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In this paper, flow over a streamwise oscillating circular cylinder is numerically
simulated to examine the effects of the driving amplitude and frequency on the
distribution of the lock-in regions in laminar flows. At Re = 100, lock-in is
categorized according to the spectral features of the lift coefficient as two different
lock-in phenomena: harmonic and subharmonic lock-in. These lock-in phenomena
are represented as maps on the driving amplitude–frequency plane, which have
subharmonic lock-in regions and two harmonic lock-in regions. The frequency range
of the subharmonic region is shifted to lower frequencies with increasing amplitude,
and the lower boundary of this subharmonic region is successfully predicted. A
symmetric harmonic region with a symmetric vortex pattern is observed in a certain
velocity range for a moving cylinder. Aerodynamic features induced by different flow
patterns in each region are presented on the driving amplitude–frequency plane. The
lock-in region and aerodynamic features at Re = 200 and 40 are compared with the
results for Re = 100. A subharmonic region and two harmonic regions are observed
at Re = 200, and these show the same features as for Re = 100 at a low driving
amplitude. Lock-in at Re= 40 also shows one subharmonic region and two harmonic
regions. However, compared with the Re= 100 case, the symmetric harmonic lock-in
is dominant. The features of aerodynamic force at Re = 200 and 40 are represented
on a force map, which shows similar characteristics in corresponding regions for the
Re= 100 case.

Key words: vortex shedding, wakes

1. Introduction
This study investigates a circular cylinder with forced oscillation in the streamwise

direction in a uniform flow. Flows over bluff bodies have attracted attention not only
from the viewpoint of fluid–structure interaction but also from the perspective of flow
control due to the wake behind the bluff body. The most common bluff-body shape
is a circular cylinder, which is frequently observed in applications such as marine
cables, power lines, bridges and buildings. A cylinder in a uniform flow induces
unsteady flow, even though the cylinder is in a steady state over a certain range of
Reynolds numbers. Unsteady flow for a stationary circular cylinder is observed as
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periodic vortex shedding, the so-called von Kármán vortex street, and the Strouhal
frequency ( fSt) of vortex shedding is determined by the Reynolds number. Because of
this periodic vortex shedding, the oscillatory motion of the cylinder is generated by
the vortex-induced force acting on the cylinder. A forced oscillating circular cylinder
inherently has two frequency components: one is the applied driving frequency and
the other is the Strouhal frequency corresponding to the flow over the circular cylinder.
These two frequency components can induce synchronization at a certain oscillating
condition. The flow of the circular cylinder undergoing forced oscillation showed
features very close to those of a freely oscillating cylinder under matched oscillating
parameters with such synchronization (Morse & Williamson 2009; Bearman 2011).
Therefore, cylinders undergoing forced oscillation have attracted great interest in
terms of the synchronization of fluid and cylinder motion.

Bishop & Hassan (1964) studied the lift force of a flow over a transversely
oscillating circular cylinder and summarized its frequency behaviour. When the
cylinder oscillated at a driving frequency far from the Strouhal frequency, the lift
force was composed of the driving-frequency and Strouhal-frequency components.
However, the lift signal was synchronized with the motion of the cylinder as the
driving frequency ( fd) near the Strouhal frequency; therefore, in this case, the
lift signal only had a driving-frequency component without a Strouhal-frequency
component. This synchronization is also called lock-in because the flow was locked
in with the cylinder motion. Many studies on the flow over a transversely oscillating
cylinder have focused on the lock-in phenomenon (Koopmann 1967; Anagnostopoulos
2000; Kaiktsis, Triantafyllou & Özbas 2007). These studies commonly showed that a
lock-in phenomenon was found in a frequency range close to fd/fSt = 1, and that this
frequency range expanded as the driving amplitude increased. Aerodynamic force in
lock-in phenomena for a transversely oscillating cylinder also shows common features.
The drag and lift forces show sinusoidal patterns in the lock-in region. The lift force
increases in the lock-in region with driving frequency, and the phase between the lift
force and cylinder motion shows a sudden change at a critical frequency, which is in
the middle of the lock-in frequency range.

Flow over a streamwise oscillating cylinder shows features of lock-in phenomena
different from those in the case of a transversely oscillating cylinder. A study
on a cylinder freely oscillating simultaneously in the streamwise and transverse
directions showed that the oscillating frequency in the streamwise direction is twice
that in the transverse direction (Dahl et al. 2010). An experiment on flow over
cylinders undergoing forced oscillations in the transverse and streamwise directions
was performed by Tanida, Okajima & Watanabe (1973) to observe the lift and drag
forces. The transversely oscillating cylinder showed lock-in in a frequency range
close to fd/fSt = 1 as in previous studies, but the streamwise oscillating cylinder
presented lock-in phenomena in a range close to fd/fSt= 2. Griffin & Ramberg (1976)
observed the vortex pattern behind a streamwise oscillating cylinder at various driving
amplitudes and frequencies. The lock-in region was found at a driving frequency near
fd/fSt= 2, and the frequency range for the lock-in region was expanded as the driving
amplitude increased. This expansion of the frequency range for lock-in was also
reported in a numerical study (Al-Mdallal, Lawrence & Kocabiyik 2007).

Ongoren & Rockwell (1988) performed an experiment on flow over a circular
cylinder oscillating at an angle α (α= 0◦, 45◦ and 90◦) with a wide range of driving
frequencies ( fd/fSt = 0.5–4.0) at a fixed amplitude and Reynolds number. They
found two separate lock-in regions in the case of streamwise oscillation (α = 0◦):
the first lock-in region occurred at a driving frequency close to fd/fSt = 2, which
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showed a von-Kármán-like asymmetric vortex pattern; and a new lock-in region was
found at fd/fSt = 3, which presented a symmetric vortex pattern. Yokoi & Kamemoto
(1994) also observed lock-in phenomena that had symmetric vortex patterns. They
investigated the average frequency of vortex shedding, and the ratio of the average
vortex shedding frequency to driving frequency was n = 0.5, 1, 2, . . . ,∞ at lock-in.
The asymmetric vortex pattern was found at n = 0.5, while the symmetric vortex
pattern was formed at n = 1. Xu, Zhou & Wang (2006) also observed such a
symmetric vortex pattern through experiments and explained it using the concept of
a relative Reynolds number, in which the Reynolds number has a velocity factor
defined as the relative velocity between the flow and the moving cylinder. Barbi
et al. (1986) experimentally visualized several vortex patterns in order to describe
the lock-in phenomena in cylinder wake flows due to streamwise inflow perturbations.
They found that a symmetric vortex pattern was observed at the higher values of
driving frequency in the corresponding range for lock-in. Symmetric vortex patterns
were also found in previous studies related to the responses of cylinder wake flows to
streamwise inflow perturbations (Kim, Yoo & Sung 2006; Konstantinidis & Balabani
2007a; Feng & Wang 2010; Konstantinidis & Bouris 2016). An additional lock-in
region was found by Cetiner & Rockwell (2001) from an experiment that observed the
lift force history for various driving amplitudes and frequencies, and they classified the
lift force signals into three categories (non-lock-in, intermittent lock-in and lock-in).
The ordinary lock-in region was found over a frequency range close to fd/fSt = 2, and
an additional lock-in region was observed at a driving frequency near fd/fSt = 1 when
the cylinder oscillated with a large driving amplitude.

An in-depth study of the flow over a streamwise oscillating cylinder for various
Reynolds numbers, driving amplitudes and frequencies was performed by Leontini,
Jacono & Thompson (2011, 2013). First, they observed the flow over an oscillating
cylinder at fd/fSt=1 for various amplitudes, and the lift signals of each amplitude were
classified as quasi-periodic (QP), chaotic and Pn, which denotes the completion of a
period of vortex shedding during n-cycle cylinder motion, using Poincaré maps. The
primary frequency of the quasi-periodic flow spectrum peak was modelled by a power
of the driving amplitude (A), and the remaining frequencies of peaks were modelled
by fd. Furthermore, they observed the relation between the primary frequency ( fs) of
the peak of the quasi-periodic flow spectrum and the fd of the cylinder at the lock-in
region, which is represented as 1/(1− fd/fs)= n, where n= 0, 1, 2, . . . ,∞. Subsequent
research considered various Reynolds numbers, driving amplitudes and frequencies as
factors impacting the primary frequency of vortex shedding. The primary frequency of
vortex shedding at QP is proportional to the driving amplitude, and the proportionality
constant showed features different from those for the Reynolds number and driving
frequency. Using the relation of vortex shedding frequency with driving amplitude,
they presented a threshold amplitude for lock-in and thereby predicted a driving
amplitude of P2.

Previous studies (e.g. Griffin & Ramberg 1976; Ongoren & Rockwell 1988; Yokoi
& Kamemoto 1994; Cetiner & Rockwell 2001; Al-Mdallal 2004; Xu et al. 2006;
Al-Mdallal et al. 2007; Leontini et al. 2011, 2013) indicated that there are several
lock-in regions, and that these additional lock-in regions are distributed in separate
ranges depending on the driving amplitude and frequency. These previous conclusions
suggest that investigating a narrow range of driving amplitudes and frequencies may
be insufficient for the understanding of the features of lock-in behaviour. Therefore,
a comprehensive study of the effects of both the driving amplitude and frequency
on the lock-in region is necessary. In this study, two-dimensional flows induced
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by an oscillating cylinder placed in the streamwise direction are observed in terms
of various driving amplitudes and frequencies. As the baseline flow condition, we
consider flows having low or moderate Reynolds numbers (up to Re = 200) for a
stationary circular cylinder. It should be noted that a two-dimensional approximation
of flows may not be valid for a case involving large-amplitude oscillations. For
two-dimensional flow approximations, many researchers (including Blackburn &
Henderson 1999; Anagnostopoulos 2000; Al-Mdallal 2004; Al-Mdallal et al. 2007;
Kaiktsis et al. 2007; Leontini et al. 2011) have investigated the lock-in phenomenon
for flow over an oscillating cylinder at moderate Reynolds numbers (even at
Re = 500). However, in this work, we have primarily focused on the effects of
driving amplitude and frequency on the lock-in phenomenon for two-dimensional
flows over a streamwise oscillating cylinder. A lift coefficient spectrum is used
to define the lock-in region, and it is found that there are two types of lock-in
phenomena, which are classified according to the frequency of peaks of the lift
coefficient spectrum into subharmonic lock-in and harmonic lock-in. Each driving
amplitude and frequency that generates lock-in phenomena is marked on the driving
amplitude–frequency plane to obtain a lock-in region map, which shows separate
lock-in regions categorized as subharmonic or harmonic. The distribution of each
lock-in region with respect to the driving amplitude and frequency is observed, and the
lower boundary of the subharmonic region is predicted following the model presented
by Leontini et al. (2013). Furthermore, the vortex pattern of each region is observed
to explain fluid interactions with the cylinder, and these vortex effects in each region
are represented on aerodynamic force maps that show the mean and root-mean-square
(r.m.s.) values of aerodynamic force on the driving amplitude–frequency plane. The
effect of Reynolds number is verified by the lock-in region maps and aerodynamic
force maps for Re = 40 and Re = 200, which are compared with the results for
Re= 100.

