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Abstract We introduce a new class of generalised quadratic forms over totally real number fields, which
is rich enough to capture the arithmetic of arbitrary systems of quadrics over the rational numbers. We
explore this connection through a version of the Hardy–Littlewood circle method over number fields.
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1. Introduction

The study of quadratic forms over number fields is a rich and highly developed area of
mathematics. Let K be a number field of degree d� 2 over Q, and let

Q(X1, . . . ,Xn) =
∑

1�i,j�n

ci,jXiXj

be a nonsingular quadratic form, with symmetric coefficients ci,j ∈ oK . For given N ∈ oK ,
it is very natural to ask about the solubility of

Q(x1, . . . ,xn) =N,

with x1, . . . ,xn ∈ oK . If n � 4, a number field version of the Hardy–Littlewood circle
method is capable of establishing the Hasse principle for these equations. When n � 5,

this follows from work of Skinner [13], and for n= 4 it is carried out by Helfrich in a 2015

PhD thesis [8].
In this paper, we shall introduce the notion of a generalised quadratic form over K and

ask about the Hasse principle in this new setting. We shall always assume that K/Q is

a Galois extension of degree d that is totally real. (Our methods can handle arbitrary
number fields, but doing so causes extra notational complexity and gives no new insight

into the arithmetic of generalised quadratic forms.) We may now make the following

definition.

Definition 1.1. Let n� 2. A generalised quadratic form is given by

F (X1, . . . ,Xn) =
∑

1�i,j�n

∑
τ,τ ′∈Gal(K/Q)

ci,j,τ,τ ′Xτ
i X

τ ′

j ,

for symmetric coefficients ci,j,τ,τ ′ = cj,i,τ ′,τ ∈ oK .

We will be interested in the set of (x1, . . . ,xn) ∈ onK for which

F (x1, . . . ,xn) =N,

for given N ∈ oK , in which case xτ
i should be interpreted as the conjugate of xi under

τ ∈Gal(K/Q). Definition 1.1 encompasses standard integral quadratic forms over oK and

forms defined using norms and traces. For example, let TrK/Q,H :K →K be the partial

trace, defined via TrK/Q,H(u) =
∑

τ∈H uτ for any subset H ⊂Gal(K/Q). Then, a natural

generalisation of the question about representing elements of oK as a sum of squares is
to ask about the existence of x ∈ onK such that

TrK/Q,H(x2
1)+ · · ·+TrK/Q,H(x2

n) =N, (1.1)

for given N ∈ oK and a given subset H ⊂Gal(K/Q).

The coefficients of a generalised quadratic form F (X1, . . . ,Xn) form a dn×dn matrix

M= (ci,j,τ,τ ′)(i,τ)×(j,τ ′). In the generic setting, we might expect this matrix to have full
rank, but there are many cases of interest where the rank is much smaller. For example,

standard quadratic forms produce a coefficient matrixM, which after reordering rows and

columns, contains a n×n block matrix in the upper left corner and has zeros everywhere
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else. Our methods break down in the completely generic situation, and so our interest in
this paper lies at the opposite end of the spectrum, in which the rank of M is not much

bigger than n.

Let W : (K⊗QR)n → R�0 be a smooth weight function, whose precise construction is
deferred until §4. Our main results will comprise of asymptotic formulae for sums of the

shape

NW (F,N ;P ) =
∑
x∈o

n
K

F (x)=N

W (x/P ),

as P →∞ for given N ∈ oK and suitable generalised quadratic forms F. When N = 0, we

shall simply write NW (F ;P ) =NW (F,0;P ).

1.1. Homogeneous setting

Of particular interest is the case N = 0, which we now assume. For standard quadratic

forms Q∈ oK [X1, . . . ,Xn], studying nontrivial zeros of Q over oK is equivalent to studying
K -rational points on the smooth quadric X ⊂Pn−1

K cut out by Q=0. This, in turn, can be

accessed via the Weil restriction (or restriction of scalars). The Weil restriction RK/QX is

an algebraic variety whose set of Q-points is canonically in bijection with the K -rational
points of X. In the setting where Q ∈ oK [X1, . . . ,Xn] is a nonsingular quadratic form, the

Weil restriction RK/QX is a smooth complete intersection of d quadrics in Pdn−1
Q , all of

which are defined over Q. However, the set of complete intersections that arise in this way
is a very limited subset of the family of all smooth codimension d complete intersections

of quadrics over Q in Pdn−1
Q . Our first result shows that, after Weil restriction, the space

of generalised quadratic forms is rich enough to capture the arithmetic over Q of arbitrary

codimension d complete intersections of quadrics in PM−1
Q , provided that d |M .

