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Abstract

We define a new family of multivariate stochastic processes over a finite time hori-
zon that we call generalised Liouville processes (GLPs). GLPs are Markov processes
constructed by splitting Lévy random bridges into non-overlapping subprocesses via
time changes. We show that the terminal values and the increments of GLPs have gen-
eralised multivariate Liouville distributions, justifying their name. We provide various
other properties of GLPs and some examples.
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1. Introduction

Lévy random bridges (LRBs) – Lévy processes conditioned to have a fixed marginal law at
a fixed future date – have been applied to various problems in credit risk modelling, asset pric-
ing, and insurance (see e.g. [3], [4], [5], [6], and [15]). In [16], the authors present a bivariate
insurance reserving model by splitting an LRB (in this case based on the 1/2-stable subordina-
tor) in two. The two subprocesses are transformed to span the same time horizon, and are used
to model the accumulation of insurance claims. In a similar fashion, the present authors con-
structed in [14] two classes of multivariate process by splitting and transforming an LRB based
on the gamma process. The first class, Archimedean survival processes, provides a natural link
between stochastic processes and Archimedean copulas, and was applied to a copula interpo-
lation problem. The second, more general class was the class of Liouville processes, so named
because the finite-dimensional distributions of a Liouville process are multivariate Liouville
distributions [8, 10, 11, 12]. This more general class was applied to the joint modelling of
realised variance for two stock indices.

We extend the splitting and transformation mechanism to a general LRB to create what we
call a generalised Liouville process (GLP). We show that the sum of coordinates of GLPs are
one-dimensional LRBs, and prove that the finite-dimensional distributions of GLPs are gener-
alised multivariate Liouville distributions as defined in [13]. We show that GLPs are Markov
processes and that there exists a measure change under which the law of an n-dimensional
GLP is that of a vector of n independent Lévy processes. We prove that any integrable GLP
admits a canonical semimartingale representation with respect to its natural filtration. We also
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show that GLPs are multivariate harnesses. We prove that GLPs satisfy the weak Markov con-
sistency condition, but not necessarily the strong Markov consistency condition. Similarly, we
introduce what we call weak and strong semimartingale consistency properties, and show that
GLPs have the former, but not necessarily the latter. The class of GLPs contains as special
cases Archimedean survival processes, Liouville processes, and the bivariate process based on
the 1/2-stable subordinator.

Throughout much of this work we focus on processes taking continuous values. However,
although details are omitted, many results are straightforward to extend to processes on a
lattice. Indeed, later we provide examples of both a continuous and a discrete GLP. More
specifically, we consider what we call Brownian Liouville processes and Poisson Liouville
processes, and present some of their special characteristics.

2. Preliminaries

Throughout this work, for a vector x ∈R
n, we denote the sum of its coordinates by 1 · x =∑

i xi. We work on a probability space (�,F , P) equipped with a filtration {Ft}t≥0. We fix a
finite time horizon t ∈ [0, T] for some T <∞ and assume {Ft}0≤t≤T and all its sub-filtrations
are right-continuous and complete. Unless stated otherwise, every stochastic process is càdlàg
with a state-space that is a continuous subspace of (Rn,B(Rn)) for some n ∈N+, where B(Rn)
is the Borel σ -field.

Let {Xt}t≥0 be a Lévy process taking values in R, such that the law of Xt is absolutely con-
tinuous with respect to the Lebesgue measure for every t ∈ [0, T]. In this case the density ft
of Xt exists and satisfies the Chapman–Kolmogorov convolution identity ft(x) = ∫

R
ft−s(x −

y)fs(y) dy, for 0< s< t ≤ T and x ∈R. Having independent and stationary increments, the
finite-dimensional law of {Xt}0≤t≤T is given by

P(Xt1 ∈ dx1, . . . , Xtm ∈ dxm) =
m∏

i=1

fti−ti−1 (xi − xi−1) dxi

for m ∈N+, 0< t1 < · · ·< tm < T and x1, . . . , xn ∈R.
A Lévy bridge is a Lévy process conditioned to take some fixed value at a fixed future

time. Since Lévy processes are homogeneous strong Markov processes, the definition of their
bridges can be formalised in terms of Doob h-transformations. See [9] for further details on
the bridges of Markov processes. Let {X(z)

t,T}0≤t≤T be a bridge of {Xt}0≤t≤T to the value z ∈R at

time T , where 0< fT (z)<∞. The transition density of {X(z)
t,T}0≤t<T is given by the following

Doob h-transform of the transition density of {Xt}0≤t<T :

P

(
X(z)

t,T ∈ dx | X(z)
s,T = y

)
= ht(x)

hs(y)
ft−s(x − y) dx (2.1)

for 0 ≤ s< t< T , where ht(x) = fT−t(z − x). Note that {ht}0≤t<T defined as such is harmonic
with respect to {Xt}0≤t<T . Note also that P(0< ht(X

(z)
t,T )<∞) = 1 for all 0 ≤ t< T , so the ratios

of densities in (2.1) are almost surely well-defined (this is discussed in the remark following
Proposition 1 of [9]). Similar ratios feature throughout this work and are likewise almost surely
well-defined, and we may pass by them without further comment.

Lévy random bridges (LRBs) are an extension of Lévy bridges. Their interpretation in [15]
is as a bridge to an arbitrary random variable at time T , rather than a fixed value. A process
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{Lt}0≤t≤T is an LRB with generating law ν if it satisfies: (i) LT has marginal law ν, (ii) there
exists a Lévy process {Xt}0≤t≤T such that the density ft of Xt exists for all t ∈ (0, T], (iii) ν
concentrates mass where fT is positive and finite ν-a.s., (iv) for all m ∈N+, every 0< t1 <
· · ·< tm < T , every (x1, . . . , xm) ∈R

m, and ν-a.e. z,

P(Lt1 ≤ x1, . . . , Ltm ≤ xm | LT = z) = P(Xt1 ≤ x1, . . . , Xtm ≤ xm | XT = z).

The finite-dimensional distribution of {Lt}0≤t≤T is given by

P(Lt1 ∈ dx1, . . . , Ltm ∈ dxm, LT ∈ dz) =
m∏

i=1

(fti−ti−1 (xi − xi−1) dxi)ϑtm(dz; xm), (2.2)

where ϑ0(dz; y) = ν(dz) and ϑt(dz; y) = ν(dz)fT−t(z − y)/fT (z) for t ∈ (0, T). It follows that
LRBs are Markov processes with stationary increments, where the transition law of {Lt}0≤t≤T

is

P(LT ∈ dz | Ls = y) = ϑs(dz; y)

ϑs(R; y)
, P(Lt ∈ dx | Ls = y) = ϑt(R; x)

ϑs(R; y)
ft−s(x − y) dx (2.3)

for 0 ≤ s< t. We note that the finite-dimensional distributions of LRBs with discrete state-
spaces have similar transition probabilities given in terms of probability mass functions (for
details see [15]). The extension of many later results to discrete processes follows from this.

Remark 2.1. Note that (2.3) is also a Doob h-transform of the transition density of {Xt}0≤t<T ,
and {ϑt(R; Xt)}0≤t<T is a positive (FX

t , P)-martingale, where FX
t = σ ({Xu} : 0 ≤ u ≤ t).

Let X1, . . . , Xn be random variables taking values in R with a joint density of the form

p

( n∑
i=1

xi

) n∏
i=1

φai(xi), (2.4)

where a1, . . . , an > 0 are parameters, and the set of functions {φa : a> 0} satisfies the con-
volution property φa ∗ φb = φa+b. In [13], this is referred to as a ‘Liouville density function’.
Indeed, according to the definition given in [13], (X1, . . . , Xn) then has a Liouville distribution,
although we prefer to refer to this as the generalised Liouville distribution to distinguish it from
the original and special case that {φa} are gamma densities (see [8], [10], [11], and [12]). The
actual definition of the generalised Liouville distribution given in [13] replaces the functions
{φa} with measures, and so it includes examples where the joint density may not exist. For
our purposes, it is convenient to relax (2.4) in a different way. We keep {φa}, but replace the
function p with a measure ν.

