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The optical distortion mechanism in a nearly
incompressible free shear layer
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The aero-optical distortions caused by compressible flows have been used by
researchers for flow diagnostics and accepted by designers of airborne optical systems
as a performance penalty. In order to estimate these distortions, an understanding of
the optical distortion mechanism is required. This article examines the mechanisms
which produce a variable-density field (and accompanying index-of-refraction field)
in a nearly incompressible shear-layer flow. The two-dimensional-shear-layer velocity
field was approximated using a discrete vortex model. From this ‘known’ velocity field,
the pressure and density fields were determined by iteratively solving the unsteady
Euler equations. The resulting index-of-refraction field produced simulated schlieren
images which closely resemble experimental schlierens. Optical wavefronts computed
from the simulation reasonably match the behaviour of large-scale aberrations
measured in a transonic wind tunnel. Small-scale distortions in the experimental
data may have been caused by boundary layers on the splitter plate and tunnel walls
or by three-dimensional effects that were not simulated.

1. Introduction
The transmission of a collimated beam of light through a turbulent variable-

index-of-refraction flow (caused by temperature or density variations, for example)
produces a time-varying distortion on the previously planar optical wavefront. When
the depth of the turbulent region is on the same order as the beam aperture or less,
the phenomenon is termed ‘aero-optics’ (Gilbert 1982). The aberrating flow fields
in the near field are usually associated with propagation through turbulent shear and
boundary layers. The high propagation speed of light relative to practical flow speeds
means that the optical beam sees a (‘slowly’ time-varying) series of ‘frozen’ index-of-
refraction fields. Thus the aero-optic problem is inherently tied to the dynamics of
the flow field.

1.1. Aero-optics fundamentals

The first users of aero-optics information were fluid mechanics researchers who took
advantage of the variable index of refraction that accompanies variable-density flows.
Schlieren and shadowgraph systems have traditionally provided a mostly qualitative
measure of flow-field aberrations and the flow that produced them. Interferometric
techniques, on the other hand, are capable of very sensitive quantitative measures of

† Present address: The Boeing Company, 13100 Space Center Blvd., MC HZ1-10, Houston, TX
77059-3556, USA.
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the variation in the beam’s optical path length (OPL) as it traverses the flow. The
(instantaneous one-dimensional) optical path length is defined by

OPL(t, x) =

∫ y2

y1

n(t, x, y) dy (1.1)

where n(t, x, y) is the index of refraction field along the (constant-x) path that the
beam travels (y1 to y2). Since, for air and most homogeneous gases, the index of
refraction is linearly related to the flow density, ρ (Goldstein 1983), a variable-density
flow is required to produce an optical aberration. In practice, rather than measuring
an (instantaneous) absolute OPL, the interferometer is used to measure the relative
difference in OPL across the aperture or optical path difference (OPD) defined as

OPD(t = t0, x) = OPL(t = t0, x) − OPL(t0), (1.2)

where the overbar denotes the spatial average over the aperture. It can be shown (see
Hugo 1995, for example) that the OPD is the conjugate (or inverse) of the optical
wavefront.

Also concerned with aero-optics are the designers of optical systems that must look
through variable-refractive-index flows. Such systems include missiles with optical
seekers, airborne telescopes, airborne laser communication platforms, and airborne
laser weapon systems. For systems like these, optical aberrations translate directly into
reductions in system performance. In general, the overall aero-optical effect can be
produced by several contributions, any of which can produce local density gradients.
In practice these include high-speed shear flows, separated flows, shocks, and local
flow accelerations produced by streamwise pressure gradients (Gilbert 1982). High-
Mach-number applications may also involve heat transfer effects or cooler, often
dissimilar-index fluids, used to cool exposed optical elements (Holden et al. 2000).
For all but the missile applications, the maximum flow Mach numbers involved
are approximately 0.6–1.0. The dominant unsteady cause of aero-optic distortions in
these cases is typically a turbulent boundary or shear layer composed of a single
constituent fluid (air, for example); in the case of a shear layer, both streams are
likely to share a common total temperature, T0, and to be static-pressure matched.
Aero-optics researchers have generally attributed the cause of the optical distortions
in this sort of flow to ‘compressibility’ since velocity-related density differences are at
work. This is despite the fact that many fluid mechanics researchers would consider
such subsonic flows to be essentially incompressible. This article will focus on such a
high-subsonic-Mach-number shear-layer flow.

Through the mid-1980s, the optical-system design approach was to attempt to
estimate the root-mean-square (r.m.s.) OPD degradation and develop a system which
could accept these losses (Jumper & Fitzgerald 2001). It has since been shown that
such methods can underpredict the aberrations produced by flows containing coherent
structures (Cicchiello & Jumper 1997). Now the research community is considering
the possibility of improving a system’s performance either by modifying the flow
field to reduce the distortion (Chew & Christiansen 1991) or by applying a real-time
correction using adaptive optics (Cicchiello & Jumper 1997). In any case, there is
a need to predict and characterize aero-optic aberrations during the system’s design
phase. Such predictions require an understanding of the fundamental flow mechanisms
which cause these optical distortions.

Prior to the present study, much work in aero-optics has involved low-speed
optically active flows. Until the development of the small-aperture beam technique
(SABT) sensor (Jumper & Hugo 1995), a device based on the realization by
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Malley, Sutton & Kincheloe (1992) that aero-optical aberrations convect with flow
structures, wavefront sensors with sufficient bandwidth for time-resolved time-series
measurements in transonic flows were unavailable. Thus, many previous researchers
(e.g. de Jonckheere et al. 1988; Chew & Christiansen 1991, 1993; Brooke et al. 1996;
McMackin et al. 1995; Masson et al. 1995; Jumper & Hugo 1995; Hugo & Jumper
1996; Hugo & McMackin 1996; McMackin et al. 1997; Luna, Truman & Masson
1997; Oljaca & Glezer 1997) have found dissimilar-index incompressible flows as the
practical choice for studying aero-optical effects. Likewise, numerical computations of
aero-optics using the compressible Euler equations have been run at Mach numbers
below ≈ 0.2 (Tsai & Christiansen 1990), presumably to reduce the computational
requirements and/or to match a specific laboratory experiment.

Dimotakis, Catrakis & Fourgette (2001) used a similar approach to experimentally
study aero-optical distortions created by shear layers with convective Mach numbers
Mc1 = 0.15, 0.54, and 0.96. Their shear layers were produced with helium or nitrogen
as the higher-speed flow mixing with a lower-speed ethylene flow. While the ethylene
and nitrogen were density-matched, the ethylene produced good Rayleigh scattering
of a laser light sheet projected through the flow. Photographs of the resulting flow
visualization effectively gave the instantaneous number density of ethylene in the flow
field. From the number density field, the index field could be deduced, and Dimotakis
et al. (2001) could compute the resulting wavefront distortion. Their reliance on
the number density of ethylene, however, while clearly incorporating Mach effects on
mixing, does not allow insight into the effects of velocity variations alone on wavefront
distortion.

Although such two-index flows are not strictly valid for the case considered in this
article, the similarities between the coherent structures in, e.g., incompressible and
compressible mixing layers (Brown & Roshko 1974; Papamoschou & Roshko 1986,
respectively) make it tempting to draw the conclusion that two-index flow experiments
might also be applied to their compressible single-constituent-fluid counterparts. In
fact, some researchers have already explicitly assumed this to be possible (Cicchiello &
Jumper 1997; Gardner et al. 1995). Others have implicitly made this assumption.
Chew & Christiansen (1991, 1993), for example, pointed to ‘compressibility’-caused
aero-optics as a research motivation while performing low-speed experiments. Tsai &
Christiansen (1990) used a compressible Euler code to study the time-resolved aero-
optics of a M = 0.2 shear layer. Since velocity-caused density differences at this Mach
number are negligible, their code modelled the mixing of constituent air streams at two
different densities, thereby producing a mixture of fluids with different initial index
of refraction. In their article, Dimotakis et al. (2001) proposed a beam-propagation
model in which the shear-layer index field is defined by three regions: the two outer
streams at their respective indices of refraction and the mixed region at a (weighted)
average of the two source indices. As will be discussed below, velocity fluctuations
and streamline curvature can produce greater variation in index than a two-index
model would suggest (with accompanying increases in wavefront distortion). A table
illustrating these differences will be presented in § 5.1.

