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1. Introduction

It is generally hoped that the solution of a parabolic equation should converge to the
solution of the corresponding elliptic equation. For example, it is well known that on a
compact Riemannian manifold (M, g), the solution of the heat equation

∂u

∂t
= ∆u

will converge to the solution of ∆u = 0. Another example is the Kähler–Ricci flow on
compact Kähler manifold with positive first Chern class: Perelman showed that if M

admits a Kähler–Einstein metric, then any solution of the Kähler–Ricci flow

∂g

∂t
= − Ricg +g

with initial metric g0 in c1(M) will converge to a Kähler–Einstein metric in the sense of
Cheeger–Gromov (see [12] for more detail on this result).

In this paper, we will study the parabolic complex Monge–Ampère equation over a
smooth bounded domain in C

n and its convergence property.
Let Ω ⊂ C

n be a bounded domain with smooth boundary ∂Ω. For T > 0, define QT =
Ω × (0, T ), B = Ω × {0}, Γ = ∂Ω × {0} and ΣT = ∂Ω × (0, T ). Let ∂pQT = B ∪ Γ ∪ ΣT

be the parabolic boundary of QT . We consider the following boundary-value problem:

∂u

∂t
− log det(uαβ̄) = f(t, z, u) in QT ,

u = ϕ on ∂pQT ,

⎫⎬
⎭ (1.1)
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where f ∈ C∞(R × Ω̄ × R) and ϕ ∈ C∞(∂pQT ). We always assume that

∂f

∂u
� 0. (1.2)

The main results of this paper are the following theorems.

Theorem 1.1. Suppose there exists a subsolution to (1.1), i.e. a spatial plurisubharmonic
(psh) function u ∈ C2(Q̄T ) such that

ut − log det(uαβ̄) � f(t, z, u) in QT ,

u � ϕ on B and u = ϕ on ΣT ∪ Γ.

}
(1.3)

Then there exists a spatial psh solution u ∈ C∞(QT ) ∩ C2,1(Q̄T )∗ of (1.1) with u � u if
the following compatibility condition is satisfied: ∀z ∈ ∂Ω,

ϕt − log det(ϕαβ̄) = f(0, z, ϕ(z)),

ϕtt − (log det(ϕαβ̄))t = ft(0, z, ϕ(z)) + fu(0, z, ϕ(z))ϕt.

}
(1.4)

Theorem 1.2. If both ϕ and f are independent of the time variable t, and f satisfies
(1.2), then the solution u of (1.1) exists for T = +∞, and as t approaches +∞, u(· , t)
approaches the unique solution v of the Dirichlet problem

det(vαβ̄) = e−f(z,v) in Ω,

v = ϕ on ∂Ω,

}
(1.5)

in C∞(Ω̄).

Theorem 1.3. Assume that Ω is strong pseudoconvex, then for any f ∈ C∞(Ω̄ × R)
satisfying (1.2) and ϕ ∈ C∞(∂Ω), the solution of (1.1) exists for T = +∞, and as t → ∞,
u(· , t) approaches the unique solution of (1.5) in C∞(Ω̄).

The parabolic complex Monge–Ampère equation on a complex manifold has been stud-
ied extensively by many authors because of its close connection with Kähler–Ricci flow:
see [5,6,11]. On the other hand, the elliptic complex Monge–Ampère equations on both
bounded domains and complex manifolds were developed in [2,4,8,18]. We will follow
the treatment in [4] and [7] to study the Dirichlet boundary-value problem (1.1).

Our proof of Theorem 1.1 is based on an a priori estimate, an approach similar to real
parabolic Monge–Ampère flow and real parabolic Hessian flow studied in [16] and [17].
More precisely, we have the following proposition.

Proposition 1.4. Under the condition in Theorem 1.1, if u ∈ C4,1(Q̄T ) solves equa-
tion (1.1), then there exist constants C, λ and Λ depends on n, Ω, ϕ, f and u, such
that

|u| + |∇u| + |∇2u| � C in Q (1.6)

and
λ|ξ|2 � uαβ̄ξαξβ̄ � Λ|ξ|2 ∀ξ ∈ C

n. (1.7)

∗ Cm,n(Q̄T ) means m times and n times differentiable in the space direction and the time direction,
respectively; and the same for the Cm,n-norm.
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We will prove this proposition in § 2. If for now we assume it to be true, we can
finish the proof of Theorem 1.1 as follows. Since equation (1.1) is strictly parabolic, the
short time solution always exists under the compatibility condition. Since the function
log det(·) is concave on the space of the positive Hermitian matrix, so by the work of
Krylov [9], Proposition 1.4 implies that for any ε ∈ (0, T ), there exist Cε and γ such that

‖u‖C2+γ,1+γ/2(Ω×(ε,T )) � Cε

with constant Cε and γ depends on 1/ε. Then a standard bootstrap argument implies
that for any l ∈ N, there exists C(l, ε) such that

‖u‖Cl+γ,1+γ/2(Ω×(ε,T )) � C(l, ε).

