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A number field K with a ring of integers OK is called a Pólya field, if the
OK -module of integer-valued polynomials on OK has a regular basis, or equivalently
all its Bhargava factorial ideals are principal [1]. We generalize Leriche’s criterion [8]
for Pólya-ness of Galois closures of pure cubic fields, to general S3-extensions of Q.
Also, we prove for a real (resp. imaginary) Pólya S3-extension L of Q, at most four
(resp. three) primes can be ramified. Moreover, depending on the solvability of unit
norm equation over the quadratic subfield of L, we determine when these sharp
upper bounds can occur.
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Notations. Throughout this paper, I(M), P (M), OM , Cl(M), h(M), UM , δM and
DM denote the group of fractional ideals, group of principal fractional ideals, ring
of integers, ideal class group, class number, unit group, different and discriminant
of a number field M , respectively. For a finite extension M/N of number fields,
NM/N denotes the ideal norm homomorphism NM/N : I(M) → I(N). Also for a
prime ideal p of N and a prime ideal P of M above p, we denote the ramification
index and residue class degree of P over p by e(P/p) and f(P/p), respectively.
For an integer n � 3, Sn and An denote the symmetric and alternating group on n
symbols, respectively. ρ is a primitive third root of unity.

1. Introduction

For every number field K with a ring of integers OK , consider the ring of integer-
valued polynomials on OK :

Int(OK) = {f ∈ K[x] | f(Ok) ⊆ OK}.

Int(OK) is free as an OK-module, see [14, § 2]. But Pólya [12] and Ostrowski [11]
tried to characterize the fields K such that Int(OK) has a regular basis in the
following sense:
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Definition 1.1 [14]. A number field K is called Pólya, if the OK-module Int(OK)
admits a regular basis, that is a basis (fn)n�0 such that for every n, deg(fn) = n.

Pólya [12, Satz I] showed that a number field K is Pólya if and only if, for
each positive integer n, the fractional ideal Jn(K) of K formed by 0 and leading
coefficients of polynomials of degree n in Int(OK) is principal. He also proved that
a quadratic field is Pólya if and only if all prime ideals above ramified primes are
principal, see [12, Satz V].

Following Pólya [12], Ostrowski [11] proved that a number field K is Pólya if
and only if all the ideals

Πq(K) =
∏

m∈Max(OK)
NK/Q(m)=q

m

are principal. Therefore, for a Galois extension K of Q, the principality of Πq(K)
needs to be checked only for ramified primes.

Obviously, every number field with class number 1 is a Pólya field, but not con-
versely. For example, the quadratic field Q(

√−4027) is Pólya, while it has class
number 9.

For Galois number fields, we have:

Proposition 1.2 ([14, § 3, p. 163]). Let K/Q be a Galois extension with Galois
group G. For a prime number p, let e(p) be the ramification index of p in K. Then
the following sequence is exact:

{0} −→ H1(G,UK) −→
⊕

p prime

Z/e(p)Z −→ I(K)G/P (K)G −→ {0}. (1.1)

Remark 1.3. Since

P (K)G = I(K)G ∩ P (K),

the group of ambiguous ideals modulo principal ambiguous ideals, I(K)G/P (K)G,
can be considered as a subgroup of Cl(K) and K is Pólya if and only if this
subgroup is trivial, see [14, § 3, p. 164]. By exact sequence (1.1), the order of this
group divides

∏
p prime e(p), and since every ramification index e(p) divides [K : Q],

for any Galois number field K, if [K : Q] and h(K) are relatively prime then K is a
Pólya field, but not conversely. For instance, as we will see, in Example (2.6), there
is a Galois sextic Pólya number field with class number 3.

Zantema found a criterion for Pólya-ness of cyclic number fields of prime
power degree, see [14, proposition 3.2]. As a consequence, he gave a complete
characterization of quadratic Pólya fields:

Proposition 1.4 ([14, example 3.3]). A quadratic field K = Q(
√

d) is a Pólya
field if and only if d has one of the following forms, where p ≡ q(mod 4) denote two
distinct odd prime numbers.

