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Abstract Finding a common point in a finite intersection of sets, say, C = ∩n
i=1F (Ti), where each Ti is a

non-expansive-type mapping, is a central task in mathematics as it cuts across different areas of applica-
tion, such as road design and medical image reconstruction. There are many algorithms for approximating
solutions of such problems. Of particular interest in the implementation of these algorithms are cost and
speed. This is due to the large computations to be performed at each step of the iterative process. One
of the most efficient methods that optimizes the time of computation and cost of implementation is
the asynchronous-parallel algorithm method. In this paper, we prove a weak convergence theorem for
the asynchronous sequential inertial (ASI) algorithm (introduced by Heaton and Censor in [H. Heaton
and Y. Censor, Asynchronous sequential inertial iterations for common fixed points problems with an
application to linear systems, J. Glob. Optim. 74 (2019), 95–119.] ) for strictly pseudo-contractive map-
pings in Hilbert spaces. Under additional mild conditions, we also obtain a strong convergence theorem.
Finally, we apply the ASI algorithm to solving convex minimization problems and Hammerstein integral
equations.

Keywords: convex feasibility problems; asynchronous-parallel algorithms; strict pseudo-contractions
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1. Introduction

The need for fast computational methods in different areas of application, such as weather
prediction, fluid dynamics, image and signal processing, optimization problems, large-
scale interconnected systems, etc., has always been of great interest (see, e.g. [12]). This
is simply due to the large numerical computations that are involved. Most of the problems
that arise in these areas of application can be decomposed in such a way that the compu-
tations can be handled simultaneously by more powerful processors. This further led to
the continuation of research on the development of parallel algorithms and high-efficient
computing machines with multiprocessors, see, for example, [29].
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The convex feasibility problem (CFP): find x ∈ C = ∩n
i=1F (Ti), where Ti : H → H, for

each i, is an operator defined on a real Hilbert space H, is a central task in mathematics.
Such problems arise in different areas of application, such as road design [10], medical
image reconstruction [28], signal processing, optimization problems, radiation therapy
[20], to mention but a few. There are many algorithms in the literature for approximating
solutions of CFPs. One of the most commonly used algorithms is the projection algorithms
that employ projections onto the underlying set, see, e.g. [8, 9, 14, 15, 17, 18, 21, 24,
25, 32, 40] and the references therein.The Krasnoselkii–Mann algorithm is often used
when the underlying set is a finite intersection of fixed point sets of some non-expansive-
type mappings, see, e.g. [13, 30, 33, 34, 37, 38, 42, 43]. In an attempt to speed up the
computation of algorithms, several authors have developed parallel algorithms for CFPs,
see, e.g. [2, 11, 16, 19]. The parallel algorithms, which can be run in a multiprocessor
machine is, without doubt, better than the non-parallel algorithms that run in a machine
with a single processor. This is simply because, for multiprocessor machines, the task can
be distributed among the processors. However, in a case where the output of the processors
needs to be synchronized before computing the next iterate, the master processor has to
wait for the slowest processor to provide its output. A typical case of this is when the
convex combination of the output from each processor is to be taken before moving to the
next step. In essence, in synchronous parallel iterative algorithms, some of the processors
will be idle for some time at each step. Moreover, if there is a failure of transmission from
one of the processors, then the master processor will have to resend the last output for
recomputation thereby delaying other processors. One way of preventing the problems
associated with the synchronous method is via asynchronization. In asynchronous-parallel
iterative algorithms, there is no need to wait for other processors in order to compute
the next iterate. This method allows flexibility in such a way that a processor can use
out-of-date information to compute the next output, see e.g., [47]. The general method
of approximating CFPs via synchronous parallel iterative algorithm can be put in the
following form

xn+1 = Fn(xn), x0 ∈ H, n ≥ 1, (1.1)

where Fn is a sequence of operators. However, the asynchronous version of 1.1 takes, in
general, the following form:

xn+1 = Fn(x̃n), x0 ∈ H, n ≥ 1, (1.2)

where x̃n is either xn or xn−j for some j ∈ N, where j is the delay amount of some
processor. To fix ideas, suppose we have p processors and we set

