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Flows produced by a circular cylinder undergoing oscillatory rotation and translation
in a quiescent fluid have been studied via direct numerical simulations. The
incompressible Navier–Stokes equations were solved for large dimensionless time
windows using an immersed boundary method with adaptive Cartesian grid refinement.
Parametric studies were conducted in two dimensions on the Reynolds number,
Keulegan–Carpenter number and phase shift. In addition to the previously reported
net thrust case (Blackburn et al., Phys. Fluids, vol. 11, 1999, pp. 4–6), the study
catalogued the appearance of several streaming jet regimes with varying deflection
angles, deflected and horizontal vortex shedding regimes, and a double mirrored jet
regime with varying inter-jet angles, as well as several chaotic cases. Visualizations
are presented to clarify each observed flow regime and to illustrate the parameter
space. Connections are drawn between these canonical bluff-body deflected wakes and
a similar phenomenon observed in aerofoils oscillating at high reduced frequencies
in a cross-flow. Also, the discovery of the streaming jet regimes with varying
deflection angles opens the door for using these flows as a low-Reynolds-number
propulsive mechanism requiring only a two-degree-of-freedom actuator. Simulation
results suggest that the flow phenomena observed in two dimensions persist in three
dimensions, despite spanwise fluctuations.

Key words: vortex flows, vortex shedding, wakes/jets

1. Introduction and related work
Flows about canonical bluff bodies can produce characteristic phenomena that occur

in a wide range of practical problems. For example, one can gain insight into the
physics of biological propulsive flows, flows interacting with offshore structures and
flows around aerofoils through a careful examination of representative canonical cases.
However, bluff-body fluid dynamics is not completely understood, and there exists the
potential for identifying new flow regimes and propulsive mechanisms. This paper
details several cases in which the combined oscillatory rotation and translation of
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Flows produced by the oscillatory motion of a circular cylinder 149

a cylinder in a quiescent fluid was found to produce several previously unreported
symmetric and deflected wake regimes. A detailed numerical study is presented, which
maps out a portion of the Reynolds number, Keulegan–Carpenter number (KC) and
phase shift parameter space.

Many studies have investigated the flows associated with infinitely long circular
cylinders, the most well known of which is the von Kármán vortex street, which
occurs for the steady flow over a static cylinder. Research has also been done with
cylinders oscillating rotationally (Tokumaru & Dimotakis 1991; Thiria, Goujon-Durand
& Wesfreid 2006; Du & Dalton 2013; Kumar et al. 2013) as well as transversely
(Ongoren & Rockwell 1988; Williamson & Roshko 1988; Gu, Chyu & Rockwell
1994; Blackburn & Henderson 1999; Guilmineau & Queutey 2002; Lam, Liu & Hu
2010b; Leontini, Jacono & Thompson 2011) in a cross-flow at varying amplitudes and
frequencies below, equal to and above the natural shedding frequency of a stationary
cylinder. Others have investigated the effects of prescribed sinusoidal translation
in quiescent fluids (Williamson 1985; Justesen 1991; Dütsch et al. 1998; Iliadis &
Anagnostopoulos 1998; Lam, Hu & Liu 2010a). Hall (1984) analytically determined
the critical KC values at which three-dimensional instabilities in the boundary layer
of a translationally oscillating cylinder occur. The three-dimensional flow structures
produced by oscillating cylinders have been investigated as well (Honji 1981; Tatsuno
& Bearman 1990; Poncet 2004; Elston, Blackburn & Sheridan 2006).

Several studies have also begun investigating the larger parameter space afforded
by combined oscillatory rotation and translation of an infinitely long cylinder in a
fluid. Blackburn, Elston & Sheridan (1999) were the first to look at combined rotary
and translational oscillation of a cylinder in a quiescent fluid, noting the formation
of a coherent thrust-producing jet often referred to as the swimming cylinder. By
letting the cylinder propel itself perpendicular to the translational forcing, they
observed a terminal velocity that was 33 % of the maximum prescribed velocity. It
is encouraging to see that the propulsive flow did not unlock when the cylinder was
allowed to move freely. In a similar work, Blackburn, Elston & Sheridan (1998)
studied the effect of the phase shift between the combined oscillatory forcing for
a cylinder in a quiescent fluid. In addition to the swimming cylinder, they noted a
double-jet flow. While not specifically mentioned in the text, one of their images
shows what appears to be the beginning of a deflected vortex wake as well. The
swimming cylinder phenomenon was also produced with the lattice Boltzmann
method by Beigzadeh-Abbassi & Beigzadeh-Abbassi (2012). In addition, Nazarinia
et al. (2009b) investigated the three-dimensional stability of the swimming cylinder.
They noted the potential for symmetry-breaking cases, which occur as the phase
shift between rotary and translational oscillation is varied, but only observed a jet
flow in the in-phase and opposing-phase cases. In two related studies, Nazarinia
et al. (2009a, 2012) looked at the effects of phase shift, velocity ratios and motion
frequency for a cylinder undergoing combined rotary and translational oscillation in
a cross-flow. The free-stream velocity in both of these studies was more than 100 %
of the maximum prescribed translational velocity. Thus, the flows yielded were in an
inherently different regime from the swimming cylinder.

In the present work, several new regions in the parameter space of a cylinder
undergoing oscillatory rotation and translation in a quiescent fluid are studied. One
of the resulting flow regimes consists of a deflected wake of closely interlocked
dipole vortex pairs. This case is interesting because it is visually reminiscent of
the propulsive deflected wake phenomenon, which has previously been identified in
aerofoil studies.
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150 C. Koehler, P. Beran, M. Vanella and E. Balaras

In the case of an aerofoil oscillating in a cross-flow, Koochesfahani (1989) and
Freymuth (1990) showed that, as the Strouhal number increases, the flow behind the
aerofoil begins to transition from a von Kármán vortex street to a wake of aligned
vortices to a reverse von Kármán vortex street, where the circulation of the wake
vortices is reversed from what is seen with stationary aerofoils. This is known as the
Knoller–Betz effect. These propulsive vortex streets were studied many times over the
passing years, and an overview of the literature was presented by Platzer et al. (2008).