Hence u is smooth on Ω × (ε, T ), and the solution can always be extended to a long time
solution. Besides, since ε is arbitrary, u is smooth on Ω × (0, T ).

Motivated by the energy functionals, especially the Mabuchi energy, in the study of
the Kähler–Ricci flow, we introduce an energy functional to the complex Monge–Ampère
problem over bounded smooth domain. Given ϕ ∈ C∞(∂Ω), denote

P(Ω, ϕ) = {u ∈ C2(Ω̄) | u is psh and u = ϕ on ∂Ω}. (1.8)

We will show that there is a well-defined functional F 0 whose variation is given by

δF 0(u) =
∫

Ω

δu det(uαβ̄). (1.9)

We will study the basic property of this functional in § 3. Then, in § 4, we will use this
functional and follow an idea in [11] to prove Theorem 1.2.

Theorem 1.3 follows from Theorem 1.2, because a subsolution can be constructed for
any ϕ and f , using the fact that the domain Ω is strong pseudoconvex.

Remark 1.5. Similar energy functionals have been studied in [1, 14–17] for the real
Monge–Ampère equation and the real Hessian equation with homogeneous boundary
condition ϕ = 0, and the convergence for the solution of the real Hessian equation
was also proved in [15]. Our construction of the energy functionals and the proof of
the convergence also work for these cases. Li [10] and B�locki [3] studied the Dirichlet
boundary-value problems for the complex k-Hessian equations over bounded complex
domains. Similar energy functionals can also be constructed for the parabolic complex
k-Hessian equations and can be used for the proof of the convergence.

Remark 1.6. Since equation (1.1) is nonlinear, even with the compatibility condition
(1.4) we can only show that the solution is smooth for t > 0. On the other hand, using
approximation, it is possible to show that a solution still exits without the compatibility
condition, but then the solution will not be in C2,1(Q̄).
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2. An a priori C2 estimate

In this section, we will prove Proposition 1.4.

Step 0. C0-estimate.
Since u is spatial psh and u � u, so

u � u � sup
ΣT

u,

i.e.
‖u‖C0(QT ) � M0. (2.1)

Step 1. |ut| � C1 in Q̄T .
Let G = ut(2M0 − u)−1. If G attains its minimum on Q̄T at the parabolic boundary,

then ut � −C1 where C1 depends on M0 and ut on Σ. Otherwise, at the point where G

attains the minimum,

Gt � 0, i.e. utt + (2M0 − u)−1u2
t � 0,

Gα = 0, i.e. utα + (2M0 − u)−1utuα = 0,

Gβ̄ = 0, i.e. utβ̄ + (2M0 − u)−1utuβ̄ = 0,

⎫⎪⎬
⎪⎭ (2.2)

and the matrix Gαβ̄ is non-negative, i.e.

utαβ̄ + (2M0 − u)−1utuαβ̄ � 0. (2.3)

Hence
0 � uαβ̄(utαβ̄ + (2M0 − u)−1utuαβ̄) = uαβ̄utαβ̄ + n(2M0 − u)−1ut, (2.4)

where (uαβ̄) is the inverse matrix for (uαβ̄), i.e.

uαβ̄uγβ̄ = δα
γ .

Differentiating (1.1) in t, we get

utt − uαβ̄utαβ̄ = ft + fuut, (2.5)

so

(2M0 − u)−1u2
t � −utt

= −uαβ̄utαβ̄ − ft − fuut

� n(2M0 − u)−1ut − fuut − ft,

hence
u2

t − (n − (2M0 − u)fu)ut + ft(2M0 − u) � 0.

