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Reliability is an important performance measure of navigation systems and this is particularly
true in Global Navigation Satellite Systems (GNSS). GNSS positioning techniques can
achieve centimetre-level accuracy which is promising in navigation applications, but can
suffer from the risk of failure in ambiguity resolution. Success rate is used to measure the re-
liability of ambiguity resolution and is also critical in integrity monitoring, but it is not always
easy to calculate. Alternatively, success rate bounds serve as more practical ways to assess the
ambiguity resolution reliability. Meanwhile, a transformation procedure called decorrelation
has been widely used to accelerate ambiguity estimations. In this study, the methodologies of
bounding integer estimation success rates and the effect of decorrelation on these success rate
bounds are examined based on simulation. Numerical results indicate decorrelation can make
most success rate bounds tighter, but some bounds are invariant or have their performance
degraded after decorrelation. This study gives a better understanding of success rate bounds
and helps to incorporate decorrelation procedures in success rate bounding calculations.
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1. INTRODUCTION. Global navigation satellite systems (GNSS) provide global
precise positioning services and have become a mainstream technique of navigation.
The key to quickly acquiring precise position with GNSS is known as the ambiguity
resolution, which resolves an unknown cycle number in the carrier phase observation
to integer. The ambiguity resolution enables instantaneous precise positioning, but
also introduces reliability risk. Therefore, how to reliably resolve the integer ambiguity
is one of the most concerning issues in the GNSS and navigation research communities
(Feng et al., 2012). Ambiguity resolution includes two procedures: ambiguity estima-
tion and ambiguity validation (Teunissen, 1995). The reliability of ambiguity estima-
tion is measured by success rate, e.g. (Li and Teunissen 2011; Feng et al., 2012). A
realistic success rate is also important in integrity monitoring (Li et al., 2015).
Unfortunately, success rate is not always easy to calculate, so bounding the success
rates is used as a practical way to assess the reliability (Teunissen 1998a; 1998b).
Meanwhile, a transformation procedure called reduction or decorrelation is often
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performed before ambiguity estimation to improve its efficiency and performance
(Teunissen, 1995; Hassibi and Boyd, 1998). The impact of decorrelation on the
integer estimation success rate has been studied (Thomsen, 2000; Verhagen, 2003;
Feng and Wang, 2011; Verhagen and Teunissen, 2013), but the impact on the
success rate bounds has not yet been systematically studied.
In this study, the methodologies of bounding integer estimator success rate are revis-

ited and the performance of these bounds is evaluated. Particularly, the effect of dec-
orrelation on the success rate bounds performance is addressed, which gives a better
understanding of success rate bounds calculation.

2. PROCEDURE OF AMBIGUITY ESTIMATION. The carrier phase-based
GNSS precise positioning model can be expressed as a mixed model:

EðyÞ ¼ Aaþ Bb

DðyÞ ¼ Qyy
ð1Þ

where E(·) andD(·) are the mathematical expectation and dispersion operators respect-
ively. a and b are integers and real-valued parameters respectively. The observation
vector y is assumed to follow multivariate normal distribution and its variance-covari-
ance (vc-) matrix is given as Qyy . The solution of this mixed integer model can be
addressed in three steps:

. Estimating real-valued parameters â, b̂ and corresponding vc-matrix with a stand-
ard least-squares procedure. In this step, the integer nature of a is not considered.

. Ambiguity resolution. Mapping the real-valued ambiguity parameter â to integer
ambiguity �a with an integer estimators and validate the correctness of �a.

. Updating the real-valued parameters with �b ¼ b̂�Qb̂âQ
�1
ââ ðâ� �aÞ.

2.1. Integer Estimation and its Success Rate. Our focus is how to map the real-
valued ambiguity parameter â to an integer ambiguity �a and this procedure is also
known as integer estimation. There are three distinct estimators to map the real-
valued ambiguity parameter â to integer ambiguity �a, known as Integer Rounding
(IR), Integer Bootstrapping (IB) and Integer Least-Squares (ILS) respectively. Each
integer estimator uniquely defines a region, called ‘pull-in region’ and each pull-in
region only contains one integer vector. If the real-valued ambiguity parameter â
falls in a particular pull-in region, then it will be fixed to a corresponding integer
vector. The pull-in region of integer rounding is defined as (Teunissen, 1998b):

SIR;z ¼
\n
i¼1

x ∈ Rnj xi � zik k � 1
2

� �
;∀z ∈ Zn ð2Þ

where SIR,z is the pull-in region of the integer rounding estimator centred at z. xi is the
ith component of x. ℝn and ℤn are the n-dimensional real-valued space and integer
space respectively. The integer rounding estimator simply maps the real-valued ambi-
guity to the nearest integer dimension by dimension, so its pull-in region is a hyper-
cube. A two-dimensional example of integer rounding pull-in region is shown in
Figure 1. However the integer rounding estimator does not perform well in practice
due to strong correlation between ambiguity components.
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The integer bootstrapping estimator considers the cross correlation between ambi-
guity components by employing a sequential rounding procedure, which is defined as:

�aIB;1 ¼ 〈â1〉

�aIB;2 ¼ 〈â2j1〉 ¼ 〈â2 � σ2;1σ
�2
1;1ðâ1 � �aIB;1Þ〉

..