More recently, symmetry-breaking deflected wakes of dipole vortex pairs, which
produce a net lift in addition to a net thrust, were captured by further increasing the
Strouhal number in the aerofoil problem. Bratt (1950) initially captured the deflected
wake phenomenon but did not specifically comment on it. Jones, Dohring & Platzer
(1998) offered the first explanation for the symmetry break, noting that the deflection
direction was fixed by the initial oscillation direction in numerical simulations but
varied randomly over time in experiments. This suggests that small flow disturbances
could alter the deflection angle.

The focus of all previous works on combined rotary and translational oscillation
of a cylinder in a quiescent fluid has been the completely out-of-phase case that
yields a net thrust-producing jet flow perpendicular to the translation axis. While the
dimensionless parameters in the aerofoil problem must be different from those in the
present case, owing to the combined oscillations and the lack of a cross-flow, it was
anticipated that there may be some similar symmetry-breaking mechanisms, which
would allow control of the propulsive swimming cylinder flow in two directions
instead of one. For this reason, a detailed numerical parameter study of a cylinder
undergoing combined rotary and translational oscillation in a quiescent fluid was
performed. The parameter study was limited to two-dimensional space because of
the large number of cases that needed to be run. It was found that there are in
fact multiple propulsive flow regimes with varying deflection angles in addition to
several other locked regimes. The focus is on illustrating the new flow regimes and
cataloguing their appearance over a broad parameter space while also noting the net
force production for some of the more promising regimes.

The remainder of this paper is organized as follows. Section 2 outlines the
prescribed kinematics, dimensionless parameters and imposed motion constraints
of the problem at hand. Section 3 contains the formulation of the incompressible
Navier–Stokes solver used in this study. Section 4 details the computational grid
set-up and presents the results of a grid convergence study. Section 5 outlines the
results of the parametric studies, including the observed flow regimes and phase
space plots. Net force comparisons are also presented to demonstrate that the jet
flow directions can be altered through subtle parameter changes. Section 6 reviews
the main points of the paper, discusses initial three-dimensional results, provides
additional discussion comparing the observed deflected wake regimes with the wake
deflection observed behind oscillating aerofoils, and concludes with an overview of
the open research topics related to this paper.

2. Problem statement
The flow regimes of interest in this study are produced by a cylinder, with diameter

D, undergoing a combination of rotary and translational prescribed oscillations with a
phase shift between the two. The cylinder location and orientation in the unconstrained
dimensional problem can by specified at any time by a translation in the y direction,

y(t)= Ay sin(2πfyt), (2.1)
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(a) (b)

FIGURE 1. (a) Conceptual illustration of the parameters controlling the oscillatory rotation
and translation prescribed to the circular cylinder. (b) Conceptual illustration of non-grid-
conforming objects. The objects S1 and S2 reside in the physical domain Ω , which has
an outer boundary Γ . The interface between the fluid and the ith object is denoted ∂Si.

and a rotation about the centre of the cylinder,

θ(t)= Aθ sin(2πfθ t+ ϕ), (2.2)

where fy and fθ are the oscillation frequencies, Ay and Aθ are the oscillation amplitudes,
t is the time, and ϕ is the phase shift between the combined motions. Figure 1
contains an illustration of these kinematics and the cylinder geometry. With no
additional constraints, this problem is characterized by five dimensionless parameters.
These can be taken as the phase shift, ϕ, a pair of Keulegan–Carpenter numbers,

KCy = Uy

fyD
, KCθ = Uθ

fθD
, (2.3a,b)

and a pair of Stokes numbers,

βy = fyD2

ν
, βθ = fθD2

ν
, (2.4a,b)

where ν is the kinematic viscosity of the surrounding fluid, Uy is the maximum
translational velocity and Uθ is the maximum tangential velocity on the cylinder
surface. A pair of Reynolds numbers can also replace one of these pairs of
dimensionless parameters,

Rey =KCyβy = UyD
ν
, Reθ =KCθβθ = UθD

ν
. (2.5a,b)

Several constraints were imposed on the dimensional problem in order to explore
what was believed to be the most promising portion of the parameter space. The
Stokes numbers were held equal, βy = βθ = β, as were the Keulegan–Carpenter
numbers, KCy = KCθ = KC. This implies that the Reynolds numbers were equal,
Rey = Reθ = Re, as well as the frequencies, fy = fθ = f , and the maximum velocities,
Uy = Uθ = U. Thus, the constrained dimensional problem was characterized by three
dimensionless parameters: the phase shift, ϕ, and any two-parameter combination of
KC, β and Re.
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In order to prescribe the aforementioned kinematics in a dimensionless Navier–
Stokes solver, the frequency and amplitudes needed for dimensionless versions
of (2.1) and (2.2) were calculated using D as the characteristic length and D/U
as the characteristic time. Parametric studies of KC were performed by varying
the dimensionless frequency, f ∗ = 1/KC, as well as the dimensionless amplitudes,
A∗y =KC/2π and A∗θ =KC/π, to assure all constraints were met.

3. Numerical methods

This section details the governing equations and their discretization using the
immersed boundary method (IBM). The key feature of the IBM is that bodies
immersed in the fluid do not need to align with the computational grid (figure 1b),
which greatly simplifies grid generation and allows for arbitrary movement and
deformation of bodies in the flow field. The motivation for choosing the IBM is our
desire to extend this work to multiple moving cylinders in the future.

The dimensionless, unsteady, incompressible Navier–Stokes equations, which govern
viscous flows, are

∂u
∂t
+ u · ∇u= 1

Re
∇2u−∇p+ f , (3.1)

∇ · u= 0, (3.2)

where u is the velocity, t is the time, p is the pressure and f represents an external
body force field, which is used to impose no-slip boundary conditions in the IBM
discretization. No special script is used to denote the fact that these variables
are dimensionless, as all variables will be assumed dimensionless throughout the
remainder of the paper unless otherwise specified.