Let F (X1, . . . ,Xn) be a generalised quadratic form, and let ω1, . . . ,ωd be a Z-basis for oK .

Any element x ∈ onK can be written x = ω1u1+ · · ·+ωdud for (u1, . . . ,ud) ∈ Zdn. Taking

the Weil restriction corresponds to writing down a set of quadratic forms Q1, . . . ,Qd ∈
Z[U1, . . . ,Ud], in dn variables such that

F (X1, . . . ,Xn) =
∑

1�i�d

ωiQi(U1, . . . ,Ud). (1.2)

We henceforth call {Q1, . . . ,Qd} the descended system. We shall prove the following result

in §2.

Theorem 1.2. Let K/Q be a Galois extension of degree d. Then there is a bijection

between the space of generalised quadratic forms in n variables over K and systems of d

rational quadratic forms in dn variables.

It is interesting to note that this theorem is valid for any fixed degree d Galois extension
K/Q. It follows from the bijection in Theorem 1.2 that the question of oK-solubility for a

generalised quadratic form is equivalent to the question of Z-solubility for the descended

system. It presents an intriguing challenge to gain insight into smooth codimension d
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complete intersections of quadrics in PM−1
Q over Q by working with generalised quadratic

forms.
It follows from work of Birch [1] that the usual Hardy–Littlewood asymptotic formula

holds for systems of quadrics over Q, provided that M > B+2d(d+1), where B is the

affine dimension of the ‘Birch singular locus’ of the descended system. (Note that one
can take B � d− 1 when the descended system is a smooth complete intersection.)

Breakthrough work of Rydin Myerson [11] handles smooth codimension d complete

intersections of quadrics in PM−1
Q whenM � 9d. The latter result is particularly significant

since it allows one to handle arbitrary generalised quadratic forms over K in n � 9
variables, provided that the descended system defines a smooth complete intersection

of codimension d.

Our main results will concern a special class of generalised quadratic forms, in which
only one nontrivial automorphism appears and in which the conjugated variables separate

completely from the unconjugated variables. These examples are chosen to represent a

first step on the way to a fuller understanding of generalised quadratic forms, and yet
exhibit enough features that make them untreatable by other methods. In the light of

Theorem 1.2, a complete understanding of generalised quadratic forms must lie rather

deep.

LetQ∈ oK [X1, . . . ,Xn] and R∈ oK [X1, . . . ,Xm] be quadratic forms in n andm variables,
respectively, for 1�m� n. The generalised quadratic forms we shall treat take the shape

F (X1, . . . ,Xn) =Q(X1, . . . ,Xn)+R(Xτ
1 , . . . ,X

τ
m), (1.3)

for a fixed nontrivial automorphism τ ∈ Gal(K/Q). Let ρ1, . . . ,ρd be the d distinct

embeddings of K into R, where we recall that K is totally real. For each 1 � l � d,
we define lτ through the relation

ρlτ τ = ρl. (1.4)

Suppose that A is the n× n symmetric matrix defining Q and that B is the n× n

symmetric matrix given by the condition that its upper left m×m submatrix defines R,

with all other entries equal to 0. For any 1 � l � d, we shall write A(l) and B(l) for the
l -th embeddings of A and B, respectively. We make the following key hypotheses about

A and B.

Assumption 1. Assume that the descended system

Q1(U1, . . . ,Ud) = · · ·=Qd(U1, . . . ,Ud) = 0

has codimension d in Pdn−1. Furthermore, assume that detA �= 0 and that the upper left

m×m submatrix of B is nonsingular.

Our first result deals with the special case m= 1.

Theorem 1.3. Let K/Q be a totally real Galois extension of degree d � 2. Suppose

that m = 1 and that Assumption 1 holds. Assume that det(A(l) + tB(lτ )) is a constant

polynomial in t, for each 1� l � d, where lτ is defined via Equation (1.4). Let n� 6 and
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assume that the descended system has nonsingular points everywhere locally. Then there
exist constants c > 0 and Δ> 0 such that

NW (F ;P ) = cP (n−2)d+O(P (n−2)d−Δ).

The implied constants in our work are always allowed to depend on K and F. The
generalised quadratic form 2X1X2+a(Xτ

1 )
2+ Q̃(X3, . . . ,Xn) meets the hypotheses of the

theorem, for example, where Q̃ ∈ oK [X3, . . . ,Xn] is a nonsingular quadratic form and

a ∈ oK is nonzero.

We are also able to prove an asymptotic formula for NW (F ;P ) for arbitrary m � 1,
provided we make additional assumptions about the matrices A and B.