Definition 2.1. Let X1, . . . , Xn be random variables taking values in R, let ν : B(R) →R+
be a probability law, and let A= {φa : 0< a ≤ A<∞)} be a family of functions satisfying
the convolution property: φa ∗ φb = φa+b, for a + b ≤ A. Then (X1, . . . , Xn) has a generalised
multivariate Liouville distribution if its joint probability law is of the form

P

(
X1 ∈ dx1, . . . , Xn−1 ∈ dxn−1,

n∑
i=1

Xi ∈ dz

)
= φan

(
z − ∑n−1

i=1 xi
)
ν(dz)

φ1·a(z)

n∏
i=2

φai(xi) dxi (2.5)

for x1, . . . , xn ∈R, φa1, . . . , φan ∈A, a = (a1, . . . , an)� ∈R
n+, 1 · a ≤ A.
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Remark 2.2. Writing B + x = {y : y − x ∈ B}, for B ⊂R and x ∈R, then (2.5) is equivalent to

P(X1 ∈ dx1, . . . , Xn−1 ∈ dxn−1, Xn ∈ B)

=
n∏

i=2

(φai(xi) dxi)
∫

z∈B+∑n−1
i=1 xi

φan

(
z − ∑n−1

i=1 xi
)

φ1·a(z)
ν(dz)

=
n∏

i=2

(φai(xi) dxi)
∫

xn∈B

φan(xn)

φ1·a(
∑

i xi)
ν

(n−1∑
i=1

xi + dxn

)
. (2.6)

Furthermore, if ν admits a density p, then (2.6) can be written in the form of a Liouville density:

P(X1 ∈ dx1, . . . , Xn−1 ∈ dxn−1, Xn ∈ dxn) = p(
∑

i xi)

φ1·a(
∑

i xi)

n∏
i=1

(φai(xi) dxi).

3. Generalised Liouville processes

To construct a GLP, we start with a ‘master’ LRB {Lt}0≤t≤un for un ∈R+ and n ≥ 2, where
Lun has marginal law ν. We assume that ν has no continuous singular part and split {Lt}0≤t≤un

into n non-overlapping subprocesses.

Definition 3.1. For m1, . . . ,mn > 0 (n ≥ 2), define the strictly increasing sequence {ui}n
i=1

by u0 = 0 and ui = ui−1 + mi for i = 1, . . . , n. Then a process {ξt}0≤t≤1 is an n-dimensional
generalised Liouville process (GLP) if

{ξt}0≤t≤1
law= {(Ltm1 − L0, . . . , Ltmi+ui−1 − Lui−1 , . . . , Ltmn+un−1 − Lun−1 )�}0≤t≤1

for some LRB {Lt}0≤t≤un with generating law ν. We say that the generating law of {ξt}0≤t≤1 is
ν and the activity parameter of {ξt}0≤t≤1 is m = (m1, . . . ,mn)�.

We have restricted the definition of GLPs to the time horizon [0,1] for convenience. It is
straightforward to generalise to an arbitrary closed time horizon. Each coordinate {ξ (i)

t }0≤t≤1
of {ξt}0≤t≤1 is a subprocess of an LRB. Since subprocesses of LRBs are themselves LRBs
(see [15]), GLPs form a multivariate generalisation of LRBs. For the rest of the paper, we
let {ξt}0≤t≤1 be an n-dimensional GLP with generating law ν, and let {Lt}0≤t≤un be the
master process of {ξt}0≤t≤1. In addition, we denote the filtration generated by {ξt}0≤t≤1 by
{F ξ

t }0≤t≤1 ⊂ {Ft}0≤t≤1. Explicitly, we have F ξ
t = σ ({ξu} : 0 ≤ u ≤ t).

Remark 3.1. The bivariate model of insurance claims based on the 1/2-stable subordinator
proposed in [16] is a GLP.

Remark 3.2. Liouville processes and Archimedean survival processes, as introduced in [14],
form a subclass of GLPs. In Definition 3.1, if the LRB {Lt}0≤t≤un is a gamma random bridge
with unit activity parameter, then we have a Liouville process. If we further fix mi = 1 for
i = 1, . . . , n, then we have an Archimedean survival processes.

Proposition 3.1. The following hold for any GLP {ξt}0≤t≤1.

(1) The increments of {ξt}0≤t≤1 have a generalised multivariate Liouville distribution.

(2) The terminal value ξ1 has a generalised multivariate Liouville distribution.
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Proof. See the Appendix. �
In what follows, we define a family of unnormalised measures {θt}0≤t<1, such that

θ0(B; x) = ν(B), θt(B; x) =
∫

B

f1·m(1−t)(z − x)

f1·m(z)
ν(dz) (3.1)

for t ∈ [0, 1), x ∈R and B ∈B(R). We also write 	t(x) = θt(R; x). We define Rt to be the sum
of coordinates of ξt:

Rt =
n∑

i=1

ξ
(i)
t = 1 · ξt.

Proposition 3.2. The GLP {ξt}0≤t≤1 is a Markov process with the transition law given by

P
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξ

(n)
1 ∈ B | ξs = x

)
= θτ (s)

(
B + ∑n−1

i=1 zi; xn + ∑n−1
i=1 zi

)
	s(1 · x)

n−1∏
i=1

f(1−s)mi(zi − xi) dzi,

and

P(ξt ∈ dy | ξs = x) = 	t(1 · y)

	s(1 · x)

n∏
i=1

f(t−s)mi (yi − xi) dyi, (3.2)

where x, y ∈R
n, τ (t) = 1 − mn(1 − t)/(1 · m), 0 ≤ s< t< 1, and B ∈B(R).

Proof. See the Appendix. �
Remark 3.3. From Proposition 3.2, if the generating law ν admits a density p, we get a neater
transition law to the terminal value, given by

P(ξ1 ∈ dz | ξs = x) = p(1 · z)

	s(1 · x)f1·m(1 · z)

n∏
i=1

f(1−s)mi (zi − xi) dzi.

Remark 3.4. Our definition of GLPs is somewhat heuristic. A formal definition is possible
through a Doob h-transform, since {	t}0≤t<1 is harmonic to a Lévy process {Xt}t≥0 taking val-
ues in R

n with marginal density gt(x) = ∏n
i=1 fmit(xi). To see this, note that we can alternatively

write (3.2) as

P(ξt ∈ dy | ξs = x) = 	̃t(y)

	̃s(x)
gt−s(y − x) dy,

where 	̃t(x) =	t(1 · x), for 0 ≤ t< 1. To see that {	̃t}0≤t<1 is harmonic to {X}0≤t<1, note that∫
Rn

gt−s(y − x)	̃t(y) dy =
∫
Rn

n∏
i=1

f(t−s)mi (yi − xi)	̃t(y) dy

=
∫
R

∫
Rn

f1·m(1−t)(z − 1 · y)
n∏

i=1

f(t−s)mi (yi − xi) dy
dν(z)

f1·m(z)

=
∫
R

f1·m(1−s)(z − 1 · x)
dν(z)

f1·m(z)
(3.3)

= 	̃s(x)

for 0 ≤ s< t< 1, where (3.3) follows from repeated use of the convolution property of
{ft}0≤t≤1·m.

https://doi.org/10.1017/jpr.2020.61 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.61


Generalised Liouville processes 1093

Remark 3.4 demonstrates that the laws of {ξt}0≤t<1 and {Xt}0≤t<1 are equivalent, which we
formalise by the corollary below.

Corollary 3.1. Suppose that {ξt}t≥0 is a Lévy process under measure P̃ with P̃(ξt ∈ dx) =
gt(x) dx. Then {	t(Rt)−1}0≤t<1 is a Radon–Nikodým density process that defines the measure
change

dP̃

dP

∣∣∣∣F ξ
t

=	t(Rt)
−1 (0 ≤ t< 1), (3.4)

and {ξt}0≤t<1 is a P-GLP with generating law ν and activity parameter m.