A fractional step method is utilized for the temporal numerical integration of
the governing equations on a staggered Cartesian grid. All spatial derivatives are
approximated using second-order-accurate central differences, and a second-order-
accurate Adams–Bashforth scheme is used to advance the advective and diffusive
terms in time. In this scheme, an intermediate velocity ũn is determined from

ũn − ũn−1

1t
= 3

2
K(un−1)− 1

2
K(un−2)−∇pn−1 + f n, (3.3)

where K is a discrete operator containing the convective and viscous terms, n is the
time step index and 1t is the time step size. The intermediate velocity field is not
divergence-free, but it can be projected into a divergence-free space by applying a
correction, φ, which is calculated from the Poisson equation,

∇2φn = 1
1t
∇ · ũn

, (3.4)

and used to update the final velocity,

un = ũn −1t∇φn, (3.5)

and the final pressure,
pn = φn + pn−1. (3.6)
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No-slip boundary conditions around non-grid-conforming objects (figure 1b) are
imposed via a moving least squares (MLS) forcing function computed directly on
the immersed surface, which is represented by a series of Lagrangian markers, as
was first done by Uhlmann (2005). The flow solver components are implemented as
units within the FLASH architecture (Dubey et al. 2009). For a full derivation of the
MLS forcing procedure, see Vanella & Balaras (2009). The octree grid refinement is
done with the Paramesh toolkit (MacNeice et al. 2000). The solution of the Poisson
equation on an octree grid is done using a parallel version of a multigrid method
(D. Martin & K. Cartwright 1996, personal communication) with a fast Fourier
transform-based fast Poisson solver on the finest uniform grid. See Peskin (2002),
Mittal & Iaccarino (2005) for more detail on IBMs in general, and Balaras & Vanella
(2009), Vanella, Rabenold & Balaras (2010) for more detail regarding the specific
adaptive mesh refinement (AMR) and IBM used here.

Force coefficients (non-dimensionalized by 0.5ρU2
rmsD) can be computed from the

final velocity and pressure fields yielded by solving the discretized Navier–Stokes
equations (3.3)–(3.6). In the absence of a cross-flow, the drag force will be taken to
refer to the force component in the horizontal or positive x direction and the lift force
will refer to the force component in the vertical or positive y direction (figure 1a).

Thus, the instantaneous force coefficients can then be computed by integrating shear
stress and pressure around the cylinder. For additional information on accurately
calculating hydrodynamic forces on an object’s surface in the MLS IBM used in
this study, as well as a comparison of force coefficients between this method and
previously published experimental (Gu et al. 1994) and numerical (Guilmineau &
Queutey 2002) results for the flow over an oscillating cylinder, see Vanella & Balaras
(2009).

4. Convergence and verification
In order to gain confidence in the new results, convergence tests were performed

and comparisons were made between the present numerical approach and the results
of Elston et al. (2006) for the case of a cylinder undergoing solely translational
oscillation in an initially quiescent fluid. The comparison metric is the peak force
coefficient in the direction parallel to the translation, ĈL, which was measured during
the last 30 oscillations of the cylinder.

Several Cartesian computational grids with varying domain boundaries and amounts
of refinement around the cylinder were compared to ascertain the effects of domain
size and mesh resolution. The cylinder initially resides at the origin of an Lx × Ly
physical domain. There are Nd grid cells across the diameter of the cylinder. A no-slip
velocity boundary condition and a Neumann pressure boundary condition were utilized
for all far-field boundaries, which are placed far enough away that the vortices forming
around the oscillating cylinder do not come near them. Table 1 lists the details of
the grids employed in this convergence study, and figure 2 shows an example of the
h refinements throughout the physical domain and a close-up of the grid refinement
near the immersed cylinder surface for grid G7. All time steps were chosen so as
not to exceed the Courant–Friedrichs–Lewy (CFL) stability criterion, making spatial
convergence the dominant concern.

Figure 3 summarizes the key findings of this convergence study. The solutions on
all of the grids were qualitatively the same. Little change was observed in ĈL when
increasing the physical domain beyond Lx=56D and Ly=64D. Using grid G4, specific
value comparisons were made between the present methods and the results of Elston
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FIGURE 2. Illustration of grid G7. (a) Full physical domain with refinement boundaries
and Paramesh block layout. (b) Close-up showing the grid cell resolution near the cylinder
surface.

Grid Refinements Total cells Nd Lx/D Ly/D 1t

G1 4 524 288 64 56 64 0.001
G2 4 1212 416 64 112 128 0.001
G3 5 450 560 128 28 32 0.0005
G4 5 622 592 128 56 64 0.0005
G5 5 1310 720 128 112 128 0.0005
G6 5 4063 232 128 224 256 0.0005
G7 6 868 352 256 56 64 0.00025
G8 6 1556 480 256 112 128 0.00025

TABLE 1. Specification of the AMR refinement levels, total grid cells, near-field as well
as domain resolution and time step for each grid used for the convergence study, as well
as the results.

et al. (2006) for three combinations of KC and Re. The percentage variation between
the results of Elston et al. (2006) and the present ones is less than 1.5 % for each
case. The comparisons are summarized in table 2.

For these reasons, unless otherwise specified, grid G4 was utilized for the hundreds
of code executions necessary for the parametric studies detailed in this paper, while
grid G7 was utilized for more detailed analysis of the individual cases for which force
plots or flow visualizations are presented. For additional information on several other
validation cases run with this code, including distributed force results for a cylinder
oscillating in a cross-flow, the reader is referred to Vanella & Balaras (2009).

5. Results
This section presents an overview of the observed flow regimes and also details the

results of several parametric studies of the phase shift, Keulegan–Carpenter number
and Reynolds number in the constrained oscillating cylinder problem. In these studies,
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64
9.56

9.60

9.64

128 192 256

FIGURE 3. (Colour online) Grid convergence study results for the case of a cylinder
undergoing solely translational oscillation in a quiescent fluid, with KC = 2.5 and Re =
250. The quantity of interest is the peak force coefficient in the direction parallel to the
translation, ĈL.

Present study Elston et al.

KC Re ĈL ĈL

8.0 100 5.368 5.420
4.5 180 6.005 6.080
2.5 250 9.587 9.681

TABLE 2. Comparison between the peak lift coefficients acting on the surface of a
cylinder undergoing solely translational oscillation in a quiescent fluid computed in the
present study with the results taken from table 2 column 5 of Elston et al. (2006). These
measurements were made using grid G4.

