d/4 lim inf

n→∞ n−|m|/2

×
∫

R|m|d/2

∫
Dm,3

N∏
i=1

mi/2∏
k=1

|f̂ (yi
2k)|2

ui
2k−1

× exp

[
−1

2

(
1 + c2(1 − 2H)

n1−2H

) N∑
i=1

mi/2∑
k=1

|yi
2k|2(ui

2k)
2H

]
du dy

≥ C
|m|/2
f,d m! lim inf

n→∞ n−|m|/2
∫

Om,1

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du

= C
|m|/2
f,d m! lim inf

n→∞ n−|m|/2
∫

Om

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du.

Let

Lm = m!
(2π)3|m|d/4 lim inf

n→∞ n−|m|/2

×
∫

R|m|d/2

∫
Dm,3

N∏
i=1

mi/2∏
k=1

|f̂ (yi
2k)|2

ui
2k−1

× exp

[
−1

2

(
1 + c2(1 − 2H)

n1−2H

) N∑
i=1

mi/2∑
k=1

|yi
2k|2(ui

2k)
2H

]
du dy.

Then

Lm ≤ m!
(2π)3|m|d/4 lim inf

n→∞ n−|m|/2

×
∫

R|m|d/2

∫
Dm,3

N∏
i=1

mi/2∏
k=1

|f̂ (yi
2k)|2

ui
2k−1

exp

[
−1

2

N∑
i=1

mi/2∑
k=1

|yi
2k|2(ui

2k)
2H

]
du dy

= C
|m|/2
f,d m! lim inf

n→∞ n−|m|/2
∫

Om,1

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du

= C
|m|/2
f,d m! lim inf

n→∞ n−|m|/2
∫

Om

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du.

Therefore,

Lm = C
|m|/2
f,d m! lim inf

n→∞ n−|m|/2
∫

Om

N∏
i=1

mi/2∏
k=1

1

ui
2k−1

du. (4.5)

When H = 1
2 , inequalities (4.2) and (4.4) become identities. Recall the convergence of

finite-dimensional distribution for two-dimensional Brownian motion in (1.1), Remark 3.1,
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(4.3), and (4.5). We can easily obtain

m! lim
n→∞ n−|m|/2

∫
Om

N∏
i=1

mi/2∏
k=1

du

ui
2k−1

= E

[ N∏
i=1

[W(�(M−1(bi))) − W(�(M−1(ai)))]mi

]
.

(4.6)

Combining (4.2)–(4.6) gives the required result. �
The proof of Theorem 1.2 now follows easily from Propositions 4.1 and 4.2. �
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