Jn = (jn
1 , jn

2 , jn
3 , . . . , jn

p ) ∈ N
p

to be the delay vector at each iteration step. Then, the ith component of the vector
Jn gives the delay amount of the ith processor. Moreover, suppose {in}n≥1 ⊂ N, where
1 ≤ in ≤ p, is an index sequence that gives information on whose output will be used to
compute xn+1. Then x̃n is the last iterate sent to the ithn processor, i.e., x̃n = xn−jn

in .
It is, however, worth mentioning that, while the asynchronous-parallel iterative algo-
rithms have advantages over synchronous parallel iterative algorithms, they also have
their own disadvantages. For instance, the asynchronous-parallel iterative algorithms are
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not easy to handle when it comes to convergence analysis and implementation compared
to synchronous parallel iterative algorithms.

The asynchronous-parallel iterative algorithm was first introduced by Chazan and
Miranker [23] in 1969 to solve system of linear equations. Since then, many authors
have successfully apply the method to solve problems in different areas, such as opti-
mization [35, 36, 44, 46], nonlinear problems [4, 7], differential equations [1, 3, 22, 27]
to mention but a few. Baudet [7], in 1978, used totally asynchronous parallel itera-
tive algorithm (in which arbitrary amount of delay is allowed without any bound) for
p-contractions (see, e.g. [47]) for definition of p-contractions). In [45], Tseng et al. con-
sidered partially asynchronous parallel iterative algorithm (where the delay vectors are
bounded from above by some non-negative number, say, ρ) for quasi-non-expansive map-
pings (see preliminaries below for definition). Recently, Zhimin et al. introduced ARock
algorithm for approximation of fixed points of non-expansive mappings in Hilbert spaces.
As opposed to the methods in [7] and [45] which assign coordinates in a deterministic man-
ner, the ARock method is stochastic. More precisely, the ARock algorithm is following:

Algorithm 1: ARock: a framework for async-parallel coordinate updates
Input : x0 ∈ H, K > 0, a distribution (p1, p2, p3 . . . , pm) > 0 with

∑m
i=1 pi = 1.

global iteration counter k ←− 0;
while k < K, every agent asynchronously and continuously do

select ik ∈ {1, 2, 3, . . . ,m} with Prob(ik = i)=pi;
perform an update to xik

according to the following:

xk+1 = xk − ηk

mpik

Sik
x̂k;

update the global counter k ←− k + 1;
end

where H = H1 ×H2 ×H3 . . .×Hm, Sik
xk = (0, . . . , 0, (Sx)ik

, 0, . . . , 0).

Theorem 1.1. Zhimin et al. [47]. Let T : H → H be a non-expansive operator that
has a fixed point. Let (xk)k≥0 be the sequence generated by Algorithm 1 with properly
bounded step sizes ηk. Then, with probability one, (xk)k≥0 converges weakly to a fixed
point of T . This convergence becomes strong if H has a finite dimension. In addition,
if T is demicompact, then with probability one, (xk)k≥0 converges strongly to a fixed
point of T . Furthermore, if S ≡ I − T is quasi-strongly monotone, then, T has a unique
fixed point x∗, (xk)k≥0 converges strongly to x∗ with probability one, and E‖xk − x∗‖2
converges to 0 at a linear rate.

More recently, Heaton and Censor [31] introduced the asynchronous inertial algorithm
(ASI) for non-expansive mappings and proved weak convergence result via the monotonic-
ity of a sequence that includes classical error added to the error introduced from using
out-of-date iterates. Consider a collection of m non-expansive operators {Ti}mi=1 on H with
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a common fixed point. Consider the CFP with C = ∩m
i=1F (Ti), i ∈ {1, 2, 3, . . . , m}. For

each i ∈ {1, 2, 3, . . . , m}, set Si = I − Ti, then the ASI algorithm is as follows:

Algorithm 2: Asynchronous Inertial Algorithm
Let x1 ∈ H be arbitrary, {λk}k∈N such that λk ∈ (0, 1) for all k ∈ N, and {ik}k∈N

be an almost cyclic control on {1, 2, 3, . . . , m}. For each k ∈ N set

xk+1 =

{
xk, k ≤ supk∈N ‖dk‖∞,

xk − λkSik
(x̂k), otherwise.