(1) d = 2, or d = p;
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(2) d = −1, or d = −2, or d = −p where p ≡ 3(mod 4);

(3) d = 2p, or d = pq, if K has no units of norm −1.

Following Zantema’s results [14], Leriche [8] characterized cyclic cubic and cyclic
quartic Pólya fields in terms of their equations, and she found a criterion for Pólya-
ness of Galois closures of pure cubic fields.

For a non-Galois cubic field K, Zantema proved that Pólya-ness of K is equivalent
to h(K) = 1, see [14, Theorem 1.1]. Following Zantema, we restate the concept of
a G-field:

Definition 1.5 [14]. For G a transitive subgroup of Sn (n � 3), a field K of degree
n over Q is called a G-field, if its Galois closure L over Q has a Galois group
isomorphic to G and the action of G on the n embeddings of K into L corresponds
to the action on the n symbols.

More generally, Zantema gave a criterion for Pólya-ness of Sn-fields and An-fields
as follows:

Proposition 1.6 ([14, theorem 1.1]). Let K be an Sn-field, for n = 3 or n � 5, or
an An-field, for n = 4 or n � 6. Then K is a Pólya field if and only if h(K) = 1.

In this paper, we investigate Pólya-ness of Galois closures of non-Galois cubic
fields, that is, Galois non-cyclic sextic fields.

Let K be a non-Galois cubic number field. Denote the Galois closure of K over
Q by L and denote by E the unique quadratic subfield of L.

In § 2, we prove that if h(K) is not divisible by 3 and E is Pólya, then L is a
Pólya field. In particular, if E and K are Pólya then so is L, see corollary (2.5).
We find a necessary but not sufficient condition for Pólya-ness of L, and prove that
Pólya-ness of L implies that its quadratic subfield E is a Pólya field. (Note that for
any pure cubic field K = Q( 3

√
m), the unique quadratic subfield E = Q(

√−3) of L
has class number one, hence is Pólya.) We also prove that if L/E is unramified,
Pólya-ness of E and L are equivalent, see corollary (2.10).

In § 3, with a cohomological interpretation, we give a sharp upper bound for
the number of ramified primes in Pólya S3-extensions of Q. We prove that for
a real Pólya S3-extension L of Q at most four primes ramify. We show that four
ramified primes can occur if the norm equation NL/E(u) = ξ has no solution u ∈ UL,
where ξ is the fundamental unit of E. Also, we prove that for an imaginary Pólya
S3-extension L of Q at most three primes can ramify, and this happens only for
Galois closures of pure cubic fields. Indeed, three ramified primes can occur if
ρ �∈ NL/E(UL), where ρ is a primitive third root of unity, see theorem (3.1).

In § 4, following Masley’s article [9], we show that h(K) divides h(L), see
corollary (4.3). Hence if h(L) = 1, then both subfields E and K are Pólya fields, see
corollary (4.4).

2. Pólya S3-extensions of Q

Let K be a non-Galois cubic number field with Galois closure L whose unique
quadratic subfield is E = Q(

√
DK).
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If a prime p is unramified in K/Q, it would also be unramified in all its Galois
conjugates, hence in their compositum, namely L/Q (see the implications for E in
remark (2.2) below). Therefore, ramified primes in K/Q and L/Q coincide.

Now let p be a ramified prime in L/Q. Since L/Q is a Galois extension, all primes
above p have the same ramification index and residue class degree:

pOL = (γ1γ2 . . . γg)e(p),

where the γi’s are the distinct prime ideals of L above p with residue class degree
f(p). Since e(p)f(p)g = [L : Q] = 6, we have e(p) = 2, 3 or 6.

Lemma 2.1. With the notations of this Section, let p be a ramified prime in L/Q.

(a) If e(p) = 2, then p is ramified in E/Q. Moreover,

pOK = β1β
2
2 ,

pOL = (γ1γ2γ3)2.

(b) If e(p) = 3, then p is totally ramified in K/Q, but unramified in E/Q. More-
over, depending on whether p is split or inert in E/Q, we have pOL = (γ1γ2)3

or pOL = γ3, respectively.