One approach to computing the aero-optical aberration produced by a high-
subsonic-Mach-number shear layer would be to solve the unsteady Euler or Navier–
Stokes equations. A time series of realizations of the shear-layer density field could be
found using methods like those of Leep, Dutton & Burr (1993); Sandham & Reynolds
(1990, 1991); Vreman, Guerts & Kuerten (1997) (temporally developing shear layers)
or Hedges & Eberhardt (1993); Oh & Loth (1995); Liou, Lien & Hwang (1995)
(spatially developing shear layers). This approach yields a solution for the tested
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Figure 1. Schematic of AEDC test section, from Hugo et al. (1997).

conditions only, providing little insight into how the density field (and ultimately
OPD) will vary with changing initial/boundary conditions or the actual mechanism(s)
causing the density changes. Such insight can only be gained in this approach
through systematic parametric studies. An alternative to this brute-force approach is
to formulate a first-order theoretical model. Such a model has less ambiguity about
physical causes and effects, and its simplicity allows multiple cases to be quickly
analysed. This latter approach was followed for the present research. A simplified
multiple-mechanism model was generated by considering the assumed most-probable
contributors and comparing the resulting optical aberrations to observation (in this
case the experimental data obtained by Hugo et al. 1995, 1997, in a 0.8-Mach shear
layer).

The next section describes the Hugo et al. (1997) experiment, performed at
Arnold Engineering Development Centre (AEDC). In subsequent sections, first-order
compressibility mechanisms will be explored using a two-dimensional numerical flow
simulation that provided a common, time-varying, velocity field. After describing the
numerical model, the results of each overlaid physical mechanism will be compared
to the experimentally measured wavefronts.

2. AEDC weakly compressible-shear-layer experiment
The first time-resolved time-series measurements of optical wavefronts in a high-

subsonic-Mach-number shear layer were performed by Hugo et al. (1997). These
measurements were made in the modified Acoustic Research Tunnel located at
AEDC using the SABT wavefront sensor. The AEDC shear layer was produced
from a ≈ 0.8 Mach high-speed side mixing with ≈ 0.1 Mach low-speed side as
shown schematically in figure 1. The experiment’s high velocity ratio produced a high
entrainment rate and required the tunnel’s area to contract in order to maintain a
zero pressure gradient. The shear-layer splitter plate was planar and uniform in the
spanwise direction. For these tests, the unit Reynolds numbers for the slow and fast
streams were 1.4 and 12.7 × 106 m−1, respectively. As each stream was supplied from
a common plenum, they shared a common total temperature, T0 ≈ 27 ◦C. The static
pressure across the shear layer was constant and equal to the stream-matched static
pressure, ≈ 0.6 atm (Havener & Heltsley 1994).
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The test section had three observation stations. The first was centred on the trailing
edge of the splitter plate, and the remaining two were spaced 48.3 cm successively
downstream. Each station consisted of four viewing windows. Two were on either side
of the facility for viewing along the span of the splitter plate (as shown in figure 1).
The remaining two windows per station, one on top, the other on the bottom, allowed
optical access normal to the splitter plate. Hugo et al. (1997) used the SABT sensor
(Jumper & Hugo 1995) to measure one-dimensional optical wavefronts through these
latter windows. A more detailed description of the facility is given by Havener &
Heltsley (1994).

The flow in the AEDC facility was ‘compressible’ at least in the sense that density
variations did exist. The required fidelity of the model needed to simulate the AEDC
flow field is ultimately dependent on how ‘compressible’ the experimental flow was.
Shear layer ‘compressibility’ can be characterized by the convective Mach number
Mc1 of the largest flow structures. Mc1 is defined as (Papamoschou & Roshko 1988)

Mc1 = (U1 − Uc)/a1 (2.1)

where U is the velocity in the x-direction and the convection velocity Uc is given by

Uc =
a2U1 + a1U2

a1 + a2

, (2.2)

where a is the sonic speed, and 1 and 2 refer to the high- and low-speed streams,
respectively. For the conditions tested by Hugo et al. (1997) at AEDC, the high-speed
side of the shear layer was only M1 = 0.8; this means there were no shocks in the
flow. Additionally, with a low-speed side of 0.1 Mach, the convective Mach number
seen by the largest-scale two-dimensional coherent flow structures would be only
Mc1 ≈ 0.33 for this case (Papamoschou & Roshko 1986; Havener & Heltsley 1994).
The incompressible shear layer’s spreading rate can be defined in terms of the growth
with increasing x of the vorticity thickness given by (Brown & Roshko 1974)

δω =
U1 − U2

(∂U/∂y)max

. (2.3)

The vorticity thickness spreading rate, δω/x, for the AEDC Mc1 actually remains
unchanged from the incompressible case (Papamoschou & Roshko 1986). Other
measures of the shear-layer thickness have shown < 10% reduction in spreading
rate for the AEDC conditions (Papamoschou & Roshko 1986; Hall, Dimotakis &
Rosemann 1993).

Another measure of the compressibility is the fluctuating divergence, ∇ · u′, where
u′ is the fluctuating portion of the flow velocity resulting from a Reynolds-type
decomposition. According to Smits & Dussauge (1996), the ratio of the fluctuating
divergence to the magnitude of the velocity gradients of the energy-containing eddies,
u′/Λ, is given by

∇ · u′

u′/Λ
≈ 10(γ − 1)M2

t (2.4)

where γ is the ratio of specific heats for the gas, Mt = (u′2)1/2/ā is the turbulent Mach
number, and overbars signify time averages. For an AEDC-like flow field, Mt ≈ 0.09
whereby

∇ · u′

u′/Λ
≈ 0.03 � 1, (2.5)
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suggesting that the compressibility is weak and the fluctuating divergence might
be neglected (Smits & Dussauge 1996; Lele 1994). Since the AEDC flow was only
very weakly compressible, it appears that the density effects might reasonably be
decoupled from and neglected in the approximation of the velocity field for the
AEDC test conditions.

Experimental observations of compressible shear layers, within certain Mach-
number restrictions (such as those by Papamoschou & Roshko 1988; Hall et al. 1993)
have found the flow to be dominated by two-dimensional large-scale vortex structures
similar to those found in incompressible shear layers (Brown & Roshko 1974). The
planar velocity measurements of Olsen & Dutton (1999) showed that such structures
were even present in a (weakly compressible) supersonic shear layer. Additionally,
more-complete compressible numerical simulations have shown that changes in the
large-scale shear-layer-vortex structure do not occur at low Mc1 (Sandham & Reynolds
1990, 1991; Leep et al. 1993). These suggest that a two-dimensional velocity model
that captures the fluid mechanics of incompressible transitionally-turbulent shear
layers may reasonably approximate the velocity field of these largest two-dimensional
coherent structures.

To investigate the physical mechanisms which produce optical distortions in a
subsonic two-dimensional shear layer, optical wavefronts were computed using a two-
part numerical model. A time-varying two-dimensional velocity field was computed
for the AEDC test conditions. The corresponding density field (and index-of-refraction
field) was then modelled using the (input) velocity field. These models are described
in detail in the following two sections.