(1.3)

They proved the following theorem:

Theorem 1.2 (Heaton and Censor [31]). Let {xk}k∈N be a sequence generated by
the ASI algorithm and suppose Assumption 1 holds. If there is an ε > 0 such that

0 < ε ≤ λk ≤ 1
2τ + 1 + ε

, k ∈ N,

then the sequence {xk}k∈N converges weakly to a common fixed point x∗ of the family
{Ti}mi=1, i.e.,

xk ⇀ x∗ ∈ C = ∩m
i=1F (Ti).

In this paper, we prove weak and strong convergence theorem (under additional mild
condition) for the class of strict pseudo-contractions which properly contains the class
of non-expansive operators considered in [31]. More precisely, we prove the following
theorem:

Theorem. Let Ti : H −→ H, i = 1, 2, 3, . . . , m be ki-strictly pseudo-contractive
mappings. Let {xn} be a sequence defined by x0 ∈ H,

xn+1 =

{
xn, ≤ supn∈N ‖dn‖∞,

(1− αn)xn − αn(Tin
x̃n + (xn − x̃n)), otherwise.

Suppose supn∈N ‖dn‖∞ ≤ ρ for some ρ ≥ 1 and that

0 < ε0 ≤ αn ≤ 1− k

2ρ + 1 + ε0
< 1− k, ∀ n ∈ N,

for some ε0 > 0, where k = max
1≤i≤m

ki. Then, the sequence {xn} converges weakly to some

point x∗ ∈ C = ∩n
i=1F (Ti) �= ∅.

This class of operators allows some flexibility when data come with some noise in which
the operator involved may fail to be non-expansive. Furthermore, we present the appli-
cation of the ASI algorithm to solving convex minimization problems and Hammerstein
integral equations.
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2. Preliminaries

In this section, we give some definitions and lemmas that will be useful in the proof of
our main results. In the sequel, we assume that H is a real Hilbert space.

Definition 2.1. Let C be a non-empty subset of H. A map T : C −→ C is called

(i) Non-expansive if ‖Tx− Ty‖ ≤ ‖x− y‖ ∀, x, y ∈ C.

(ii) Quasi-non-expansive if F (T ) �= ∅ and ‖Tx− y‖ ≤ ‖x− y‖ ∀, x ∈ C and y ∈ F (T ),
where

F (T ) = {y ∈ C : Ty = y}.
(iii) k-strictly pseudo-contractive if there exists k ∈ [0, 1) such that

‖Tx− Ty‖ ≤ ‖x− y‖+ k‖(I − T )x− (I − T )y‖ ∀, x, y ∈ C.

Remark 1. It is well known that the class of k-strictly pseudo-contractive map prop-
erly contains the class of quasi-non-expansive maps and that of non-expansive maps. For
example, the map T : l2 −→ l2 defined by Tx = −5/4x is not non-expansive. However, a
simple calculation shows that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 1/9‖(I − T )x− (I − T )y‖2 ∀, x, y ∈ C,

i.e., T is 1/9-strictly pseudo-contractive.

Definition 2.2. Let C be a non-empty subset of H and T : C −→ C be a map. For a
fixed α ∈ (0, 1), the map Tα defined by

Tαx = (1− α)x + αTx, ∀ x ∈ C (2.1)

is called α-relaxation of the map T .

It can be easily seen that F (T ) �= ∅ if and only if F (Tα) �= ∅ and that F (T ) = F (Tα). If
T is non-expansive, then Tα is also non-expansive, and in this case, Tα is called α-averaged
of T (see, e.g. [6]).