.

�aIB;n ¼ 〈ânjN〉〈ân �
Xn�1

i¼1

σn;ijIσ�2
ijI ;ijI ðâijI � �aIB;iÞ〉

ð3Þ

where 〈·〉 means rounding to the nearest integer. �aB;i is the ith component of the fixed
ambiguity vector by the integer bootstrapping estimator. Correspondingly, the pull-in
region of the integer bootstrapping estimator can be expressed as (Teunissen, 1999;
2001):

SIB;z ¼
\n
i¼1

x ∈ RnjkcTi L�1ðx� zÞk � 1
2

� �
; ∀z ∈ Zn ð4Þ

where ci is a n× 1 canonical unit vector with its ith entry equals to 1 and the remaining
entries equal 0. L is a lower triangular matrix which fulfils Qââ ¼ LDLT. Since the
integer bootstrapping estimator employs the conditional variance, its pull-in region
is a parallelogram in two-dimensional cases (see Figure 1).
The integer least-squares estimator addresses the integer by minimising the quadrat-

ic form, which is given as (Teunissen, 1993):

�aILS ¼ argmin
a
fkâ� ak2Qââ

g; a ∈ Zn ð5Þ

The corresponding pull-in region is given as:

SILS;0 ¼ â ∈ Rnjw � 1
2
kzkQââ

;∀z ∈ Zn
� �

; w ¼ zTQ�1
ââ ðâ� aÞ
kzkQââ

ð6Þ

Figure 1. A demonstration of integer estimator pull-in region in a two-dimensional case; the
presented pull-in regions are the integer rounding (left), the integer bootstrapping (centre) and
the integer least-squares (right).
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The pull-in region of integer least-squares is defined by a series of projectors w. In two-
dimensional case, it is a hexagon. The minimising problem Equation (5) cannot be
solved directly, so a searching procedure is employed to find the optimal solution.

2.2. The Concept of Integer Estimation Success Rate. The pull-in region theory
interprets the integer estimation from a geometrical prospective, but evaluating
integer estimator performance by the pull-in regions is difficult. In this section, the
integer estimation theory is investigated from the probability perspective, along with
the method to evaluate the integer estimator reliability.
Since the observation vector y follows a normal distribution, the estimated float am-

biguity parameter also follows a multivariate normal distribution, denoted as
â ∼ Nða;QââÞ. The mathematical expectation of â is an unknown integer vector.
The Probability Density Function (PDF) of â is expressed as:

fâðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQââjð2πÞn

p exp � 1
2
kxk2Qââ

� �
ð7Þ

where |·| denotes the determinant operator. The stochastic characteristic of real-valued
ambiguity is uniquely described by its vc-matrixQââ. The probability of â falling in the
pull-in region Sa, which is known as the ambiguity estimation success rate, can be cal-
culated by integral fâðxÞ over Sa and denoted as:

Ps ¼ Pð�a ¼ aÞ ¼ ∫Sa fâðxÞdx ð8Þ
where �a is the fixed integer ambiguity vector. The equation indicates that the higher
success rate means the real-valued ambiguity vector is more likely to be fixed to the
true integer vector. Therefore the success rate is an important reliability indicator in
ambiguity estimation. The success rate PS depends on fâðxÞ and Sa, and hence it
can be used to evaluate the performance of the integer estimator with given Qââ or
to evaluate the strength of the underlying model with the given integer estimator.

2.3. The Essence of Decorrelation. For the fast or even instantaneous ambiguity
resolution case, the ambiguities are highly correlated. The search space is extremely
elongated, which makes the search procedure in integer least-squares inefficient. In
order to improve search efficiency, a decorrelation approach proposed by Teunissen
(1993) is now widely used in GNSS ambiguity estimation. The combination of decorr-
elation and the integer least-squares is known as the Least-squares Ambiguity
Decorrelation Adjustment (LAMBDA). The decorrelation procedure not only
improves ILS efficiency, but also improves performance of IR and IB estimators.
The basic idea of the decorrelation is transforming â and Qââ with an invertible

transformation, given as:

ẑ ¼ ZTâ;Qẑẑ ¼ ZTQââZ ð9Þ
Then, integer estimation is performedwith ẑ andQẑẑ. After the best integer candidate �z
is identified, the best integer candidate �a can also be obtained by performing an inverse
transformation:

�a ¼ Z�T�z;Q�a�a ¼ Z�TQ�z�zZ�1 ð10Þ
Equations (9) and (10) indicate the transformation matrix Z has to be invertible.
Besides this, there are two conditions to be an admissible ambiguity transformation
(Teunissen, 1995): integer matrix and volume preserving.
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. The integer matrix means Z∈ℤn×n and Z−1∈ℤn×n. This condition guarantees
that the transformation preserves the integer nature of the ambiguity parameters.

. The volume preserving refers to jQââj ¼ jQẑẑj. This condition guarantees
kâ� �ak2Qââ

¼ kẑ� �zk2Qẑẑ
. Hence, the transformation does not change the search

result.