3. Velocity field model
The initial transitionally turbulent flow field in a shear layer is dominated by the

shear-layer rollup caused by the inviscid Kelvin–Helmholtz instability mechanism
(Thomas 1991). This rollup has been successfully simulated using various inviscid
and pseudo-inviscid methods (e.g. Tsai & Christiansen 1990; Ashurst 1979; Inoue
1985; Ghoniem 1990; Liou et al. 1995). The shear layer for the present study was
modelled using a two-dimensional discrete vortex method (DVM). One of the primary
advantages of using a DVM is that it is a reduced-order pseudo-inviscid method. As
such, the DVM is able to model the instantaneous shear-layer flow field with a fairly
small computational domain, thereby producing considerable computational savings.
A second advantage is the simplicity of the DVM model itself. This simplicity allows
insight into the cause-and-effect relations of the physics being modelled; such insight
was valuable during the development of aero-optical scaling laws reported elsewhere
(Fitzgerald & Jumper 2002b). DVMs are traditionally applied to fully incompressible
flows because they rely on the global influence a discrete vortex induces on the flow
field through the Biot-Savart law. Since the AEDC flow was only very weakly com-
pressible (§ 2), a compressible method was not required for the velocity-field model.

It is worth reviewing the extent to which DVMs in general, and the present
implementation in particular, properly model two-dimensional incompressible
transitionally turbulent shear layers. The DVM technique was first performed by
Rosenhead (1932). The method has been subsequently refined using finite-core point
(line) vortices (Chorin & Bernard 1973) and redistributing the vorticity by inserting
additional vortices as the vorticity-induced velocity fields spread the vortex elements
apart (Jumper & Hugo 1995; Beale & Majda 1985; Ghoniem, Heidarinejad &
Krishnan 1988). The modern implementations of DVMs are not strictly inviscid
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calculations since momentum diffusion can be modelled by a temporal growth in the
size of the rotational cores of the discrete vortices (Ashurst 1979; Hugo 1995). The
viscous core of each discrete vortex has an initial diameter δi that essentially models
the vorticity thickness at the splitter-plate trailing edge. More complete discussions
of discrete vortex methods are given by Leonard (1980) and by Ghoniem (1990).

The velocity fields for all cases of the present study were produced by a single
infinite two-dimensional shear layer modelled with discrete vortices in a manner
similar to Jumper & Hugo (1995). The splitter plate and shear layer near the plate
trailing edge were modelled by discrete vortices while the influences of vortices far
from the plate’s trailing edge were modelled analytically. The splitter-plate vortices’
positions were indexed by one temporally consistent position which, in effect, kept the
splitter-plate configuration fixed; once an individual plate vortex was indexed past the
trailing edge, it became another shear-layer vortex and was allowed to convect with
time due to the net induced velocity at its position produced by all the other vortices
in the model. The velocities on each side of the splitter plate, U1 = 261.04 m s−1 and
U2 = 34.7 m s−1, were chosen to match those of the AEDC shear layer. These yielded
an initial circulation density, γd = U2 − U1 = −226.34 m s−1, for the vortex sheet and
an imposed convection speed

Ucn = (U1 + U2)/2 = 147.9 m s−1. (3.1)

The initial vortex core radius δi/2 for the free vortices was varied to model different
splitter-plate boundary-layer thicknesses; during this study, δi/2 = 8.626, 17.25, and
34.5 mm. Holographic interferograms obtained during the AEDC experiments suggest
the experimental splitter-plate boundary-layer thickness corresponded to the δi/2 =
8.626 case (Havener & Heltsley 1994; Fitzgerald & Jumper 2002a). (No boundary
layer measurements were performed in the AEDC facility (R. Cayse, personal
communication 1998).) With an initial core diameter and a core growth rate function
based on the growth rate of a laminar shear layer (Fitzgerald 2000), the (instantaneous)
shear-layer discrete-vortex trajectories shown in figure 2 were produced.

The mean velocity profiles can be collapsed by suitably non-dimensionalizing the
velocity (Schlichting 1979)

U ∗ = (U − U2)/(U1 − U2) = [1 + erf(y∗)]/2 (3.2)

and the y-position (Samimy & Elliott 1990)

y∗ = (y − y0.5)/δω (3.3)

where y0.5 is the y-position where U = Ucn. Using this non-dimensionalization, the
computed mean velocity profiles compare well with both incompressible and weakly
compressible (Mc = 0.51) experimental measurements as shown in figure 3. DVM
profiles are shown at several x-stations; the agreement increases with increasing x.

Similarly, the r.m.s. streamwise and lateral velocity fluctuations as well as the
Reynolds stress can be compared to the corresponding experimental results as shown
in figures 4 and 5. In figures 4 and 5, the peak DVM values increase with increasing
x. Similarity of the DVM velocity fluctuation and Reynolds stress profiles would
be expected to occur at larger x than required for mean velocity profiles (White
1991). The variation in profile magnitude and shape with x suggests that similarity
conditions have not yet been reached for the δi shown. Even so, the DVM fluctuation
profiles seem more likely to produce similarity profiles more like those measured in
incompressible flows (i.e. like Wygnanski & Oster 1982) or the two-dimensional Euler
simulation of Liou et al. (1995) than those measured by Samimy & Elliott (1990) in
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Figure 2. DVM shear-layer rollup variation with initial thickness δi/2. Each curve is the
locus of discrete vortex centres. Dotted boxes show positions of fields used in aero-optical
computations (corresponding to observation stations 2 and 3 of the AEDC experiment).

a weakly compressible (but supersonic) shear layer. The disagreement between the
DVM and the high-speed experimental results could be due to Mach-number effects
not simulated in the incompressible DVM.
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Figure 3. Comparison of DVM mean velocity profiles (δi/2 = 34.5 mm) with experimental
measurements in incompressible(Wygnanski & Oster 1982)andweaklycompressible (Samimy &
Elliott 1990) shear layers.
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Figure 4. Comparison of DVM r.m.s. longitudinal (a) and lateral (b) velocity fluctuation
profiles (δi/2 = 34.5mm)withexperimentalmeasurementsinincompressible(Wygnanski & Oster
1982) and weakly compressible (Samimy & Elliott 1990) shear layers. The compressible-Euler
numerical result of Liou et al. (1995) is also shown.

The shape of the DVM’s longitudinal fluctuation profiles suggest this may be a
Reynolds-number issue. Similarly shaped profiles were obtained by Ashurst (1979)
in a DVM simulation and in the water tunnel experiments of Winant & Browand
(1974) and of Browand & Weidman (1976). Indeed, the present DVM result agrees
better with these latter data as shown in figure 6. The measurements of Winant &
Browand (1974) showed, in fact, that the magnitude of the central peak increased
with increasing x while the secondary peak (low-speed side ‘shoulder’, cf. figures 4
and 6) gradually disappeared, taking on a shape normally associated with fully
turbulent shear layers (Winant & Browand 1974). Such a local maximum on the
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Figure 5. Comparison of DVM Reynolds stress profiles (δi/2 = 34.5 mm) with experimental
measurementsinincompressible(Wygnanski & Oster 1982)andweaklycompressible (Samimy &
Elliott 1990) shear layers. The compressible-Euler numerical result of Liou et al. (1995) is also
shown.

low-speed side of the layer is predicted by the linear stability theory of Michalke
(1965) for spatially growing shear layers and suggests that the DVM behaves as if
the splitter-plate boundary layers were laminar. This behaviour of the longitudinal
velocity fluctuations may result because only eddies of size δi and larger are directly
simulated. Thus the poor agreement between the DVM’s turbulence profiles and the
high-speed experiment could be a Reynolds-number effect. It could also be that the
DVM better emulates the more truly two-dimensional shear layers that occur at much
lower Reynolds numbers than that of the AEDC shear layer.

The growth of δω with increasing x for the present numerical simulation is shown
in figure 7. The shear-layer growth rate for all initial core sizes is the same. Once the
shear layer’s thickness, δω, becomes large enough (versus vortex core size), the Kelvin–
Helmholtz instability can be resolved and shear-layer rollup begins. Upstream of this
point (for a given initial vortex core diameter), the instability cannot be spatially
resolved so δω ≈ δi . According to the empirical literature (Brown 1974), the shear-
layer growth rate at the AEDC Mc1 can be predicted using the relation

δ/x = Cδ

(1 − ru)
(
1 + s1/2

)
1 + rus1/2

, (3.4)

where ru = U2/U1, s = ρ2/ρ1 and the constant Cδ = 0.085 (Brown & Roshko 1974).
For the conditions tested at AEDC (ru = 0.132 and s = 0.89), (3.4) would predict a
growth rate of 0.128. The growth rate realized for the DVM, �δω/(x − x0) = 0.139
(with x0 = 0.06 m and effectively s = 1) is within 8.6% of this predicted value. As
such, the numerical simulation reasonably modelled the two-dimensional velocity field
of a subsonic weakly compressible shear layer.
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Figure 6. Comparison of DVM turbulence profiles (δi/2 = 34.5 mm, x = 0.6 m) with
experimental measurements in a water-tunnel shear layer by Browand & Weidman (1976).