2. Governing equations
The two-dimensional incompressible Navier–Stokes and continuity equations in

a non-inertial system are used in polar coordinates. The transformation to the
non-inertial system produces the inertial force terms in the momentum equation.
The governing equations are thus expressed as follows:

∂ur

∂t
+
∂urur

∂r
+

urur − uθuθ
r

+
1
r
∂uruθ
∂θ
=−

∂p
∂r
+

1
Re

(
∇

2ur −
2
r2

∂uθ
∂θ
−

ur

r2

)
− ar,

(2.1)
∂uθ
∂t
+
∂uruθ
∂r
+ 2

urur

r
+

1
r
∂uθuθ
∂θ
=−

1
r
∂p
∂θ
+

1
Re

(
∇

2uθ +
2
r2

∂ur

∂θ
−

uθ
r2

)
− aθ , (2.2)

∂ur

∂r
+

ur

r
+

1
r
∂uθ
∂θ
= 0. (2.3)

Here, ur and uθ are the dimensionless radial and azimuthal velocity components,
respectively; p is the dimensionless pressure; and ar and aθ are dimensionless radial
and azimuthal components of cylinder acceleration (acyl), respectively, which gives
the inertial force. The following non-dimensionalization is employed:

t=
t̂U0

D
, r=

r̂
D
, ur =

ûr

U0
, uθ =

ûθ
U0
, p=

p̂
ρU0

2 , ar =
ârD
U0

2 , aθ =
âθD
U0

2 .

(2.4a−g)
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FIGURE 1. Computational domain in the coordinate systems for flow over a streamwise
oscillatory circular cylinder.

Here U0 is the free-stream velocity in the inertial system; D is the diameter of the
cylinder; ρ is the fluid density; and the symbol ˆ indicates a dimensional variable. The
Reynolds number is Re=U0D/ν, where U0 is the free-stream velocity in the inertial
system, D is the diameter of the cylinder and ν is the kinematic viscosity. The Laplace
operator, ∇2, is

∇
2
=
∂2

∂r2
+

1
r
∂

∂r
+

1
r2

∂2

∂θ 2
. (2.5)

Figure 1 shows the physical model and coordinate systems of the streamwise
oscillating cylinder in the free stream. The non-inertial system, which moves with
the cylinder, is used to represent the motion of the cylinder, and the non-inertial
coordinate is denoted by x. Momentum is conserved in the inertial system X. The
non-inertial and inertial systems have the following relationship:

X= x+ xcyl, (2.6)

where xcyl is the position of the accelerating non-inertial system, which is the same
as the cylinder position. In this study, the cylinder has a streamwise forced oscillating
motion,

xcyl = A sin(2πfdt), (2.7)

where xcyl is the streamwise component of xcyl in Cartesian coordinates, and A
and fd are the driving amplitude and frequency of the cylinder, respectively. The
dimensionless velocity U of a fluid in the inertial system can be expressed as

U= u+ ucyl, (2.8)

where u is the dimensionless velocity in the non-inertial system and ucyl is the
dimensionless velocity of the system, which is the same as that of the cylinder motion:
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ucyl = Ucyl/U0 cos(2πfdt) and vcyl = 0, where ucyl and vcyl represent streamwise and
transverse components of ucyl, respectively. Note that Ucyl = 2πfdA is the magnitude
of the velocity of the cylinder motion. The streamwise and transverse components
of the initial velocity field are set to (1, 0) in the inertial system, and so the initial
velocity field in the non-inertial system can be written as

ur(r, θ)= (1−Ucyl/U0) cos θ, uθ(r, θ)=−(1−Ucyl/U0) sin θ. (2.9a,b)

In order to guarantee the divergence-free condition and numerical stability within
the computational domain, the outflow boundary condition is modified for numerical
simulations on open-bounded domains (Ω) with inner boundary ∂ΩC and outer
boundary ∂Ωfar. The velocity on the inner boundary ∂ΩC is prescribed to have a
no-slip condition, which implies that u = 0. We assume ∂Ωfar = ∂Ωd ∪ ∂Ωo, where
∂Ωd and ∂Ωo represent the inflow and outflow boundaries, respectively. The velocity
u on ∂Ωd is prescribed as u = U|∂Ωd − ucyl, where the streamwise and transverse
components of U|∂Ωd are U|∂Ωd = 1 and V|∂Ωd = 0, respectively, whereas u is unknown
on ∂Ωo. To ensure that the emission of the energy influx is in the domain, we use
a convective boundary condition at the open boundary of the domain (∂Ωo), which
gives

∂U
∂t
+ c

∂U
∂X
= 0, (2.10)

where U is the velocity of a fluid in the inertial system, ∂/∂X is a partial differential
in the free-stream direction and c is the space-averaged exit velocity.

3. Numerical method
3.1. Projection method

The governing equations in polar coordinates have coupled velocity components not
only in the convective terms but also in the diffusion terms. The velocity-components
decoupled projection method (Kim, Baek & Sung 2002; Pan et al. 2016) is used to
avoid an iterative procedure in solving the governing equations. The Crank–Nicolson
scheme is applied to the governing equations in time so that they are implicitly
discretized. A staggered MAC (marker and cell) mesh, in which the pressure and
velocities are placed at the centres and interfaces of cells, respectively, is used for
spatial discretization, and the second-order central finite difference scheme is applied
in space. The discrete form of the governing equations can be expressed as

un+1
− un

1t
+ Nun+1

=−Gpn+1/2
+

1
2Re

(Lun+1
+ Lun)−F, (3.1)

Dun+1
= 0, (3.2)

where discrete operators G, L and D are the gradient, Laplacian and divergence
operators, respectively, and F is the inertial force vector. The discrete operator N is
a linearized convective operator, where the nonlinear convective term is linearized
with second-order temporal accuracy. Here, 1t is the discretized time step, and
the superscript n represents the nth time step. The discretized equations can be
represented in matrix form as follows:(

A G
D 0

)(
un+1

δp

)
=

(
R
0

)
, (3.3)
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where

A=
1
1t

[
I +1t

(
N −

1
2Re

L

)]
, (3.4)

R=
1
1t

un
−Gpn−1/2

+
1

2Re
Lun
−F, (3.5)

δp= p1+1/2
− p1−1/2. (3.6)

The velocity vector and pressure are decoupled based on an approximate block LU
decomposition. The procedure of velocity–pressure decoupling can be simplified as
follows:

Au∗ =R, (3.7)
1tDGδp= Du∗, (3.8)

un+1
= u∗ −1tGδp, (3.9)

p1+1/2
= p1−1/2

+ δp, (3.10)

where u∗ is the intermediate velocity of un+1. The operator A in (3.7) is expressed as

A=
1
1t

(
I +1tM11 1tM12
1tM21 I +1tM22

)
, (3.11)

where M ij is a submatrix M = N − (1/(2Re))L in which the off-diagonal matrix M is
non-zero because of coupled velocity components not only in convection terms but
also in the diffusion terms in polar coordinates. By applying block LU decomposition
along with approximate factorization, velocity components are decoupled, and the
intermediate velocity can be calculated in the following step using new variables δu∗∗
without iteration:

1
1t
(I +1tM11)δu∗∗1 = R∗1, (3.12)

1
1t
(I +1tM22)δu∗∗2 = R∗2 −M21u∗∗1 , (3.13)

δu∗2 = δu
∗∗

2 , (3.14)
δu∗1 = δu

∗∗

1 −1tM12u∗2, (3.15)

where R∗ =−Aun
+R.

3.2. Poisson equation solver
The Poisson equation (3.8) needs to be solved at every time step to project the velocity
field onto a divergence-free space. For simplicity, our equation (3.8) can be replaced
by the following simple form:

Lδp= Rp. (3.16)

Here, L = DG is the Laplacian operator, δp is the pressure increment and Rp is
the right-hand side of the Poisson equation (3.8). Owing to the non-local nature
of its solution, this elliptic system is one of the most time-consuming parts of the
computation. In order to reduce the computational time, a direct Poisson solver is
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used: a restricted Poisson solver for problems with one uniform periodic direction
based on the Fourier diagonalization technique along the periodic direction. When
we apply the Fourier transform to L, the Laplacian operator in the spectral space, L̂,
is obtained. Note that the Fourier-transformed θ -directional differential operator in L̂
only has λk on its diagonal, which is given by

λk =−
1
π

(
1− cos

(
2πk
Nθ

))
for k= 0, 1, . . . ,Nθ/2, (3.17)

where Nθ is the number of grid points in the azimuthal direction. Therefore,
the original system in (3.16) is decomposed into a set of mutually independent
one-dimensional systems L̂δ̂p= R̂p where the superscript ˆ indicates Fourier-transformed
variables. In summary, we solve the Poisson equation by using the following
procedure.