In decorrelation, the third condition on the Z matrix selection is that the off-diag-
onal entries of Qẑẑ are no larger than their counterparts in the Qââ matrix. This con-
dition ensures the transformation is a decorrelation procedure rather than an
increase in the correlation procedure (Xu et al., 1995)
According to the second condition, |Z| = ±1. Therefore the transformation matrixZ

is a unimodular matrix (Cassels, 2012). Most decorrelation methods construct the uni-
modular matrix with a triangular matrix with its pivotal entries equal to 1. According
to Cramer’s rule (e.g. see Strang and Borre, 1997), an integer unimodular matrix also
has its inverse matrix as an integer matrix.
Decorrelation can be implemented by two distinct methods: the integer Gaussian

transformation (Teunissen, 1993) and Lenstra, Lenstra, Lovasz (LLL) method
(Hassibi and Boyd, 1998). The integer Gaussian transformation employs a series of
preliminary Gaussian transformations, each transformation decorrelating one entry
in Qââ. The details of the integer Gaussian transformation method are discussed in
De Jonge and Tiberius (1996). The LLL method employs a vector-based reduction,
which is a modified Gram-Schmidt orthogonalisation method. The details of the LLL
method can be found in Grafarend (2000) and Xu (2001). It is noted that the integer
Gaussian transformation method also involves a permutation procedure to flatten the
condition spectrum, which also improves the search procedure efficiently (Teunissen,
1995). After the permutation, the transformation Z is not necessarily a triangular
matrix any longer, but it is still a unimodular integer matrix. Recently, the importance
of permutation has been systematically studied. Xu et al. (2012) compared the impact
of different permutation strategies on decorrelation performance. The permutation pro-
cedure has been applied to the LLL method, e.g. Jazaeri et al. (2012), but its perform-
ance is still not as good as the integer Gaussian transformation (Jazaeri et al., 2014).
A two-dimensional example of ambiguity decorrelation is illustrated in Figure 2.

The figure shows the 95% confidence regions of Qââ and Qẑẑ, which reflect the
impact of decorrelation on the distribution of â. It is noted that the volume of the
two confidence regions is the same and the two regions involve the same number of
integer candidates. The confidence region of Qââ, which has a larger minimum
bounding rectangular, is thus more difficult to search. The figure also shows an
example of â and corresponding ẑ. It can be proven that the transformation does
not change their distances to the origin; therefore, kâk2Qââ

¼ kẑk2Qẑẑ
.

3. SUCCESS RATE COMPUTATION METHODS. The previous section has
introduced the concept of integer estimation success rate. In this section we focus on
the computational aspect of success rate.

3.1. Success Rate of Integer Rounding Estimator. For the integer rounding esti-
mator, the pull-in region SR,z is defined by Equation (2). For the scalar case the
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success rate for the integer rounding estimator can be expressed as:

Pð�aIR ¼ aÞ ¼ ∫
0:5
�0:5 fâðx� aÞdx ¼ 2Φ

1
2σ â

� �
� 1 ð11Þ

where σ â ¼
ffiffiffiffiffiffiffiffi
Qââ

p
. Function Φ(x) is a Cumulative Distributed Function (CDF) for the

standard normal distribution, and is defined as:

ΦðxÞ ¼ ∫
x
�∞

1ffiffiffiffiffiffi
2π

p exp � 1
2
z2

� �
dz ð12Þ

For a one-dimensional case, the IR success rate depends on Qââ. If Qââ is a diagonal
matrix, then the IR success rate can be computed dimension by dimension using
Equation (11), otherwise, it is difficult to calculate the IR success rate directly although
SR,z is a regular region. In this case, a lower bound of the IR success rate can be
obtained by ignoring the off-diagonal entries ofQââ. AfterQââ is reduced to a diagonal
matrix, the corresponding IR success rate can be computed dimension-wise. In this
way, we actually obtain a lower bound of IR success rate, which is expressed as
(Teunissen, 1998b):

Pð�aIR ¼ aÞ ¼
Yn
i¼1

∫
1
2

�1
2
fâiðx� aÞdx

� �
¼
Yn
i¼1

2Φ
1

2σ âi

� �
� 1

� �
ð13Þ

where fâiðxÞ is the marginal PDF of fâðxÞ subject to the ith dimension. Pð�aIR ¼ aÞ
means the lower bound of IR success rate.
The diagonalised vc-matrix Q0

ââ contains only the marginal probability distribution
information, so it is known as the marginal vc-matrix. The probability distribution of â

Figure 2. A two-dimensional example of ambiguity decorrelation with the integer Gaussian
transformation method.
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with full and marginal vc-matrices is depicted in Figure 3. The figure shows PDFs of
Qââ and Q0

ââ in the left and right panels respectively. The ellipses are 95% confidence
ellipses of the two vc-matrices and the dashed lines are the bounds of the ellipses.
Due to loss of correlation information, the PDF on the right panel is more spread
out than the one on the left panel. The blue squares are the IR pull-in regions.
According to the figure, the float solution following the distribution on the right
panel is more likely falling in the IR pull-in region, so the IR success rate calculated
with the PDF on the right panel is lower than the actual IR success rate. If Qââ is
more diagonalised, the lower bound is closer to the true IR success rate.