4. Weakly compressible index model
The weakly compressible model developed during the present study was produced

by first considering the ‘conventional wisdom’ first-order cause for the density (i.e.
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Figure 7. Growth of the discrete-vortex shear layer in terms of vorticity thickness.

index of refraction) variation, that being the static temperature difference between the
low- and high-speed streams. When this mechanism failed to explain the measured
AEDC wavefront data, a second (and ultimately a third) mechanism were added
to model the next most-probable mechanisms. Since the optics calculation method
was common to all stages of the model development process, this section begins by
discussing the numerical optics procedure used for the weakly compressible cases,
followed by the index-of-refraction modelling itself and resulting optical aberrations.

4.1. Shear-layer optics

For a matched-total-temperature shear layer of a single constituent fluid (like that
tested at AEDC), all index-of-refraction field variations must be caused by the
physics associated with the velocity field. The optical distortion calculations were,
therefore, tied to the rectangular array of grid points at which a time series of
instantaneous realizations of the velocity had been computed by the DVM. Using the
index-of-refraction modelling described below, the instantaneous index field n(t, x, y)
was computed at each of the grid points. Optical aberrations (at each time step)
were then computed by numerically evaluating (1.1) using the computed n field and
a trapezoidal integration scheme. The total number of grid points was limited to
∼ 2048 points to keep the index field’s computational requirements reasonable (cf.
§ 4.3 below). The grid, therefore, had 32 streamwise points and 64 points in the beam-
propagation (y-)direction. A (streamwise) aperture of 20 cm was chosen to permit
good spatial resolution of the largest flow structures expected at AEDC stations 2
and 3 (cf. figure 2). This aperture was more than twice the AEDC experimental aero-
optical window dimension, although 20 cm matches the diameter of the schlieren-path
windows at each location shown in figure 1 (Havener & Heltsley 1994). Any index
model based on the velocity field will continue to produce optical distortions well
into the ‘free-stream’ regions of the flow because free-stream velocity differences
computed by the DVM exist out to large |y |. Since, even at double-precision machine
accuracies, long-pathlength integrations can accumulate errors to produce appreciable
OPD error (Cassady, Birch & Terry 1989), the numerical beam was only propagated
from y1 = −0.2 m to y2 = 0.2m for the present study. For the present DVM,
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integrating to 80 m was found to introduce machine and computational errors of
∼ 0.1 µm. By stopping the integration at y2 = 0.2 m, it is estimated that an error of less
than 0.008 µm has been introduced into the present OPD calculation. The integration
path length chosen also corresponded to the approximate height of the AEDC test
section at station 2 and ensured that approximate free-stream velocity conditions
were reached, based on station 3 mean velocity profiles. The positions and over-
all size of the aero-optical grids are compared to the DVM shear layers in figure 2.

To make direct comparisons with the AEDC experimental data, the numerical
wavefronts needed to be computed over the same (5 cm) aperture used in the
measurements. For these ‘reduced aperture’ cases described in § 4.2 and § 5.1.2 below,
only the portion of the full-aperture OPD result within the smaller aperture was
retained. A new OPL was computed over this new aperture, and the resulting OPD
was obtained using (1.2).

4.2. Adiabatic-heating and cooling mechanism

With a reasonable approximation to the weakly compressible two-dimensional shear-
layer velocity field provided by the DVM and a scheme to determine the optical
distortion found, the density changes (and concomitant index-of-refraction changes)
which produce aero-optic distortions still need to be modelled. As mentioned above,
the first layer of modelling (or ‘mechanism’) assumed that density differences resulted
from static temperature variations in the flow produced by Mach number variations
alone (Fitzgerald & Jumper 1998) as suggested by the experimental aero-optics
practice of estimating OPDs from hot-wire data (Rose 1978; Rose, Johnson & Otten
1982; Rose & Johnson 1982). This model was based on the reasonable assumption
of adiabatic flow since characteristic heat-transfer times due to local temperature
gradients are long compared to convection times. Thus, for the AEDC conditions
(common T0), the higher-speed stream would enter the shear layer with a lower static
temperature than the lower-speed stream. As the higher-Mach stream was slowed
by the mixing process, it would increase in temperature. Conversely, the lower-Mach
stream would decrease in temperature as it was accelerated by the higher-Mach
stream.

The density, temperature, and pressure can be related through the ideal gas law and
the energy equation (from the first law of thermodynamics). For unsteady adiabatic
flow of a perfect gas with negligible body forces (and neglecting viscous terms), the
energy equation is given by (Anderson 1990)

DT0

Dt
=

1

ρCP

∂p

∂t
, (4.1)

where T0 is the total temperature, CP is the specific heat at constant pressure, and p

is the static pressure.
To proceed further, some knowledge of the static pressure variation is required.

One approach would be to assume isentropic expansion/compression. There are two
difficulties with this approach. First, since a real turbulent shear layer is unstable,
irreversible and has energy losses through viscous actions, it seems unreasonable to
assume the flow is isentropic. Secondly, because the two streams are static-pressure
matched but at very different initial velocities, a total pressure mismatch exists across
the layer. Thus, at positions in the layer where the two streams would be in contact
and at approximately the same local velocity (e.g. on either side of a ‘braid’ connecting
two vortex rollers), isentropic relations would predict static pressure discontinuities
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of tens of kPa (several psi). If such pressure discontinuities occurred in real flows, the
shear-layer position would be deflected since the shear layer cannot support a cross-
stream pressure gradient. No such deflection has been observed in the experimental
literature (see e.g. Hall et al. 1993) Clearly, isentropic expansion/compression would
be a poor assumption.

The assumption of negligible fluctuating static-pressure change (p′ ≈ 0) has long
been used for compressible flat-plate boundary layers in non-hypersonic flows. This
assumption was originally made out of convenience in order to extract velocity
and static temperature data from hot-wire measurements of mass flux and total
temperature in compressible boundary layers (Kistler 1959; Kovasnay 1950). Later,
supersonic boundary layer measurements confirmed that for compressible boundary
layers, p′/p is small (Kistler & Chen 1963; Gross, McKenzie & Logan 1987).
Morkovin’s strong Reynolds analogy (SRA) also leads to this result (Morkovin
1962; Lutz 1989; Smith & Smits 1993; Lele 1994; Smits & Dussauge 1996). Making
the assumption that the static pressure across and through the shear layer is constant,
(4.1) becomes

DT0/Dt = 0. (4.2)

Equation (4.2) shows that for an inviscid flow with negligible pressure fluctuations, the
total temperature of a ‘turbule’ of fluid would remain constant as it navigates whatever
tortuous path it may in the shear-layer mixing process. Experimental evidence has
shown, in fact, that T0 fluctuations in non-hypersonic compressible boundary layers
and wakes are also small (Kistler 1959; Demetriades 1968; Meier & Rotta 1971). It
is interesting to note that if constant total temperature had been assumed instead, as
is the assumption of Cebeci & Smith (1974) for a compressible turbulent boundary
layer, based on experimental results of Kistler (1959), the consequence would have
been that the static pressure remained constant through the shear layer as shown by
(4.1).