Proof. See the Appendix. �

Remark 3.5. Let νst(B) = P(Rt ∈ B |F ξ
s ) for 0 ≤ s< t ≤ 1 and B ∈B(R). Given ξs, the incre-

ment ξt − ξs has a generalised multivariate Liouville distribution with generating law νst(B +
Rs) for B ∈B(R) and parameter vector m(t − s).

Proposition 3.3. Given ξ1, the process {ξt}0≤t≤1 is a vector of independent Lévy bridges.

Proof. For all s ∈ [0, 1) the transition probabilities to ξt (s< t< 1) can be computed from
(3.2) by first substituting ν with the Dirac measure δ1·z in (3.1), yielding

P(ξt ∈ dy | ξ1 = z,F ξ
s ) =

n∏
i=1

fmi(t−s)
(
yi − ξ

(i)
s

)
fmi(1−t)(zi − yi)

fmi(1−s)
(
zi − ξ

(i)
s

) dyi

for almost every z ∈R
n. Conditional on ξ1 = z, we see that the transition laws of the

coordinates of {ξt}0≤t≤1 are independent, and that each is the transition law of a Lévy
bridge. �

Using the Markov property of {ξt}0≤t≤1, we can also provide the conditional laws of the

coordinates ξ (i)
t given F ξ (i)

s = σ ({ξ (i)
u } : 0 ≤ u ≤ s) or given F ξ

s , for s< t.

Proposition 3.4. The coordinates of {ξt}0≤t<1 have the following transition laws.

(1) The marginally conditioned case:

P
(
ξ

(i)
t ∈ dyi | ξ (i)

s = xi
) = �

(i)
t (yi)

�
(i)
s (xi)

f(t−s)mi (yi − xi) dyi,

where

�
(i)
t (x) =

∫
R

f1·m−tmi (r − x)

f1·m(r)
ν(dr).

(2) The fully conditioned case:

P
(
ξ

(i)
t ∈ dyi | ξs = x

) = 	
(i)
t (x, yi)

	s(1 · x)
f(t−s)mi (yi − xi) dyi,

where

	
(i)
t (x, y) =

∫
R

f1·m(1−s)+(t−s)mi (r − 1 · x + (y − xi))

f1·m(r)
ν(dr),

for 0 ≤ s< t< 1.
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Proof. See the Appendix. �
Proposition 3.5. The process {Rt}0≤t≤1 is an LRB with generating law ν and the transition
law

P(R1 ∈ dr | ξs = x) = θs(dr; 1 · x)

	s(1 · x)
, (3.5)

P(Rt ∈ dr | ξs = x) = 	t(r)

	s(1 · x)
f(t−s)1·m(r − 1 · x) dr. (3.6)

Proof. See the Appendix. �
The next statement is a key result for defining stochastic integrals of integrable LRBs, and

hence integrable GLPs.

Proposition 3.6. If E(|Rt|)<∞ for all t ∈ [0, 1], then {Rt}0≤t<1 admits the canonical
semimartingale representation

Rt =
∫ t

0

E(R1 |F ξ
s ) − Rs

1 − s
ds + Mt (3.7)

for 0 ≤ t< 1, where {Mt}0≤t<1 is an (F ξ
t , P)-martingale with initial state M0 = 0.

Proof. From Proposition 3.5, {Rt}0≤t≤1 is an LRB. Hence, if E(|Rt|)<∞ for all t ∈ (0, 1],
then

E(Rt | ξs = x) = 1 − t

1 − s
1 · x + t − s

1 − s
E(R1 | ξs = x), s ∈ [0, t). (3.8)

We shall use (3.8) to prove that {Mt}0≤t<1 given in (3.7) is an F ξ
t -martingale. Since {ξt}0≤t≤1

is Markov,

E(Mt − Ms |F ξ
s ) =E(Rt − Rs |F ξ

s ) −
∫ t

s

E(R1 | ξs) −E(Ru | ξs)

1 − u
du

= 1 − t

1 − s
1 · ξs + t − s

1 − s
E(R1 | ξs) − Rs −

∫ t

s

E(R1 | ξs)

1 − u
du

+
∫ t

s

1

1 − u

(
1 − u

1 − s
1 · ξs + u − s

1 − s
E(R1 | ξs)

)
du

= 0

for 0 ≤ s< t ≤ 1. Given E(|Rt|)<∞,

E

(∫ t

0

|E(R1 | ξs) − Rs|
1 − s

ds

)
<∞ for 0 ≤ t< 1

remains to be shown:

E

(∫ t

0

|E(R1 | ξs) − Rs|
1 − s

ds

)
≤E

(∫ t

0

|E(R1 | ξs)|
1 − s

ds

)
+E

(∫ t

0

|Rs|
1 − s

ds

)
=

∫ t

0
E

( |E(R1 | ξs)|
1 − s

)
ds +

∫ t

0
E

( |Rs|
1 − s

)
ds

<∞,
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since {E(R1 |F ξ
t )}0≤t<1 is a martingale. Hence E(|Mt|)<∞ for 0 ≤ t< 1. Finally, M0 = 0

since R0 = 0. �
Remark 3.6. Let αt = (1 − t)−1 and βt =E(R1 | ξt). Then

dRt = αt(βt − Rt) dt + dMt

for 0 ≤ t< 1. In this form, the dynamics of LRBs resemble those of an Ornstein–Uhlenbeck
process, with an increasing mean-reversion rate {αt}0≤t<1 and a state-dependent reversion level
{βt}0≤t<1. We can write

Rt =
∫ t

0

1 − t

(1 − s)2
E(R1 | ξs) ds +

∫ t

0

1 − t

1 − s
dMs for 0 ≤ s< t< 1.

The following two propositions are motivated by [18]. We first recall that a measurable
process {Ht}t≥0 is called a harness if, for all t ≥ 0, E(|Ht|)<∞ and for all 0 ≤ a< b< c< d,

E

(
Hc − Hb

c − b
|Ha,d

)
= Hd − Ha

d − a
,

where Ha,d = σ ({Ht}t≤a, {Ht}t≥d).

Proposition 3.7. If E(1 · ξt)<∞ for t ∈ [0, 1], then {ξt}0≤t≤1 and {Rt}0≤t≤1 are harnesses.

Proof. See the Appendix. �
Proposition 3.8. Let ϕ be a C1-function. If E(|Rt|)<∞ for all t ∈ (0, 1], then the stochastic
process {Zt}0≤t<1 defined by

Zt = E(R1 | ξt) − Rt

1 − t

∫ 1

t
ϕ(u) du +

∫ t

0
ϕ(u) dRu (0 ≤ t< 1)

is an (F ξ
t , P)-martingale.

Proof. We have

E

(∫ 1

t
ϕ(u) dRu |F ξ

t

)
= ϕ(1) E(R1 |F ξ

t ) − ϕ(t)Rt −
∫ 1

t
E(Ru |F ξ

t ) dϕ(u)

= E(R1 | ξt) − Rt

1 − t

∫ 1

t
ϕ(u) du,

from the integration-by-parts formula, (3.8), and the Markov property of {ξt}0≤t≤1. Hence Zt =
E(

∫ 1
0 ϕ(u) dRu |F ξ

t ), which is an (F ξ
t , P)-martingale. �

Similar to Proposition 3.6, we have the following result (we omit the proof to avoid
repetition).