Lemma 2.3. Let H be a real Hilbert space. Then the following identities hold

(i) ‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.
(ii) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.

Lemma 2.4 (See, e.g. [38], proposition 2.1). Let C be a non-empty closed convex
subset of H and T : C −→ C be k-strictly pseudo-contractive map. Then,

(i) T is Lipschitz with the Lipschitz constant 1+k
1−k , i.e.,

‖Tx− Ty‖ ≤ 1 + k

1− k
‖x− y‖ ∀, x, y ∈ C.
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(ii) The map (I − T ) is demiclosed at 0, i.e., if xn ⇀ x and (I − T )xn → 0 then Tx = x.

Lemma 2.5 (See, e.g. [39], Lemma 2.6). Let C be a non-empty closed convex
subset of H and T : C −→ C be k-strictly pseudo-contractive map such that F (T ) �= ∅.
Then, the following inequality holds:

(1− k)‖Tx− x‖2 ≤ 2〈x− p, x− Tx〉 ∀, p ∈ F (T ) and x ∈ C. (2.2)

Lemma 2.6. Let Ti : H −→ H, i = 1, 2, . . . , n be ki-strictly pseudo-contractive maps
such that C = ∩n

i=1F (Ti) �= ∅. Let {xn}n∈N be a sequence in H such that ‖xn − x∗‖
converges for each x∗ ∈ C and that ‖Tixn − xn‖ → 0 for all i = 1, 2, . . . , n, then the
sequence {xn}n∈N converges weakly to a point in C.

Proof. We first observe that if {xnk
}k∈N is any subsequence of {xn}n∈N that converges

weakly to some point, say x∗, then, by lemma 2.4 (ii) x∗ ∈ C. We now show that {xn}n∈N

has only one weak cluster point in C from which the result will then follow.
Let {xnk

}k∈N and {xnj
}j∈N be two subsequences of {xn}n∈N such that xnk

⇀ p
and xnj

⇀ q, where p, q ∈ C (note that this is possible since the sequence {xn}n∈N is
bounded). We show that p = q. We have that

2〈xn, p− q〉 = 2〈xn, p〉 − 2〈xn, q〉
≤ ‖xn − p‖2 − ‖xn‖2 − ‖p‖2 − ‖xn − q‖2 + ‖xn‖2 + ‖q‖2

≤ ‖xn − p‖2 − ‖p‖2 − (‖xn − q‖2 − ‖q‖2).
From the assumption that ‖xn − x∗‖ converges for each x∗ ∈ C we see limn→∞〈xn, p− q〉
exists. So that

‖p− q‖2 = 〈p, p− q〉 − 〈q, p− q〉
= lim

k→∞
〈xnk

, p− q〉 − lim
j→∞
〈xnj

, p− q〉 = 0.

Hence, p = q. The proof is complete. �

Lemma 2.7. Let C be a non-empty closed and convex subset of H and T : C −→ C
be a k-strictly pseudo-contractive map. Then for α ∈ (0, 1− k), Tα is a non-expansive
map.

Proof. Using lemma 2.3 (i), Equation (2.1) and the fact that T is k-strictly pseudo-
contractive, we have

‖Tαx− Tαy‖2 = ‖(1− α)(x− y) + α(Tx− Ty)‖2

= (1− α)‖(x− y)‖2 + α‖(Tx− Ty)‖2 − α(1− α)‖(x− Tx)− (y − Ty)‖2

≤ (1− α)‖(x− y)‖2 + α(‖(x− y)‖2 + k‖(x− Tx)− (y − Ty)‖2)
− α(1− α)‖(x− Tx)− (y − Ty)‖2

= ‖(x− y)‖2 − α(1− α− k)‖(x− Tx)− (y − Ty)‖2

≤ ‖(x− y)‖2.
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The result follows from the fact that α ∈ (0, 1− k). �

3. Main results

We now state and prove our main theorem.