3.2. Success Rate of Integer Bootstrapping Estimator. Defining the conditional
vector â0 ¼ ½â1; â2j1; � � � ; ânjN �T, the PDF of â can be expressed with the conditional
vector PDF fâ0 ðxÞ, given as:

fâðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qââj jð2πÞn

p exp � 1
2
kâ0k2Qââ

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jDjð2πÞn
p exp � 1

2
kâ0k2D

� �
¼ fâ0 ðxÞ ð14Þ

In Equation (14), jQââj ¼ jDj since |L| = 1. The equation indicates that it is possible to cal-
culate the IB success rate dimension by dimension since â0 has a diagonal vc-matrix.
According to the definition of the IB pull-in region, the IB success rate can be expressed as:

Pð�aIB ¼ aÞ ¼ P
\n
i¼1

kâijI � aik � 1
2

 !
ð15Þ

Substituting the conditional variances to the equation, the IB success rate canbe calculated
by (Teunissen, 1998b):

Pð�aIB ¼ aÞ ¼
Yn
i¼1

∫
1
2

�1
2
fâ0iðx� aÞdx

� �
¼
Yn
i¼1

2Φ
1

2σ âi jI

� �
� 1

� �
ð16Þ

Figure 3. Two-dimensional example of integer rounding success rate calculated with full vc-matrix
Qââ (left) and marginal vc-matrix Q0

ââ (right).
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where fâ0iðxÞ is the marginal PDFof fâ0 ðxÞ subject to ith dimension or conditional PDFof
fâiðxÞ subject to i− 1, i− 2, · · · , 1.
Distinguished from the lower bound of the IR success rate (see Equation (13)), there

is no approximation in IB success rate calculation. A two-dimensional example of the
IB success rate is depicted in Figure 4. The figure shows fâðx� aÞ and fâ0 ðx� aÞ re-
spectively. The ellipses are the 95% confidence ellipses of â and â0 respectively. The
dashed line shows the bounds of the ellipses. The area of the two ellipses is identical
since jQââj ¼ jDj. The blue parallelogram and square are the IB pull-in regions of â
and â0. The parallelogram can be viewed as a distorted version of a square and the dis-
tortion is caused by cross correlation between ambiguity components. The correlation
disappears after replacing â by its conditional version â0. Equation (14) indicates that
the PDF fâðx� aÞ and fâ0 ðx� aÞ are equivalent, so the success rate of IB on â and â0 is
the same. The right panel also shows the precision improvement of conditional vari-
ance on the second dimension. It also confirms that IR success rate calculated with
Equation (13) is its lower bound. Meanwhile, the IB success rate can be adopted as
an upper bound of IR success rate, given as:

Pð�aIR ¼ aÞ ¼ Pð�aIB ¼ aÞ ð17Þ

The IB success rate can be accurately calculated, but it is non-unique since the
volume-preserving transformation jQââj ¼ jDj is non-unique. For example, the condi-
tional vector may also start from the nth dimension. The conditional variance matrix
D in this case is different from the one started from the first dimension. Different con-
ditional variance corresponds to different conditional distribution, so the IB success
rate is also different. The most popular way to calculate the IB success rate is
sorting the diagonal entries of Qââ by ascending order. Xu et al. (2012) also examined
another more complicated sorting algorithm called Vertical Bell Labs Layered Space-
Time (V-BLAST) and reported having a better performance and heavier computation
burden.
Although it is impossible to find a unique IB success rate, it is still possible to

identify the best IB success rate, which can be given as the upper bound of IB
success rate. A volume-preserving transformation can be constructed to transform

Qââ to jQââj
1
nIn. It is clear that the matrix jjQââj

1
nInj ¼ jQââj. In this case, the confidence

region shape ofQââ is transformed from a hyper-ellipsoid to a hypersphere. After trans-

formation, the variance of each component can be given as σ2i ¼ jQââj
1
n, then the

Ambiguity Dilution Of Precision (ADOP) can be defined as (Teunissen, 1997):

ADOP ¼ Qââj j 12n ð18Þ
With the ADOP, the upper bounds of the IB success rate can be calculated as
(Teunissen, 1997; Teunissen and Odijk, 1997; Teunissen, 2003):

Pð�aIB ¼ aÞ � 2Φ
1

2ADOP

� �
� 1

� �n

ð19Þ

The IB success rate calculated with ADOP is an invariant upper bound of the IB
success rate. Its proof can be found in Teunissen (2003).
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3.3. Success Rate of Integer Least-squares Estimator. Previous analysis indicates
the integral of fâðxÞ over a regular region can be difficult, so calculating an ILS success
rate would be more difficult since its pull-in region is more complicated. It is difficult to
find the analytical ILS success rate, so a numerical solution is preferred. The numerical
solution (Monte Carlo method) is a computationally extensive way to obtain the nu-
merical ILS success rate and cannot easily meet the requirement of real-time applica-
tions. Alternatively, an easy-to-calculate upper/lower bound also makes sense in some
applications. In this section, a number of upper and lower bounds of the ILS success
rate are analysed, including the integer bootstrapping-based lower bound, the ellips-
oidal upper/lower bounds, the eigenvalue-based upper/lower bound and the integra-
tion region-based upper bound.