KC ranged from 3π/8 to 2π, Re ranged from 30π to 160π, and ϕ ranged from 0 to π.
In addition to the thrust-producing case of Blackburn et al. (1999), several fascinating
new flow regimes were identified for the cylinder undergoing combined rotary and
translational oscillation in a quiescent fluid. Herein all the observed flows will be
referred to using the following initials: HS (horizontal streaming), HV (horizontal
vortex shedding), DS (deflected streaming), DV (deflected vortex shedding), DJ
(double jet), JT (jet transition), DD (double dipole), CD (chaotic directional) and FC
(fully chaotic or unclassifiable). Here the term ‘streaming’ is used to denote cases
where long streaks of positive and negative vorticity form at some point around the
cylinder but they do not exhibit shedding of individual vortices. To the best of our
knowledge, the HV, DS, JT and DD flow regimes have not previously been reported.

All simulations in the parametric study proceeded for 80 translational oscillations,
which proved more than adequate to discern the flow regime. This number is
comparable to similar numerical studies. For instance, Blackburn et al. (1999) ran the
simulation to 50 motion periods in the original swimming cylinder paper. A variety
of visualizations, plots and supplementary data are provided to help elucidate the
flow behaviour in each regime. Figures 4, 5 and 8 illustrate the key characteristics
of each flow regime. In these figures, all colour-mapped vorticity is from the end of
the 80th translational oscillation and all time-averaged velocity is measured from the
last 20 translational oscillations. Isovalue magnitudes were varied slightly between
figure panels to clarify the flow structures, with red representing positive vorticity
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(a) (b)

(c) (d )

3D

FIGURE 4. Visualization of cases characterizing the regimes in which flow proceeds
horizontally to only one side of the cylinder in the combined oscillatory rotation and
translation problem. (a) HS regime vorticity: KC = 3π/8, Re = 160π and ϕ = 3π/4.
(b) Time-averaged velocity and path-lines for the previous case. (c) HS‡ regime vorticity:
KC = 5π/8, Re = 160π and ϕ = π. (d) HV regime vorticity: KC = 2π, Re = 30π and
ϕ =π/2.

(a) (b) (c) (d)

3D

FIGURE 5. Visualizations of vorticity production in the DV regime. (a) Instantaneous
vorticity: KC= 10π/8, Re= 90π and ϕ = 3π/4. (b) Time-averaged vorticity in the same
case. An asterisk denotes a symmetry break in vorticity production, opposite the deflected
wake. (c,d) Effect of start direction on deflection angle: KC=π, Re= 90π and ϕ= 3π/4.

and positive velocity, and blue representing negative vorticity and zero velocity.
Also, path-line visualizations with colour mapped to elapsed time were only used
in the streaming flow cases where a coherent jet flow was found. In these path-line
visualizations, seed points were placed in a circle with radius 1.75D around the
initial cylinder location and massless particle integration was performed for 10
dimensionless time units with fourth-order Runge–Kutta integration starting from
the end of the 70th translational oscillation. In addition, supplementary movies 1–9
illustrating the evolution of each flow regime from an impulsive start are available
online at http://dx.doi.org/10.1017/jfm.2014.699. The animation times are normalized
by the oscillation periods to facilitate easier comparisons between data.

The phase space plots included later in figure 10 illustrate the transitions that occur
as the dimensionless parameters are varied and will be referred to repeatedly as each
flow regime is introduced. In figure 10, a colour is associated with each flow regime
in order to visually canvas the parameter space. This involved quite a bit of author
interpretation of the hundreds of simulation results. High-resolution visualizations
of the raw data used to make figure 10 are also available online in supplementary
figures 1–6.
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5.1. Horizontal flow regimes
Many cases were observed where streaming flow or vortex shedding occurred along
the horizontal axis on only one side of the cylinder. As illustrated in figure 1, the
forced cylinder translation is performed along the vertical axis. Flows in the HS
regime produce a temporally coherent streaming jet flow perpendicular to the cylinder
translation axis, but do not exhibit vortex shedding (see figure 4a and supplementary
movies 1 and 2). This results in a net time-averaged thrust, which is visually captured
with colour mapped to time-averaged velocity magnitude and path-lines in figure 4(b).
The swimming cylinder previously reported by Blackburn et al. (1999) is in this
regime. It should also be noted that the large vortices on the right-hand side of
figure 4(a,b) were produced by the impulsive start and do not form periodically over
time.

In general, for lower Re values, HS flows were observed at mid-range values of KC,
while at higher Re values only low KC values yielded HS flows. The impact of the
phase shift is less clear. As expected, many HS flows resulted when the oscillations
were completely out of phase (ϕ = π), as can be seen in figure 10. However, HS
flows were also observed when the cylinder oscillations were not completely out of
phase (ϕ = 3π/4 and ϕ =π/2). This is surprising, as this flow regime was originally
thought to occur only when the rotation and translation are completely in or out of
phase.

For the most part, after many cylinder oscillations, the vortices produced from the
impulsive start to the cylinder motion are convected into the far field by the streaming
jet flow. However, several flows were observed where the starting vortices slowed
while the streaming wake began to roll up around them. This phenomenon will be
denoted as HS‡ in figure 10 to more clearly categorize the parameter space.

On the other hand, in the horizontal vortex shedding (HV) regime, two vortices
with rotations of opposite signs are formed and shed perpendicular to the translation
axis during each cycle. After the flow has had time to establish itself, the resulting
trail of vortices remains nearly linear as it progresses into the far field and diffuses
due to viscosity. Except for the comparatively small inter-vortex spacing, HV flows
resemble a typical reverse von Kármán vortex street (see figure 4d and supplementary
movie 3). The HV regime only appeared when the forced oscillations were out of
phase (ϕ=π/2 and ϕ= 3π/4) at high values of KC and low values of Re, as can be
seen in figure 10(b,c). Intermediate cases between the HS and HV regimes were also
observed, which exhibit pulsatile streaming vorticity and periodic mass convection.
Such cases were classified as HS in figure 10 unless there was clearly a trail of
vortices proceeding into the far field.

5.2. Deflected wake regimes
Deflected wake regimes refer to cases where a single streaming jet or vortex street is
shed from the cylinder in a direction that is not parallel to the horizontal axis. In the
deflected vortex shedding (DV) regime, obliquely oriented dipole vortex pairs are shed
from the cylinder during each motion cycle. The velocity of each shed pair is just high
enough to ‘make room’ for the next shed pair. The result is a chain of interlocking
dipole vortices, which extends into the far field, where it diffuses.