(i) Apply Fourier transform to the right-hand side Rp: R̂p =F(Rp).
(ii) Solve the transformed one-dimensional systems: L̂δ̂p= R̂p.

(iii) Apply inverse Fourier transform to the solution: δp=F∗(δ̂p).
Here F and F∗ are the Fourier transform and its inverse, respectively.

3.3. Details of numerical simulations
We can prescribe the outflow boundary condition (2.10) while controlling energy
growth in the domain as follows:

Un+1
=Un

− c1t
∂Un

∂X
. (3.18)

However, this boundary condition fails to guarantee the divergence-free condition of
the velocity in the domain; therefore, an additional mass-correction process is needed.
It is clear from the continuity equation (2.3) that we have

∫
Ω
∇ · Un+1

= 0, and
this condition should also be satisfied in the inertial system. The divergence theorem
allows us to rewrite this equation as∫

Ω

∇ ·Un+1
=

∫
∂Ωd

Un+1
· n+

∫
∂Ωo

Un+1
· n, (3.19)

where ∂Ωd is the inflow boundary. By introducing a mass-correction procedure, a
convective boundary condition in the far field is used to maintain energy and conserve
mass in the computational domain. The mass-correction process is as follows:

(i) Calculate an intermediate velocity at the open boundary ∂Ωo,

Ũ
∣∣
∂Ωo
=Un

∣∣
∂Ωo
− c1t

∂Un

∂X

∣∣∣∣
∂Ωo

. (3.20)

(ii) Define a correction factor α,

α =−

∫
∂Ωd

Un+1
· n∫

∂Ωo

Ũ · n
. (3.21)
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(iii) Obtain the corrected velocity at the open boundary ∂Ωo,

Un+1
∣∣
∂Ωo
= αŨ

∣∣
∂Ωo
. (3.22)

The numbers of grid points in the radial and circumferential directions are set to
256. As a baseline grid, a non-uniform grid is used in the radial direction, whereas a
uniform grid with 1θ =2π/256 is used in the circumferential direction. The minimum
and maximum grid spacings in the radial direction are chosen as 1rmin = 0.0016 and
1rmax = 0.2, respectively, after a preliminary study on grid resolution, the details of
which are described in appendix A, was carried out.

For a reliable simulation, we carefully select the computational time step 1t,
considering the Courant–Friedrichs–Lewy number (CFL) condition, the driving
frequency fd and the Strouhal frequency for the stationary cylinder fSt. The time
step used here in the present study is defined as

1t=min
(

1rmin

U0 +Ucyl
,

1
32 · 2π max( fd, fSt)

)
. (3.23)

Here, CFL = (U0 + Ucyl)1t/1rmin based on the relative speed due to the cylinder
motion. Although the present numerical method is based on the implicit procedure
with the linearization of the convection term, we choose a sufficiently small time step,
satisfying CFL 6 1. In addition, 1t is restricted to provide more than 32 time steps
for resolving the motion of the oscillating cylinder as well as the dynamic patterns of
wake flows. Because the motion was initiated impulsively, the Navier–Stokes equations
exhibit a singularity at the initial state. We found that this singularity disappears as
the time step progresses. Thus, we analysed simulation results after a transient period
(at approximately t > 400).

3.4. Validation
The computation results are validated using the results of 2D flow over a stationary
circular cylinder at Re = 40, 100 and 200. The left side of table 1 presents drag
coefficients, reattachment lengths (L/D) and separation angles (θ ) for the present
calculation at Re = 40 compared with values from the literature, and the right side
of table 1 shows drag and lift coefficients (CD and CL, respectively) and Strouhal
number (St= fStD/U0) for comparison at Re= 100 and 200. The formulae of CD and
CL are given in appendix B. Note that CD and CL are represented as a ± b with a
mean value of a and a maximum deviation of b. The present calculation accurately
predicts steady and unsteady characteristics, such as shedding frequency and the
oscillations of drag and lift coefficients for Re= 40, 100 and 200.

Next, an oscillating cylinder in a fluid at rest is considered for validating the present
calculation for a moving cylinder. The two characteristic parameters are chosen as
the Reynolds number, Re, which is 100, and the Keulegan–Carpenter number, KC,
which is 5, in order to compare the present results with the experimental data of
Dütsch et al. (1998). The translational motion X(t) is given by X(t) = A sin(2πfdt).
Here, the Reynolds number is defined as Re = UmaxD/ν, where Umax = 2πfdA is the
maximum velocity of the cylinder, and KC is defined as KC=Umax/( fdD), where fd is
the oscillation driving frequency. Figure 2 shows streamwise (Ux) and transverse (Uy)
velocity profiles along the direction for three different cylinder phases (φ= 180◦, 210◦
and 330◦) at X locations (X/D=−0.6, 0.0, 0.6 and 1.2), where φ is represented as
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FIGURE 2. (Colour online) Velocity profiles along the X direction for different cylinder
phases of (a) φ = 180◦, (b) φ = 210◦ and (c) φ = 330◦ at X locations of X/D = −0.6
(red), 0.0 (black), 0.6 (blue) and 1.2 (violet), where X and Y represent the transverse and
streamwise components of the inertial coordinate (X), respectively. Solid curves show the
present velocity results, while the experimental results of Dütsch et al. (1998) are marked
as symbols.

0 6 φ(t)= 2πfd(t− t0)6 2π. Note that t0 represents an offset time used to set when
the centre of the cylinder is located at xcyl= 0. Figure 3 shows a comparison of time
variations of the drag coefficient for an oscillating cylinder in a fluid at rest with those
reported by Dütsch et al. (1998). Overall, the present numerical results are in good
agreement with those of Dütsch et al. (1998) although the local extremum is slightly
underpredicted compared to the corresponding values of Dütsch et al. (1998).

We have performed numerical simulations of flow over a streamwise oscillating
cylinder at Re= 200, considering two oscillation conditions (A/D= 0.1, fd/fSt = 1.95
and A/D= 0.3, fd/fSt= 2.0) at Re= 200, under which the corresponding flow patterns
show subharmonic lock-in and symmetric harmonic lock-in regions, respectively.
Figure 4 indicates that the present results show qualitatively good agreement with
those of Al-Mdallal et al. (2007).

The present numerical method is validated by carrying out simulations of flow over
a streamwise oscillating circular cylinder, by referring to the results of Leontini et al.
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Du��tsch et al. (1998)
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FIGURE 3. Drag coefficient with time variation for the oscillating cylinder. The curve
and various symbols represent the present numerical results and the experimental results
of Dütsch et al. (1998), respectively.

(a) (b) (c) (d)

FIGURE 4. Comparison of flow patterns obtained from the present study (a,c) with those
from Al-Mdallal et al. (2007) (b,d) for a streamwise oscillatory cylinder at Re= 200. The
oscillation conditions are A/D = 0.1, fd/fSt = 1.95 for (a,b) and A/D = 0.3, fd/fSt = 2.0
for (c,d), respectively.

(2013) at Re = 175. Figure 5(a,b) shows the mean of drag coefficient 〈CD〉mean, and
r.m.s. of lift coefficient 〈CL〉rms, for various driving amplitudes at the fixed driving
frequency of fd/fSt= 1, respectively. The results obtained from the present simulations
are in good agreement with those of Leontini et al. (2013), which confirms that the
present method provides accurate predictions of the aerodynamic forces acting on a
moving cylinder.

4. Results
4.1. Lock-in region

The majority of previous studies on flows over oscillating cylinders have investigated
the lock-in phenomenon. For transverse oscillations, Bishop & Hassan (1964) reported
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FIGURE 5. (Colour online) Comparison of the present results for (a) the mean drag
coefficient and (b) r.m.s. lift coefficient on the streamwise oscillating circular cylinder with
different driving amplitudes A/D and fd/fSt = 1 at Re= 175 with those of Leontini et al.
(2013).

a lock-in phenomenon in which the system of the cylinder and its wake became
synchronized at the driving frequency of the cylinder only. In this case, the lock-in
signals of the lift coefficient are sinusoidal, and corresponding spectra are composed
of a peak. In the case of a cylinder oscillating streamwise, on the other hand, Karanth,
Rankin & Sridhar (1995) observed a non-sinusoidal lift coefficient even in lock-in.
Cetiner & Rockwell (2001) and Al-Mdallal et al. (2007) used Lissajous patterns
of lift-coefficient history to analyse the lock-in phenomenon, and Leontini et al.
(2011, 2013) used primary frequency and Poincaré sections for analysing the lock-in
phenomenon. In this study, lock-in phenomena are analysed using the spectra of lift
coefficients in which spectral peaks sharply converged to frequencies that are explicit
in the driving frequency, fd.

Before proceeding further with the spectral analysis, we first investigate temporal
oscillation patterns of the lift coefficient for the streamwise oscillating cylinder. The
lift coefficient in figure 6(a) shows a predominant mode with very low amplitude after
a short-time initial transition. From figure 6(c), a large amplitude of lift oscillations is
observed in the predominant mode after the initial transition. In contrast, figure 6(b)
shows a lift coefficient with a low amplitude in a long-time initial transition (see
the inset of figure 6b), whereas the predominant mode after the transition has a
lift coefficient with a high amplitude in figure 6(d). Note that the transition time in
figure 6(b) is more than four times longer than that in figure 6(a). The long-time initial
transition at the same oscillation condition was observed in several previous studies,
which is called a mode competition. Ongoren & Rockwell (1988) and Konstantinidis,
Balabani & Yianneskis (2007) reported vortex shedding mode competition, which
involves competition between symmetrical and antisymmetrical vortex shedding
modes. Cetiner & Rockwell (2001) found the generation of mode competition by
observing the time history of the lift coefficient at fd/f0 = 1, which was related to a
process of nonlinear bifurcation that yields two branches of solutions. In this study,
lock-in phenomena are analysed after lift coefficients reach their predominant modes.