Upon integration of (4.2), the following relationships for static temperature, T , in
terms of the (constant) total temperature T0, and local velocity, respectively, are

T = T0 − | V |2
2CP

= T0 +
(1 − γ ) | V |2

2γR
, (4.3)

where CP = Rγ/(γ − 1) and the gas has been assumed to be piecewise calorically
perfect. Equivalently, (4.3) can be written in terms of Mach number, M = | V |/
(γRT )1/2 as

T = T0/

[
1 +

(γ − 1)

2
M2

]
(4.4)

which is the definition of total temperature. Once the local static temperature is
known, the local density may be found through the perfect gas law, since the static
pressure through the shear layer has been assumed to be a constant. Finally, the local
index of refraction can be determined using the Gladstone–Dale constant, KGD , from
(Goldstein 1983)

n = 1 + ρKGD. (4.5)

By (4.3)/(4.4) and (4.5), this ‘adiabatic heating/cooling’ mechanism presumes that
fluctuations in the velocity/Mach numbers in the shear layer will produce sufficiently
high local temperature gradients that these alone could explain the OPD patterns
Hugo et al. (1997) had measured at AEDC. At the beginning of this research,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

95
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004009553


Optical distortion in an incompressible shear layer 167

1.0

0.5

0

–0.5

–1.0
1.2

0.8
0.4

0 0
2

4

O
pt

ic
al

 p
at

h 
di

ff
er

en
ce

 (
µ

m
)

(a)

1.0

0.5

0

–0.5

–1.0
1.2

0.8
0.4

0 0
2

4

(b)

Elapsed time (ms) x (
cm

) Elapsed time (ms) x (
cm

)

Figure 8. Comparison of wavefronts (a) computed using the ‘adiabatic heating/cooling’ index
mechanism with (b) AEDC station 2 measurement as re-reduced by Fitzgerald & Jumper
(2002a) using a 750Hz high-pass filter.

(a) (b)

Figure 9. Experimental schlieren photograph of free shear layer shed from a cylinder in a
M = 0.6 flow. Shear layer (a) and detail of two ‘rollers’ (b) marked by the rectangle in (a).
(From Weston & Jumper 2002.)

this mechanism looked promising. The AEDC conditions would produce a 30 ◦C
temperature difference between the two streams with a corresponding fractional
density difference, �ρ/ρ = 0.12. As shown in figure 8, the optical distortion resulting
from this mechanism was fairly small and of the same order of magnitude as
suggested by the model of Dimotakis et al. (2001); however, the measured AEDC
optical distortions were almost an order of magnitude larger than either prediction (cf.
table 1, § 5.1). In order to further assess this discrepancy albeit on a qualitative basis,
simulated schlieren images were computed from the index-of-refraction field n(t, x, y)
using the method of Goldstein (1983). The resulting schlierens, while showing some
hint of flow structure at high contrast, lacked the more detailed structure character
of ubiquitously available schlieren images for this flow regime. An example of such
an experimental schlieren is shown in figure 9 for a free shear layer produced

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

95
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004009553


168 E. J. Fitzgerald and E. J. Jumper

by Mach 0.6 flow separating off a bluff body (Weston 1982; Weston & Jumper
2002). This example was chosen because the fluids on both sides of the shear
layer were known to be air at a matched T0; the visibility of the structures in the
schlieren has not been enhanced by mixing fluids of differing index of refraction. Such
comparisons suggested that single-constituent shear flows can indeed produce optical
distortions larger than those predicted by the adiabatic heating/cooling mechanism
alone.

Since the adiabatic heating/cooling mechanism cannot produce OPD amplitudes of
the same order as those measured at AEDC, then the SRA cannot be used for density
predictions in subsonic nearly incompressible free shear layers. That the SRA breaks
down for free shear layers has been suggested by several researchers (including Smits
& Dussauge 1996; Lele 1994; Shyy & Krishnamurty 1997; Freund, Lele & Moin
2000); however, it continues to be extensively used when no practical alternative is
available (see Smits & Dussauge 1996, for several examples). In fact, an SRA-type
assumption is implicit in the scale sizes included in typical mixing-length- or eddy-
viscosity-based turbulence models used in numerical computations; thus such models
cannot predict the density variations produced by coherent structures (Cassady et al.
1989). Since adiabatic heating/cooling did not explain the experimental observations,
other possible physical causes were examined.

4.3. Mechanical-balance mechanism

Even a casual examination of the velocity field in a frame moving with the convecting
shear layer, as shown in figure 10 produced from the DVM, demonstrates an important
contribution that has often been neglected by other researchers. Notice in figure 10
that the velocity field contains, not unexpectedly, considerable curvature. Similar
streamline curvature is also evident in the velocity fields measured by Koochesfahani,
Cohn & MacKinnon (2000) using laser-induced fluorescence (LIF) and molecular
tagging velocimetry (MTV) and shown in figure 11. A simple analysis of a fluid
in solid-body rotation (see Kuethe & Chow 1998, for example) yields an estimated
concomitant pressure difference of approximately −14 kPa (−2 psi) for the AEDC
conditions; clearly an assumption of negligible pressure fluctuations in this weakly
compressible shear layer cannot be correct. Jones et al. (1979), for example, measured
significant pressure fluctuations in a 0.45-Mach jet flow. The significance of pressure
fluctuations in a separated shear layer or turbulent boundary layer was also apparent
in other experimental (Cantwell & Coles 1983) and numerical studies (Sandham &
Reynolds 1991; Leep et al. 1993; Chacı́n & Cantwell 2000; Freund et al. 2000). In fact,
researchers using numerical turbulence simulations often choose pressure contours as
a way of visualizing/identifying coherent turbulent structures (Sandham & Reynolds
1991; Leep et al. 1993; Chacı́n & Cantwell 2000; Freund et al. 2000).

A close approximation to the pressure distribution corresponding to a known (from
the DVM) time-varying two-dimensional velocity field can be computed by integrating
the unsteady Euler equations:

∂p

∂x
= −ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
(4.6)

and

∂p

∂y
= −ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
, (4.7)
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Figure 10. DVM velocity field as seen in a reference frame moving at convection velocity,
Ucn = (U1 + U2)/2. Locus of DVM shear-layer discrete-vortex centres is also shown. (AEDC
conditions, station 2 aperture, δi/2 = 17.25 mm.)

because the viscous terms in the Navier–Stokes equations are four orders of magnitude
smaller than the terms in (4.6) and (4.7). The partial derivatives on the right-hand
sides of (4.6) and (4.7) were computed using a four-point central-difference scheme.
Assuming (for the moment) that the density is known and independent of pressure,
(4.6) and (4.7) yielded slopes to be integrated (∂p/∂x, ∂p/∂y) at each point of a
32 × 64-point computational grid. The pressure field was then determined using the
biquadratic spline formulation of Southwell (1980) to least-squares-fit a pressure
‘surface’ to the (4.6) and (4.7) slopes.

A first estimate of the (unknown) ρ(t, x, y) in (4.6) and (4.7) was determined
using the perfect gas law assuming p∞ = 0.6 atm everywhere (the AEDC facility’s
free-stream pressure given by Havener & Heltsley 1994) with T given by the
temperature field determined using only the adiabatic heating/cooling mechanism
of § 4.2 (equation (4.3)). This provided an initial estimate of the ρ(t, x, y) field, from
which the new pressure field could be computed. In point of fact, the pressure surface
thus computed provided a solution which is the zero-mean pressure fluctuation
p′(t, x, y) (i.e. satisfied the pressure gradient field but was not anchored to any mean
pressure). The corrected-mean pressure was found by adding this p′(t, x, y) to p∞
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Figure 11. Two realizations of simultaneous velocity–concentration measurements in a
turbulent two-stream shear layer. (a) LIF image (not processed), and (b) velocity/vorticity
fields from MTV. Vorticity is shown in flooded contours and velocity field is in the shear-layer
convection frame (from Koochesfahani et al. 2000).

(the non-zero constant of integration). With this new pressure field p(t, x, y) and the
original T (t, x, y), a new ρ(t, x, y) was computed. This iteration process was repeated
until ρ(t, x, y) converged, usually in less than 5 iterations.

Southwell’s method had no way to impose the boundary conditions across the layer,
namely, that p = p∞ at large | y |. These y-boundary conditions were imposed by
removing any net ∂p/∂y at each x-station after the solution of p(t, x, y) and before
the new ρ(t, x, y) was computed for the next iteration.