(c) If e(p) = 6, then p = 3 and ramifies totally in both E/Q and K/Q.

Proof.

(a) Assume that e(p) = 2. Then f(p) = 3 or f(p) = 1. If f(p) = 3, then pOL = γ2.
Thus in this case, there exists only one prime ideal of L above p, which means
that there is only one prime ideal β of K above p. Since p is also ramified in
K/Q, pOK = β3, but the ramification index of β above p must divide e(p)
and we reach a contradiction. Hence if e(p) = 2, then f(p) = 1 and p has the
decomposition forms in K and L as follows:

pOK = β1β
2
2 ,

pOL = (γ1γ2γ3)2,

respectively. Note that since E is a Galois extension, we have:

2 = e(p) = e(γ1/p) = e(γ1/α)e(α/p),

where α is a prime ideal of E above p with α = γ1 ∩ E. Since e(γ1/α) divides
[L : E] = 3, p is ramified in E/Q and α stays unramified in the extension L/E.

(b) Assume that e(p) = 3. Hence f(p) = 1 or f(p) = 2. If f(p) = 1, then there
exist two distinct prime ideals γ1 and γ2 of L above p with pOL = (γ1γ2)3.
Similarly, if f(p) = 2, then there exists only one prime ideal γ1 of L above p
with pOL = γ3

1 .
In both cases, since p is ramified in K/Q, for a prime ideal β = γ1 ∩ K of

K above p, e(β/p) > 1. Since

3 = e(γ1/p) = e(γ1/β)e(β/p),

we have e(β/p) = 3. Hence if e(p) = 3, then p is totally ramified in K/Q.

https://doi.org/10.1017/prm.2018.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.86
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Now let α = γ1 ∩ E be a prime ideal of E above p. Since

3 = e(γ1/p) = e(γ1/α)e(α/p),

and e(α/p) � 2, we have e(α/p) = 1 and e(γ1/α) = 3. This means that in the
case e(p) = 3, p is unramified in E/Q. Indeed, we have:

f(p) = f(γ1/p) = f(γ1/α)f(α/p),

with f(p) � 2 and f(γ1/α)|[L : E] = 3. So if e(p) = 3, then p is split (resp.
inert) in E/Q if and only if f(p) = 1 (resp. f(p) = 2).

(c) For a ramified prime p in K/Q, either pOK = β3 or pOK = β1β
2
2 . Then the

p-part of δK would be β2 or β2, respectively, unless p is wildly ramified, see
[13, Chapter III, § 6, proposition 13]. Wild ramification can happen only for
3OK = β3 or 2OK = β1β

2
2 .

If 2 | DK , one can show that either 22 || DK or 23 || DK , and 23 || DK

happens only when 2OK = β1β
2
2 . Also if 3OK = β3, one has 3t || DK for

t ∈ {3, 4, 5}, see [13, Chapter III, § 6, remark 1 after proposition 13].
Hence one can write DK = s.f2, where s is square-free and a prime number

p �= 2, 3 cannot divide both s and f . Also for a prime number p �= 2, one has
p | f if and only if pOK = β3.

Now assume that e(p) = 6. Then p is totally ramified in L/Q, hence in all
its subextensions. By the above argument this can only occur for p = 2, 3.

Suppose that 2OL = γ6. Since the order of the inertia group at 2 equals the
ramification index e(γ/2), the inertia group at 2 is the whole Galois group,
see [13, Chapter I, § 7, corollary of proposition 21].

Localizing at 2 and denoting the ith ramification group by Gi, we have G1

is a normal subgroup of G0 	 S3, see [13, Chapter IV, § 1, proposition 1].
By [13, Chapter IV, § 2, corollary 3] G1 is a 2-group. Hence G1 = {1}, but
G0/G1 has to be cyclic which is impossible, see [13, Chapter IV, § 2, corollary
1]. Therefore 2 cannot totally ramify in L/Q. This completes the proof. �

Remark 2.2. If p ramifies in E, then it would ramify in L, hence also in K. Since
E = Q(

√
DK), for p �= 2 this is rather obvious. If 2 does not divide DK = s.f2,

then it would be unramified in E = Q(
√

s), hence s ≡ 1(mod 4). Also if DK = 4t
for some odd integer t, by the proof of part (c) above, it ramifies totally in K.
Since 2 does not ramify totally in L, it is unramified in E = Q(

√
t), which implies

t ≡ 1(mod 4).