Proposition 3.9. If E(|ξt|)<∞ for all t ∈ (0, 1], then {ξt}0≤t<1 admits the canonical semi-
martingale representation

ξt =
∫ t

0

E(ξ1 |F ξ
s ) − ξs

1 − s
ds + Mt (0 ≤ t< 1), (3.9)

where {Mt}0≤t<1 is an (F ξ
t , P)-martingale.
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In [17] it is shown that Archimedean survival processes satisfy the weak Markov consis-
tency condition, but not necessarily the strong Markov consistency condition. Motivated by
this, Proposition 3.10 below provides a generalised version of this result for GLPs. First we
recall the weak and strong Markov consistency conditions. Let {Xt}t≥0 be an n-dimensional
real-valued Markov process and let FX

t = σ ({Xu} : 0 ≤ u ≤ t). Also, for each coordinate

process {X(i)
t }t≥0, i = 1, . . . , n, write FX(i)

t = σ ({X(i)
u } : 0 ≤ u ≤ t) ⊂FX

t . The process {Xt}t≥0
satisfies the weak Markov consistency condition if

P
(
X(i)

t ∈ B |FX(i)

s

) = P
(
X(i)

t ∈ B | X(i)
s

)
(3.10)

for every i = 1, . . . , n and every B ∈B(R). Further, {Xt}t≥0 satisfies the strong Markov
consistency condition if

P
(
X(i)

t ∈ B |FX
s

) = P
(
X(i)

t ∈ B | X(i)
s

)
(3.11)

for every i = 1, . . . , n and every B ∈B(R).

Proposition 3.10. Any GLP {ξt}0≤t≤1 is weak Markov consistent, but not necessarily strong
Markov consistent.

Proof. Each coordinate {ξ (i)
t }0≤t≤1 of the GLP {ξt}0≤t≤1 is an LRB, since every subprocess

of an LRB is an LRB (see [15]). Thus (3.10) is satisfied for every i = 1, . . . , n, every B ∈B(R),
and all 0 ≤ s< t ≤ 1. However, (3.11) does not necessarily hold since

P
(
ξ

(i)
t − ξ (i)

s ∈ dy |F ξ
s

) = P

(
ξ

(i)
t − ξ (i)

s ∈ dy |
∑

j

ξ (j)
s

)

is only equal to P(ξ (i)
t − ξ

(i)
s ∈ dy | ξ (i)

s ) if both
∑

j ξ
(j)
s and ξ (i)

s are independent from the incre-

ment ξ (i)
t − ξ

(i)
s for all 0 ≤ s< t ≤ 1. In such a case the coordinates of {ξt}0≤t≤1 are independent

Lévy processes. �
In the same spirit we shall introduce weak and strong semimartingale consistency condi-

tions. Definition 3.2 below goes beyond a Markov setting, but in the context of GLPs it offers
links to Markov consistency.

Definition 3.2. Let {St}t≥0 be an (FS
t , P)-semimartingale, where FS

t = σ ({Su} : 0 ≤ u ≤ t). Let

{S(i)
t }t≥0 be a coordinate of {St}t≥0, and let FS(i)

t = σ ({S(i)
u } : 0 ≤ u ≤ t), for i = 1, . . . , n.

(1) If {S(i)
t }t≥0 admits a decomposition S(i)

t = a(i)
t + m(i)

t , where {a(i)
t }t≥0 is a càdlàg {FS(i)

t }-
adapted process with bounded variation and {m(i)

t }t≥0 is an (FS(i)

t , P)-local martingale,

then {St}t≥0 is weakly semimartingale consistent with respect to {S(i)
t }t≥0. If this holds

for every i = 1, . . . , n, then {St}t≥0 satisfies the weak semimartingale consistency
condition.

(2) Let {St}t≥0 be decomposed as St = At + Mt, where {At}t≥0 is a càdlàg {FS
t }-adapted

process with bounded variation and {Mt}t≥0 is an (FS
t , P)-local martingale, with coor-

dinates {A(i)
t }t≥0 and {M(i)

t }t≥0, respectively. Given that S(i)
t = A(i)

t + M(i)
t , if {A(i)

t }t≥0 is

{FS(i)

t }-adapted and {M(i)
t }t≥0 is an (FS(i)

t , P)-local martingale, then {St}t≥0 is strongly

semimartingale consistent with respect to {S(i)
t }t≥0. If this holds for every i = 1, . . . , n,

then {St}t≥0 satisfies the strong semimartingale consistency condition.
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Proposition 3.11. Any GLP {ξt}0≤t<1, where E(|ξt|)<∞ for all t ∈ (0, 1], is weak semi-
martingale consistent, but not necessarily strong semimartingale consistent.

Proof. Let E(|ξt|)<∞ for all t ∈ (0, 1] and define αt = (1 − t)−1 for t< 1. Following similar
steps to the proof of Proposition 3.6, each coordinate of {ξt}0≤t<1 admits a decomposition
ξ

(i)
t = a(i)

t + m(i)
t , where

a(i)
t =

∫ t

0
αs(E(ξ (i)

1 |F ξ (i)

s ) − ξ (i)
s ) ds,

which is {F ξ (i)

t }-adapted, and {m(i)
t }0≤t<1 is an (F ξ (i)

t , P)-martingale, for i = 1, . . . , n. Hence
{ξt}0≤t<1 is weak semimartingale consistent. From Proposition 3.9, we also know that ξ (i)

t =
A(i)

t + M(i)
t , where

A(i)
t =

∫ t

0
αs(E(ξ (i)

1 |F ξ
s ) − ξ (i)

s ) ds,

which is {F ξ
t }-adapted, and {M(i)

t }0≤t<1 is an (F ξ
t , P)-martingale. Since {ξt}0≤t≤1 is Markov

and using Proposition 3.10, we know that E(ξ (i)
1 | ξt) is not necessarily equal to E(ξ (i)

1 | ξ (i)
t ).

Hence {A(i)
t }0≤t<1 is not necessarily {F ξ (i)

t }-adapted. Also, {M(i)
t }0≤t<1 is not necessarily an

(F ξ (i)

t , P)-martingale. �
We used Proposition 3.10 to prove Proposition 3.11; we shall note another link between

semimartingale consistency and Markov consistency. From [1], if a Markov process {Xt}t≥0

satisfies the weak Markov consistency with respect to its marginal {X(i)
t }t≥0, then {Xt}t≥0 is also

strongly Markov consistent with respect to {X(i)
t }t≥0 if and only if {FX(i)

t }t≥0 is P-immersed in

{FX
t }t≥0. Here P-immersion means that if {X(i)

t }t≥0 is an (FX(i)

t , P)-local martingale, then it is
an (FX

t , P)-local martingale. As an opposite direction to P-immersion, we prove a result that
links strong martingale consistency and strong Markov consistency.

Proposition 3.12. Let {St}t≥0 be a Markov (FS
t , P)-martingale, satisfying weak Markov con-

sistency. Then {St}t≥0 is strong semimartingale consistent if and only if it is strong Markov
consistent.

Proof. Since {St}t≥0 is an (FS
t , P)-martingale, we have E(S(i)

t |FS
u ) = S(i)

u for 0 ≤ u< t.

Then, if {St}t≥0 is strong martingale consistent, we have E(S(i)
t |FS

u ) =E(S(i)
t |FS(i)

u ) = S(i)
u .

Thus, given that {St}t≥0 is Markovian satisfying weak Markov consistency,

E(S(i)
t |FS

u ) =
∫
R

xP(S(i)
t ∈ dx |FS

u )

=
∫
R

xP(S(i)
t ∈ dx | Su)

=E(S(i)
t |FS(i)

u )

=
∫
R

xP(S(i)
t ∈ dx |FS(i)

u )

=
∫
R

xP(S(i)
t ∈ dx | S(i)

u ).
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For the opposite direction, if {St}t≥0 is strong Markov consistent, then since {St}t≥0 is an
(FS

t , P)-martingale satisfying weak Markov consistency,∫
R

xP(S(i)
t ∈ dx |FS

u ) =E(S(i)
t |FS

u ) = S(i)
u

=
∫
R

xP(S(i)
t ∈ dx | S(i)

u )

=
∫
R

xP(S(i)
t ∈ dx |FS(i)

u )

=E(S(i)
t |FS(i)

u ).

Hence {S(i)
t }t≥0 is also an (FS(i)

t , P)-martingale, and the statement follows. �

4. Examples

We shall now study two examples of GLPs in more detail: Brownian Liouville processes
and Poisson Liouville processes.