Vorticity is used to visualize the deflected vortex street structure at the end of
the 80th translational oscillation (see figure 5(a) and supplementary movie 4). The
time-averaged vorticity (figure 5b) shows that, in addition to the symmetry-breaking
direction of the wake, there is also a negative-vorticity region marked with an asterisk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.699


158 C. Koehler, P. Beran, M. Vanella and E. Balaras

(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 6. Shed vortex tracking at eight steps during a complete translational oscillation
for a DV regime case: KC = π, Re= 90π and ϕ = 3π/4. Vortices are labelled A, B, C
and D, with the superscript n denoting the oscillation number at which individual vortices
are created.

on the side opposite the deflected wake. As can be seen in figure 10, the DV regime
occurred at moderate to high values of KC, and moderate Re values, but only when
the oscillatory motions were not completely in or out of phase.

After 80 motion periods, the flow has clearly developed into a chain of dipole vortex
pairs, moving at an angle from the horizontal axis. Looking at the flow during a single
forcing cycle (figure 6a–h), a pattern of vorticity generation and annihilation can be
seen. The vortices created during each oscillation are labelled A, B, C and D in this
figure for clarity, with A and B ultimately pairing up and being shed into the wake of
interlocking vortices, while C and D are annihilated by the flow produced in ensuing
oscillations.

Figure 7 contains plots of the surface vorticity, ωw, as well as the surface tangential
acceleration, aτ , distributed around the surface of the cylinder at eight time instants
during a single oscillation. The measurements are made at angle α, which is measured
in the anticlockwise direction (figure 7i). The surface unit tangent, τ , is assumed to
be positive when pointing in the counter clockwise direction as well. Quadrants are
labelled Q1, Q2, Q3 and Q4 around the cylinder to help clarify the following analysis.

Under these assumptions, one can expect positive surface tangential acceleration to
cause increased negative shear vorticity at the cylinder surface (Morton 1984). This
can be seen in the distributed tangential acceleration and vorticity plots (figure 7a–h).
There is a slight time lag in the expected surface vorticity profiles due to the changing
acceleration as well as the recently shed vortices interacting with the shear layer.

Taking a more detailed look at figures 6 and 7, it is clear that vortex A begins
to form during each oscillation as the cylinder translates upwards, passing its initial
location. At this time the tangential acceleration in Q1 and Q4 becomes increasingly
negative (figure 7a,b). The resulting positive vorticity accumulates primarily in Q4 at
first despite the symmetric acceleration profile in the two quadrants. This is due to
the strong negative surface vorticity from the previous oscillation in Q1. Similarly,
vortices B and D begin to form as the cylinder translates upwards due to the strong
positive surface tangential acceleration in Q2 and Q3 causing negative surface vorticity
to accumulate around that half of the cylinder (figure 7b–d).
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FIGURE 7. (Colour online) Plots clarifying the near-field flow physics for a DV regime
case: KC=π, Re= 90π and ϕ= 3π/4. (a–h) Distributed surface vorticity, ωw, and surface
tangential acceleration, aτ , around the entire cylinder. (i) Illustration of the angle, α,
measured in the anticlockwise direction, independent of the instantaneous cylinder rotation
θ(t), at which the surface measurements are made. The positive unit tangent, τ , onto
which the surface acceleration is projected, is also shown.

As the cylinder reaches its peak translation point and reverses direction, positive
vorticity is still present in Q4 (figure 7c–e) but it is beginning to separate from the
surface as vortex A. Vortex A is then drawn above the downward-translating cylinder
(figure 6e, f ). As the cylinder reaches its minimum translation point, vortex A is no
longer attached to its surface (figure 6g).

Looking at the other side of the cylinder, when the distributed tangential
acceleration levels out (figure 7e) and reverses sign during the cylinder’s downward
translation (figure 7f ), the negative surface vorticity that had formed in Q2 and
Q3 splits into two distinct vortices (B and D), which separate and are drawn over
opposing sides of the cylinder as it reverses its translation direction (figure 6f,g and
figure 7f ). At this time, vortex B is drawn over the top of the cylinder to the positive
x side as it translates upwards at the start of the ensuing oscillation (figure 6h,a).
Vortices A and B pair up at this time and are entrained by the chain of shed dipole
pairs from previous cycles, which proceeds into the far field while gradually diffusing
due to viscosity.

Vortex D, on the other hand, is drawn under the cylinder as it translates upwards
(figure 6a–c). Instead of remaining under the cylinder, vortex D continues to be
drawn onto the positive x side of the cylinder as it begins to translate downwards
(figure 6d,e). It briefly touches vortex B, which is already paired with vortex A.
Vortex D then passes over the top of the cylinder (figure 6f–h), where it lingers and
diffuses during the following oscillation. This causes the additional time-averaged
negative vorticity marked with an asterisk in figure 5b.

Vortex C begins forming in the second half of each translational oscillation due
to the negative tangential acceleration in Q2 and Q3 (figure 7f–h). The resulting
positive-vorticity accumulation, on the side of the cylinder where vortices B and D
recently shed, remains attached as the cylinder translates upwards (figure 7a). Vortex
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(a) (b) (c) (d) (e)

( f ) (g) (h) (i)

( j) (k)

FIGURE 8. Colour-mapped instantaneous vorticity (a,c–f,h,j,k) and time-averaged velocity
magnitude with path-lines (b,g,i) illustrating the structure of several flow regimes. (a,b) DS:
KC= 11π/8, Re= 50π and ϕ=π. (c) DS‡: KC= 5π/8, Re= 90π and ϕ= 3π/8. (d) DS∗:
KC = 7π/8, Re = 70π and ϕ = π/4. (e) Mirrored jet produced by reversing the start
direction in the previous case. ( f,g) DJ: KC = 6π/8, Re = 90π and ϕ = 3π/4. (h,i) JT:
KC = π, Re= 90π and ϕ = 112π/128. ( j) DD: KC = 15π/8, Re= 120π and ϕ = 3π/4
at the end of the 70th translational oscillation. (k) Previous case at the end of the 80th
translational oscillation.