Now we give the main result as follows:

Theorem 2.3. Let K be a non-Galois cubic number field. Denote the Galois closure
of K over Q by L and denote by E the unique quadratic subfield of L. Then L is a
Pólya field if and only if for each ramified prime p in L/Q:

(a) if e(p) = 2, then the ideal Πp(E) is principal;
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(b) if e(p) = 3, then the ideal Πp(K) is principal;

(c) if e(p) = 6, then both of the ideals Πp(E) and Πp(K) are principal.

Proof.

(a) Suppose that e(p) = 2. By part (a) of lemma (2.1), we have:

pOE = α2 = (Πp(E))2,

pOK = β1β
2
2 ,

pOL = (γ1γ2γ3)2 = (Πp(L))2.

By comparing the decomposition forms of p in E and L, we have Πp(E)OL =
Πp(L). Obviously if Πp(E) is principal, then Πp(L) is principal, too.

Conversely, if Πp(L) is principal, by taking norm we find:

NL/E(Πp(L)) = NL/E(γ1γ2γ3) = (Πp(E))3.

Hence (Πp(E))3 is principal, and so Πp(E) is principal if and only if (Πp(E))2

is principal. Since pOE = (Πp(E))2, the statement in part (a) is proved.

(b) According to part (b) of lemma (2.1), p is totally ramified in K, say pOK =
β3 = (Πp(K))3. Depending on whether p is split or inert in E/Q, we have:

pOL = (γ1γ2)3 = (Πp(L))3,

pOL = γ3 = (Πp2(L))3,

respectively.
Hence we have Πp(K)OL = Πp(L) (resp. Πp(K)OL = Πp2(L)). Therefore,

if Πp(K) is principal, then Πp(L) (resp. Πp2(L)) is principal.
Conversely, if Πp(L) (resp. Πp2(L)) is principal, then

(Πp(K))2 = NL/K(Πp(L))

(resp. NL/K(Πp2(L))) is principal, too. Since (Πp(K))3 = pOK , Πp(K) is
principal.

(c) Finally, suppose that e(p) = 6, that is, p is totally ramified in L/Q. By part
(c) of lemma (2.1), p = 3 and ramifies totally in both E/Q and K/Q. Let:

3OE = α2 = (Π3(E))2,

3OK = β3 = (Π3(K))3,

3OL = γ6 = (Π3(L))6.

Thus we have:

Π3(E)OL = (Π3(L))3,

Π3(K)OL = (Π3(L))2.

Hence if Π3(E) and Π3(K) are principal, then (Π3(L))3 and (Π3(L))2 are
principal, which implies that Π3(L) is principal.
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Now let Π3(L) be principal. Taking norms, we get:

Π3(E) = NL/E(Π3(L))

Π3(K) = NL/K(Π3(L)).

Thus, Π3(E) and Π3(K) are principal. �

Remark 2.4. For a pure cubic field K = Q( 3
√

m), where m is a cube-free integer,
with the Galois closure L = Q(ρ, 3

√
m), Leriche [8] proved that for a prime divisor

p �= 3 of m, Πp(K) is principal if and only if Πp(L) (or Πp2(L)) is principal, see [8,
lemma 6.4]. (The use of [8, proposition 6.3] is not clear to us, since [L : K] = n = 2
there not 3.)

As a consequence of theorem (2.3), we have:

Corollary 2.5. With the notations of theorem (2.3), if h(K) is not divisible by 3
and E is Pólya, then L is a Pólya field. In particular, if E and K are Pólya, then
so is L.