Figure 7 represents the spectra of lift coefficients. The x-axis ( f /fd) is the spectrum
frequency normalized by the driving frequency, and the y-axis (C∗L) is the spectrum
density of the lift coefficient, which is normalized by its maximum peak value.
Figure 7(a,b) shows that the spectral peaks are observed in the frequency where
it is not related to the driving frequency. Figure 7(c,d), on the other hand, shows
that the spectral peaks sharply converge to the driving frequency, indicating that
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FIGURE 6. Time history of the lift coefficient: (a) A/D = 0.85 and fd/fSt = 2.1, and
(b) A/D = 0.85 and fd/fSt = 2.0. These show an example of the comparison between
histories of short-time and long-time initial transition lift coefficients. The lift coefficient
after initial transient periods: (c) and (d) for (a) and (b), respectively.

the frequency components of the lift coefficient are represented without the natural
Strouhal frequency. In this study, these phenomena are defined as lock-in. Furthermore,
Figure 7(c,d) illustrates that there are two different kinds of features in lock-in
phenomena: (c) one is that the spectral peaks are at f /fd = 1/2+ n, and (d) the other
is the occurrence of peaks at f /fd = 1 + n, where n = 0, 1, 2, . . . , ∞. These are
classified as (c) subharmonic lock-in and (d) harmonic lock-in, respectively.

Figure 8 shows Lissajous patterns for different driving frequencies fd/fSt =

0.5, 2.5, 1.2, and 0.8 with the driving amplitude A/D= 0.8. Note that the four cases
are the same as in figure 7 for lock-in classification with spectral density analysis.
The Lissajous patterns in figure 8(a,b) show that the phases are unlocked; where
the cases are classified as being in non-lock-in mode on the basis of the spectral
density analysis. In contrast, a phase lock is clearly observed in the Lissajous
patterns, as shown in figure 8(c,d), where the cases (c) and (d) are classified as
demonstrating subharmonic lock-in and harmonic lock-in, respectively. This confirms
that the lock-in classification based on the spectral density analysis is consistent with
that from Lissajous patterns.

The spectra of lift coefficients show that lock-in phenomena are distributed over
a range of driving frequencies and amplitudes, which is called the lock-in region.
Leontini et al. (2011) presented the variation of the frequency content of the lift
force with respect to the driving amplitude, which indicates that the spectral peaks
are sharply converged when the cylinder oscillates with a certain driving amplitude
range and that these series of frequency peaks are located at the driving frequency.
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FIGURE 7. Spectra showing time histories of the lift coefficient: (a) non-lock-in case (low
frequency) with A/D = 0.8 and fd/fSt = 0.5; (b) non-lock-in case (high frequency) with
A/D= 0.8 and fd/fSt = 2.5; (c) subharmonic lock-in case with A/D= 0.8 and fd/fSt = 1.2;
(d) harmonic lock-in case with A/D= 0.8 and fd/fSt = 0.8.

In the present study, figure 9 shows the change of the spectrum of lift force with
respect to the driving frequency. The y-axis of the figure represents the spectrum
frequency normalized by the Strouhal frequency, and the x-axis represents the driving
frequency. The magnitude of the spectra is represented in greyscale, and the spectral
peaks appear as dark-grey curves. There are two separate regions where the spectral
peaks are sharply converged to the frequency; these are shown as linear regions with
respect to the driving frequency. Furthermore, these two regions have different slopes
for linear peak lines. The line in the high-frequency region, which involves harmonic
lock-in, are steeper than those in other regions, which are subharmonic. It is proposed
that there are different kinds of lock-in regions, i.e. subharmonic lock-in regions and
harmonic lock-in regions, which are characterized by the positions of the spectral
peaks.

The lock-in regions with respect to various driving amplitudes and frequencies at
Re = 100 are presented as a map in figure 10. The x- and y-axes represent driving
frequency and amplitude, respectively. The axes are normalized by the Strouhal
frequency and the diameter of the cylinder, respectively. The driving frequency was
changed from fd/fSt = 0.05 to 3.0, and the driving amplitude was changed from
A/D = 0.05 to 2.0 with an interval of 0.05. The oscillation cases that show lock-in
behaviour are marked on the map as symbols: circles for subharmonic lock-in and
triangles for harmonic lock-in. Driving forces acting on the cylinder with large
amplitude and frequency induce the chaotic wake patterns behind the cylinder. Owing
to highly irregular wake patterns, the two-dimensional flow assumption cannot hold
for strong oscillation cases with a large amplitude and high frequency. In addition,
simulations of such cases require a much smaller time step to avoid numerical
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FIGURE 8. Lissajous patterns: (a) non-lock-in case (low frequency) with A/D = 0.8
and f /fd = 0.5; (b) non-lock-in case (high frequency) with A/D = 0.8 and f /fd = 2.5;
(c) subharmonic lock-in case with A/D = 0.8 and f /fd = 1.2; (d) harmonic lock-in case
with A/D= 0.8 and f /fd = 0.8.
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FIGURE 9. Frequency content of the lift force signal as a function of fd at A/D = 0.4.
The greyscale contour plot represents the spectrum amplitude (C∗L), while the line plot
indicates C∗L at fd/fSt = 1.5.

instability, leading to a huge computational cost. Therefore, simulation cases having
Ucyl/U0 6 2.5 are considered in the present study.

The lower boundary of the subharmonic lock-in region is found at a larger
driving amplitude when the driving frequency is shifted to a lower frequency from
fd/fSt = 2. This feature of lock-in threshold amplitude was observed in previous
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FIGURE 10. (Colour online) Lock-in region map showing the driving amplitude versus
the driving frequency at Re= 100. Subharmonic and harmonic lock-in cases are marked
by circles and triangles, respectively. In addition, green and blue colours indicate
non-symmetric and symmetric vortex shedding cases, respectively. Ambiguous lock-in
regions are marked by grey-coloured squares. The black curves represent Ucyl/U0 =

1.0, 1.5, and 2.5. The violet curve indicates the lower bound of the driving amplitude
at a given frequency for lock-in in Leontini et al. (2013).

studies (Griffin & Ramberg 1976; Hall & Griffin 1993; Konstantinidis, Balabani
& Yianneskis 2003). Leontini et al. (2013) observed quasi-periodicity (QP) in the
non-lock-in region and modelled the vortex shedding frequency ( fs) by a power
law of the driving amplitude with computational data. Further, they proposed a
threshold amplitude parametrized by the driving frequency ( fd), where the vortex
completed its own period during two cycles of the cylinder, by using the relation
between fd and fs in the lock-in region. It is worth noting that the lower boundary of
the subharmonic lock-in region observed in this study coincides with the threshold
amplitude (Leontini et al. 2013) marked on the map as a solid line. The upper
boundary of the subharmonic region is found at a lower driving frequency for a
moderate driving amplitude (0.3 6 A/D 6 1) as the amplitude increases. However,
the upper boundary shifts towards a higher driving frequency only when the cylinder
oscillates with a small driving amplitude (A/D 6 0.3). The characteristics of the
upper boundary for a small driving amplitude were also found in Griffin & Ramberg
(1976) and Al-Mdallal et al. (2007). For a large driving amplitude (A/D > 1), the
subharmonic region exists when fd/fSt 6 1.5. The lower boundary of the subharmonic
region seems to follow the curve of Ucyl/U0 = 1.5 for a large driving amplitude.

The harmonic region marked with blue triangles on the map is a noticeable region
called the symmetric harmonic region, where the flow shows symmetric vortex
shedding. This has been observed in various previous studies (Ongoren & Rockwell
1988; Konstantinidis, Balabani & Yianneskis 2005; Nishihara, Kaneko & Watanabe
2005). Interestingly, the symmetric harmonic region is located between two black
curves that represent Ucyl/U0= 1 and 1.5. It is observed that a pair of counter-rotating
vortices are symmetrically formed behind the cylinder moving upstream, while the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

78
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.787


332 K.-H. Kim and J.-I. Choi

strength of the vortices is weakened and no additional vortices are formed behind the
cylinder moving downstream. This may be explained by the fact that a low relative
speed of the cylinder moving downstream weakens inertial effects on flows behind
the cylinder, which enhances the symmetric pattern of the vortices.

The harmonic lock-in region having an asymmetric vortex shedding, the so-called
non-symmetric harmonic region, is marked by green triangles on the map. This region
is found at 0.6 6 fd/fSt 6 1 for a moderate driving amplitude, and at approximately
fd/fSt = 1 for a large driving amplitude (A/D≈ 1.5). Similar to Leontini et al. (2013),
it is observed that the upper and lower vortices behind the oscillating cylinder are
asymmetric and imbalanced.

4.2. Flow structures and aerodynamic coefficients
The wake patterns induced by the oscillating cylinder under various conditions of
driving amplitude and frequency are classified according to the distinct regions.
Figure 11 shows snapshots of the vorticity contour during two periods of cylinder
oscillation, at quarter-period intervals, along with time histories of the lift coefficient
with the cylinder position, where t+ = (t − t0)U0/D. Note that t0 is an offset time
used to define the time at which the centre of the cylinder is located at xcyl = 0
after wake flows become quasi-periodic. The snapshots represent the wake patterns
of the subharmonic lock-in region (a), two harmonic lock-in regions (b) and (c), and
non-lock-in regions (d) and (e).