Therefore, at point p, we get
ut � −C1, (2.6)

where C1 depends on M0 and f .

https://doi.org/10.1017/S1474748009000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748009000206


Energy functionals and complex Monge–Ampère equations 467

Similarly, by considering the function ut(2M0 + u)−1 we can show that

ut � C1. (2.7)

Step 2. |∇u| � M1.
Extend u|Σ to a spatial harmonic function h, then

u � u � h in QT and u = u = h on ΣT . (2.8)

So

|∇u|ΣT
� M1. (2.9)

Let L be the linear differential operator defined by

Lv =
∂v

∂t
− uαβ̄vαβ̄ − fuv. (2.10)

Then

L(∇u + eλ|z|2) = L(∇u) + Leλ|z|2

� ∇f − eλ|z|2
(
λ

∑
uαᾱ − fu

)
. (2.11)

Notice that both u and u̇ are bounded and that

det(uαβ̄) = eu̇−f ,

so

0 < c0 � det(uαβ̄) � c1, (2.12)

where c0 and c1 depends on M0 and f . Therefore,

∑
uαᾱ � nc

−1/n
1 . (2.13)

Hence after taking λ large enough, we can get

L(∇u + eλ|z|2) � 0,

thus

|∇u| � sup
∂pQT

|∇u| + C2 � M1. (2.14)
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Step 3. |∇2u| � M2 on Σ.
At point (p, t) ∈ Σ, we choose coordinates z1, . . . , zn for Ω, such that z1 = · · · = zn = 0

at p and the positive xn-axis is the interior normal direction of ∂Ω at p. We set s1 = y1,
s2 = x1, . . . , s2n−1 = yn, s2n = xn and s′ = (s1, . . . , s2n−1). We also assume that near
p, ∂Ω is represented as a graph

xn = ρ(s′) = 1
2

∑
j,k<2n

Bjksjsk + O(|s′|3). (2.15)

Since (u − u)(s′, ρ(s′), t) = 0, we have for j, k < 2n,

(u − u)sjsk
(p, t) = −(u − u)xn(p, t)Bjk, (2.16)

hence
|usjsk

(p, t)| � C3, (2.17)

where C3 depends on ∂Ω, u and M1.
We will follow the construction of the barrier function by Guan [7] to estimate |uxnsj |.

For δ > 0, define Qδ(p, t) = (Ω ∩ Bδ(p)) × (0, t).

Lemma 2.1. Define the functions

d(z) = dist(z, ∂Ω) (2.18)

and
v = (u − u) + a(h − u) − Nd2. (2.19)

Then for N sufficiently large and a, δ sufficiently small,

Lv � ε
(
1 +

∑
uαᾱ

)
in Qδ(p, t),

v � 0 on ∂(Bδ(p) ∩ Ω) × (0, t),

v(z, 0) � c3|z| for z ∈ Bδ(p) ∩ Ω,

⎫⎪⎪⎬
⎪⎪⎭ (2.20)

where ε depends on the uniform lower bound of the eigenvalues of {uαβ̄}, and c3 depends
on M1.

Proof. See the proof of Lemma 2.1 in [7]. �

For j < 2n, consider the operator

Tj =
∂

∂sj
+ ρsj

∂

∂xn
.

Then
Tj(u − u) = 0 on (∂Ω ∩ Bδ(p)) × (0, t),

|Tj(u − u)| � M1 on (Ω ∩ ∂Bδ(p)) × (0, t),

|Tj(u − u)(z, 0)| � C4|z| for z ∈ Bδ(p).

⎫⎪⎬
⎪⎭ (2.21)
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So by Lemma 2.1 we may choose C5 independent of u and A 
 B 
 1 such that

L(Av + B|z|2 − C5(uyn − uyn
)2 ± Tj(u − u)) � 0 in Qδ(p, t),

Av + B|z|2 − C5(uyn − uyn
)2 ± Tj(u − u) � 0 on ∂pQδ(p, t).

}
(2.22)

Hence, by the comparison principle,

Av + B|z|2 − C5(uyn
− uyn

)2 ± Tj(u − u) � 0 in Qδ(p, t),

and at (p, t), therefore,
|uxnyj

| � M2. (2.23)

To estimate |uxnxn
|, we will follow the simplification in [13]. For (p, t) ∈ Σ, define

λ(p, t) = min{uξξ̄ | complex vector ξ ∈ Tp∂Ω and |ξ| = 1}.

Claim. λ(p, t) � c4 > 0 where c4 is independent of u.

Let us assume that λ(p, t) attains the minimum at (z0, t0) with ξ ∈ Tzo
∂Ω. We may

assume that
λ(z0, t0) < 1

2uξξ̄(z0, t0).