Proof. If h(K) is not divisible by 3, then for every totally ramified prime p in K/Q,
Πp(K) is principal. By theorem (2.3), the statement is proved. �

Example 2.6. Let K = Q(α) be a cubic number field where α is a root of f(x) =
x3 − 25x + 19. We have DK = 71.743, hence K is a non-Galois cubic field and the
Galois closure L of K over Q is L = K(

√
DK) = K(

√
71.743). Since h(K) = 1, K

is Pólya. Also, by proposition (1.4) the quadratic field E = Q(
√

71.743) is Pólya.
Therefore, by corollary (2.5), L is a (real) Pólya field. Note that h(L) = 3, see
remark (1.3).

Remark 2.7. Let K1 and K2 be two Galois number fields with coprime degrees
over Q and L = K1.K2. Zantema [14] proved that K1 and K2 are Pólya fields if and
only if L is a Pólya field, see [14, theorem 3.4]. The condition on relative primality of
the degrees is necessary as was shown in [3,4] in the case of biquadratic fields. Also
the condition on Galois-ness of both K1 and K2 is necessary: with the notations of
theorem (2.3), for a ramified prime p in the extension L/Q with e(p) = 2, Πp(K)
can be principal (resp. non-principal), with Πp(L) non-principal (resp. principal).
Hence one can say there exist Pólya (resp. non-Pólya) non-Galois cubic fields with
non-Pólya (resp. Pólya) Galois closure, see example (2.8) (resp. example (2.9)).
Hence the part ‘only if’ in Zantema’s result [14, theorem 3.4] for Galois number
fields does not necessarily hold if either K1 or K2 is not Galois. Note that even if
Πp(K) is principal for every ramified prime p in K/Q, K need not be Pólya, see
example (2.14).

Example 2.8. Let K = Q(α) where α is a root of f(x) = x3 − 3x + 3. The discrim-
inant of K is DK = −33.5. Thus the Galois closure L of K over Q is the compositum
of K and the imaginary quadratic field E = Q(

√−15). We have e(5) = 2, and since
Π5(E) is not principal, by part (a) of theorem (2.3) the ideal Π5(L) is not principal.
Hence L is not a Pólya field, while h(K) = 1.

https://doi.org/10.1017/prm.2018.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.86


1428 A. Maarefparvar and A. Rajaei

Example 2.9. Consider the pure cubic field K = Q( 3
√

19). The Galois closure of
K over Q is the sextic field L = Q(ρ, 3

√
19). The primes 3 and 19 are ramified in

L. Since e(3) = 2, and the quadratic subfield E = Q(
√−3) of L has class number

one, by part (a) of theorem (2.3) the ideal Π3(L) is principal. On the other hand,
e(19) = 3, and since the ideal Π19(K) is principal, by part (b) of theorem (2.3) the
ideal Π19(L) is principal. Thus L is a Pólya field, while K is not Pólya, since Π3(K)
is not principal.

As another consequence of theorem (2.3), we find a relation between Pólya-ness
of L and Pólya-ness of the quadratic subfield E:

Corollary 2.10. With the notation of theorem (2.3),

(a) if L is Pólya, then E is also Pólya;

(b) if L/E is unramified and E is Pólya, then L is also Pólya.

Proof.

(a) Suppose that L is Pólya and p is a ramified prime in E/Q. Hence 2 divides
e(p), so e(p) = 2 or e(p) = 6. Following parts (a) and (c) of theorem (2.3), we
conclude that the ideal Πp(E) is principal. Hence E is Pólya.

(b) Let L/E be unramified. For each ramified prime p in L/Q, by lemma (2.1),
if e(p) = 3 or e(p) = 6, then there exists a prime ideal of E above p which
is ramified in L/E. Hence if L/E is unramified, for each ramified prime p in
L/Q, we have e(p) = 2. Thus if E is a Pólya field, by part (a) of theorem
(2.3), so is L.

�

Remark 2.11. With the notation in theorem (2.3), if L/E is unramified, by class
field theory, h(E) is divisible by 3. Following Honda [6], we restate an interesting
result which gives a necessary and sufficient condition for divisibility of the class
number of a quadratic field by 3:

Proposition 2.12 ([6, proposition 10]). If the class number of a quadratic field N is
a multiple of 3, then N must be of the form N = Q(

√
4a3 − 27b2), for some a, b ∈ Z.