4.1. Brownian Liouville processes

As a subclass of GLPs, let us consider what we call Brownian Liouville processes (BLPs).
In Definition 3.1, we let {Lt}0≤t≤un be a Brownian random bridge given by

Lt = t

1 · m
L1·m + σ

(
Wt − t

1 · m
W1·m

)
, (4.1)

where σ > 0 and {Wt}0≤t≤un is a standard Brownian motion independent of the random vari-
able L1·m. For a background of the anticipative orthogonal representation given in (4.1) for a
Brownian random bridge, we refer the reader to [2] and [6]. We also note that the Gaussian
process {Wt − (t/1 · m)W1·m}0≤t≤1·m in (4.1) is a Brownian bridge starting and ending at zero.
The following proposition is analogous to [14, Proposition 3.10] for Archimedean survival
processes. We denote the Hadamard (i.e. element-wise) product of vectors x, y ∈R

n by x ◦ y.
We say {βt}0≤t≤1 is a standard Brownian bridge if (a) it is a Brownian bridge, (b) β0 = β1 = 0,
and (c) Var(βt) = (1 − t)2.

Proposition 4.1. If {ξt}0≤t≤1 is a BLP with the master process (4.1), then it admits the
independent Brownian bridge representation

ξt = t

(
m

1 · m
R1 + σZ

)
+ σ

√
m ◦ β t, (4.2)

where
√

m = (
√

m1, . . . ,
√

mn)�, {β t} is a vector of independent standard Brownian bridges,
and the random vector Z = (Z1, . . . , Zn)� is multivariate Gaussian with

Cov(Zi, Zj) = δijmi − mimj

1 · m
.
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Proof. For the proof we use Wt and W(t) interchangeably. We have

ξ
(i)
t = L(mit − ui−1) − L(ui−1)

= mit

1 · m
L(1 · m) + σ

(
W(mit + ui−1) − W(ui−1) − mit

1 · m
W(1 · m)

)
= mit

1 · m
R1 + σ

√
miβ

(i)
t + σ t

(
W(ui) − W(ui−1) − mi

1 · m
W(1 · m)

)
since R1 = L1·m, and where

√
miβ

(i)
t = W(mit + ui−1) − W(ui−1) − t(W(ui) − W(ui−1)).

So {β(i)
t }0≤t≤1 is a standard Brownian bridge, and is independent of W(ui) − W(ui−1) and

W(1 · m). It is straightforward to verify the independence by noting that they are jointly
Gaussian with nil covariation. Thus we can write

ξ
(i)
t = t

(
mi

1 · m
R1 + σZi

)
+ σ

√
miβ

(i)
t ,

where Zi is given by

Zi = W(ui) − W(ui−1) − mi

1 · m
W(1 · m), (4.3)

and R1, Zi and {β(i)
t }0≤t≤1 are mutually independent. Further, {β(1)

t }0≤t≤1, . . . , {β(n)
t }0≤t≤1 are

mutually independent, since they are jointly Gaussian with nil covariation. �
Proposition 4.1 provides an anticipative orthogonal representation for BLPs, whereas (3.9)

provides a non-anticipative semimartingale representation when {ξt}0≤t≤1 is a BLP.

Remark 4.1. Note that 1 · Z = 0 from (4.3), and so its covariance matrix is singular. Also,
using (4.2) from Proposition 4.1, {Rt}0≤t≤1 admits the anticipative representation

Rt = 1 · ξt = t1 ·
(

m
1 · m

R1 + σZ
)

+ σ1 · (
√

m ◦ β t) = tR1 + σ
√

1 · mβ̃t,

where {β̃t}0≤t≤1 is a standard Brownian bridge.

Proposition 4.2. Let π0(dx) = P(ξ1 ∈ dx) and πt(dx) = P(ξ1 ∈ dx |F ξ
t ). Also, let {Bt}0≤t<1

be a vector of standard (F ξ
t , P)-Brownian motions. Then, if E(|ξ1|)<∞, the multivariate

measure-valued process {πt}0≤t<1 satisfies

πt(dx) = π0(dx) +
∫ t

0
πs(dx)σ�

s (σ
√

m ◦ dBs)

for 0 ≤ t< 1, where each coordinate of {σ t}0≤t<1 is given by

σ
(i)
t = x(i) −E(ξ (i)

1 | ξt)

σ 2mi(1 − t)
.
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Proof. See the Appendix. �
Remark 4.2. Note that 1 · B̃t = 1 · (σ

√
m ◦ Bt) gives the non-anticipative semimartingale

representation for {Rt}0≤t<1, which is

Rt =
∫ t

0

E(R1 | ξs) − Rs

1 − s
ds + σ

n∑
i=1

√
miB

(i)
t ,

which provides the explicit example of the (F ξ
t , P)-martingale in (3.7).

4.2. Poisson Liouville processes

Our second example is that of Poisson Liouville processes (PLPs), which are counting pro-
cesses. Accordingly, in Definition 3.1, we let {Lt}0≤t≤un be a Poisson random bridge with
P(Lun = i) = ν({i}), for i ∈N0.

Proposition 4.3. Let {λR
t }0≤t≤1 be the intensity process of the L1-norm process {Rt}0≤t≤1. If

E(R1)<∞, then

λR
t = E(R1 | ξt) − Rt

1 − t
for 0 ≤ t< 1. (4.4)

Proof. Since {Rt}0≤t≤1 is a counting process, we have λR
t = limh→0 E(Rt+h − Rt |F ξ

t )/h.
Since {Rt}0≤t≤1 is a Markov process with respect to {F ξ

t }0≤t≤1, using (3.8), we have

λR
t = lim

h→0

(
E(Rt+h | ξt)

h
− Rt

h

)
= lim

h→0

(
1 − t − h

(1 − t)h
1 · ξt + hE(R1 | ξt)

(1 − t)h
− Rt

h

)
= E(R1 | ξt)

(1 − t)
+ lim

h→0

(
Rt

(
1 − t − h

(1 − t)h
− 1

h

))
= E(R1 | ξt)

1 − t
− lim

h→0

(
Rt

h

(1 − t)h

)
,

which yields the result. �
Remark 4.3. When {ξt}0≤t≤1 is a PLP, Proposition 4.3 provides an alternative proof for
Proposition 3.6, since {Rt}0≤t≤1 is a counting process.

Proposition 4.4. Let {λ(i)
t }0≤t≤1 be the intensity process of the coordinate {ξ (i)

t }0≤t≤1. If
E(R1)<∞, then

λ
(i)
t = mi

1 · m
λR

t for 0 ≤ t< 1.

Proof. Fix 0 ≤ s< t< 1. From Remark 3.5, we know that, given ξs, the increment ξt − ξs

has a generalised multivariate Liouville distribution with generating law

ν∗({i}) = νst({i + Rs})
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for i ∈N0 and parameter vector m(t − s). We define

μst =
∞∑

i=0

i ν∗({i}) =
∞∑

i=Rs

i νst({i}) − Rs =E(Rt | ξs) − Rs = t − s

1 − s
(E(R1 | Rs) − Rs),

where the last equality comes from (3.8). Then, from [8, Theorem 6.3] and [13], we have

E(ξ (i)
t | ξs) = mi

1 · m
μst + ξ (i)

s .

Since {ξ (i)
t }0≤t≤1 is a counting process, we have

λ
(i)
t = lim

h→0
E[ξ (i)

t+h − ξ
(i)
t |F ξ

t ]/h.

Thus

λ
(i)
t = mi

1 · m
lim
h→0

μt,t+h

h
= mi

1 · m
E(R1 | Rt) − Rt

1 − t
.

The result then follows from (4.4). �
Remark 4.4. Note that λR

t = ∑
i λ

(i)
t .

If we let {Pt}0≤t≤1 denote a Poisson process, and define � by �i = Pti − Pti−1 for some
partition 0 = t0 < t1 < · · ·< tn, we have

P(� = x | Ptn = k) =
{

k! ∏n
i=1 pxi

i /xi! for x ∈N
n
0 with 1 · x = k,

0 otherwise,

where pi = (ti − ti−1)/tn. In other words, given Ptn , � has a multinomial distribution. Let
{ξt}0≤t≤1 be a Poisson Liouville process with generating law ν({k}) = A(k), k ∈N0. Then

P(ξ1 = x) = A(1 · x)(1 · x)!
n∏

i=1

pxi
i

xi! .