Flow structures for the subharmonic lock-in case are shown in figure 11(a). The
cylinder moving downstream (t+ = 0–2.01) induces an anticlockwise (ACW) rotating
vortex behind the cylinder. When the cylinder moves upstream (t+ = 1.01–3.02), the
vortex is convected downstream, and another ACW rotating vortex is formed behind
the cylinder. At the end of the first oscillation period of the cylinder (t+ = 4.02),
two vortices are merged and start to detach from the cylinder (t+ = 5.03). In the
second period (t+ = 4.02–7.04), clockwise (CW) rotating vortices are formed behind
the cylinder, convected downstream, and merged before detaching from the cylinder,
similar to the behaviour of flow structures in the first period. These alternating CW
and ACW rotating vortex-shedding patterns were frequently reported by previous
studies (Griffin & Ramberg 1976; Ongoren & Rockwell 1988; Al-Mdallal et al.
2007; Perdikaris, Kaiktsis & Triantafyllou 2009; Leontini et al. 2013). The vortex
shedding in subharmonic regions is synchronized with two cycles of cylinder motion
(Ongoren & Rockwell 1988; Al-Mdallal et al. 2007; Perdikaris et al. 2009). The lift
coefficient has a positive or negative peak when the cylinder motion changes from
the upstream to downstream direction and vice versa (t+ = 1.01, 3.02, 5.03 and
7.04). The lift coefficient is negative in the first period, in which the cylinder moved
from the zero position to the upstream (t+ = 2.01), and it becomes positive in the
next period (t+ = 6.04). This confirms that the lift coefficient is synchronized with
two cycles of cylinder motion, similar to the vortex shedding.

Figure 11(b) shows the behaviour of wake flows in the non-symmetric harmonic
region. A CW rotating vortex is formed behind the cylinder moving downstream
(t+ = 0), and it pushes an existing ACW rotating vortex downstream (t+ = 1.68).
When the cylinder moves upstream (t+ = 3.35), the pair of counter-rotating vortices
is convected further downstream, and another pair of counter-rotating vortices is
newly formed behind the cylinder (t+ = 5.03). As the cylinder moves downstream
(t+ = 6.71), the new ACW rotating vortex remains near the cylinder, while the CW
rotating vortex starts to detach from the cylinder. Within a cycle of the cylinder
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oscillation, the dynamic pattern of the vortices is completed in the non-symmetric
harmonic case. It should be noted that counter-rotating vortices are not symmetrically
formed behind the cylinder and the convective direction of the vortex pair is not
aligned with the horizontal centreline. Similar to the flow pattern, the lift coefficient
is also completed within one cycle of the cylinder oscillation. While the cylinder
is moving upstream, the lift coefficient is reduced from the maximum value to the
minimum value (t+ = 1.68–6.71) and then back to a positive value (t+ = 6.71–8.38).
As the cylinder moves downstream (t+ = 8.38–11.73), the lift coefficient continues to
increase while maintaining a positive value. Therefore, the negative and positive lift
coefficients are imbalanced during one cycle of the cylinder oscillation, leading to a
non-zero mean lift coefficient. This is mainly due to non-symmetric counter-rotating
vortices. Similar vortex patterns were reported in Leontini et al. (2013), where the
oscillation case was A/D= 0.4, fd/fSt = 0.8 at Re= 175.

Figure 11(c) shows a symmetric vortex pattern in the symmetric harmonic region,
which was observed in previous studies (Ongoren & Rockwell 1988; Kim et al.
2006; Konstantinidis & Balabani 2007a; Marzouk & Nayfeh 2009; Feng & Wang
2010; Leontini et al. 2013; Konstantinidis & Bouris 2016). As the cylinder moves
downstream (t+ = 0–0.54), two pairs of vortices are formed near the cylinder,
where CW and ACW rotating vortices are dominant above and below the cylinder,
respectively. The cylinder moving upstream (t+ = 1.08) pushes the two pairs of
vortices downstream, while ACW and CW rotating vortices are weakened and
disappear above and below the horizontal centreline, respectively. Moreover, the upper
CW and lower ACW rotating vortices are eventually detached from the cylinder while
keeping the symmetric pattern (t+ = 1.62). As time progresses, two pairs of vortices
are newly formed immediately above and below the cylinder (t+ = 2.16). One cycle
of vortex shedding is completed in a period of cylinder oscillation in the symmetric
harmonic region. The symmetric vortex shedding is maintained during the entire
oscillation period, which leads to a lift coefficient of zero.

Figure 11(d) shows flow patterns in the non-lock-in region. When the cylinder
moves downstream (t+ = 0–0.79), there are two strong slightly asymmetric vortices
that are CW and ACW rotating vortices above and below the cylinder, respectively,
unlike those in the harmonic lock-in region. As the cylinder moves upstream
(t+= 1.59), the two vortices are convected downstream and become more asymmetric.
Two elongated large counter-rotating vortices are found near the wake region, while
alternating CW and ACW rotating vortices are observed far from the wake region.
The vortex shedding cycle is incomplete during two periods of cylinder oscillation
in the non-lock-in region. In contrast to the temporal behaviour of the lift coefficient
in lock-in cases, the phase difference between the local minimum or maximum of
lift coefficients and cylinder position varies with time, and the periodicity of the
lift coefficient is not observed during the two oscillation cycles of the cylinder. In
the present study, a lock-in mode is classified based on the lift coefficient during
two cycles of the cylinder oscillation, because the lift coefficient spectra of the
subharmonic lock-in has their peaks at f /fd = 1/2 + n. It should be noted that the
lift coefficient in a non-lock-in mode may have a larger period than two cycles of
cylinder oscillation. Leontini et al. (2011) observed a periodicity of the lift coefficient
during the N 6 8 cycles of cylinder oscillation using the Poincaré map.

Figure 11(e) shows disordered vortex shedding due to the cylinder oscillation with
high speed, which was also observed in Perdikaris et al. (2009) and Leontini et al.
(2011). Depending on the cylinder position, vortex shedding is observed both in front
of and behind the cylinder. The vortices shedding from the front of the cylinder
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FIGURE 12. (Colour online) Effects of driving amplitude (A) and frequency ( fd) on the
r.m.s. of lift coefficients, 〈CL〉rms. Variations of 〈CL〉rms with (a) A/D at fd/fSt = 1.5 and
(b) fd/fSt at A/D= 0.4.

are convected downstream, while the other vortices that shed behind the cylinder are
convected upstream. These vortices interact with the moving cylinder, leading to steep
velocity gradients and a strong lift force. The disordered vortex shedding and tangled
interaction between the vortices and cylinder induce a chaotic pattern of the wake
flow. Fluctuations of the lift coefficient are significantly greater in this region than in
other regions. The larger fluctuations may result from steeper velocity gradients on
the cylinder due to a higher driving amplitude of the cylinder oscillation. Moreover,
temporal variations of the lift coefficient are not correlated with the cylinder motion,
similar to the disordered vortex shedding pattern.

We investigate the changes of the r.m.s. value of the lift coefficient, 〈CL〉rms, with
respect to the driving amplitude and frequency in order to characterize aerodynamic
features in each region. Figure 12(a) shows the effect of the driving amplitude
on 〈CL〉rms at fd/fSt = 1.5. In the non-lock-in region with a low driving amplitude,
〈CL〉rms increases gradually as A/D increases. In the subharmonic lock-in region,
it also appears that 〈CL〉rms increases with A/D, and the slope of the increment is
greater than that in the non-lock-in region. For 0.6 6 A/D 6 0.95, 〈CL〉rms is almost
zero, yielding the symmetric harmonic lock-in. As A/D increases further, 〈CL〉rms
significantly increases with a steeper slope compared to that in the subharmonic
lock-in region. The effect of driving frequency on 〈CL〉rms at a moderate driving
amplitude A/D= 0.4 is also shown in figure 12(b). In the non-lock-in region, 〈CL〉rms
gradually increases as fd/fSt increases in 0 < fd/fSt < 1.15, except for fd/fSt = 0.85
or 0.90. These exceptional cases are in the non-symmetric harmonic lock-in region,
where 〈CL〉rms is shifted slightly upwards from 〈CL〉rms at both ends of the non-lock-in
region, similar to observations in Cetiner & Rockwell (2001). As fd/fSt increases
further, 〈CL〉rms suddenly increases at fd/fSt = 1.2 and reaches its maximum at
fd/fSt = 1.9 in the subharmonic lock-in region, which was also found in Marzouk
& Nayfeh (2009). In the non-lock-in region following the subharmonic lock-in
region, the present results show that 〈CL〉rms decreases with the increment of fd/fSt,
as reported in Al-Mdallal et al. (2007). For higher frequencies fd/fSt > 2.65, 〈CL〉rms
becomes almost zero, leading to the symmetric harmonic lock-in.

To scrutinize the effects of driving amplitude and frequency on the aerodynamic
forces acting on the oscillating cylinder, we analyse time-dependent aerodynamic
forces for 1820 oscillation cases after each flow reaches its predominant mode, and
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FIGURE 13. (Colour online) Aerodynamic force maps of an oscillating cylinder in
A/D–fd/fSt space for (a) 〈CD〉mean, (b) 〈CD〉rms, (c) |〈CL〉mean|, and (d) 〈CL〉rms values at
Re= 100.

these are observed in terms of lock-in regions, as shown in figure 10. The contour
maps in figure 13(a–d) show the mean drag coefficient 〈CD〉mean, r.m.s. drag coefficient
〈CD〉rms, absolute value of mean lift coefficient |〈CL〉mean|, and r.m.s. lift coefficient
〈CL〉rms, respectively. Void regions in the contour plots are non-observed oscillating
cases, where the driving amplitudes and frequencies are so high that the limitation
on the cylinder oscillation speed, Ucyl/U0 = 2.5, is exceeded.

Figure 13(a) indicates that 〈CD〉mean is larger in non-symmetric harmonic and
subharmonic lock-in regions than in non-lock-in regions. In the non-symmetric
harmonic region, 〈CD〉mean increases with the driving amplitude, and its maximum
is approximately 1.3 times larger than that in the surrounding non-lock-in case. In
the subharmonic region, 〈CD〉mean increases up to 2.5 because either the driving
frequency or amplitude (0.3 6 A/D 6 1) increases. In a transitional region from
the subharmonic lock-in region to the symmetric harmonic lock-in region, 〈CD〉mean

sharply decreases to that for the case of a non-oscillating cylinder. In the symmetric
harmonic region, 〈CD〉mean gradually increases with increments of either the driving
amplitude or frequency. With a large driving amplitude and high frequency, 〈CD〉mean

in the upper non-lock-in region becomes more than three times larger than that for
the non-oscillating cylinder case.