C separates as the cylinder hits its peak translation and the tangential acceleration in
Q2 and Q3 becomes positive (figures 7b and 6b–d). At the translation reversal, vortex
C detaches and is drawn over the top of the cylinder as it translates downwards
(figure 6e, f ). It briefly touches vortex A (figure 6g,h), but ultimately stretches and
is annihilated by the oncoming strong negative vorticity when the cylinder translates
upwards once again.

5.2.1. Deflected streaming flow regime
In the deflected streaming (DS) regime, positive and negative streaming vorticity

is generated in a continuous manner without the discrete vortices characteristic of
a vortex street (see figure 8a,b and supplementary movie 5). The DS regime is
structurally similar to the HS regime except for the asymmetry with respect to the
translation axis. Thus, it produces a net lift in addition to a net thrust. An asterisk
(DS∗) is used to denote a deflected streaming flow where the deflection angle extends
beyond the vertical axis (see figure 8d and supplementary movie 6). Also, the symbol
DS‡ denotes a deflected streaming case where the jet flow is within 5◦ of parallel to
the translation axis (figure 8c). Deflected streaming flows were yielded for all phase
shift values, as can be seen in figure 10. In the out-of-phase case (ϕ =π), DS flows
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DJ JT HS

FIGURE 9. Colour-mapped instantaneous vorticity illustrating the transitions between the
HS, JT, DJ and DJ‡ flow regimes as the phase shift is varied. KC = π/2 and Re= 90π
for all panels in this figure.

were seen at combinations of low KC and high Re, and at high KC and low Re,
but the relationship is not linear, as can be seen in figure 10(e). On the other hand,
DS∗ cases were only observed at low phase shift values (ϕ 6π/4). At low Reynolds
numbers, decreasing KC can cause the deflection angle to shift gradually from DS to
DS∗ and then to DS‡ (figure 10b).

5.3. Double-jet regime
In the double-jet (DJ) regime, two pairs of positive and negative vorticity stream out
from the cylinder and are mirrored with a sign change, about the axis perpendicular
to the cylinder translation (see figure 8f,g and supplementary movie 7). The additional
symbol DJ‡ denotes special cases where the two streaming jet flows become nearly
vertical and begin to arc towards the left side of the cylinder in the far field. Several
cases of this are shown in figure 9 for different values of the phase shift.

It is interesting that the combined rotary and translational oscillation applied to
a bluff body in a quiescent fluid only yielded one relatively uncommon (figure 10)
flow regime with two distinct secondary streaming directions given that several such
regimes exist when only translational oscillation is applied to the cylinder. One similar
case where a cylinder undergoing harmonic translation in a quiescent fluid yields a
deflected flow in two directions was presented as ‘regime D’ by Tatsuno & Bearman
(1990).

The jet transition (JT) regime denotes transitional flows that occur between the HS
and DJ regimes but cannot be correctly classified as either. In this regime, two pairs
of positive and negative vorticity stream out from the cylinder. However, unlike the
DJ regime, they all remain within 5◦ of the axis perpendicular to cylinder translation
(see figure 8h,i and supplementary movie 8). Transitions between the HS, JT and
DJ regimes were shown to occur with changes to all dimensionless parameters
(figure 10). Figure 9 shows an example of the transitions between the HS, JT, DJ
and DJ‡ regimes as the phase shift decreases for KC=π/2 and Re= 90π. All these
cases exhibit mirrored symmetry about the horizontal axis. At higher KC values,
the typical transition due to a decreasing phase shift is from HS to JT to DJ. At
this point a symmetry break occurs as it bifurcates to DS to DV to chaos as phase
shift, ϕ, is further decreased (figure 10f ). It should be noted that the large vortices
produced soon after the impulsive start for both the DJ and JT regimes do not form
periodically and are eventually pushed into the far field after the streaming flows
have time to get established.
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HS

DS

DJ

JT

CD

DD

FC

DV

HV

B
B

B

(a)

(b) (c)

( f ) (g)

(d) (e)

FIGURE 10. Phase space plots yielded from parametric studies of KC, Re and ϕ. The
original swimming cylinder (Blackburn et al. 1999) is marked with a ‘B’. The × symbol
denotes cases where the flow is mirrored about the translational axis compared to the
corresponding cases in figures 4, 5 and 8. A backslash through a case coloured as FC
denotes that the flow was not chaotic but rather was unclassifiable with the available data.
(a) Colour map used for differentiating flow regimes. (b–e) Studies of KC and Re with
four different constant ϕ values. ( f ) Study of KC and ϕ with a constant Re. (g) Study of
Re and ϕ with a constant KC.

5.4. Chaotic directional and double dipole regimes
As expected, there were many chaotic cases observed. Many of these did exhibit a
long-time average flow direction despite their chaotic nature. The chaotic directional
(CD) label denotes these cases. The CD class includes cases that are reminiscent of
all the previously described regimes, whose streaming or shedding behaviour did not
settle to a constant deflection angle after 80 oscillations.
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The double dipole (DD) regime is a special chaotic directional case, which has
been classified separately due to its striking behaviour. Unlike many flows classified
as CD, it does not have a non-chaotic counterpart in the parameter space that
was investigated. In the DD regime, two pairs of dipole vortices are shed from
the cylinder during each oscillation. They form into two distinct chains, initially
separated by a distance roughly equivalent to the cylinder translation amplitude,
flowing approximately perpendicular to the translation axis. However, these chains of
dipoles exhibit chaotic flow reorientation in the far field as they collide with each
other. The distance from the cylinder at which flow reorientation occurs varies over
time, but the basic structure of the flow always re-establishes itself. This phenomenon
is uncommon (figure 10d). The DD flow structure is illustrated in figure 8j,k, which
shows the flow field at the end of the 70th and 80th translational oscillations, and
also in supplementary movie 9. Clearly the flow is established but the reorientation
distance will continue to oscillate.

Chaotic flows with no dominant direction, as well as unclassifiable cases where a
regime could not be identified from the available data, are grouped as belonging to the
fully chaotic (FC) class for the sake of clarity in the phase space plots (although this
is obviously not a flow regime specific to this problem). These flows exhibit either
intermittent switching of the dominant flow direction or no discernible flow direction.
Vortices produced during previous oscillations mill about haphazardly, re-entering the
near field in an unpredictable manner, yielding chaotic force histories.