Conversely, for arbitrary a, b ∈ Z, if gcd(a, 3b) = 1, and if a cannot be represented
by a form (b + h3)h−1 with h ∈ Z, then the class number of the quadratic field
Q(

√
4a3 − 27b2) is a multiple of 3.

Hence using Honda’s result above and corollary (2.10), we find a simple criterion
for Pólya-ness of a special class of S3-extensions of Q as follows:

Corollary 2.13. With the notation of theorem (2.3), let L be the splitting field of
f(x) = x3 + ax + b over Q, with a, b ∈ Z . If gcd(a, 3b) = 1 and E is a Pólya field,
then L is Pólya.

Proof. We show that L/E is unramified and the assertion would follow from
corollary (2.10). For a contradiction, assume that α is a prime of E, ramified in L. By
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lemma (2.1), p = α ∩ Q totally ramifies in K/Q, which implies that p | gcd(a, 3b),
the details can be found in [6, Proof of Proposition 10]. �

Example 2.14. Let K = Q(α) where α is a root of f(x) = x3 + 10x + 1. Denote
the Galois closure of K over Q by L. Here the discriminant of f(x) is −4027, and
hence the unique quadratic subfield of L is E = Q(

√−4027), which is a Pólya field
by proposition (1.4). Since gcd(10, 3) = 1, by corollary (2.13), L is a Pólya field.
Note that h(K) = 6, hence by proposition (1.6), K is not Pólya. While for the only
ramified prime 4027 in K, the ideal Π4027(K) is principal. (By Ostrowski’s theorem
[11] this can only happen for non-Galois number fields).

3. Maximum number of ramified primes

For a number field M , denote the number of ramified primes in M/Q by sM . In [8],
Leriche for any Galois Pólya number field M , gave an upper bound for sM which
only depends on the degree of M over Q, see [8, proposition 2.5]. For example, for
Pólya quadratic fields this upper bound is 2, which is sharp by proposition (1.4).
For a cyclic Pólya number field of an odd prime power degree, the sharp upper
bound is 1, see [14, proposition 3.2]. For biquadratic extensions of Q this upper
bound is 5, proved to be sharp in [5]. For cyclic sextic Pólya number fields, by
Zantema’s results [14, proposition 3.2 and theorem 3.4] this upper bound drops to
3. For S3-extensions of Q, we prove:

Theorem 3.1. Let K be a non-Galois cubic field with Galois closure L. Denote by
E the unique quadratic subfield of L. If L is Pólya, then:

(a) for L real, sL � 4 and this is sharp. Moreover, if ξ ∈ NL/E(UL) where ξ is
the fundamental unit of E, then sL � 3.

(b) for L imaginary:
(i) for non-pure K, sL � 2 and this is sharp;

(ii) for pure K, sL � 3 and this is sharp. Moreover, if ρ ∈ NL/E(UL) where
ρ is a primitive third root of unity, then sL � 2.

Proof. Let G = Gal(L/Q). Since L is a Pólya Galois number field, by the exact
sequence in proposition (1.2) and remark (1.3), we have:

#H1(G,UL) =
∏

p|DL

e(p). (3.1)

Hence to find an upper bound for sL, we give an upper bound for the order of
H1(G,UL). Let G2 = Gal(L/K) and G3 = Gal(L/E). The restriction maps

res : H1(G,UL) → H1(G2, UL),

and

res : H1(G,UL) → H1(G3, UL),

that are injective on the 2-primary and 3-primary part of H1(G,UL), respectively,
see [10, proposition 1.6.9]. By equality (3.1), #H1(G,UL) has only 2-primary and

https://doi.org/10.1017/prm.2018.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.86


1430 A. Maarefparvar and A. Rajaei

3-primary part. Hence:

#H1(G,UL) | #H1(G2, UL).#H1(G3, UL). (3.2)

Now for the cyclic extensions L/K and L/E, we can use the Herbrand quotient:

Q(G2, UL) =
#Ĥ0(G2, UL)
#H1(G2, UL)

, Q(G3, UL) =
#Ĥ0(G3, UL)
#H1(G3, UL)

, (3.3)

where

Ĥ0(G2, UL) = UG2
L /NL/K(UL) = UK/NL/K(UL),

Ĥ0(G3, UL) = UG3
L /NL/E(UL) = UE/NL/E(UL).