Figure 13(b) clearly shows that, in general, 〈CD〉rms monotonically increases
with both the driving amplitude and frequency, in contrast to the behaviour of
〈CD〉mean. Furthermore, 〈CD〉rms seems to be proportional to either the magnitude of
the acceleration or velocity of cylinder motion because the oscillating motion is
aligned with the flow direction, which may lead to a direct influence on variations of
CD.
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As expected, figure 13(c) shows that 〈CL〉mean is nearly zero, except in the
non-symmetric lock-in region, because counter-rotating vortices are symmetrically and
alternately detached above and below the cylinder. However, in the non-symmetric
lock-in region, counter-rotating vortices behind the cylinder introduce an imbalance
between the negative and positive lift coefficients during one cycle of the cylinder
oscillation, yielding a non-zero mean lift coefficient. At Re= 100, a non-zero 〈CL〉mean
is found for 0.6 6 fd/fSt 6 1 with a moderate driving amplitude; |〈CL〉mean| increases
up to 0.7 as the driving amplitude increases.

Figure 13(d) shows that 〈CL〉rms ranges from 0.24 to 0.5 in the non-lock-in region,
which is larger than 〈CL〉rms = 0.24 for the non-oscillating case. In the subharmonic
lock-in region, 〈CL〉rms gradually increases from 0.9 to 1.8 as the driving amplitude
or frequency increases, while 〈CL〉mean is nearly zero in figure 13(c). This is due to
the symmetric and alternating counter-rotating vortex pattern similar to von Kármán
vortex shedding. Interestingly, the fluctuations of CL are negligible in the symmetric
harmonic lock-in region, which results in 〈CL〉rms ≈ 0. This is because the vortices
near the cylinder are vertically symmetric. In the non-lock-in region for Ucyl/U0 > 1.5,
〈CL〉rms increases up to 8.5 as Ucyl increases, similar to the behaviour of 〈CD〉mean in
figure 13(a).

Blackburn & Henderson (1999) investigated energy transfers from the fluid to
the cylinder, considering forced transverse oscillating circular cylinders, where
the energy transfer coefficient was determined by using the lift coefficient and
transverse oscillating velocity. They found passive energy transfers from the fluid to
the cylinder in the lock-in region. Later, Konstantinidis & Balabani (2007b) observed
inflow-perturbation-induced positive energy transfer to the stationary cylinder. Similar
to the work by Blackburn & Henderson (1999), we investigate energy transfers
from the fluid to the streamwise oscillating cylinder by using the following energy
coefficient:

E=
1

T0 − t0

∫ T0+t0

t0

CD(t)ẋcyl(t) dt, (4.1)

where ẋcyl(t) is streamwise oscillating velocity, t0 is an offset time used to define the
time at which the centre of the cylinder is located at xcyl= 0 after wake flows become
quasi-periodic, and T0 is set to 20 periods of the cylinder oscillation, T0 = 20/(2πfd).

Figure 14 shows the energy coefficient E depending on the driving amplitude
and frequency at Re = 100; E is negative for all the cases, implying that energy
is transferred from the cylinder to the fluid. The absolute value of E increases as
the driving amplitude or frequency of the cylinder increase. This indicates that the
stronger cylinder oscillation transfers more energy from the cylinder to the fluid.
When the streamwise forced oscillating cylinder moves upstream (negative velocity),
the relative velocity to the free stream increases, resulting in an increase in drag force
(passive drag fluctuations). Conversely, when moving downstream (passive velocity),
the relative speed to the free stream decreases, resulting in a decrease in drag force
(negative drag fluctuations). Thus, the drag and velocity are mostly out of phase for
a streamwise forced oscillating cylinder, which leads to E 6 0.

4.3. Reynolds-number effects
Next, we perform parametric studies at Re = 40 and 200 by varying the driving
frequency fd/fSt and amplitude A/D in order to investigate the effect of Reynolds
number on the lock-in region. For each Reynolds-number case, fd/fSt is changed from
0.05 to 3.0 at intervals of 0.05, while A/D is changed from 0.05 to 2.0. However,
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FIGURE 14. (Colour online) Energy transfer coefficient map of an oscillating cylinder in
A/D–fd/fSt space at Re= 100.
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FIGURE 15. (Colour online) Lock-in region map showing the driving amplitude versus the
driving frequency at Re= 200. Lock-in regions and lines are marked in the same manner
as in figure 10.

for the Re= 200 case, simulations are restricted to the cases satisfying Ucyl/U0 6 2.5
to avoid extremely small time steps for ensuring stable computation. The lock-in
regions are classified in the same manner as for the Re= 100 case; peak features of
the subharmonic lock-in spectrum converged to f /fd = 0.5+ n, while peak features of
the harmonic lock-in spectrum converged to f /fd = 1+ n for n= 0, 1, 2, . . . .

Figure 15 shows that the lower boundary of the subharmonic lock-in region of
Re = 200 for A/D 6 0.75 is found for a larger driving amplitude when the driving
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frequency is shifted to a lower frequency from fd/fSt = 2. The boundary coincides
with the threshold amplitude (Leontini et al. 2013) marked on the map as a solid
line, similar to that for Re= 100 in figure 10. The upper boundary of the subharmonic
region is observed at a lower driving frequency for 0.36A/D60.75 as A/D increases.
The symmetric harmonic region is bounded by 1.0 6 Ucyl/U0 6 1.5 with A/D 6 0.75.
Similarly, such a bounded region for the symmetric harmonic lock-in is also found at
Re= 100. When 1.06Ucyl/U0 6 1.5, the subharmonic region is observed at Re= 200
for 0.75 < A/D < 1.7, but it is not observed at Re = 100. The symmetric harmonic
region is also found at Re = 200 for 0.75 < A/D < 1.2 when 1.5 6 Ucyl/U0 6 2.0.
The non-symmetric harmonic region is found at 0.36A/D6 0.8 for a narrow driving
frequency range (0.6 6 fd/fSt 6 1), which is also observed at Re = 100. In contrast
to the Re= 100 case, non-lock-in regions are observed for a high driving amplitude
(A/D> 1.7) at Re= 200, regardless of the driving frequency.

Wake patterns for each distinct region at Re = 200 are presented in figure 16.
The snapshots of figure 16 represent the vorticity contours during two periods
of the cylinder oscillation. The wake patterns of the subharmonic lock-in region,
two harmonic lock-in regions and non-lock-in regions are shown in figure 16(a–e),
respectively. Figure 16(a) shows flow structures of subharmonic lock-in at Re= 200.
Similar to the flow pattern for subharmonic lock-in at Re = 100, the ACW
rotating vortex is located behind the cylinder when the cylinder moves downstream
(t+ = 0–1.06). As the cylinder moves upstream, the ACW rotating vortex begins
to be detached after the newly formed ACW rotating vortex is merged with the
existing one (t+ = 1.06–3.17). However, unlike Re = 100, the ACW rotating vortex
is elongated by the CW rotating vortex formed by the cylinder moving downstream
in the second period (t+ = 3.17–5.28). This flow pattern completes one period for
two periods of the cylinder oscillation. As in the case of the lift coefficient of
subharmonic lock-in for Re = 100, the peaks of lift coefficient are observed when
the motion of the cylinder changes from upstream to the downstream direction, and
the lift coefficient is synchronized with two cycles of the cylinder motion. The
behaviour of wake flows in the non-symmetric harmonic region at Re = 200 is
shown in figure 16(b), and this is very similar to that at Re = 100; that is, when
the cylinder moves downstream, a pair of vortices is convected downstream, and the
flow pattern of the vortices is synchronized with a cycle of cylinder motion. The
ACW and CW rotating vortices formed behind the cylinder are not symmetric but
are convected to a direction shifted slightly upwards, which leads to a non-zero
mean lift coefficient. Figure 16(c) shows the flow patterns in the symmetric harmonic
lock-in region at Re = 200. Similar to the Re = 100 case, two pairs of vortices are
symmetrically formed above and below the cylinder in the phase of the cylinder
moving downstream (t+ = 0–0.53), while two pairs of vortices are detached in the
phase of the cylinder moving upstream (t+= 0.53–1.58). However, it should be noted
that, unlike the flow patterns at Re = 100, the two counter-rotating vortices in both
the upper and lower regions coexist and convect downstream while maintaining a
symmetric pattern. Unlike the flow pattern of the non-lock-in at Re= 100, figure 16(d)
shows the occurrence of a quite symmetric flow pattern near the region behind the
cylinder even in the non-lock-in region at Re = 200. Only wake flows in the region
further downstream are slightly asymmetric. As shown in the time history of lift
coefficient, the vortex shedding period is incomplete during the two periods of the
cylinder motion. Figure 16(e) shows flow patterns due to the cylinder vibrating with
a high speed in the non-lock-in region. Similar to those at Re = 100, the vortices
shedding both from the front and back of the cylinder are disordered and convected
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FIGURE 17. (Colour online) Aerodynamic force maps of an oscillating cylinder in
A/D–fd/fSt space for (a) 〈CD〉mean, (b) 〈CD〉rms, (c) |〈CL〉mean|, and (d) 〈CL〉rms values at
Re= 200.

downstream due to the high-speed motion of the cylinder, which forms complex wake
flows behind the cylinder. These disordered vortices interact with the cylinder, leading
to steep velocity gradients and generate strong lift forces.