Theorem 3.1. Let Ti : H −→ H, i = 1, 2, 3, . . . , m be ki-strictly pseudo-contractive
mappings. Let {xn} be a sequence defined by x0 ∈ H,

xn+1 =

{
xn, n ≤ supn∈N ‖dn‖∞,

(1− αn)xn − αn(Tin
x̃n + (xn − x̃n)), otherwise.

(3.1)

Suppose supn∈N ‖dn‖∞ ≤ ρ for some ρ ≥ 1 and that

0 < ε0 ≤ αn ≤ 1− k

2ρ + 1 + ε0
< 1− k, ∀ n ∈ N, (3.2)

for some ε0 > 0, where k = max
1≤i≤m

ki. Then, the sequence {xn} converges weakly to some

point x∗ ∈ C = ∩n
i=1F (Ti) �= ∅.

In Theorem (3.2), for each n ∈ N, dn is the delay vector, {in} is an almost cyclic
sequence on the set {1, 2, 3 . . . , m}, Tin

is the processor whose output will be used to
compute xn+1 and finally, x̃n = xn or x̃n = xn−jn

in , where jn
in

is the delay amount of the
ithn processor.

Remark 2. In Theorem (3.1), if we set Ain
= (I − Tin

), then algorithm (3.1) becomes

xn+1 =

{
xn, n ≤ supn∈N ‖dn‖∞,

xn − αnAin
(x̃n), otherwise.

(3.3)

Proof of Theorem 3.3. We divide the proof into three steps:
Step 1. For any x∗ ∈ C = ∩n

i=1F (Ti), the following inequality holds:

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 +
ρ∑

r=1

‖xn+1−r − xn−r‖2 − αn(1− k − αn(1 + ρ))‖Ain
(x̃n)‖2.

(3.4)
Indeed, let x∗ ∈ C = ∩n

i=1F (Ti), then using Lemma 2.3 (ii), we have

‖xn+1 − x∗‖2 = ‖xn − x∗ − αnAin
(x̃n)‖2

= ‖xn − x∗‖2 − 2αn〈xn − x̃n, Ain
(x̃n)〉 − 2αn〈x̃n − x∗, Ain

(x̃n)〉
+ αn

2‖Ain
(x̃n)‖2 (3.5)

Using Lemma 2.5, we get

−2αn〈x̃n − xn, Ain
(x̃n)〉 ≤ −αn(1− ki)‖Ain

(x̃n)‖2

≤ −αn(1− k)‖Ain
(x̃n)‖2 (3.6)
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Also by using the fact that dn
in

is the delay amount for the ithn processor, and repeated
application of the triangle inequality, we have

−2αn〈xn − x̃n, Ain
(x̃n)〉 ≤ 2αn‖xn − x̃n‖‖Ain

(x̃n)‖

≤ 2αn

dn
in∑

r=1

‖xn+1−r − xn−r‖‖Ain
(x̃n)‖

≤ 2αn

ρ∑
r=1

‖xn+1−r − xn−r‖‖Ain
(x̃n)‖

Using the fact that 2ab ≤ 1
γ a2 + γb2 for any a, b ∈ R and γ > 0, we have

−2αn〈xn − x̃n, Ain
(x̃n)〉 ≤ αn

(
ρ∑

r=1

1
αn
‖xn+1−r − xn−r‖2 + αn‖Ain

(x̃n)‖2
)

(3.7)

=
ρ∑

r=1

‖xn+1−r − xn−r‖2 + ραn
2‖Ain

(x̃n)‖2. (3.8)

Substituting inequalities (3.6) and (3.8) in (3.5), we get the desired result.
Step 2. For any x∗ ∈ C = ∩n

i=1F (Ti) the non-negative sequence {βn}n∈N defined by

βn = ‖xn − x∗‖2 +
ρ∑

r=1

cr‖xn+1−r − xn−r‖2 (3.9)

is convergent, where cr = (1 + ρ− r) + ε0, r = 1, 2, 3 . . . , m + 1.
Using inequality (3.4), we have