3.3.1. Lower Bound Based on Integer Bootstrapping. Integer least-squares
achieves the maximum success rate with a given vc-matrix (Teunissen, 1999), that
the ILS success rate is always higher than (or equal to) the IB success rate.
Although the ILS success rate is fairly difficult to compute, the IB success rate can
be easily and precisely calculated. Hence, the IB success rate can be used as a lower
bound of ILS success rate, shown as:

Ps;ILS ¼ Ps;IB ¼
Yn
i¼1

2Φ
1

2σ âjI

� �
� 1

� �
ð20Þ

Combined with the decorrelation procedure, the IB success rate is considered as a tight
lower bound of the ILS success rate (Thomsen, 2000; Verhagen 2003; Feng and Wang
2011; Verhagen et al., 2013).

3.3.2. Ellipsoidal Upper and Lower Bounds. Although the ILS pull-in region is
complicated, it is still possible to approximate it with an ellipsoid. Hassibi and Boyd
(1998) proposed an upper and lower bound of the ILS success rate based on ellipsoids,

Figure 4. Two-dimensional example of integer bootstrapping success rate. The left panel shows
fâðx� aÞ and corresponding IB pull-in region. The right panel shows fâ0 ðx� aÞ and
corresponding IB pull-in region.
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denoted as ellipsoidal upper and lower bounds in their discussion. The ellipsoids are
actually spheres in the Qââ spanned space, so the key is to find out the radius of the
spheres.
The basic idea of ellipsoidal upper bounds is to construct a hypersphere with the

same volume as Qââ. The volume of n-dimensional sphere can be calculated as:

V ¼ αnrn ¼ π
n
2

Γ
n
2
þ 1

� � rn ð21Þ

where V is the volume of the sphere. Γ(n) is the gamma function, which can be defined
in a recursive form: Γ(1) = 1, Γ(n+ 1) = nΓ(n), Γð1=2Þ ¼ ffiffiffi

π
p

. The volume of Qââ is
jQââj, but the volume of S0,ILS equals 1. In order to have the same volume, the integra-

tion volume in Qââ spanned space can be set as
1

jQââj. If the integration region is a ball,

then the radius of the ball can be calculated as r ¼
� 1
αnjQââj

�1
n. kâ� ak2Qââ

follows a χ2

(n, 0) distribution where n and 0 are the degree of freedom and the non-central param-
eter respectively. The upper bound of ILS pull-in region can be expressed as (Hassibi
and Boyd, 1998):

Ps;ILS ¼ P χ2ðn; 0Þ< 1
αnjQââj
� �2

n

 !
ð22Þ

Substituting ADOP into the equation, then the equation can be rewritten as
(Teunissen, 2000):

Ps;ILS ¼ Pðχ2ðn; 0Þ<
Γðn
2
þ 1Þ2n

πADOP2

0
@

1
A ð23Þ

The upper bound based on the pull-in region approximation was examined and
reported to be working well (Thomsen, 2000; Verhagen, 2003; Feng and Wang,
2011).
The lower bound of the ILS success rate is sought by finding the inscribed ellipsoid

of the ILS pull-in region. As discussed before, the boundaries of the ILS pull-in region
are formed by half spaces perpendicular to the integer vector c= z1− z2, z1, z2∈ℤn and

passing the point
1
2
c. The minimum distance between two integer vectors dmin ¼

min kckQââ
can then be found. If the radius of the inscribed ellipses is

1
2
dmin, the

lower bound of the ILS success rate can be given as (Hassibi and Boyd, 1998;
Teunissen, 1998b)

Ps;ILS ¼ Pðχ2ðn; 0Þ< 1
4
d2
minÞ ð24Þ

3.3.3. Upper and Lower Bounds Based on Eigenvalue. Teunissen (1998b; 2000a;
2000b) proposed a pair of upper and lower bounds of ILS success rate based on
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eigenvalues. Instead of approximating the ILS success rate by bounding the integration
region, these bounds are based on the probability distribution approximation. Two
positive definite matrices can be compared with their quadratic forms, if
f TQ1f � f TQ2f∀f ∈ Rn, then Q1≥Q2. The â with the smaller vc-matrix always
has the larger ILS success rate (Teunissen, 2000a; 2000b).
The idea of these bounds is quite similar to the ADOP. The volume of the vc-matrix

can be defined by its eigenvalues:

Qââj j ¼
Yn
i¼1

λi ð25Þ

where λ = [λ1, λ2, · · · , λn]
T is the eigenvalue vector of Qââ. The ADOP is the geomet-

rical mean of the ambiguity standard deviation (Teunissen, 1997; Odijk and
Teunissen, 2008), so a group of upper and lower bounds of Qââ can be identified
with its eigenvalues. Defining λmax =max{λi} and λmin =min{λi}, corresponding
upper and lower bounds of Qââ can be constructed as Q1 = λmax In and Q2 = λmin In.
In this study, an auxiliary matrix, Q3 =ADOP2 In, is also constructed for comparison
purposes. According to the previous analysis, jQ3j ¼ jQââj.
A two-dimensional example is presented in Figure 6 to show the relationship

between Qââ, Q1, Q2 and Q3. The three constructed matrices are identity matrices,
so their confidence regions are circles in a two-dimensional case. The volume of Q3

is the same as for Qââ; the confidence ellipses of Q1 and Q2 are circumscribed and
inscribed ellipses of Qââ ’s confidence ellipse. The figure shows that Q1 has poorer pre-
cision and Q2 has better precision than Qââ. The ILS success rate of Q1 and Q2 can be
calculated as:

Pð�aQ1
ILS ¼ aÞ ¼ 2Φ

1
2
ffiffiffiffiffiffiffiffiffi
λmax

p
� �

� 1
� �n

Pð�aQ2
ILS ¼ aÞ ¼ 2Φ

1

2
ffiffiffiffiffiffiffiffi
λmin

p
� �

� 1
� �n

ð26Þ

Then, the ILS success rate of Qââ can be bounded as:

ð2Φð 1

2
ffiffiffiffiffiffiffiffiffi
λmax

p Þ � 1Þn � Pð�aILS ¼ aÞ � 2Φ
1

2
ffiffiffiffiffiffiffiffi
λmin

p
� �

� 1
� �n

ð27Þ

The ILS success rate of Q3 can be calculated with Equation (19). The ILS success
rate of Q3 is an upper bound of the integer bootstrapping success rate and it is an
approximation of ILS success rate as well (Verhagen, 2005; Verhagen and
Teunissen, 2013).

3.3.4. Upper Bounds Based on Bounding Integration Region. Besides the elliptical
integration region bounding, we still have other integration region bounding methods
as discussed below.
Teunissen (1998a; 1998b) proposed an upper bound of the ILS success rate based

on reduction of the ILS pull-in region. The ILS pull-in region is bounded by the
infinity planes orthogonal to the integer vector c. Actually, there are 2n − 1 pairs
of valid bounding planes at the maximum, since one integer vector has only 2n −
1 pairs of adjacent integer vectors (Cassels, 2012). The definition of the ILS
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pull-in region (see Equation (6)) shows that the ILS pull-in region can also be inter-
preted as an overlap region of 2n − 1 bands centred at a with width kckQââ

. If fewer
bands are used to intersect a pull-in region, then a looser upper bound Ua ⊃ Sa can
be identified.

Figure 6. A two-dimensional example of the confidence ellipse of Qââ and its upper and lower
bound based on eigenvalue.

Figure 5. A two-dimensional example of ILS success rate upper and lower bound ellipsoidal
integration region.
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The ILS pull-in region can be written as:

SILS;0 ¼ x ∈ Rnj c
TQ�1

ââ x

kck2Qââ

					
					 � 1

2
;∀c ∈ Zn

( )
ð28Þ

The left side of the inequality can be defined as:

vi ¼ cTi Q
�1
ââ

kcik2Qââ

â ð29Þ

where ci∈ℤn. If q independent integer vectors are chosen, vector v can be defined as
v= [v1, v2, · · · , vq]

T.
Applying the variance propagation law, the corresponding vc-matrix of v can be

written as:

σvivj ¼
cTi Q

�1
ââ cj

kcik2Qââ
kcjk2Qââ

ð30Þ

The vc-matrixQvv is a q × q symmetric matrix, so LDLT decomposition can be applied
and the corresponding success rate can be calculated as:

Ps;ILS ¼
Yq
i¼1

2Φ
1

2σvijI vijI

 !
� 1

 !
ð31Þ

Conditional variance can be obtained by LT DL decomposition, which is similar to
integer bootstrapping. The number of integer vectors q in practice can be given as
n≤ q≤ 2n− 1 (Verhagen, 2003). When q= 2n− 1, Equation (31) can be used to calcu-
late the ILS success rate precisely, but 2n− 1 increases dramatically as the ambiguity
dimension increases. Therefore, the ILS success rate remains difficult to calculate in
high dimension cases. The upper bound would be closer to the true ILS success rate
with a larger q. A two-dimensional example of bounding ILS success rate with band
intersection method is shown in Figure 7. For a two-dimensional case, the ILS pull-
in region is an intersection of three bands. For example, if q= 2, then the ILS pull-
in region can be approximated by the intersection of two bands (the blue region).
A practical issue of the band intersection is the selection of the integer vector set v.

∀vi, vj∈ v, if i≠ j, vi≠ λvj, where λ is an arbitrary non-zero real number. It shows any
two vectors in the vector set v cannot be collinear. For the two-dimensional case, there
are three pairs of adjacent integers at maximum for each integer and each pair of
integers are collinear (e.g. [1, 0]T and [−1, 0]T in the figure are collinear). For this
case, only one of them can be involved in the integer set v; thus the ILS pull-in
region is an intersection of three bands, not six. Having the collinear integer vectors
involved will cause duplicated integrations and will make the upper bound smaller
than it should be.

4. NUMERICAL COMPARISONS. Different upper and lower bounds of the
integer estimator success rate have been discussed, while the performance of these
bounds is the issue truly of concern. Performance comparisons between these
bounds have been extensively studied, such as Verhagen (2003), Feng and Wang
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(2011) and Verhagen and Teunissen, (2013). However the performance of the success
rate is still not fully understood. For example, the decorrelation procedure has been
widely used in ambiguity estimation, but its impact on the success rate bounds has
not yet been investigated. It is known that the ILS success rate is independent of the
decorrelation procedure, but it does not mean that the bounds are decorrelation-invari-
ant. In this section, the impact of the decorrelation procedure on the integer estimator
success rate bounds is investigated.