5.5. Parametric studies
Now that the physical structure of the observed flow regimes has been established,
we can look at the global structure of the phase space. This was accomplished
with a parametric study involving a total of 1232 simulations (see figure 10 and
supplementary figures 1–6). In addition to the parametric combinations that yield
individual cases, which have already been covered, several observations can be made
from looking at all the phase plots together. In general, there is a strip of CD flows
separating the FC region from the regions of locked flow regimes. With the exception
of the three DD cases observed in figure 10d, no predictable cases re-emerged once
the dimensionless parameter combinations at the border of the chaotic regions were
crossed. Typically, higher values of KC and Re produced chaotic flows. Typically,
regime transitions occurred gradually at lower values of Re, whereas at higher values
of Re more abrupt bifurcations were observed between differently structured flows.
Also, it should be noted that the group of flows labelled FC in the lower left corner
of figure 10e were not chaotic but were unclassifiable as any specific regime after 80
oscillations due to their creeping nature.

The KC versus Re study with ϕ = π is the most straightforward plot (figure 10e).
However, even in this study there was a strip of symmetry-breaking DS cases observed
prior to when the simulations started yielding chaotic results at higher values of Re
and KC. Another interesting thing to note from this parametric study is the similarity
of the results between the study comparing Re and ϕ and the study comparing KC
and ϕ (figure 10f,g). In particular, the pattern where HS, JT, DJ, DS and DV regimes
appear as ϕ varies is very similar in these plots. It is also interesting to note how
the pattern in which the HS, JT, DJ, DS and DV regimes appear remains structurally
similar but shifts to the left when going from ϕ = 3π/4 (figure 10d) to ϕ = π/2
(figure 10c).

For the non-chaotic cases, increasing the phase shift above π or below zero yields
the same flow regimes except with a 180◦ rotation. This is due to the physical
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HS DS FC

DS(a)

(b)

FIGURE 11. Colour-mapped instantaneous vorticity illustrating deflection angle transitions
in streaming jet flows. (a) Gradual changes in the phase shift yielding a transition between
DS∗, DS‡ and DS flows when KC = π and Re = 40π. (b) Gradually increasing the
Keulegan–Carpenter number in the completely out-of-phase case (ϕ =π) yields DS flows
before going chaotic. This example was run with Re = 50π, but the same result was
observed at many Reynolds numbers (figure 10e).

symmetries in the problem set-up. The regimes are classified based on whether or not
their dominant flow direction is perpendicular to the translational axis of the cylinder.
However, the streaming and shedding regimes also possess an internal symmetry or
asymmetry about their dominant flow direction. It was found that, when there is no
symmetry break about the horizontal axis, there is also no symmetry break in the
cycle-averaged vorticity, except for the sign change. On the other hand, the deflected
wake regimes showed an asymmetry in their cycle-averaged vorticity about the axis
of deflection. This is illustrated in figure 5(b).

5.6. Net force production
Another interesting trend that can be seen in figure 10 is the grouping of streaming
flow regimes, particularly at lower Reynolds numbers. Upon zooming in and looking
at the actual flow structures, one can see gradual changes in the deflection angle of the
streaming jet flows occurring through slight variations in ϕ and KC. Two examples of
this are shown in figure 11(a,b). Larger versions of the visualizations in figure 11 are
included in supplementary figures 1–6, along with many other examples of the same
phenomenon.

It was previously shown by Blackburn et al. (1999) that one specific HS flow
(KC=π, Re= 90π and ϕ =π) yielded a net thrust force on the cylinder, which was
capable of accelerating it to 33 % of its maximum translational velocity. Upon running
this same case with prescribed kinematics, it was found that the time-averaged thrust
coefficient was 0.2104. In order to determine if the directionality of the net force can
be controlled, a dense series of time-averaged lift and drag coefficient measurements,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

69
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.699


Flows produced by the oscillatory motion of a circular cylinder 165

–0.2

–0.1

0

FIGURE 12. (Colour online) Plot of the time-averaged lift and drag coefficients at a point
in the state space where a bifurcation from the HS regime to the DS regime occurs when
KC is increased. In this case ϕ = π and Re= 50π. These data demonstrate the fact that
the net force direction can be altered through subtle parameter changes.

C̄L and C̄D, were made in a portion of the state space that was known to contain a
bifurcation from the HS regime to the DS regime (figure 11b). The results of this
study are plotted in figure 12.

In total, 58 simulations were run with π/128 increments to KC for each successive
run. At lower KC values, there is no net lift being produced. As KC is increased,
the net drag coefficient becomes increasingly negative as the jet strength increases.
There is a relatively abrupt bifurcation in the state space from the HS regime to the
DS regime when KC approaches 11π/8. At this point there is a clear decrease in
the net lift coefficient as the jet begins to deflect in the anticlockwise direction. As
KC is increased further, both the time-averaged lift and drag coefficients continue to
decrease.

The fact that slight parameter variations are capable of altering the direction of the
force on the cylinder opens the door for using these flow regimes as a low-Reynolds-
number propulsive alternative to flapping wings. This is desirable because the two-
degree-of-freedom actuator necessary to make parameter tweaks to ϕ and KC for an
oscillating cylinder would be simple compared to what is required to control multiple
flapping wing systems. In the future we plan to incorporate fluid–structure interaction
into this problem and look at the propulsive efficiency of flows in the DS regime. It
remains to be seen if all the force-producing streaming jet flows will still form if the
cylinder is allowed to move freely in the fluid. However, this is beyond the scope of
the current work and will be investigated in a future study.

6. Discussion and conclusion
A detailed look at the flows induced by a circular cylinder undergoing oscillatory

rotation and translation in a quiescent fluid has been presented. A broad parameter
study was done in order to help identify potentially useful flow regimes. The
parametric study was performed on the Reynolds number, Keulegan–Carpenter number
and the phase shift between the rotational and translational harmonic motion.