Take a unitary frame e1, . . . , en around z0, such that e1(z0) = ξ, and Re en = γ is the
interior normal of ∂Ω along ∂Ω. Let r be the function which defines Ω, then

(u − u)11̄(z, t) = −r11̄(z)(u − u)γ(z, t), z ∈ ∂Ω.

Since u11̄(z0, t0) < u11̄(z0, t0)/2, we have

−r11̄(z0)(u − u)γ(z0, t0) � − 1
2u11̄(z0, t0).

Hence

r11̄(z0)(u − u)γ(z0, t) � 1
2u11̄(z0, t) � c5 > 0.

Since both ∇u and ∇u are bounded, we get

r11̄(z0) � c6 > 0.

Hence for any z ∈ Bδ(z0) ∩ Ω, where δ is a sufficiently small positive number, we have

r11̄(z) � 1
2c6.

So by u11̄(z, t) � u11̄(z0, t0), we get

u11̄(z, t) − r11̄(z)(u − u)γ(z, t) � u11̄(z0, t0) − r11̄(z0)(u − u)γ(z0, t0).

Hence if we let

Ψ(z, t) =
1

r11̄(z)
(r11̄(z0)(u − u)γ(z0, t0) + u11̄(z, t) − u11̄(z0, t0)),
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then Ψ is a function that depends on the geometry of ∂Ω and u, and it satisfies

(u − u)γ(z, t) � Ψ(z, t) on (∂Ω ∩ Bδ(z0)) × (0, T ),

(u − u)γ(z0, t0) = Ψ(z0, t0).

Now take the coordinate system z1, . . . , zn as before. Then

(u − u)xn
(z, t) � 1

γn(z)
Ψ(z, t) on (∂Ω ∩ Bδ(z0)) × (0, T ),

(u − u)xn(z0, t0) =
1

γn(z0)
Ψ(z0, t0),

⎫⎪⎪⎬
⎪⎪⎭ (2.24)

where γn depends on ∂Ω. After taking C6 independent of u and A 
 B 
 1, we get

L

(
Av + B|z|2 − C6(uyn − uyn

)2 +
Ψ(z, t)
γn(z)

− (u − u)xn

)
� 0 in Qδ(p, t),

Av + B|z|2 − C6(uyn − uyn
)2 +

Ψ(z, t)
γn(z)

− (u − u)xn � 0 on ∂pQδ(p, t).

So

Av + B|z|2 − C6(uyn − uyn
)2 +

Ψ(z, t)
γn(z)

− (u − u)xn � 0 in Qδ(p, t)

and
uxnxn(z0, t0) � C7.

Therefore, at (z0, t0), uαβ̄ is uniformly bounded, hence

u11̄(z0, t0) � c4

with c4 independent of u. Finally, from the equation

det uαβ̄ = eu̇−f

we get
|uxnxn | � M2.

Step 4. |∇2u| � M2 in Q.
By the concavity of log det, we have

L(∇2u + eλ|z|2) � O(1) − eλ|z|2
(
λ

∑
uαᾱ − fu

)
.

So for λ large enough,
L(∇2u + eλ|z|2) � 0

and
sup |∇2u| � sup

∂pQT

|∇2u| + C8 (2.25)

with C8 depending on M0, Ω and f .
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3. The functionals I, J and F 0

Let us recall the definition of P(Ω, ϕ) in (1.8):

P(Ω, ϕ) = {u ∈ C2(Ω̄) | u is psh and u = ϕ on ∂Ω}.

Fixing v ∈ P, for u ∈ P, define

Iv(u) = −
∫

Ω

(u − v)((i∂∂̄u)n − (i∂∂̄v)n). (3.1)

Proposition 3.1. There is a unique and well-defined functional Jv on P(Ω, ϕ) such that

δJv(u) = −
∫

Ω

δu((i∂∂̄u)n − (i∂∂̄v)n) (3.2)

and Jv(v) = 0.

Proof. Notice that P is connected, so we can connect v to u ∈ P by a path ut, 0 � t � 1,
such that u0 = v and u1 = u. Define

Jv(u) = −
∫ 1

0

∫
Ω

∂ut

∂t
((i∂∂̄ut)n − (i∂∂̄v)n) dt. (3.3)

We need to show that the integral in (3.3) is independent of the choice of path ut. Let
δut = wt be a variation of the path. Then

w1 = w0 = 0 and wt = 0 on ∂Ω,

and

δ

∫ 1

0

∫
Ω

u̇((i∂∂̄u)n − (i∂∂̄v)n) dt

=
∫ 1

0

∫
Ω

(ẇ((i∂∂̄u)n − (i∂∂̄v)n) + u̇ni∂∂̄w(i∂∂̄u)n−1) dt.