4.1. Simulation Strategy. In order to examine the performance of the success rate
bounds, a simulation-based comparison is carried out. The simulation scheme is briefly
described in this section.
The medium baseline model is adopted in this simulation. The least-squares method

is adopted to estimate the float solution, based on single epoch GPS observations. The
elevation-dependent weighting strategy is used to capture the elevation-dependent ob-
servation noise and ionosphere noise, which is given as:

w ¼ ð1þ 10e�
E
10Þ� 1

2 ð32Þ

where w is the weight factor and E is the elevation angle in degrees.
In order to capture the satellite geometry impact, a 15° × 15° global-covering, evenly

distributed ground tracking network is simulated. Considering the period of navigation
satellites, we simulate 24 hours observation data from all monitor stations. The satellite
geometry varies slowly, so the observation interval is set as 1800 seconds (half hour) to
reduce computation loading. As a result, the data set including 12,600 epochs in total
is used to describe the satellite geometry in different locations and at different times.
We calculate â and its vc-matrix Qââ for each epoch in the data set and calculate the

Figure 7. A two-dimensional example of the bounding ILS pull-in region using the band
intersection method.
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corresponding ILS success rate with theMonte Carlo method. For eachQââ in the data
set, 100,000 samples following Nð0;QââÞ are simulated to approximate its ILS success
rate in the Monte Carlo method. More samples means more accurate computation
precision in Monte Carlo simulation and a more detailed relationship between
sample number and precision can be found in Verhagen and Teunissen, (2013). In
this study, we use 100,000 samples as a trade-off between precision and computational
efficiency. Single frequency GPS data is simulated, with σP,z= 10 cm, σϕ,z= 1 mm, σI,z
= 1 cm where σP,z, σϕ,z and σI,z are the standard deviations of code, phase and virtual
ionosphere observations on zenith direction.

4.2. Evaluation of IR and IB Success Rate. The performance of the integer round-
ing and integer bootstrapping success rate bounds are first investigated and compared.
In this study, the success rate calculated fromMonte Carlo simulation is used as the ref-
erence and 100,000 samples are used in each trial. In this case, the simulation error
impact on success rate is typically smaller than 0.001 (Verhagen and Teunissen, 2013).
The success rates and their bounds are compared before and after decorrelation.
The IR success rate and its bounds are presented in Figure 8. The two panels show

the IR success rates calculated from the same samples before and after decorrelation.
At first, the figure shows the decorrelation process significantly improves IR success
rate. The maximum IR success rate is improved from about 0·4 to about 0·98 after dec-
orrelation. The IB success rate serves as an upper bound of IR success rate. Their
maximum difference is reduced from about 0·7 to 0·15 after decorrelation. The calcu-
lated IR success rate lower bound also becomes tighter after decorrelation. The
maximum difference between simulated IR success rate and its lower bound is
reduced from 0·2 to less than 0·05. Therefore the decorrelation improves IR success
rate and makes its upper and lower bound tighter. After decorrelation, the IR lower
bound is a tight lower bound of the simulated IR success rate.
The impact of decorrelation on integer bootstrapping success rate is illustrated in

Figure 9. The IB success rate also increased significantly after decorrelation. The
minimum IB success rate is increased from about 0·1 to 0·4 after decorrelation. The
discrepancy between the IB success rate and ADOP-based upper bound decreases
after decorrelation. The maximum discrepancy decreases from 0·8 to about 0·2. In
most cases, the discrepancy is smaller than 0·1 after decorrelation. However, the im-
provement is solely contributed by the IB success rate improvement since the ADOP
is invariant during the decorrelation procedure (Teunissen, 2003). In conclusion, dec-
orrelation procedure can improve IB success rate significantly and the ADOP-based
upper bound is a tight IB success rate after performing the decorrelation procedure.
The results also indicates that the improvement of sorting strategy on IB success
rate after decorrelation is limited since the IB success rate cannot be higher than
ADOP based upper bound no matter which sorting strategy is applied.

4.3. Evaluation of ILS Success Rate. The ILS success rate is independent of the
decorrelation procedure and this is why the decorrelation can be used to accelerate the
ILS. However, the upper and lower bounds of the ILS success rate are not necessarily
invariant during the decorrelation. In this study, three groups of upper and lower
bounds and one approximation method are considered. These methodologies have
already been discussed.
At first, the ellipsoidal upper and lower bounds are evaluated and the results are pre-

sented in Figure 10. The figure indicates the discrepancy between ILS success rate and
its ellipsoidal upper bound is smaller than 0·2 in most cases. However, it cannot be
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called a tight upper bound since the discrepancy reaches 0·4 for some cases. The ellips-
oidal lower bound performs even worse than the upper bound. The discrepancy is
larger than 0·1 even in the best case. The figure also indicates that the ellipsoidal
upper and lower bounds are invariant from the decorrelation and the result is reason-
able. For the ellipsoidal upper bound, the success rate is invariant because the volume
ofQââ does not change during the decorrelation procedure. The lower bound also does
not change because kâ� �ak2Qââ

¼ kẑ� �zk2Qââ
. Therefore, dmin does not change during

decorrelation either. In conclusion, ellipsoidal upper and lower bounds are not tight
bounds of ILS success rate, but ellipsoidal upper and lower bounds are invariant
during decorrelation.