Figure 17(a) shows that 〈CD〉mean of Re= 200 is larger in non-symmetric harmonic
and subharmonic lock-in regions than in non-lock-in regions, similar to 〈CD〉mean

at Re = 100. In a transitional region from the subharmonic to symmetric harmonic
lock-in region, 〈CD〉mean sharply decreases. In the symmetric harmonic region 〈CD〉mean

gradually increases with increments of either the driving amplitude or frequency. The
upper non-lock-in region having a large amplitude and high frequency shows that
〈CD〉mean becomes more than four times as large as for the non-oscillating cylinder
case. Figure 17(b) shows that 〈CD〉rms at Re = 200 monotonically increases with
increase in both the driving amplitude and frequency, similar to 〈CD〉rms at Re= 100.
Similar to 〈CL〉mean for Re = 100, figure 17(c) indicates that 〈CL〉mean is nearly zero,
except in the non-symmetric lock-in region; |〈CL〉mean| is less than 0.7, and its
maximum is observed in the non-symmetric lock-in region. Figure 17(d) indicates
that 〈CL〉rms is less than 0.8 in the non-lock-in region, while 〈CL〉rms = 0.5 for the
non-oscillating case. In the subharmonic lock-in region, 〈CL〉rms ranges from 1 to 4.
Similar to 〈CL〉rms at Re= 100, it is clearly seen that 〈CL〉rms ≈ 0 for Re= 200 in the
symmetric harmonic lock-in region. For the non-lock-in region with Ucyl/U0 > 1.5,
〈CL〉rms increases with the increment of Ucyl, similar to the behaviour of 〈CD〉mean in
figure 17(a).

When the Reynolds number is sufficiently low (4 6 Re 6 40), two small steady
separation bubbles appear behind the cylinder. When Re increases, the wake behind
the cylinder becomes unstable, and experiments have shown that, for Re > 47,
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FIGURE 18. (Colour online) Lock-in region map showing the driving amplitude versus the
driving frequency at Re= 40. Lock-in regions and lines are marked in the same manner
as in figure 10.

the wake develops a slow oscillation in which the velocity is periodic. Since the
Strouhal frequency fSt does not exist at Re = 40, the driving frequency fd for the
oscillating cylinder could not be normalized by fSt. Here, we consider a normalized
driving frequency fd/f̃St with the estimated Strouhal frequency f̃St based on the
Strouhal–Reynolds number relationship, f̃St(Re) = Sr∗ + m/

√
Re, where constants Sr∗

and m are 0.2684 and −1.0356, respectively, for 47 6 Re 6 180 (Fey, König &
Eckelmann 1998). The estimated frequency f̃St at Re = 40 is extrapolated from the
relationship f̃St = 0.105. It should be noted that f̃St has no physical meaning and it is
used only for plotting the lock-in region and aerodynamic force maps at Re= 40 in
a similar manner to those for Re= 100 and 200.

Figure 18 indicates that the symmetric harmonic lock-in is found at most driving
amplitudes and frequencies at Re = 40, which is significantly different compared
to the lock-in for Re = 100 or 200. This can be explained by the fact that
forced-oscillation-induced inertia is not sufficiently large to introduce asymmetric
wake patterns by disturbing the symmetric wake patterns of flow over a stationary
cylinder. Although the symmetric harmonic region is dominant at Re = 40, the
subharmonic lock-in region with alternating vortex shedding patterns is found at
1.45< fd/fSt < 2.55 and A/D > 0.15. The lower boundary of the subharmonic lock-in
region for A/D6 1 is found at a larger driving amplitude when the driving frequency
is shifted to a lower frequency from fd/fSt = 2, whereas the upper boundary is
observed at a lower driving frequency for 0.3 6 A/D 6 1.15 as A/D increases. A
non-symmetric harmonic region is observed in a narrow driving frequency range
(0.85 6 fd/fSt 6 1.05) for A/D > 0.45, similar to the non-symmetric harmonic regions
for Re = 100 and 200. However, a non-symmetric harmonic region is also found at
fd/fSt > 2.5 and 1.156A/D6 1.6, which is not observed for Re= 100 and 200. Three
non-lock-in regions are observed in ranges of low amplitudes and high frequencies
(0.356 A/D6 0.55 and fd/fSt > 2.4), high amplitudes and low frequencies (A/D> 1.1
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and 0.4 6 fd/fSt 6 0.85), and high amplitudes and high frequencies (A/D > 1.1 and
fd/fSt 6 1.1).

Figure 19 shows wake flow patterns in each distinct region at Re=40. Figures 19(a),
19(b), 19(c) and 19(e) show subharmonic lock-in, non-symmetric harmonic lock-in,
symmetric harmonic lock-in and non-lock-in regions, respectively, like those observed
in figures 11 and 16 for Re = 100 and 200. However, it should be noted that
figure 19(d) shows a flow pattern in the symmetric harmonic lock-in region at
Re = 40, in contrast to those of the non-lock-in mode shown in figures 11(d) and
16(d) for Re = 100 and 200. This is because the flow behind the non-oscillatory
cylinder at Re= 40 induces a stationary pattern with small steady separation bubbles.
Thus, the symmetric harmonic region is observed at most driving amplitudes and
frequencies, even where non-lock-in regions are observed at Re= 100 and 200. The
flow patterns in the subharmonic region at Re = 40, shown in figure 19(a), show
that the two counter-rotating vortices are alternately detached at the upper and lower
parts of the cylinder. One cycle of the vortex pattern is completed by two cycles
of the cylinder oscillation, similar to that observed in the subharmonic regions of
Re = 100 and 200. Furthermore, the peaks of the lift coefficient are observed at
the instants at which the cylinder changes its oscillating direction. Figure 19(b)
shows flow patterns in the non-symmetric harmonic region at Re = 40. Similar to
the flow patterns in the non-symmetric harmonic region at Re= 100 and 200, a pair
of vortices are formed as the cylinder moves downstream, whereas the vortices are
detached as the cylinder moves upstream. The pair of two counter-rotating vortices
is not symmetric, which leads to a non-zero mean lift coefficient. A periodic vortex
shedding is clearly observed, and the shedding pattern is completed within one cycle
of the cylinder oscillation. The flow patterns for symmetric harmonic lock-in are
clearly shown in figure 18(c,d), thus not yielding any lift force. The case of the
low-frequency oscillation f̃St = 1.0 in figure 19(c) indicates that two dominant CW
and ACW rotating vortices are formed near the cylinder moving upstream, and they
are quickly separated from the cylinder moving downstream; this is similar to the
behaviour of wake flows in the symmetric harmonic lock-in region for Re= 100 and
200. However, figure 19(d) for wake flows of the oscillatory cylinder with a high
frequency f̃St = 2.6 shows that two dominant counter-rotating vortices are elongated
further downstream while maintaining symmetry. This is a different observation,
compared to the wake patterns in the symmetric harmonic lock-in region for other
cases. Moreover, it is worth noting that non-lock-in was observed for Re = 100 and
200 at a similar oscillation condition. Flow patterns induced by a highly oscillating
cylinder at Re= 40 are shown in figure 19(e). Similar to the flow patterns at Re= 100
and 200 with a high oscillation amplitude and frequency, complex wake patterns are
found due to the disordered vortex shedding. This leads to large variations in the lift
coefficient.

Figure 20(a) shows that the overall trends of 〈CD〉mean for Re = 40 are similar to
those for Re = 100 and 200. Owing to the streamwise oscillatory cylinder motion,
〈CD〉mean is increased compared to that in the non-oscillating case. At the upper
boundary of the subharmonic region, 〈CD〉mean sharply decreases as the cylinder
acceleration increases, which is similar to that at Re = 100. It is noticeable that
〈CD〉mean in the non-lock-in region with a large amplitude and high frequency
(A/D > 1.5 and fd/fSt 6 1.1) is more than 2.5 times greater than that in other
regions, which is mainly because of the forced inertial effects. Interestingly, 〈CD〉mean
is relatively small and approximately 1.9 in the non-symmetric harmonic region with
fd/fSt > 2.5 for 1.15 6 A/D 6 1.6. This is because the cylinder-oscillation-induced
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FIGURE 20. (Colour online) Aerodynamic force maps of an oscillating cylinder in
A/D–fd/fSt space for (a) 〈CD〉mean, (b) 〈CD〉rms, (c) |〈CL〉mean|, and (d) 〈CL〉rms values at
Re= 40.

counter-rotating vortices are detached fairly far from the cylinder and have relatively
low influence on the drag. Figure 20(b) shows that 〈CD〉rms at Re= 40 monotonically
increases with increase in both the driving amplitude and frequency, similar to 〈CD〉rms
at Re= 100 and 200. Figure 20(c) indicates that a non-zero 〈CL〉mean is only found in
the non-symmetric lock-in region, similar to the cases of Re= 100 and 200. Except
for oscillating cases with a high cylinder acceleration (roughly 1.25 6 A/D and
fd/fSt > 1.5), figure 20(d) shows that 〈CL〉rms is nearly zero in most cases because the
symmetric harmonic lock-in is dominant at Re = 40. However, in the subharmonic
region, 〈CL〉rms gradually increases with increase in both the amplitude and frequency,
which is similar to the cases of Re = 100 and 200. In the non-lock-in region for
the case of a highly accelerating cylinder (A/D > 1.5 and fd/fSt 6 1.1), 〈CL〉rms is
significantly larger (more than 4) because higher inertial effects due to the cylinder
motion promote asymmetric and alternating vortex shedding behind the cylinder.
However, 〈CL〉rms is relatively small in the non-symmetric lock-in region for the case
of a highly accelerating cylinder.