Since w0 = w1 = 0, an integration by parts with respect to t gives∫ 1

0

∫
Ω

ẇ((i∂∂̄u)n − (i∂∂̄v)n) dt = −
∫ 1

0

∫
Ω

w
d
dt

(i∂∂̄u)n dt

= −
∫ 1

0

∫
Ω

inw∂∂̄u̇(i∂∂̄u)n−1 dt.

Notice that both w and u̇ vanish on ∂Ω, so an integration by parts with respect to z

gives ∫
Ω

inw∂∂̄u̇(i∂∂̄u)n−1 = −
∫

Ω

in∂w ∧ ∂̄u̇(i∂∂̄u)n−1

=
∫

Ω

inu̇∂∂̄w(i∂∂̄u)n−1.
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So

δ

∫ 1

0

∫
Ω

u̇((i∂∂̄u)n − (i∂∂̄v)n) dt = 0 (3.4)

and the functional J is well defined. �

Using the J functional, we can define the F 0 functional as

F 0
v (u) = Jv(u) −

∫
Ω

u(i∂∂̄v)n. (3.5)

Then, by Proposition 3.1, we have

δF 0
v (u) = −

∫
Ω

δu(i∂∂̄u)n. (3.6)

Proposition 3.2. The basic properties of I, J and F 0 are the following.

(1) For any u ∈ P(Ω, ϕ), Iv(u) � Jv(u) � 0.

(2) F 0 is convex on P(Ω, ϕ), i.e. ∀u0, u1 ∈ P,

F 0
(

u0 + u1

2

)
� F 0(u0) + F 0(u1)

2
. (3.7)

(3) F 0 satisfies the cocycle condition, i.e. ∀u1, u2, u3 ∈ P(Ω, ϕ),

F 0
u1

(u2) + F 0
u2

(u3) = F 0
u1

(u3). (3.8)

Proof. Let w = (u − v) and ut = v + tw = (1 − t)v + tu, then

Iv(u) = −
∫

Ω

w((i∂∂̄u)n − (i∂∂̄v)n)

= −
∫

Ω

w

( ∫ 1

0

d
dt

(i∂∂̄ut)n dt

)

= −
∫ 1

0

∫
Ω

inw∂∂̄w(i∂∂̄ut)n−1

=
∫ 1

0

∫
Ω

in∂w ∧ ∂̄w ∧ (i∂∂̄ut)n−1 � 0 (3.9)

and

Jv(u) = −
∫ 1

0

∫
Ω

w((i∂∂̄ut)n − (i∂∂̄v)n) dt

= −
∫ 1

0

∫
Ω

w

( ∫ t

0

d
ds

(i∂∂̄us)n ds

)
dt

= −
∫ 1

0

∫
Ω

∫ t

0
inw∂∂̄w(i∂∂̄us)n−1 ds dt

=
∫ 1

0

∫
Ω

(1 − s)in∂w ∧ ∂̄w ∧ (i∂∂̄us)n−1 ds � 0. (3.10)
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Compare (3.9) and (3.10), it is easy to see that

Iv(u) � Jv(u) � 0.

To prove (3.7), let ut = (1 − t)u0 + tu1, then

F 0(u1/2) − F 0(u0) = −
∫ 1/2

0

∫
Ω

(u1 − u0)(i∂∂̄ut)n dt,

F 0(u1) − F 0(u1/2) = −
∫ 1

1/2

∫
Ω

(u1 − u0)(i∂∂̄ut)n dt.

Since ∫ 1/2

0

∫
Ω

(u1 − u0)(i∂∂̄ut)n dt −
∫ 1

1/2

∫
Ω

(u1 − u0)(i∂∂̄ut)n dt

=
∫ 1/2

0

∫
Ω

(u1 − u0)((i∂∂̄ut)n − (i∂∂̄ut+1/2)n) dt

= 2
∫ 1/2

0

∫
Ω

(ut+1/2 − ut)((i∂∂̄ut)n − (i∂∂̄ut+1/2)n) dt � 0,

we have
F 0(u1) − F 0(u1/2) � F 0(u1/2) − F 0(u0).