4.4. ‘Rancque–Hilsch’ mechanism

Up to this point, it has been assumed that the total temperature T0(t, x, y) = constant
in (4.3), as suggested by the initial adiabatic heating/cooling presumption. Recall
from § 4.2 that the origin of (4.3) was the energy equation for an unsteady adiabatic
flow with negligible body forces given by (4.1). In § 4.2, ∂p/∂t was assumed negligible
as suggested in the literature; however, as was shown in § 4.3, ∂p/∂t cannot be zero.
The effect of ∂p/∂t on the total temperature is clearly present in results computed as
described in § 4.3.
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Figure 12. Gray-scale contours showing spatial variation of DT0/Dt at three successive time
steps (a–c). The star approximately marks the position of a fluid particle as it convects
through the flow field. AEDC conditions, station 3 aperture, δi/2 = 35.6 mm. Between frames,
�t = 0.137 ms; overall period = 0.274 ms. Dashed line marks locus of discrete-vortex centres,
and contour values are in thousands of ◦C s−1.

DT0/Dt represents the change in T0 that a ‘turbule’ of fluid would experience as
it moves through the flow. Using the pressure field p(t, x, y) computed as above, the
DT0/Dt field was computed for several time steps. This produced regions of positive
and negative DT0/Dt as shown in figure 12. The large star in figure 12(a–c) is moving
at approximately the local flow velocity to mark the position of a ‘turbule’ of fluid
at successive time steps. The fact that the ‘star’ starts and remains within a region
of large positive DT0/Dt (as a similar ‘star’ would remain within a region of large
negative DT0/Dt) suggests that the total temperature of individual fluid ‘turbules’
would change with time. Such changes in T0 could produce ‘hot’ and ‘cold’ spots in
the flow field where |�T0 | approached 100 ◦C (for ‘turbules’ that had travelled the
length of the test section). (The contributions of the viscous terms neglected in (4.3) are
three orders of magnitude smaller than ∂p/∂t .) Such T0 separations are reminiscent of
those seen in a Ranque–Hilsch or ‘vortex tube’ (see e.g. Hilsch 1946; Kurosaka 1982).
Analysis applied to such vortex tubes suggests a more correct method of computing
the static temperature field to be used in the pressure/density iteration-loop solution
of (4.6) and (4.7).

This total-temperature-separation effect was modelled by overlaying another
iteration loop on the pressure/density iteration. After ρ(t, x, y) had converged, the
new loop modified the static temperature field T (t, x, y) based on the isentropic
relation (Anderson 1990; Hilsch 1946)

T (t, x, y)

Tad(t, x, y)
=

[
p(t, x, y)

p∞

](γ −1)/γ

(4.8)

where Tad(t, x, y) was given by (4.3) with T0 = 27 ◦C, as reported for the AEDC
test (Havener & Heltsley 1994). A new ρ(t, x, y) was then computed, and the
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Figure 13. Effect of T0 iteration loop on computed OPD. AEDC conditions, station 3
aperture (x = 0.866–1.066m), δi/2 = 35.6 mm, time step =600.

density-iteration cycle was rerun. From the new converged pressure/density fields,
T (t, x, y) was recomputed using (4.8) and the process repeated until both temperature
and density had converged at each time step. It should be noted that (4.8) produces
the maximum theoretical change to the temperature field for a given pressure change
(Hilsch 1946); the effect of (4.8) is to reduce the distortion amplitude due to the
pressure/density iteration alone by as much as 35% as shown in figure 13. As
was discussed in § 4.2, the flow is not expected to be isentropic. Thus, the actual
OPD would be expected to lie somewhere between the two extremes represented by
computations using the pressure/density iteration with and without the T0 iteration.
Figure 13 also shows how the addition of the mechanical pressure model changes
OPD from the constant-static-pressure case considered in § 4.2. For the same velocity
field, incorporating the pressure balance (both with and without the Rancque–Hilsch
mechanism) significantly increases the amplitude while changing the sign of the
distorted wavefront.

In that which follows, the full range of mechanisms discussed to this point (i.e.
adiabatic heating/cooling, mechanical balance, and Rancque–Hilsch mechanisms)
were adopted and will be referred to as the ‘weakly compressible model’.

5. Weakly compressible simulation results
5.1. Large-scale distortions

The weakly compressible index-of-refraction model described in the previous sections
produces index-of-refraction fields quite different from those typically seen when
two incompressible fluids of different index (or different constituent fluids at high
speed) are mixed. Such a ‘two-index’ flow typically has fairly distinct regions of
mixed and unmixed flow where the mixed region has an index varying between
the two unmixed values (Dimotakis et al. 2001). Figures 14 and 15 give a series of
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Figure 14. Locus of discrete-vortex centres showing DVM shear-layer evolution. AEDC
conditions, station 2 aperture (x = 0.383–0.583m), δi/2 = 8.625 mm. Between frames, �t =
0.2167 ms; overall period = 1.0833ms.

discrete-vortex position maps, and the respective index-of-refraction fields that result
from the weakly compressible model for a shear layer at the AEDC conditions.
Unlike two-index cases, the model produces an index field that smoothly varies with
the velocity field. As is clearly shown in figure 15, the weakly compressible model also
expands the range of indices of refraction occurring in the flow field. The free-stream
index values for the AEDC flow are (n1 − 1) × 105 = 18.07 and (n2 − 1) × 105 = 16.08
while (n − 1) × 105 reaches 18.42 along vortex ‘braids’ and 14.67 in the centre of the
‘rollers’. Thus, the weakly compressible model produces �n of 3.7×10−5 while the �n

between the high- and low-speed streams is only 2 × 10−5. Estimates based on the
free-stream �n would significantly underpredict the true optical distortion, as shown
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Figure 15. Weakly compressible model index-of-refraction fields shown as gray-scale contours.
Contour values are (n − 1) × 105. AEDC conditions, station 2 aperture (x = 0.383–0.583m),
δi/2 = 8.625 mm. Between frames, �t = 0.2167 ms; overall period = 1.0833ms.

in table 1. Since optical system performance drops exponentially with the square of
OPD (Jumper & Fitzgerald 2001), these OPD underpredictions would translate into
system performance overpredictions of two orders of magnitude or more, depending
on the optical wavelength used by the system.

As alluded to in § 4.4, the instantaneous pressure distribution was the most
significant factor in the resulting index (i.e. density) calculation. At a given time
step, the static pressure varied by as much as 15 kPa throughout the field. A rough
estimate of the r.m.s. pressure fluctuations at the centre of the shear layer, p′

rms/ρ/U1
2,

varied from 0.06 to 0.12 for the δi studied (the large variation can be attributed to
an insufficient number of time steps for any δi to compute a true average). This is
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2-index Dimotakis Constant p Weakly AEDC
mixing et al. (2001, § 5) (adiabatic �T ) compressible experiment,
model model model model station 2

(nmax − 1)105 18.0706 18.0706 18.9321 18.4314 –
(nmin − 1)105 16.0768 16.0768 16.0571 14.7629 –
OPDmax(µm) 0.339 0.241 0.310 1.323 1.340

Table 1. Comparison of maximum and minimum indices of refraction and resulting OPDs
computed using different n models together with AEDC experimental results. All models
applied to the same DVM time step. (AEDC free-stream conditions: M1 = 0.8, M2 = 0.1,
n1 = 1.0001807, and n2 = 1.0001608).

the same order as the 0.03 measured by Jones et al. (1979) for their slower M = 0.45
shear layer and as the 0.05 predicted by Freund et al. (2000) in their direct numerical
simulation of an Mc1 = 0.41 annular jet. More recent unsteady pressure measurements,
specifically motivated by the present study, have also been made; in this case, the
pressure signals were matched to the passage of coherent structures and showed
time-resolved pressure fields of similar character and magnitude to those predicted
by the weakly compressible model (Chouinard et al. 2002).