There are several novel aspects of this work. To the best of our knowledge, the
deflected streaming regimes (DS, DS‡ and DS∗), the horizontal vortex shedding regime
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FIGURE 13. Vorticity magnitude isosurfaces illustrate the flow structure from a
three-dimensional simulation using dimensionless parameter values that produced the DV
flow that was analysed in § 5.2 (KC = π, Re = 90π and ϕ = 3π/4). Colour is mapped
to the ωz vorticity component. (a) Orthographic projection perpendicular to the spanwise
axis showing horseshoe-shaped vortices in the deflected wake. (b) Orthographic projection
along the spanwise axis showing that the deflection angle is similar to the two-dimensional
case.

(HV), the jet transition regime (JT) and the double dipole regime (DD) have not been
reported before. Also, the ability to alter the direction of the HS and DS jet flows with
subtle parameter changes has not previously been demonstrated. It was shown that the
deflected jets do in fact yield a net directional force on the cylinder. This demonstrates
the potential of using these streaming jet flows as a propulsive mechanism that is
controllable with a simple two-degree-of-freedom actuator.

6.1. Stability in three dimensions
While the two-dimensional point of view can shed light on important processes in low-
Reynolds-number unsteady flows, it is important to ascertain how well the observed
structures hold up in three dimensions. Some initial work has been done to that end.
Specifically, a large three-dimensional simulation was carried out using dimensionless
parameter values that are known to yield the DV flow regime (KC = π, Re = 90π
and ϕ= 3π/4). The grid used in this simulation was structurally the same as grid G4,
although the size of individual grid blocks was slightly decreased such that Nd = 96.
The length of the cylinder in the spanwise direction was 8D and periodic boundary
conditions were applied at the spanwise domain boundaries. The case was run for
30 oscillations. The resulting flow at the end of the last translational oscillation is
shown in figure 13. The general structure of the three-dimensional flow retains the
wake deflection characteristic of the two-dimensional solution, despite the presence of
spanwise periodicity.

This suggests that the structure of the low-Re flows detailed in § 5 will translate
to three-dimensional space, especially since the majority of the new flow regimes
occurred when Re 6 90π (figure 10b–e). However, more three-dimensional tests will
need to be performed in the future with dimensionless parameters known to produce
all the observed flow regimes, and stability analysis along the lines of those done by
Nazarinia et al. (2009b) will need to be performed.
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6.2. Similarities to aerofoil propulsion
As mentioned in the introduction, this work was motivated by the symmetry-breaking
propulsive wakes observed behind oscillating aerofoils. In fact, the DV regime bears
a striking resemblance to these deflected vortex streets. An analysis of the viscous
surface stress distribution that leads to a shed dipole vortex pair during each oscillation
in the DV regime was also presented, and there are additional parallels that can be
drawn between the two problems. Specifically, tests were done to evaluate the long-
term deflection angle behaviour in the DV and DS flow regimes.

In addition to Jones et al. (1998), several studies have investigated the temporal
switching of the deflected jet angle. Heathcote & Gursul (2004, 2007) observed
that the near-field deflection angle changes periodically in time with a period two
orders of magnitude greater than the aerofoil heaving period. They also observed
that the switching period increased with increased foil stiffness. In a related study,
Shinde & Arakeri (2013) observed the long-time behaviour of the meandering jet
to be random in time and not dependent on initial conditions. They opined that the
leading-edge vortices observed in Heathcote & Gursul’s experiments could account
for the differing results. It should be noted that the prescribed kinematics and aerofoil
geometry differed between these studies. Wei & Zheng (2013) investigated deflection
angle changes between the near- and far-field wakes, concluding that they are due to
a switch in vortex pairing patterns. Symmetry breaking and chaotic flows were also
observed by Blondeaux, Guglielmini & Triantafyllou (2005) for aerofoils undergoing
combined pitching and heaving and by Spagnolie et al. (2010) for a prescribed heave
and passive pitch motion.

Based on this literature, it is not exactly clear why different temporal switching
behaviours of the jet deflection angle were observed in different studies. To gain a
more general perspective, independent of aerofoil shape, on deflection angle behaviour
at large times, one DV case and one DS‡ case were simulated to 2000 motion periods
on a large grid (G5). When considering long-term wake deflection behaviour in the DS
and DV regimes, the observed flows have three time scales. The smallest corresponds
to the prescribed harmonic forcing of the cylinder. The intermediate scale corresponds
to the formation of the deflected jet and its initial deflection angle. The potential
periodic or random fluctuations in the deflection angle occur at the longest time scale
(if at all), making this scale the most numerically onerous to capture.

For any given dimensionless parameter combination, it was found that the starting
direction of the cylinder motion determined the deflection angle, which was then
constant in time after settling down over the initial oscillations. Reversing the starting
direction produced a mirrored deflected wake in both regimes, as can be seen in
figures 5c,d and 8d,e. It should also be noted that, when employing a ‘soft’ instead
of impulsive start, the wake would occasionally deflect in the opposite direction. The
soft start was prescribed by weighting the rotational and translational dimensionless
amplitudes based on the simulation time for the first several motion periods. We
conjecture that the direction of the first oscillation with enough amplitude to make
the formative flow bifurcate into the DV or DS regime varies as the number of
motion periods employed in the soft start varies. For these reasons, we did not see
any need to note specific deflection angle mirroring about the horizontal axis in the
phase plots of figure 10.

With regard to jet switching, it should also be noted that the number of oscillations
required for both DV and HV flows to ‘settle down’ varied with small dimensionless
parameter fluctuations. Starting vortices re-entering the near field occasionally caused
same signed vortices from neighbouring dipole pairs to roll up into a stronger vortex,
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which annihilated the local oppositely signed vortices and temporarily entrained the
entire vortex street before being pushed into the far field (see supplementary movies 4
and 5). It is possible that similar phenomena are partially responsible for the varied
results regarding wake deflection angle changes in aerofoils, but more research must
be done on this topic.

6.3. Future work
There are several additional lines along which this work can be extended in the future.
In particular, additional three-dimensional studies are needed to help further flush out
the parameter space. Studies looking at the effects of turbulence, wall interaction or
other flow disturbances on the formation of the observed regimes would also help
gauge their persistence as propulsive mechanisms. Using optimization techniques to
improve on the self-propulsive efficacy of the observed streaming jet flows is another
potential extension to this work.
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