βn+1 = ‖xn+1 − x∗‖2 +
ρ∑

r=1

cr‖xn+2−r − xn+1−r‖2

≤ ‖xn − x∗‖2 +
ρ∑

r=1

‖xn+1−r − xn−r‖2

− αn(1− k − αn(1 + ρ))‖Ain
(x̃n)‖2 +

ρ∑
r=1

cr‖xn+2−r − xn+1−r‖2. (3.10)

By changing the indexing variable and observing that cr+1 + 1 = cr, we have

βn+1 ≤ ‖xn − x∗‖2 +
ρ∑

r=1

‖xn+1−r − xn−r‖2 + c1‖xn+1 − x∗‖2

− cρ+1‖xn+1−ρ − xn−ρ‖2 − αn(1− k − αn(1 + ρ))‖Ain
(x̃n)‖2

= βn − cρ+1‖xn+1−ρ − xn−ρ‖2 − αn(1− k − αn(1 + ρ))‖Ain
(x̃n)‖2 (3.11)

Since cρ+1 = ε0 and c1 = ρ + ε0 we have that {βn} is non-increasing. Thus, {βn}n∈N

converges.
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Step 3. The sequences {‖xn − x∗‖}n∈N, {‖xn+1 − xn‖}n∈N and {‖xn − x̃n‖}n∈N

converge as n→∞.
Indeed, from (3.11), we have that

0 ≤ cρ+1‖xn+1−ρ − xn−ρ‖2 ≤ βn − βn+1, (3.12)

so that

‖xn+1 − xn‖ → 0 as n→∞. (3.13)

Using (3.9) and (3.13), we see that

lim
n→∞βn = lim

n→∞ ‖x
n − x∗‖. (3.14)

Finally, we have

0 ≤ ‖xn − x̃n‖ ≤
ρ∑

r=1

‖xn+1−r − xn−r‖ → 0 as n→∞. (3.15)

So that

‖xn − x̃n‖ → 0 as n→∞. (3.16)

Step 4. ‖Tix
n − xn‖ → 0 as n→∞ for all i = 1, 2, 3 . . . , m.

Let i ∈ {1, 2, 3 . . . , m} and Tα
i be an α-relaxation of Ti. Let sn be a sequence in N

such that sn is the smallest integer ≥ n with isn
= i. Then

‖Tαsn
i (xn)− xn‖ ≤ ‖Tαsn

i (xn)− xsn+1‖+ ‖xsn+1 − xn‖ (3.17)

Now,

‖Tαsn
i (xn)− xsn+1‖ = ‖Tαsn

i (xn)− (xsn − αsn
x̃sn + αsn

Ti(x̃sn)‖
= ‖Tαsn

i (xn)− (Tαsn
i (x̃sn) + (x̃sn − xsn)‖

≤ ‖Tαsn
i (xn)− (Tαsn

i (x̃sn)‖+ ‖x̃sn − xsn‖ (3.18)

≤ ‖xn − x̃sn‖+ ‖x̃sn − xsn‖. (3.19)

In the last inequality, we have used the fact that T
αsn
i is non-expansive (Lemma 2.7).

Using the fact that {in}n∈N is an almost cyclic sequence on {1, 2, 3 . . . , m} with almost
cyclic index N we have x̃sn = xh for some n− ρ ≤ h ≤ sn ≤ n + N . Thus, from inequality
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(3.17) and repeated application of triangle inequality, we have

‖Tαsn
i (xn)− xsn+1‖ ≤

N−1∑
r=−ρ

‖xn+1−r − xn−r‖+
N−1∑
r=−ρ

‖xn+1−r − xn−r‖

= 2
N−1∑
r=−ρ

‖xn+1−r − xn−r‖. (3.20)