On the other hand, the Herbrand quotients Q(G2, UL) and Q(G3, UL) are given by
[2, proposition 5.10]:

Q(G2, UL) =
2s

[L : K]
= 2s−1,

Q(G3, UL) =
2t

[L : E]
=

2t

3
,

where s (resp. t) is the number of infinite places of K (resp. E) ramified in L. Hence

Q(G2, UL) =
{

1
2 : L is real,
1 : L is imaginary, (3.4)

Q(G3, UL) =
1
3
. (3.5)

Since NL/K(UL) (resp. NL/E(UL)) contains U2
K (resp. U3

E), Dirichlet Unit
Theorem gives an upper bound for (UK : NL/K(UL)) and (UE : NL/E(UL)):

• for L real, (UK : U2
K) = 23 and (UE : U3

E) = 3, so (UK : NL/K(UL)) | 23 and
(UE : NL/E(UL)) | 3;

• for L imaginary, (UK : U2
K) = 22 and (UE : U3

E) | 3, so (UK : NL/K(UL)) divides
22 and (UE : NL/E(UL)) | 3.

(a) Let E be real, and denote the fundamental unit of E by ξ. By the above
argument, depending on whether ξ ∈ NL/E(UL) or not, (UE : NL/E(UL)) =
1 or (UE : NL/E(UL)) = 3, respectively. Thus in this case, #H1(G2, UL) |
24 and depending on whether ξ ∈ NL/E(UL) or not, #H1(G3, UL) = 3 or
#H1(G3, UL) = 32, respectively.

Now since L is Pólya, by corollary (2.10), E is also Pólya. By lemma (2.1),
for each ramified prime p in E/Q, e(p) = 2 or e(p) = 6. On the other hand, by
proposition (1.4), at most two primes ramify in E/Q. Hence, using relation
(3.2) and these arguments, we find:
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• for L real and ξ ∈ NL/E(UL),

#H1(G,UL) | 22.31; (3.6)

• for L real and ξ �∈ NL/E(UL),

#H1(G,UL) | 22.32. (3.7)

By relations (3.1), (3.6) and (3.7), we find that for ξ ∈ NL/E(UL) (resp. ξ �∈
NL/E(UL)), sL � 3 (resp. sL � 4). Example (3.3) below shows that this upper
bound is sharp and the statement in part (a) is proved.

(b) Let L be imaginary and Pólya. By corollary (2.10), E is an imaginary
quadratic Pólya field. Hence by proposition (1.4), there is only one rami-
fied prime p in E/Q, and by lemma (2.1), e(p) = 2 or e(p) = 6, which implies
that 2-primary part of H1(G,UL) has order 2. Also, one can show that for
E = Q(

√
d), UE = {±1}, except for d = −1,−3 where UE = {±1 ± i} and

UE = {±1 ± ρ,±ρ2}, respectively.

(i) If K is not pure, then E �= Q(
√−3) and UE = NL/E(UL), since NL/E(−1) =

−1 and for E = Q(
√−1), NL/E(−i) = i. Hence #Ĥ0(G3, UL) = 1. Using

relation (3.5), we have #H1(G3, UL) = 3. Therefore, in this case, we have

#H1(G,UL) | 21.31,

and using relation (3.1), we find that for K non-pure, sL � 2.
To show that sL = 2 occurs, let p be an odd prime number such that q =

4p + 27 is also prime. Let K = Q(θ) where θ is a root of f(x) = x3 + px + p.
By Eisenstein’s Criterion f(x) is irreducible over Q, and discriminant of f(x)
is df = −p2(4p + 27). Hence K is non-Galois and since q > 3, it is not pure
either. Only p can totally ramify in K/Q and this happens if DK = df , see
the argument in the beginning of § 2. Moreover, let Πp(K) be principal, for
instance, we can assume h(K) is not divisible by 3. Also by proposition (1.4),
the unique quadratic subfield E = Q(

√−q) of L is Pólya. With these assump-
tions and using theorem (2.3), L is a Pólya S3-extension of Q with sL = 2.
All these requirements are satisfied if for example p = 5, 11, 41, 59, 71, 83, 89.