The weakly compressible model was successful in reproducing the gross features of
schlierens like figure 9. Figure 16 illustrates the simulated schlieren images that result
from these index fields (assuming a horizontal blade edge). Figures 14–16 correspond
to AEDC station 2 and δi/2 = 8.625 mm at the splitter plate. While no attempt has
been made to match contour levels, a comparison of figure 16 with figure 9 shows
that the full weakly compressible model produces distinct visible vortex structures in
a schlieren, qualitatively like the shed vortices shown in the experimental image. In
this sense, the model seems to capture the correct character of a nearly incompressible
free-shear layer.

When OPDs are constructed from propagating an optical beam through the
simulated n fields, wavefront aberrations corresponding to the shear layer’s ‘braids’
and ‘rollers’ result. Figure 17 shows a time series of wavefronts generated by beam
propagation through the time series of index fields (figure 15). A close comparison of
figures 14–17 reveals that the valleys in figure 17 correspond to the vortex ‘rollers’ and
the peaks to the ‘braids’. The amplitude and streamwise wavelength of the distortions
are proportional to the size of each individual ‘roller’ and change with the roller’s
temporal evolution. For the various cases examined during the present study, structure
sizes of the OPDs varied from 6 to 20 cm, depending on the time window within the
series, over the model’s 20-cm aperture. This large aperture allows the large-scale
OPD structures to be adequately defined.

5.1.1. Initial shear-layer thickness effects

An important result of the weakly compressible numerical simulation is the
independence of the amplitude of the large-scale OPDs at a given aperture location
(i.e. x-position) from the initial splitter-plate boundary-layer thickness (modelled in
the DVM by δi/2). This is strikingly shown by station 3 results. Figure 18 shows
the discrete vortex maps for two different δi with the resulting pressure and index-
of-refraction fields. The largest-scale structure in each case is of similar size and
position (relative to the aperture). The resulting pressure and index fields are also
quite similar; in these cases, the smaller vortex cores of the δi/2 = 17.54 mm case allow
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Figure 16. Simulated schlieren images of weakly compressible-model index-of-refraction
field (horizontal knife edge). AEDC conditions, station 2 aperture (x = 0.383–0.583m),
δi/2 = 8.625 mm. Between frames, �t = 0.2167 ms; overall period = 1.0833ms.

more detailed definition of the large-scale structure. It is not a surprise then that the
resulting wavefronts in both cases match very closely as shown in figure 19. Thus at a
sufficiently large x-location (i.e. following shear layer rollup and subsequent pairings)
the largest-scale aero-optical effects are essentially independent of the initial splitter-
plate boundary-layer thickness, assuming the initial thickness is small enough that
rollup does occur. This has several practical implications for the aero-optics problem.
First, if one is trying to simulate the shear layer, there is no significant increase in
simulation fidelity using smaller vortex cores; therefore, larger core sizes can be used to
reduce computational demands of the model. Similarly, other computational methods
applied to aero-optical problems (such as large-eddy simulations) need only model the
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Figure 17. Optical wavefront distortions created by weakly compressible model, AEDC
station 2, initial δi/2 = 8.625 mm.

largest relevant flow structures. Secondly, it suggests two different potential distortion-
mitigation strategies. Since large-scale structures produce the largest degradation on
the far-field focusing of the beam (Cicchiello & Jumper 1997), one could try to
thicken the splitter-plate boundary layers, thereby delaying the onset of the large-
scale structures to beyond the aperture, albeit with a probable increase in small-scale
distortions due to the large turbulent boundary layer feeding into the shear layer.
Another strategy would be to use some sort of shear-layer control to regularize the
vortex rollup, thereby making it amenable to some form of adaptive-optic correction
(Gad-el-Hak & Blackwelder 1987; de Jonckheere et al. 1988). If the aperture was far
enough downstream from the splitter-plate trailing edge, this latter option might be
the only one available.

5.1.2. Aperture effects

As discussed in Fitzgerald & Jumper (2002a), the AEDC experimental test aperture
would have served as a high-pass spatial filter with a 5-cm cut off because the
test aperture was smaller than these structures. The effect of reducing the weakly
compressible model OPD aperture to 5 cm is illustrated in figure 20. This figure used
the same data as figure 17 except that the OPD was computed over a 5-cm aperture
with the same centre as in figure 17. The large structures of figure 17 appear only as
a large-amplitude time-varying tilt aberration. A large-scale tilt of similar frequency
and amplitude was also seen in the AEDC measurements presented by Fitzgerald &
Jumper (2002a) (after showing that the corner frequency of the high-pass vibration-
removal filter discussed in Hugo et al. 1995, could be reduced from 2500 Hz to 750 Hz
without corrupting the AEDC data) that were reproduced in figure 8. It is interesting
to note that the best comparison between the model and experiment occurred for the
DVM case using the smallest splitter-plate boundary layer feeding into the shear layer;
that is, the case most closely approximating the experimental conditions. This best
comparison is most likely happenstance only, however, attributable to a better match
in shear-layer structure sizes, spacing, and (lack of) pairing within the aperture during
the few milliseconds simulated. A comparison between the wavefronts predicted by
the smaller two δi DVM cases for similar-sized flow structures (discussed in § 5.1.1)
produced good agreement for both δi .
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Figure 18. For caption see facing page.
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Figure 19. Comparison of wavefronts resulting from weakly compressible shear layer with
different splitter-plate boundary-layer thicknesses (AEDC conditions, station 3 aperture).
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Figure 20. Figure 17 data (station 2, δi/2 = 8.625mm) recomputed over reduced
(Hugo et al. 1997) aperture.

Figure 18. Weakly compressible-shear-layer simulation with two different splitter-plate
boundary-layer thicknesses: δi/2 = 17.25 mm (left) and δi/2 = 34.5 mm (right) (AEDC
conditions, station 3 aperture). (a) Index-of-refraction fields, (b) static-pressure fields, (c) locus
of discrete-vortex positions.
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Figure 21. Variation of OPL removed in OPD calculation with time for experimental
reconstruction (beam spacing = 2.54 cm, high-pass filter= 750 Hz) and weakly compressible
model (δi/2 = 8.626 mm), AEDC Station 2.

Another way of comparing the large-scale structures computed by the weakly
compressible model and the AEDC data is by examining OPL(t). As discussed in
Fitzgerald & Jumper (2002a), the average OPL over the aperture would be expected
to change at a frequency corresponding to ≈ Ucn/Λ where Λ is a measure of the
flow-structure size. A comparison of OPL(t) for the cases in figures 8 and 20 is shown
in figure 21. The agreement in OPL(t) between the two cases is quite good. Figures 8
and 20 suggest that the weakly compressible model reasonably simulates the aero-
optical distortion produced by the largest-scale flow structures. It should be noted
that when these larger structures are considered (as would be necessary for apertures
like the 20-cm aperture of figure 17), the OPD peak-to-peak aberration over the large
aperture would be considerably larger than the approximately 0.8 waves originally
reported by Hugo et al. (1997) (for wavefronts with the largest-scale structures filtered
out).

5.2. Small-scale distortions

The major difference in the character of figures 20 and 8 is that the jagged character
of the AEDC experimental data is not present in figure 20. The absence of finer-
scale structure on the wavefronts in figure 20 was not initially an intuitive result.
Figure 14(d ), for example, shows a single instant in time for the shear-layer rollup;
the tight wrapping of the curve is indicative of many vortex pairings. When mixing
two incompressible fluids of differing index of refraction (i.e. two-index mixing), these
complicated patterns of the dissimilar-index mixing produce sharp changes in the
OPD. In the weakly compressible-shear-layer simulations, it was originally expected
that pairing would mix multiple high-curvature swirling pockets within a larger
swirling flow field. This would lead to multiple (relative) low-pressure regions. In fact,
this mixing of the vortices produced a smooth swirling velocity pattern that gave
an appearance more like one larger vortex (figure 10), thus producing a relatively
smooth but deeper static pressure well as shown in figure 22. Such a smoothly varying
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Figure 22. Instantaneous loci of discrete-vortex positions and static-pressure fields computed
from DVM velocity fields. AEDC conditions, station 2 aperture, δi/2 = 17.25 mm. (a) Prior to
pairing and (b) following multiple pairings.

velocity pattern is also shown in the velocity fields measured by Koochesfahani et al.
(2000) using LIF/MTV (figure 11). While averaging of tag velocities in the vicinity
of each grid point is inherent in the MTV method, the pairing vortices in the second
column of figure 11 produce a single swirling velocity region much like that of the
DVM (cf. figure 10).