Write Gν for the probability generating function of ν:

Gν(z) =
∞∑

k=0

zkA(k).

Let T (i) be the time of the first jump of the ith marginal process. If ξ (i)
1 < 1, then we set

T (i) = ∞.

Proposition 4.5. The random times {T (i); i = 1, . . . , n} satisfy the following:

P(T (i) > s) = Gν(1 − spi),

P(T (i) = ∞) = Gν(1 − pi),

P(T (i) > si; i = 1, . . . , n) = Gν

(
1 −

n∑
i=1

pisi

)
,

P(T (i) = ∞; i = 1, . . . , n) = A(0)

for s ∈ [0, 1] and s ∈ [0, 1]n.
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Proof. See the Appendix. �
Here Gν is increasing (and invertible) on [0,1]. Write ψ(x) = Gν(1 − x), and note that ψ is

invertible on [0,1]. If ui ∈ [0, ψ(pi)], then we have

P

(
T (i) >

ψ−1(ui)

pi

)
= ui.

It follows that the conditioned random variable ψ(piT (i)) | {T (i) < 1} is uniformly distributed.
Furthermore

P

(
T (i) >

ψ−1(ui)

pi
; i = 1, . . . , n

)
=ψ

(∑
i

ψ−1(ui)

)
.

The form of the joint survival function of T = {T (i); i = 1, . . . , n} resembles that of an
Archimedean copula. However, the fact that P(T (i) ≥ 1)> 0 means that it is not an
Archimedean copula.

5. Conclusion

We have introduced generalised Liouville processes – a broad and tractable class of multi-
variate stochastic processes. The class of GLPs generalises some processes that have already
been studied. We detailed various properties of GLPs and provided some new examples.

Appendix A. Proofs

A.1. Proposition 3.1

Proof. Since ν has no continuous singular part, ν(dz) = ∑∞
j=−∞ ciδzi (z) dz + p(z) dz, where

ci ∈R+ is a point mass of ν located at zi ∈R, and p : R→R+ is the density of the continuous
part of ν. Then, from (2.2), the joint density of an LRB {Lt}0≤t≤un is given by

P(Lt1 ∈ dx1, . . . , Ltk ∈ dxk, Lun ∈ dxn)

=
n∏

i=1

[fti−ti−1 (xi − xi−1) dxi]

∑∞
j=−∞ ciδzi (xn) + p(xn)

fun(xn)
,

where x0 = 0, for all k ∈N+, all partitions 0 = t0 < t1 < · · ·< tn−1 < tn = un, all xn ∈R, and
all (x1, . . . , xk)� = x ∈R

k. Let α ∈R
n+ be the vector of time increments αi = ti − ti−1, and

α = 1 · α = un. The Jacobian of the transformation y1 = x1, y2 = x2 − x1, . . . , yn = xn − xn−1
is unity, and it follows that

P(Lt1 − Lt0 ∈ dy1, . . . , Lun − Ltk ∈ dyn)

=
n∏

i=1

fαi (yi) dyi

∑∞
j=−∞ ciδzi (

∑n
i=1 yi) + p(

∑n
i=1 yi)

fα(
∑n

i=1 yi)
.

From [13], we know that (Lt1 − Lt0 , . . . , Ltk − Ltk−1 , Lun − Ltk )� has a generalised multivariate
Liouville distribution. Fix ki ≥ 1 and the partitions 0 = ti0 < ti1 < · · ·< tiki

= 1, for i = 1, . . . , n.
Define the non-overlapping increments {�ij} by

�ij = ξ
(i)
tij

− ξ
(i)
tij−1
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for j = 1, . . . , ki and i = 1, . . . , n. The distribution of the k1 × · · · × kn-element vector � =
(�11, . . . , �1k1, . . . , �n1, . . . , �nkn)� characterises the finite-dimensional distributions of
the GLP {ξt}0≤t≤1. It follows from the Kolmogorov extension theorem that the distribution
of � characterises the law of {ξt}0≤t≤1. Note that � contains non-overlapping increments of
{Lt} such that 1 · � = Lun . Hence � has a generalised multivariate Liouville distribution. �

A.2. Proposition 3.2

Proof. We compute the transition probabilities of {ξt}0≤t≤1 directly. We begin by transition-
ing to ξt for t< 1. For all k ≥ 2, all 0< t1 < · · ·< tk < 1, and all x1, . . . , xk ∈R

n, we have

P(ξtk ∈ dxk | ξt1 = x1, . . . , ξtk−1 = xk−1)

= P(ξt1 ∈ dx1, . . . , ξtk ∈ dxk)

P(ξt1 ∈ dx1, . . . , ξtk−1 ∈ dxk−1)

=
∫ ∞
−∞ P(ξt1 ∈ dx1, . . . , ξtk ∈ dxk | R1 = z)ν(dz)∫ ∞

−∞ P(ξt1 ∈ dx1, . . . , ξtk−1 ∈ dxk−1 | R1 = z)ν(dz)

=
∫ ∞
−∞ P(ξt1 − ξt0 ∈ −x0 + dx1, . . . , ξtk − ξtk−1 ∈ −xk−1 + dxk | R1 = z)ν(dz)∫ ∞

−∞ P(ξt1 − ξ0 ∈ −x0 + dx1, . . . , ξtk−1 − ξtk−2 ∈ −xk−2 + dxk−1 | R1 = z)ν(dz)
(A.1)

=
∫ ∞
−∞

{∏n
i=1

∏k
j=1 fmi(tj−tj−1)

(
x(i)

j − x(i)
j−1

)
dx(i)

j

}
f1·m(1−tk)(z − 1 · xk)f1·m(z)−1ν(dz)∫ ∞

−∞
{∏n

i=1
∏k−1

j=1 fmi(tj−tj−1)
(
x(i)

j − x(i)
j−1

)
dx(i)

j

}
f1·m(1−tk−1)(z − 1 · xk)f1·m(z)−1ν(dz)

(A.2)

=
∫ ∞
−∞

{∏n
i=1 fmi(tk−tk−1)

(
x(i)

k − x(i)
k−1

)
dx(i)

k

}
f1·m(1−tk)(z − 1 · xk)f1·m(z)−1ν(dz)∫ ∞

−∞ f1·m(1−tk−1)(z − 1 · xk−1)f1·m(z)−1ν(dz)

= 	tk (1 · xk)

	tk−1 (1 · xk−1)

n∏
i=1

fmi(tk−tk−1)
(
x(i)

k − x(i)
k−1

)
dx(i)

k ,

where t0 = 0, x0 = 0 and x(i)
j is the ith coordinate of xj. We provide some remarks on the

step (A.1) to (A.2). Note that in (A.1) all the increments of type ξt − ξs are vectors of non-
overlapping increments of the master LRB {Lt}0≤t≤1·m. Given R1 = L1·m, {Lt}0≤t≤1·m is a Lévy
bridge, and so its law is invariant to a reordering of its non-overlapping increments. This is a
direct result of the so-called cyclical exchangeability property of Lévy bridges (see e.g. [7]).
The integrands in (A.2) can then be recognised as Lévy bridge transition probabilities.