The effect of Re on the lock-in phenomenon for flow over a streamwise oscillatory
cylinder is summarized as follows: subharmonic lock-in, symmetric harmonic lock-in,
non-symmetric harmonic lock-in and non-lock-in regions are found at all three Re
numbers. For both Re = 100 and 200, the threshold amplitude of the subharmonic
lock-in region agrees with that given by Leontini et al. (2013). For a small driving
amplitude (A/D60.75), the symmetric harmonic region is found at 1.06Ucyl/U0 61.5
for both Re = 100 and 200. In particular, for Re = 200 the subharmonic region is
also found in 0.75< A/D< 1.2 and 1.0 6 Ucyl/U0 6 1.5, and the non-lock-in regions
exist at a high driving amplitude A/D > 1.75 regardless of driving frequency. For
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Re = 40, the symmetric harmonic lock-in is found at most driving amplitudes and
frequencies. The non-symmetric harmonic lock-in region is found at fd/fSt > 2.5 and
1.15 6 A/D 6 1.6 for Re = 40, whereas the non-symmetric harmonic lock-in region
is mostly found near the Strouhal frequency (approximately 0.8 < fd/fSt < 1) for all
three Re numbers. Similar flow patterns are found at all three Re numbers, depending
on the lock-in regions. In the subharmonic lock-in region, two alternating vortex
shedding patterns are synchronized with two cycles of the cylinder motion. In the
non-symmetric harmonic lock-in region, two counter-rotating vortices induced by
the cylinder moving upstream are convected downstream in a slightly upward- or
downward-shifted direction, which leads to a non-zero mean lift force. For symmetric
lock-in, two pairs of counter-rotating vortices are symmetrically formed near the
cylinder and convected downstream while their strengths are weakened. In particular,
a different type of symmetric lock-in is observed only for Re = 40 with a high
driving frequency, where two dominant counter-rotating vortices are elongated further
downstream while forming a larger separation bubble. In the non-lock-in region, the
vortex shedding cycle is incomplete during the two periods of the cylinder oscillation.
Depending on Re, the symmetric patterns in the wake flows are slightly different
for the moderate driving amplitude and frequency. However, wake flows with a
large driving amplitude and high driving frequency show disordered vortex shedding
patterns, which induce large lift fluctuations. The overall trends of the aerodynamic
forces with a driving amplitude and frequency can be characterized as per the
distinctive lock-in region. The values of 〈CD〉mean are larger in the subharmonic region
than those in other regions, and larger driving amplitude and higher driving frequency
lead to an increased 〈CD〉rms. Except for the non-symmetric harmonic lock-in case,
〈CL〉mean is almost zero; and 〈CL〉rms has a large value in the subharmonic region
whereas it is relatively small in the non-symmetric harmonic lock-in region.

5. Conclusion

Numerical simulations were performed for flow over a circular cylinder oscillating
streamwise at various driving amplitudes and frequencies in order to identify
lock-in regions. We considered three different Reynolds numbers (Re = 40, 100
and 200) with the driving amplitude and frequency in the ranges A/D= 0.05–2.0 and
fd/fSt = 0.05–3.0, respectively. The Fourier spectrum of the lift coefficient was used
to define lock-in as regions where the spectrum peaks are sharply converged to fd.
The present study showed that there are two types of lock-in: one is lock-in where
spectrum peaks are converged to f /fd = 1/2+ n, which is called subharmonic lock-in;
and the other is harmonic lock-in where spectrum peaks are converged to f /fd= 1+ n,
with n= 0, 1, 2, . . . ,∞. The oscillating conditions for which lock-in phenomena occur
were marked on a non-dimensional driving amplitude–frequency plane. These maps
classify the lock-in regions: one is a subharmonic lock-in region, and the others are
a non-symmetric harmonic region and a symmetric harmonic region. The features of
aerodynamic forces at each region are characterized by the distributions of mean and
r.m.s. values of drag and lift coefficients with respect to the driving amplitude and
frequency.

The subharmonic lock-in region was found in a lower frequency range when the
driving amplitude was increased. The lower threshold amplitude of the subharmonic
lock-in region follows the characteristic line proposed by Leontini et al. (2013).
Alternating vortex shedding patterns are dominant in the subharmonic region for
Re= 100 and 200. Interestingly, the subharmonic lock-in was also observed at Re= 40
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〈CD〉mean 〈CD〉rms 〈CL〉mean 〈CL〉rms

(1/2)1rmin 4.06 9.72 0.00 8.43
1rmin 4.07 9.75 0.00 8.50
21rmin 4.02 9.77 0.00 8.41

TABLE 2. Effect of the radial grid resolution on drag and lift coefficients for the case of
A/D= 1.0 and fd/fSt = 2.4 (Ucyl/U0 = 2.48) at Re= 100.

for 1.45 < fd/fSt < 2.55. In the subharmonic lock-in region, 〈CD〉mean and 〈CL〉rms are
evidently increased by forced cylinder oscillations. The non-symmetric harmonic
region was observed near the Strouhal frequency (approximately 0.8 < fd/fSt < 1),
where counter-rotating vortices do not symmetrically form behind the cylinder,
yielding non-zero values of 〈CL〉mean. The symmetric harmonic region for Re= 100 is
bounded in 1.06Ucyl/U0 61.5, while two symmetric harmonic regions (A/D60.75 in
1.0 6 Ucyl/U0 6 1.5 and 0.75 6 A/D 6 1.25 in 1.5 6 Ucyl/U0 6 2.0) were observed for
Re = 200. However, most oscillating cases for Re = 40 showed symmetric harmonic
lock-in because the vortex patterns induced by oscillating cylinder motion are not
sufficient to destroy the symmetric behaviour of wake patterns originating from
the non-oscillating case. Owing to the vertically symmetric vortex pattern, 〈CL〉rms
values are almost zero in the symmetric harmonic lock-in region. Overall, 〈CD〉rms
monotonically increases with both the driving amplitude and frequency, irrespective
of the lock-in patterns.

In summary, we found that the subharmonic lock-in region due to a small driving
amplitude and low frequency at Re = 100 and 200 is similar to that identified in
Leontini et al. (2013), where the threshold amplitude (Leontini et al. 2013) of the
subharmonic lock-in depends on Re. The subharmonic lock-in region is also found
even at Re = 40 where steady wake flows are observed for a stationary cylinder.
Moreover, the present parametric study with a wide range of driving forces shows
that a new lock-in region (non-symmetric harmonic lock-in region) exists for a large
driving amplitude, whereas a different lock-in region (symmetric harmonic lock-in
region) is observed at a high driving frequency.
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Appendix A. Note on resolution requirements
We have performed a grid resolution study for the case of a highly oscillating

cylinder in which the maximum speed of the oscillating cylinder is Umax/U0 = 2.48;
the case of A/D= 1.0 and fd/fSt = 2.4. As a baseline grid, a non-uniform grid with
256 points is used in the radial direction, whereas a uniform grid with 1θ = 2π/256
is used in the circumferential direction. The minimum and maximum grid spacings
in the radial direction are set to 1rmin= 0.0016 and 1rmax= 0.2, respectively. For the
grid resolution study, we consider three different grid spacings in the radial direction
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FIGURE 21. Effect of grid resolutions on CL for different lock-in regions: (a–c)
subharmonic lock-in region (A/D = 0.4, fd/fSt = 1.5), (d–f ) non-symmetric harmonic
lock-in region (A/D= 0.4, fd/fSt = 0.8), (g–i) symmetric harmonic lock-in region (A/D=
0.4, fd/fSt= 2.8), ( j–l) non-lock-in region (A/D= 0.4, fd/fSt= 1.9), and (m–o) non-lock-in
region (A/D= 0.9, fd/fSt = 2.4).

by setting the minimum grid spacing to 1rmin, (1/2)1rmin and 21rmin. Table 2
indicates no significant difference pertaining to the mean and r.m.s. values of CD and
CL obtained from numerical simulations with different grid resolutions.

We also investigated the effect of grid resolutions on the classification of lock-in
regions. To this end, we performed numerical simulations of five different lock-in
cases that are shown in figure 11 for Re= 100. The rows and columns in figure 21
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indicate the time histories of CL for different lock-in regions and grid resolutions,
respectively. Except for the case of the symmetric harmonic lock-in region, numerical
simulations with all three grid resolutions provide a similar trend of temporal
variations of CL. This confirms that time histories of CL obtained from numerical
simulations with the present grid resolution (1rmin) are identical to those obtained
with a finer grid resolution ((1/2)1rmin), leading to the same classification of the
lock-in phenomenon.

Appendix B. Formulae for drag and lift coefficients
This appendix provides the formulae of drag and lift coefficients for flow over a

circular cylinder. The drag (CD) and lift (CL) coefficients can be defined as

CD =
Fx

1
2ρU0

2D
and CL =

Fy
1
2ρU0

2D
, (B 1a,b)

where Fx and Fy are the streamwise and transverse components of the force F induced
by the flow, respectively, U0 is the free-stream velocity, ρ is the density of fluid
and D is the diameter of the cylinder. Force F can be obtained by integrating the
pressure and the normal and shear stresses acting on the cylinder surface in cylindrical
coordinates (r0, θ):

Fx =

∫ 2π

0
(−p̂(r0, θ) cos θ + σ̂rr(r0, θ) cos θ − σ̂rθ(r0, θ) sin θ)r0 dθ, (B 2)

Fy =

∫ 2π

0
(−p̂(r0, θ) sin θ + σ̂rr(r0, θ) sin θ + σ̂rθ(r0, θ) cos θ)r0 dθ, (B 3)

where r0 indicates the cylinder surface (r0 =D/2). Note that p̂, σ̂rr and σ̂rθ represent
the dimensional pressure, and normal and shear stress, respectively:

p̂= ρU0
2p, σ̂rr = 2

µU0

D
∂Ur

∂r
and σ̂rθ =

µU0

D
∂Uθ

∂r
, (B 4a−c)

where µ is dynamic viscosity, and Ur and Uθ represent the dimensionless radial and
azimuthal velocity components, respectively, in the inertial system. Finally, CD and CL
can be defined as

CD =

∫ 2π

0

(
−p(r0, θ) cos θ +

2
Re

∂Ur

∂r

∣∣∣∣
(r0,θ)

cos θ −
1

Re
∂Uθ

∂r

∣∣∣∣
(r0,θ)

sin θ

)
r0 dθ, (B 5)

CL =

∫ 2π

0

(
−p(r0, θ) sin θ +

2
Re

∂Ur

∂r

∣∣∣∣
(r0,θ)

sin θ +
1

Re
∂Uθ

∂r

∣∣∣∣
(r0,θ)

cos θ

)
r0 dθ. (B 6)
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