This lack of appreciable smaller-scale structure does not appear to be an artifact
of insufficient velocity-field grid resolution. To investigate the effect of grid spacing
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Figure 23. Effect of grid spacing on index-of-refraction fields. Index fields shown as gray-scale
contours (labels removed for clarity). AEDC conditions, station 2 aperture, δi/2 = 17.25 mm.
(a) Locus of discrete-vortex positions, (b) standard grid, (c) reduced grid spacing.
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Figure 24. Effect of grid resolution on wavefront.

(h), a test case (using DVM results for δi/2 = 17.25 mm) was recomputed with a new
grid spacing of h/2. The resulting index fields for both grid spacings are compared
in figure 23. The increased resolution does improve the index field definition but
does not appreciably change the result. There is also little appreciable change in the
corresponding wavefront, as shown in figure 24. The increased wavefront resolution
reveals no additional small scales. This is ultimately due to the smoothly varying
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Figure 25. AEDC station 1 experimental wavefront reconstruction:
beam separation δ = 2.54 cm. High-pass filter: 750 Hz.

velocity field that was illustrated in figure 10. The only disagreement between the
two wavefront results is at either end of the reduced grid’s smaller aperture; the
divergence between the two results in this case is an artifact caused by the insufficient
x-dimension to resolve the pressure influences of the flow structures just outside the
aperture.

Given that the weakly compressible numerical model reasonably simulates the
large-scale distortions, it is left to understand the source of the small-scale distortions
apparent in the AEDC wavefronts of figure 8. There are at least two potential
contributors to the discrepancy. The first is that the DVM may not have adequately
simulated the high Reynolds number of the AEDC flow. The DVM directly simulated
two-dimensional vortices of diameter δi and larger while indirectly simulating those
at the smallest scales (through growth of the vortex cores). Moreover, the DVM could
not simulate three-dimensional shear-layer flow structures. At the AEDC Reynolds
numbers, turbulence scales that are a fraction of δi and/or are created by three-
dimensional flow structures (e.g. streamwise vortices in the ‘braids’ between ‘rollers’)
could also be important. A simple solid-body-rotation vortex model would suggest,
however, that an unrealistically high velocity difference would be required across a
single small-diameter vortex to produce the 0.15-µm-amplitude aberration of spatial
scale 1–2 cm that is typical in the AEDC experimental data. Due to the small
longitudinal extent of these distortions, it would probably take a combination of
several small flow structures (e.g. vortices) crossing the same optical ray at a single
instant. In addition, fairly large velocity differences are required across each such
vortex (∼ 150 m s−1) in order to produce the measured distortion amplitudes. Without
such high velocity differences, the smaller-δi vortices would produce more subtle
changes to the wavefront curvature (cf. figure 19) as opposed to distinct smaller-scale
wavefront structures. Since OPD is an integral quantity, the number and size(s) of
contributing flow structures cannot be deduced from the wavefront alone.

A second contributing explanation for the small-scale structures could be
unintended flow ‘contamination’ of the optical signal by the test apparatus. Such
a cause for the small-scale wavefront structures is suggested in the wavefront data
measured over the 5-cm aperture starting 3.575 cm downstream of the trailing edge
of the splitter plate (AEDC station 1 aperture). Figure 25 is a typical time series of
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Figure 26. AEDC station 2 wavefronts produced by superposition of weakly compressible
model results (figure 20) and station 1 experimental data (figure 25).

wavefronts measured at this location. Since shear-layer rollup may be ruled out at
the beginning of the station 1 test aperture, and the structures are convecting at a
velocity consistent with the shear-layer convection velocity, one explanation is that
variant-density-flow structures produced by the boundary layer on the splitter plate
were fed into the shear layer (see Fitzgerald & Jumper 2002a , for a full discussion).
An additional and more likely source of small-scale distortions would be the turbulent
boundary layer on the window in the high-speed wall of the test section. Both the
splitter-plate and high-speed-wall boundary-layer thicknesses are of the same spatial
order as the small-scale wavefront structures; moreover, a solid-body-rotation vortex
model suggests that the velocity difference across the boundary layer is high enough
to generate the small-spatial-scale distortions found at both stations 1 and 2. In
either contamination scenario, distortions similar to those in figure 25 would be
superimposed on the large-scale distortion.

To investigate these possible distortion mechanisms, the aberrations shown in
figure 25 were linearly superimposed on the numerical results of figure 20 to produce
figure 26. The simulated wavefronts in figure 26 have similar structure wavelengths
to the experimental wavefronts of figure 8 as shown in figure 27. While the simulated
structure amplitudes admittedly appear smaller than those in the corresponding
experiment, it is clear that variant-density flow structures that had been entrained
into the larger-scale swirling eddies of the shear layer and/or due to the turbulent
boundary layer on the tunnel window would contribute to production of small-scale
distortions. The fact that the small-spatial-scale distortions at the station 2 position
suggest a growth in amplitude from the station 1 measurement is more consistent with
wavefront contamination by passage through the turbulent boundary layer over the
tunnel window on the high-speed side. This suggestion is further strengthened by a
recent detailed study by Gordeyev et al. (2003) of the aberrating character of attached
turbulent boundary layers at Mach numbers ranging through those of the AEDC test.
Gordeyev et al. (2003) found that high-spatial-frequency turbulent-boundary-layer-
flow structures produced OPDs with amplitudes and spatial scales consistent with the
AEDC data.
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Figure 27. Comparison of individual AEDC station 2 experimental wavefront (from figure 8)
with numerical simulation and superimposed station 1 wavefront (from figure 26) at
corresponding time step.

6. Conclusions
The near incompressibility of a shear-layer flow field like that of the AEDC

experiment suggested that the velocity field could be reasonably modelled by a two-
dimensional discrete vortex model. Since the velocity field was known from the DVM,
the instantaneous static pressure, temperature, and density fields could be obtained
from the unsteady Euler equations (and an isentropic expansion correction) using
a double iteration scheme. The resulting index field gave rise to simulated schlieren
photographs similar to those ubiquitously reported in the experimental literature.
Contrary to the authors’ original expectations (Fitzgerald & Jumper 1998), pressure
fluctuations associated with streamline curvature were a dominant influence on the in-
stantaneous density field, producing index-of-refraction variations larger than the
difference in free stream indices. Estimation techniques using only free stream �n

would thus significantly underpredict the distortion produced by the shear layer in
the present study as shown in table 1.

The wavefronts generated by the numerical simulation appear to capture the large-
scale aero-optical distortions measured by Hugo et al. (1995, 1997) at AEDC. The
simulation could not, however, account directly for the small-scale distortions noted in
the experimental results. The lack of small-scale distortions may be due to limitations
in the modelling of three-dimensional and/or Reynolds-number effects. In addition,
AEDC station 1 experimental wavefront data suggest that the compressible turbulent
boundary layer on the optical access window in the tunnel wall contributes to these
small-scale structures. Other contributors to these distortions may include variant-
density flow structures fed into the shear layer from the splitter-plate boundary layer
(see Fitzgerald & Jumper 2002a). Given an estimate of the small-scale-structure
amplitude and wavelength, a first-order simulation of the data can be made by
superimposing such distortions onto the large-scale distortion predicted using the
numerical model.
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The success of the numerical model in matching the AEDC measurements suggests
the dominant distortion mechanism in a very weakly compressible shear layer to be the
pressure change accompanying the layer’s rollup (i.e. the organized two-dimensional
coherent structures in the layer). If dedicated experiments can confirm these results,
it follows that the dominant spatial frequencies of the aberrations may be lower than
suggested by previously published AEDC data.
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