We now consider transitioning to ξ1. For all k ≥ 1, all 0< t1 < · · ·< tk < 1, all x1, . . . , xk ∈
R

n, all y1, . . . , yk−1 ∈R, and all B ∈B(R), we have

P(ξ (1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, ξ

(n)
1 ∈ B | ξt1 = x1, . . . , ξtk = xk)

= P
(
ξ

(1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, ξ

(n)
1 ∈ B, ξt1 ∈ dx1, . . . , ξtk ∈ dxk

)
P(ξt1 ∈ dx1, . . . , ξtk−1 ∈ dxk)

= P
(
ξ

(1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, R1 ∈ B + ∑n−1

i=1 yi, ξt1 ∈ dx1, . . . , ξtk ∈ dxk
)

P(ξt1 ∈ dx1, . . . , ξtk−1 ∈ dxk)
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=
∫

z∈B+∑n−1
i=1 yi

P
(
ξ

(1)
1 ∈ dy1, . . . , ξ

(n−1)
1 ∈ dyn−1, ξt1 ∈ dx1, . . . , ξtk ∈ dxk | R1 = z

)
ν(dz)∫ ∞

−∞ P(ξt1 ∈ dx1, . . . , ξtk−1 ∈ dxk | R1 = z)ν(dz)

=
∫

z∈B+∑n−1
i=1 yi

{∏n−1
i=1 fmi(1−tk)

(
yi − x(i)

k

)
dyi

}
fmn(1−tk)

(
z − x(n)

k − ∑n−1
i=1 yi

)
f1·m(z)−1ν(dz)∫ ∞

−∞ f1·m(1−tk−1)(z − 1 · xk−1)f1·m(z)−1ν(dz)
(A.3)

= θτ (tk)
(
B + ∑n−1

i=1 yi; x(n)
k + ∑n−1

i=1 yi
)

	tk−1 (1 · xk−1)

n−1∏
i=1

fmi(1−tk)(yi − x(i)
k ) dyi,

where again t0 = 0 and (A.3) follows from similar arguments to (A.2). �

A.3. Corollary 3.1

Proof. The process {Rt}0≤t≤1 is a Lévy process under P̃, where P̃(Rt ∈ dx) = ft(1·m)(x) dx.

To show E
P̃(|	t(Rt)|)<∞, use the Chapman–Kolmogorov convolution and the non-negativity

of f :∫
R

(∫
R

∣∣∣∣ f1·m(1−t)(z − r)ft(1·m)(r)

f1·m(z)

∣∣∣∣ dr

)
ν(dz) =

∫
R

∫
R

f1·m(1−t)(z − r)ft(1·m)(r) dr
ν(dz)

f1·m(z)

=
∫
R

f1·m(z)

f1·m(z)
ν(dz)

= ν(R) = 1.

Since R is a σ -finite measure space (with respect to Lebesgue measure), and f is measurable,
we can use Fubini’s theorem and write∫

R

(∫
R

∣∣∣∣ f1·m(1−t)(z − r)ft(1·m)(r)

f1·m(z)

∣∣∣∣ dr

)
ν(dz) =

∫
R

(∫
R

∣∣∣∣ f1·m(1−t)(z − r)ft(1·m)(r)

f1·m(z)

∣∣∣∣ν(dz)

)
dr

=E
P̃(|	t(Rt)|).

Also, since {	t(Rt)}0≤t<1 is harmonic, {	t(Rt)}0≤t<1 is an (F ξ
t , P̃)-martingale. Explicitly, we

have

E
P̃(	t(Rt) |F ξ

s ) =E
P̃

(∫ ∞

−∞
f1·m(1−t)(z − Rs − (Rt − Rs))

f1·m(z)
ν(dz) | ξs

)
=

∫ ∞

−∞

∫ ∞

−∞
f1·m(1−t)(z − Rs − y)f1·m(t−s)(y) dy

ν(dz)

f1·m(z)

=
∫ ∞

−∞
f1·m(1−s)(z − Rs)

f1·m(z)
ν(dz)

=	s(Rs)

for 0 ≤ s< t< 1. Since 	0(R0) = 1 and 	t(Rt)> 0, {	t(Rt)}0≤t<1 is a Radon–Nikodým den-
sity process. We continue by verifying that under P the transition law of {ξt}0≤t<1 is that of a
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GLP with generating law ν and parameter vector m:

P(ξt ∈ dx |F ξ
s ) =E(1{ξt∈dx} |F ξ

s )

= 1

	s(Rs)
E
P̃(	t(Rt)1{ξt∈dx} | ξs)

= 	t(Rt)

	s(Rs)

n∏
i=1

f(t−s)(mi)(xi − ξ (i)
s ) dxi. (A.4)

Comparing equations (A.4) and (3.2) completes the proof. �

A.4. Proposition 3.4

Proof. Fix 0 ≤ s< t< 1. Then

P(ξ (i)
t ∈ dyi | ξ (i)

s = xi) =
∫
R
P(ξ (i)

t ∈ dyi, ξ
(i)
s ∈ dxi | R1 = r)P(R1 ∈ dr)∫

R
P(ξ (i)

s ∈ dxi | R1 = r)P(R1 ∈ dr)
. (A.5)

The numerator of (A.5) is∫
R

P(ξ (i)
t ∈ dyi, ξ

(i)
s ∈ dxi | R1 = r)P(R1 ∈ dr)

= fmis(xi) dxif(t−s)mi (yi − xi) dyi

∫
R

f1·m−mit(r − yi)

f1·m(r)
ν(dr), (A.6)

and the denominator is∫
R

P(ξ (i)
s ∈ dxi | R1 = r)P(R1 ∈ dr) = fmis(xi) dxi

∫
R

f1·m−mis(r − xi)

f1·m(r)
ν(dr). (A.7)

Dividing (A.6) by (A.7) concludes the first part.
For the second part, write ξ�i

t for the vector ξt excluding its ith coordinate. Using the
Markov property of {ξt}0≤t≤1, we have

P(ξ (i)
t ∈ dyi |F ξ

s ) = P
(
ξ

(i)
t ∈ dyi, ξ

(i)
s ∈ dxi, ξ

�i
s ∈ dx

)
P(ξ (i)

s ∈ dxi, ξ
�i
s ∈ dx)

, (A.8)

The numerator of (A.8) is given by∫
R

P(ξ (i)
t ∈ dyi, ξ

(i)
s ∈ dxi, ξ

�i
s ∈ dx�i | R1 = r) P(R1 ∈ dr)

=
n∏

j=1

[fmjs(xj) dxj]fmi(t−s)(yi − xi) dyi

×
∫
R

f1·m(1−s)+mi(t−s)
(
r − ∑n

j=1 xj + (yi − xi)
)

f1·m(r)
ν(dr), (A.9)

and the denominator is given by

P(ξs ∈ dx) =
n∏

i=1

[fmis(xi) dxi]
∫ ∞

−∞
f1·m(1−s)

(
r − ∑n

i=1 xi
)

f1·m(r)
ν(dr). (A.10)

Equation (A.10) follows from the stationary increments property of LRBs and (2.2). Dividing
(A.9) by (A.10) concludes the second part. �
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A.5. Proposition 3.5

Proof. Since {ξt}0≤t≤1 is a Markov process with respect to {F ξ
t }0≤t≤1, {Rt}0≤t≤1 is a Markov

process with respect to {F ξ
t }0≤t≤1. We first verify (3.5), the ξs-conditional law of R1. For s = 0,

trivially the law of R1 is ν. For 0< s< 1, using (A.10), we have

P(R1 ∈ dr | ξs = x) = P(ξs ∈ dx | R1 = r) ν(dz)

P(ξs ∈ dx)

= f1·m(1−s)(r − 1 · x) f1·m(r)−1ν(dr)∫
R

f1·m(1−s)(r − 1 · x) f1·m(r)−1ν(dr)
,

as required. Next we verify (3.6), the ξs-conditional law of Rt for 0 ≤ s< t< 1. The process
{Rt}0≤t≤1 is a P̃-Lévy process with P̃(Rt ∈ dr) = f(1·m)t(r) dr, where P̃ is given by (3.4). Using
Corollary 3.1 (or [15, Proposition 3.7]), we have {Rt}0≤t<1 a P-LRB, where

P(Rt ∈ dr | ξs = x) =	s(r)−1
E
P̃(	t(r)1{Rt∈dr} | Rs = 1 · x)