The cocycle condition is a simple consequence of the variation formula (3.6). �

4. The convergence

In this section, let us assume that both f and ϕ are independent of t. For u ∈ P(Ω, ϕ),
define

F (u) = F 0(u) +
∫

Ω

G(z, u) dV, (4.1)

where dV is the volume element in C
n and G(z, s) is the function given by

G(z, s) =
∫ s

0
e−f(z,t) dt.

Then the variation of F is

δF (u) = −
∫

Ω

δu(det(uαβ̄) − e−f(z,u)) dV. (4.2)

Proof of Theorem 1.2. Since both ϕ and f are independent of t, by the Krylov–Evans
theory and the uniform C2(Ω̄) estimate in § 2, it follows that u(· , t) has uniform C2,α(Ω̄)
estimate, and hence uniform C∞(Ω̄) estimate. Therefore, for any sequence tn → ∞ there
is a subsequence tnj → ∞ such that u(· , tnj ) converges to some function ũ in C∞(Ω̄). If
we can show that eu̇ converges to 1 in measure, then ũ solves the elliptic equation (1.5)
in measure, hence ũ = v by the uniqueness of the solution of (1.5), i.e. the sequential
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limit is independent of the sequence, therefore we get the full convergence of u(· , t) in
C∞(Ω̄). So we only need to show that

eu̇(·,t) → 1 in the sense of measure.

We will follow Phong and Sturm’s proof of the convergence of the Kähler–Ricci flow
in [11]. For any t > 0, the function u(· , t) is in P(Ω, ϕ). So, by (4.2),

d
dt

F (u) = −
∫

Ω

u̇(det(uαβ̄) − e−f(z,u))

= −
∫

Ω

(log det(uαβ̄) − (−f(z, u)))(det(uαβ̄) − e−f(z,u)) � 0.

Thus F (u(· , t)) is monotonic decreasing as t approaches +∞. On the other hand, u(· , t)
is uniformly bounded in C2(Ω̄) by (1.6), so both F 0(u(· , t)) and f(z, u(· , t)) are uniformly
bounded, hence F (u) is bounded. Therefore,∫ ∞

0

∫
Ω

(log det(uαβ̄) + f(z, u))(det(uαβ̄) − e−f(z,u)) dt < ∞. (4.3)

Observe that by the mean value theorem, for x, y ∈ R,

(x + y)(ex − e−y) = (x + y)2eη � emin(x,−y)(x + y)2,

where η is between x and −y. Thus

(log det(uαβ̄) + f)(det(uαβ̄) − e−f ) � C9(log det(uαβ̄) + f)2 = C9|u̇|2,

where C9 is independent of t. Hence∫ ∞

0
‖u̇‖2

L2(Ω) dt � ∞. (4.4)

Let
Y (t) =

∫
Ω

|u̇(· , t)|2 det(uαβ̄) dV, (4.5)

then
Ẏ =

∫
Ω

(2üu̇ + u̇2uαβ̄u̇αβ̄) det(uαβ̄) dV.

Differentiate (1.1) in t,
ü − uαβ̄u̇αβ̄ = fuu̇, (4.6)

so

Ẏ =
∫

Ω

(2u̇u̇αβ̄uαβ̄ + u̇2(2fu + uαβ̄u̇αβ̄)) det(uαβ̄) dV

=
∫

Ω

(u̇2(2fu + uαβ̄u̇αβ̄) − 2u̇αu̇β̄uαβ̄) det(uαβ̄) dV.
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Notice that both fu and uαβ̄u̇αβ̄ are uniformly bounded, so

Ẏ � C10

∫
Ω

u̇2 det(uαβ̄) dV = C10Y

and
Y (t) � Y (s)eC10(t−s) for t > s, (4.7)

where C10 is independent of t. By (4.4), (4.7) and the uniform boundedness of det(uαβ̄),
we get

lim
t→∞

‖u̇(· , t)‖L2(Ω) = 0.

Since Ω is bounded, the L2 norm controls the L1 norm, hence

lim
t→∞

‖u̇(· , t)‖L1(Ω) = 0.

Notice that by the mean value theorem,

|ex − 1| < e|x||x|,

so ∫
Ω

|eu̇ − 1| dV � esup |u̇|
∫

Ω

|u̇| dV.

Hence eu̇ converges to 1 in L1(Ω) as t approaches +∞, and this finishes the proof of
Theorem 1.2. �
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