Figure 8. Upper and lower bound of integer rounding success rate before and after decorrelation.

Figure 9. Relationship between IB success rate and its ADOP-based upper bound before and after
decorrelation.

1076 LEI WANG AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463316000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463316000047


The eigenvalue-based upper and lower bound is evaluated and the results are pre-
sented in Figure 11. This figure indicates that the eigenvalue-based ILS success rate
bounds are also not tight. Before decorrelation, the upper bounds are around one
and the lower bounds are around zero for the majority of cases. The eigenvalues of
Qââ determine the axes of confidence ellipses. As shown in Figure 2, the shape of
the confidence ellipse is changed during the decorrelation. Before decorrelation, the
confidence ellipse is extremely elongated, so the eigenvalue-based upper and lower
bounds are too rough to approximate the true ILS success rate. The performance of
eigenvalue-based upper and lower bounds can be improved by decorrelation. The
lower bound is significantly improved and the minimum discrepancy is reduced to
about 0·2. However, they are still not tight enough even after decorrelation.

Figure 10. Ellipsoidal upper and lower bound of ILS success rate before and after decorrelation.

Figure 11. Eigenvalue-based upper and lower bound of ILS success rate before and after
decorrelation.
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Therefore, the eigenvalue-based upper and lower bound are not tight bounds of ILS
success rate and they are not recommended in practice.
Performance of the band intersection upper bound and IB lower bound is evaluated

and the results are presented in Figure 12. In this study, the number of band q = n and
n is the ambiguity dimension. As discussed, larger q means tighter bounds, but also
means a heavier computation load. The figure shows the band intersection upper
bound is a tight bound before decorrelation and the maximum discrepancy is about
0·2. After decorrelation, the success rate of band intersection upper bound increases,
but this impact makes the band intersection method become a less tight upper
bound of ILS success rate. The impact of decorrelation on band intersection

Figure 12. Band intersection upper bound and IB lower bound of ILS success rate before and after
decorrelation.

Figure 13. Integration bounding region versus the ILS pull-in region in high and low correlation
case.
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method can be demonstrated by Figure 13. This figure shows the bounding region and
ILS pull-in region are elongated in the high-correlation case. With a properly chosen
band, the difference between the bounding region and the ILS pull-in region can be
small. The decorrelation procedure gives the ILS pull-in region a better geometry,
but also makes band intersection over-large. Since the PDFs of â around ILS pull-in
region vertex are similar, a larger area difference also means larger success rate discrep-
ancy (Wang, 2015). On the other hand, the IB success rate also increases after decorr-
elation, while the increased success rate makes IB success rate become a tight lower
bound of ILS success rate. The maximum difference between IB success rate and
ILS success rate is decreased from 0·85 to less than 0·05. After decorrelation, the IB
success rate is the tightest lower bound of the ILS success rate.
The ADOP-based IB success rate upper bound can also be used as an approxima-

tion of ILS success rate. An examination of ADOP-based ILS success rate approxima-
tion is presented in Figure 14. As discussed, ADOP-based ILS success rate
approximation is independent from the decorrelation procedure. For most cases, the
discrepancy between the ADOP approximation and the ILS success rate varies
between −0·1 and 0·2. The extreme discrepancies reach about 0·3.
It can be seen that the success rate bounds may change when different decorrelation

methods are applied. In this study, the integer Gaussian transformation method is used
for decorrelation. However, the integer Gaussian transformation is not the only dec-
orrelation method, so the performance of these success rate bounds with different dec-
orrelation, e.g. LLL decorrelation, is still worth investigating.

5. CONCLUSIONS AND RECOMMENDATIONS. In our analysis, success
rates of integer rounding, integer bootstrapping and integer least-squares and their
bounds have been systematically studied. According to the numerical results, decorrela-
tion has significant impact on success rate and its bounds. Key finds of this study are
summarised as follows. Decorrelation procedure can improve IR and IB success rates
substantially, but it cannot improve ILS success rate. Decorrelation can reduce the

Figure 14. ADOP-based ILS success rate approximation before and after decorrelation.
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discrepancybetween IR success rate and its lower bounds.After decorrelation, the lower
bound of IR success rate becomes a tight lower bound of the true IR success rate.
Decorrelation also increases IB success rate and the maximum improvement reaches
0·8. After decorrelation, the IB success rate is closer to its ADOP-based upper bound.
The ellipsoidal upper and lower bound is invariant during the decorrelation, but they
are not tight bounds of ILS success rate.Decorrelation procedure can improve the eigen-
value-based ILS bound, but it is still not tight enough after decorrelation.Decorrelation
procedure degrades the band intersection upper bound and improves IB lower bound.
After decorrelation, IB success rate is the tightest lower bound of ILS success rate.
Band intersection upper bound performs best in ILS success rate upper bounds
without decorrelation. ADOP-based success rate upper bound is an approximation of
ILS success rate and its value does not change during decorrelation.
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