From inequalities (3.19) and (3.20), we have

‖Tαsn
i (xn)− xsn+1‖ ≤

N−1∑
r=−ρ

‖xn+1−r − xn−r‖+
N−1∑
r=−ρ

‖xn+1−r − xn−r‖

= 2
N−1∑
r=−ρ

‖xn+1−r − xn−r‖. (3.21)

Inequalities (3.17) and (3.21) further imply that

‖Tαsn
i (xn)− xn‖ ≤ 2

N−1∑
r=−ρ

‖xn+1−r − xn−r‖+ ‖xsn+1 − xn‖

≤ 3
N−1∑
r=−ρ

‖xn+1−r − xn−r‖. (3.22)

Applying (3.13), we see that ‖Tαsn
i (xn)− xn‖ → 0 as n→∞.

Now

ε0‖Ti(xn)− xn‖ ≤ αsn
‖Ti(xn)− xn‖ = ‖Tαsn

i (xn)− xn‖. (3.23)

Therefore,

‖Ti(xn)− xn‖ → 0 as n→∞ for each i = 1, 2, 3 . . . ,m. (3.24)

(3.14) combined with (3.24) implies that all the assumptions of Lemma 2.6 are satisfied.
Hence the sequence {xn}n∈N converges weakly to some point in C = ∩n

i=1F (Ti). The
proof is complete. �

Definition 3.2 (see, e.g. [41]). A map T : H −→ H is said to be demicompact
if it has the property that whenever a sequence {xn} is bounded and the sequence
{xn − Txn} converges strongly, then there exists a subsequence of {xn} that converges
strongly.

We now give the following strong convergence result.
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Theorem 3.3. Let Ti : H −→ H, i = 1, 2, 3, . . . , m be ki-strictly pseudo-contractive
mappings. Let {xn} be a sequence defined by x0 ∈ H,

xn+1 =

{
xn, n ≤ supn∈N ‖dn‖∞,

(1− αn)xn − αn(Tin
x̃n + (xn − x̃n)), otherwise.

(3.25)

Suppose supn∈N ‖dn‖∞ ≤ ρ for some ρ ≥ 1 and that

0 < ε0 ≤ αn ≤ 1− k

2ρ + 1 + ε0
< 1− k, ∀ n ∈ N, (3.26)

for some ε0 > 0, where k = max
1≤i≤m

ki. Then, the sequence {xn} converges weakly to some

point x∗ ∈ C = ∩n
i=1F (Ti) �= ∅. Suppose in addition that Ti0 is demicompact for some

i0 ∈ {i = 1, 2, 3, . . . , m}, then the sequence {xn} converges strongly to x∗.

Proof. Suppose Ti0 is demicompact for some i0 ∈ {i = 1, 2, 3, . . . , m}. Since we have,
by Theorem 3.1 that {xn} is bounded and xn − Txn → 0 as n→∞, then there exists a
subsequence {xnk

} of {xn} such that xnk
→ x∗. Lemma 2.6 implies that x∗ ∈ C. Similarly,

by Theorem 3.1, we have that ‖xn − x∗‖ converges. Therefore, xn → x∗ as n→∞. The
proof is complete. �

4. Applications

In this section, we also give the application of our main theorem to solving the convex
minimization problem and Hammerstein integral equations.

4.1. Convex optimization

We first recall the following definition.

Definition 4.1. Let A : H −→ H be a map. A is called β-inverse strongly monotone
if for each x, y ∈ H we have

〈Ax−Ay, x− y〉 ≥ β‖Ax−Ay‖2.

It is well known that a map T is k-strictly pseudo-contractive if and only if the map
A := I − T is 1−k

2 -inverse strongly monotone and that F (T ) = N(A) where N(A) = {x ∈
H : Ax = 0} (see, e.g. [13]). We now give the following Lemma which is due to Baillon
and Haddad [5].

Lemma 4.2 (Baillon and Haddad [5]). Let E be a Banach space. Suppose f
is continuously Fréchet differentiable and convex function. If the gradient ∇f of f is
1
α -Lipschitz, then ∇f is α-inverse strongly monotone.