(ii) Let K be pure. Hence E = Q(
√−3). In this case, depending on whether

ρ ∈ NL/E(UL) or not, (UE : NL/E(UL)) = 1 or (UE : NL/E(UL)) = 3, respec-
tively. Using an argument similar to part (i), we find:
• if ρ ∈ NL/E(UL), then

#H1(G,UL) | 21.31; (3.8)

• if ρ �∈ NL/E(UL), then

#H1(G,UL) | 21.32; (3.9)

By relations (3.1), (3.8) and (3.9), the statement is proved.

Now we show that if ρ �∈ NL/E(UL), the sL can be 3. Let K = Q( 3
√

n), where
n is a cube free integer. Following Honda [7], let n = pq where p and q are prime
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numbers such that p ≡ 2(mod 9) and q ≡ 5(mod 9). We have DK = −3p2q2, hence
e(p) = e(q) = 3 and e(3) = 2, see [7]. One can show that h(K) is not divisible by
3, see [7, theorem, page 8]. Hence Πp(K) and Πq(K) are principal, and by theorem
(2.3), Πp(L) and Πq(L) are principal. Also E = Q(

√−3) is Pólya, hence again by
theorem (2.3), Π3(L) is principal. Therefore L = Q(ρ, 3

√
pq) is a Pólya S3-extension

of Q with sL = 3. �

Remark 3.2. One can find some examples of real Pólya S3-extensions of Q with
four ramified primes:

Example 3.3. Let K be Q(θ), where θ is a root of f(x) = x3 − 20x − 30. We have
DK = 22.52.7.11, and so K is a non-Galois cubic field. As before, denote the Galois
closure of K over Q by L, and denote by E the unique quadratic subfield of L.
Hence E = Q(

√
77), which is a real quadratic Pólya field by proposition (1.4). Also,

h(K) = 1, and hence K is a Pólya field. Thus by corollary (2.5), L is a real Pólya
S3-extension of Q with sL = 4.

4. On divisibility of Class numbers

Following Masley [9], we define:

Definition 4.1 (See [9]). We call an extension M/N totally ramified if no
subextension of M/N except N itself is unramified over N .

Proposition 4.2 ([9, corollary 2.3]). Suppose an extension M/N of number fields
is totally ramified. Then h(N) divides h(M).

In the special case that [M : N ] is a prime number and M/N is ramified, M/N
is a totally ramified extension. Therefore:

Corollary 4.3. Let K be a non-Galois cubic number field. Let L be the Galois
closure of K over Q. Then h(K) divides h(L).

Proof. Denote by E the unique quadratic subfield of L, and let p be a ramified
prime in E/Q. By lemma (2.1), two cases are possible:

Case 1) e(p) = 2. By lemma (2.1), we have:

pOK = β1β
2
2 ,

pOL = (γ1γ2γ3)2.

Hence β1 is ramified in the extension L/K.
Case 2) e(p) = 6. By lemma (2.1), p = 3 and ramifies totally in L/Q and K/Q,

say 3OL = γ6 and 3OK = β3. Thus we have βOL = γ2, which implies that β is
ramified in the extension L/K.

Thus L/K is a totally ramified extension and the statement follows from
proposition (4.2). �
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As a consequence, we find that in a special case, the converse of the corollary (2.5)
holds:

Corollary 4.4. Let K be a non-Galois cubic number field. Denote the Galois
closure of K over Q by L, and denote by E the unique quadratic subfield of L. If
hL = 1, then both subfields E and K of L are Pólya.

Proof. If hL = 1 by corollary (4.3), hK = 1. Hence K is a Pólya field. Pólya-ness
of E follows from part (a) of the corollary (2.10). �
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