=	s(r)−1
∫
R

f1·m(1−t)(z − r)

f1·m(z)
ν(dz)f(t−s)1·m(r − 1 · x) dr,

as required. �

A.6. Proposition 3.7

Proof. Conditional on ξd (0< d ≤ 1), the coordinates of {ξt}t≤d are (independent) Lévy
bridges, and {Rt}t≤d is a Lévy bridge. Thus it is sufficient to prove that an integrable Lévy
bridge is a harness. Let {Xt}0≤t≤1 be a Lévy process such that Xt has a density ft for t ∈ (0, 1].
We shall show that the conditional process, and Lévy bridge, {Xt | X1 = k} is a harness. The
conditions of the proposition allow us to assume that {Xt | X1 = k} is integrable. We start by
computing the following:

P

[ ny⋂
i=1

Xti ∈ dyi |
( nx⋂

i=1

Xai = xi

)
∩

( nz⋂
i=1

Xdi = zi

)
∩ (X1 = k)

]
(A.11)

for any nx, ny, nz ∈N+, any 0 = a0 < a1 < · · ·< anx = a< t1 < · · ·< tny < d = d1 < · · ·<
dnz < 1, any (x1, . . . , xnx ) ∈R

nx , any (y1, . . . , ynx ) ∈R
ny , and any (z1, . . . , znz) ∈R

nz .
Following Bayes’ rule, the numerator is

I1 = P

[( ny⋂
i=1

Xti ∈ dyi

)
∩

( nx⋂
i=1

Xai ∈ dxi

)
∩

( nz⋂
i=1

Xdi ∈ dzi

)
∩ (X1 ∈ dk)

]

=
( nx∏

i=1

fai−ai−1 (xi − xi−1) dxi

)

×
(

ft1−a(y1 − xa) dy1

ny∏
i=2

fti−ti−1 (yi − yi−1) dyi

)

×
(

fd−tn(z1 − yny ) dz1

nz∏
i=2

fdi−di−1 (zi − zi−1) dzi

)
f1−dnz

(k − znz) dk,
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and the denominator is

I2 = P

[( nx⋂
i=1

Xai ∈ dxi

)
∩

( nz⋂
i=1

Xdi ∈ dzi

)
∩ (X1 ∈ dk)

]

=
( nx∏

i=1

fai−ai−1 (xi − xi−1) dxi

)

×
(

fd−a(z1 − xnx ) dz1

nz∏
i=2

fdi−di−1 (zi − zi−1) dzi

)
f1−dnz

(k − znz) dk.

So (A.11) is equal to

I1

I2
=

ny∏
i=2

(fti−ti−1 (yi − yi−1) dyi)
ft1−a(y1 − xa)fd−tn(z1 − ytny

) dy1

fd−a(z1 − xnx )
.

It follows from the Kolgomorov extension theorem that {Xt |HX
a,d}a≤t≤d is a Lévy bridge

between Xa and Xd. Define {ηt}0≤t≤d−a by ηt = Xa+t − Xa. Then {ηt |HX
a,d} is Lévy bridge

from 0 to Xd − Xa, and

E[ηt |HX
a,d] = t

d − a
(Xd − Xa),

which yields the result. �

A.7. Proposition 4.1

Proof. Define the mapping H : R×R× [0, 1) ×R+ →R+ as follows:

H(z, y, t,m) = exp

{
zy − tz2/2

m2(1 − t)

}
.

Since the Brownian bridges {β(i)
t }0≤t≤1, i = 1, . . . , n, in (4.2) are mutually independent and

{ξt}0≤t≤1 is Markov, we have

P(ξ1 ∈ dx |F ξ
t )

law=
∏n

i=1 H(x(i), ξ
(i)
t , t, σ

√
mi) P(ξ1 ∈ dx)∫

Rn

∏n
i=1 H(x(i), ξ

(i)
t , t, σ

√
mi) P(ξ1 ∈ dx)

=
exp

{∑n
i

x(i)ξ
(i)
t −t(x(i))2/2
σ 2mi(1−t)

}
P(ξ1 ∈ dx)∫

Rn exp
{∑n

i
x(i)ξ

(i)
t −t(x(i))2/2
σ 2mi(1−t)

}
P(ξ1 ∈ dx)

. (A.12)

If we define the numerator of (A.12) as the function

g
((
ξ

(i)
t

)
i=1,...,n, t; dx

) = exp

{ n∑
i

x(i)ξ
(i)
t − t

(
x(i)

)2
/2

σ 2mi(1 − t)

}
P(ξ1 ∈ dx) (A.13)
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and apply Itô’s formula to (A.13), we get

dg = ∂g

∂t
dt +

n∑
i=1

∂g

∂ξ
(i)
t

dξ (i)
t + 1

2

n∑
i=1

∂2g

∂
(
ξ

(i)
t

)2
d〈ξ (i)

t 〉 +
n∑

i �=j

∂2g

∂ξ
(i)
t ∂ξ

(j)
t

d〈ξ (i)
t , ξ

(j)
t 〉,

= g
((
ξ

(i)
t

)
i=1,...,n, t; dx

)( n∑
i=1

x(i)ξ
(i)
t

(σ 2mi(1 − t)2
dt +

n∑
i=1

x(i)

σ 2mi(1 − t)
dξ (i)

t

)
,

where the covariation brackets 〈ξ (i)
t , ξ

(j)
t 〉 for i �= j disappear since the {β(i)

t }0≤t≤1, i = 1, . . . , n,
are mutually independent. Let

G
((
ξ

(i)
t

)
i=1,...,n, t

) =
∫
Rn

g
((
ξ

(i)
t

)
i=1,...,n, t; dx

)
.

Then, using Fubini’s theorem,

dG
((
ξ

(i)
t

)
i=1,...,n, t

) = G
((
ξ

(i)
t

)
i=1,...,n, t

)( n∑
i=1

E
(
ξ

(i)
1 | ξt

)
ξ

(i)
t

σ 2mi(1 − t)2
+

n∑
i=1

E
(
ξ

(i)
1 | ξt

)
σ 2mi(1 − t)

dξ (i)
t

)
.

The statement follows by applying Itô’s formula to the ratio (A.12), where we get

dφt(dx) = φt(dx)

( n∑
i=1

x(i) −E
(
ξ

(i)
1 | ξt

)
σ 2mi(1 − t)

(
dξ (i)

t − E
(
ξ

(i)
1 | ξt

) − ξ
(i)
t

(1 − t)

))

� φt(dx)

( n∑
i=1

σ
(i)
t dB̃(i)

t

)
.

Writing B̃t = (B̃(1)
t , . . . , B̃(n)

t )�, define {Bt}0≤t<1 by B̃t = σ
√

m ◦ Bt. That is, B(i)
t =

B̃(i)
t /σ

√
mi. For each i ∈ {1, . . . , n}, {ξ (i)

t }0≤t≤1 is an LRB, and so following similar steps to the

proof of Proposition 3.6, we can show that {B(i)
t }0≤t<1 is continuous with quadratic variation

t and is an (F ξ
t , P)-martingale. Then, from Lévy’s characterisation, {Bt}0≤t<1 is a vector of

standard (F ξ
t , P)-Brownian motions. �

A.8. Proposition 4.2

Proof. Let {ξ (i)
t : i = 1, . . . , n}0≤t≤1 be the coordinates of the Poisson Liouville process

{ξt}0≤t≤1. The survival function of T (i) is

P(T (i) > s) = P(ξ (i)
s = 0)

=E(P(ξ (i)
s = 0 | 1 · ξ1))

=E((1 − spi)
1·ξ1 )

= Gν(1 − spi).
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For s ∈ [0, 1]n, the joint survival function of T is

P(T (i) > si; i = 1, . . . , n) = P(ξ (i)
si

= 0; i = 1, . . . , n)

=E(P(ξ (i)
si

= 0; i = 1, . . . , n | ξ1))

=E

( n∏
i=1

P
(
ξ (i)

si
= 0 | ξ (i)

1

))

=E

( n∏
i=1

(1 − si)
ξ

(i)
1

)

=E

(( n∑
i=1

pi(1 − si)

)1·ξ1
)

= Gν

( n∑
i=1

pi(1 − si)

)

= Gν

(
1 −

n∑
i=1

pisi

)
,

which gives the statement. �
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