Theorem 4.3. Let H be a real Hilbert space and fi : H −→ R, i = 1, 2, 3, . . . , m
be continuously Fréchet differentiable and convex functions such that ∇fi is Li-
Lipschitz for each i = 1, 2, 3, . . . , m. Suppose that the set C = ∩m

i=1Ci �= ∅, where
Ci = argminx∈Hfi(x) = {x ∈ H : f(x) = minx∈H f(x)} for each i. Under the conditions

https://doi.org/10.1017/S0013091522000049 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000049


240 A.U. Bello and M.O. Nnakwe

of Theorem (3.1), the sequence generated by Algorithm (3.3) converges weakly to a point
in C. Moreover, if ∇fi0 is demicompact for some i0, then the sequence converges strongly
to a point in C.

Proof. We simply use the fact that ∇fi(x∗) = 0 if and only if x∗ is a minimizer of the
function fi and the result follows immediately. �

4.2. Hammerstein integral equations

Let Ω be a measurable and bounded subset of R
n. A non-linear integral equation of

Hammerstein type is one of the forms

u(x) +
∫

Ω

k(x, y)f(y, u(y))dy = w(x), (4.1)

where dy is a σ-finite measure. The function k : Ω× Ω→ R is the kernel of the equation
and f : Ω× R→ R is a measurable real-valued function. The function w and the unknown
function u lie in a suitable Banach space of measurable real-valued functions, say,
F(Ω, R). If we define the operators F : F(Ω, R)→ F(Ω, R) and K : F(Ω, R)→ F(Ω, R)
by

Fu(x) = f(x, u(x)) and Kv(x) =
∫

Ω

k(x, y)v(y)dy, x ∈ Ω, (4.2)

then (4.1) can easily be put in the abstract Hammerstein equation

u + KFu = 0, (4.3)

where, without loss of generality, we have taken w to be the zero map in F(Ω, R). We
also recall that a map A : H −→ H is called α-strongly monotone if for each x, y ∈ H we
have

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2.
Now, let E = H ×H with the inner product

〈(u1, v1), (u2, v2)〉H×H = 〈u1, u2〉H + 〈v1, v2〉H
and the norm

‖(u, v)‖2H×H = ‖u‖2H + ‖v‖2H .

Define the map T : E −→ E by

T (u, v) = (Fu− v,Kv + u). (4.4)

Then it is easy to see that u∗ ∈ H solves (4.3) if and only if T (u∗, v∗) = (0, 0), where
v∗ = KFu∗; and that T is strongly monotone and Lipschitz whenever the maps F and
K are both strongly monotone and Lipschitz. It is also easy to verify that a Lipschitz
strongly monotone map is inverse strongly monotone. We now give the following result
for approximating a common solution of Hammerstein integral equations.
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Theorem 4.4. Let H be a real Hilbert space and Fi, Ki : H −→ H be ηi-strongly
monotone and Li-Lipschitz maps for i = 1, 2, 3, . . . , m. Suppose that the set

Ω = {u ∈ H : u + KiFiu = 0, ∀ i = 1, 2, 3, . . . ,m} �= ∅.
Then, under the conditions of Theorem (3.1), the sequence generated by Algorithm (3.3)
converges weakly to a point in Ω.

Proof. Define the maps Ai : E −→ E by Ai(u, v) = (Fiu− v, Kiv + u) as in (4.4).
Then, for each i = 1, 2, 3, . . . , m, Ai is inverse strongly monotone and the result follows.

�

5. Conclusion

In this paper, we proved weak and strong convergence of the asynchronous inertial
algorithm to a common fixed point of k-strictly pseudo-contractive maps in Hilbert spaces.
We also give application of our main result to solving convex minimization problems and
Hammerstein integral equations. In future work, we shall concentrate on the implementa-
tion of the asynchronous inertial algorithm and also on the convergence of the algorithm
for other classes of non-linear maps, such as pseudo-contractions, accretive and monotone
maps (see e.g. [26]).
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