Assumption 2. For all 1� l � d, assume that rank(A(l)+ tB(lτ ))� n−1, for all t ∈ R,
where lτ is defined via Equation (1.4).

Assumption 3. For all 1 � l � d, assume that det(A(l) + tB(lτ )) has degree at least
m−1, viewed as a polynomial in t.

When m= 1 and det(A(l)+ tB(lτ )) has degree exactly 0 in Assumption 3, we see that

Assumption 2 is implied by Assumption 1 since then rank(A(l)+tB(lτ )) = rank(A(l)) = n.
For general m� 1, Assumption 2 is similar to one that is commonly made in the study of

pairs of quadratic forms. Indeed, suppose one is given two matrices A,B ∈Mn×n(L) over

an algebraically closed field L of characteristic not equal to 2, with associated quadratic
forms QA and QB . It follows from Reid’s thesis [10, Prop. 2.1] that the rank of any

element in the pencil λA+μB, with (λ,μ) �= (0,0), is never smaller than n−1, provided

the intersection QA =QB = 0 is nonsingular as a projective variety and of the expected
dimension. In our situation, by contrast, we only look at the pencil A(l)+ tB(lτ ) since the

matrix B(lτ ) has rank m by construction. (We shall relate this situation to the properties

of an appropriate singular locus in Lemma 5.1 below.)

We are now ready to reveal our main result in the homogeneous setting.

Theorem 1.4. Let K/Q be a totally real Galois extension of degree d� 2. Suppose that

Assumptions 1–3 hold and that n > 3m+4− 4m/d. Assume that the descended system
has nonsingular points everywhere locally. Then there exist constants c > 0 and Δ > 0

such that

NW (F ;P ) = cP (n−2)d+O(P (n−2)d−Δ).

On taking m = 1, we note that this result subsumes Theorem 1.3 when n � 7. If one

makes further assumptions on Q, one can do even better. Suppose, for example, that the

last n−m variables split off from Q so that

Q(X1, . . . ,Xn) =Q1(X1, . . . ,Xm)+Q2(Xm+1, . . . ,Xn),

for quadratic forms Q1 and Q2 over oK . Then it seems likely that a classical version of
the circle method can be employed. On summing trivially over the first m-variables of

the associated exponential sums, one would be left with handling an exponential sum in

n−m variables involving Q2. If Q2 has rank at least 5, then Skinner’s treatment over
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number fields [13] would yield the necessary saving. This ought to allow n�m+5 in the

statement of Theorem 1.4 if Q(0, . . . ,0, Xm+1, . . . ,Xn) has rank at least 5.

1.2. Inhomogeneous setting

We now assume that N ∈ oK is nonzero. Then we may write N = ω1N1 + · · ·+ωdNd,
where N1, . . . ,Nd ∈ Z are not all zero. We shall henceforth call {Q1 −N1, . . . ,Qd −Nd}
the shifted descended system, where Q1, . . . ,Qd are obtained from F via Equation (1.2),

continuing to call {Q1, . . . ,Qd} the associated descended system.
Our next result demonstrates that sharper results are available if N �= 0 and Q,R are

both diagonal. Suppose that

F (X1, . . . ,Xn) = a1X
2
1 + · · ·+anX

2
n+

m∑
i=1

bi(X
τ
i )

2, (1.5)

for 1 �m � n and nonzero a1, . . . ,an,b1, . . . ,bm ∈ oK , and where τ ∈Gal(K/Q) is a fixed

nontrivial automorphism. Taking m = n and ai = bi = 1 for 1 � i � n, we are led to an

instance of the partial trace problem in Equation (1.1) with H = {id,τ}. We will prove

the following result.

Theorem 1.5. Let K/Q be a totally real Galois extension of degree d� 2. Assume that
N ∈ oK is nonzero and that n�m+4. Suppose that the descended system has codimension

d and a nonsingular real point and that the shifted descended system has nonsingular

points over Zp for every prime p. Then there exist constants c > 0 and Δ> 0 such that

NW (F,N ;P ) = cP (n−2)d+O(P (n−2)d−Δ).

The implied constant in this result is allowed to depend on N, in addition to K and F. In

order to illustrate our result, take the quadratic number fieldK =Q(
√
2) in Equation (1.5)

and assume that a1, . . . ,an,b1, . . . ,bm ∈ Z are all nonzero. Then it follows from Theorem
1.5 that our work treats the shifted descended system

m∑
i=1

(ai+ bi)u
2
i +2

m∑
i=1

(ai+ bi)v
2
i +

n∑
i=m+1

ai(u
2
i +2v2i ) =N1,

2

m∑
i=1

(ai− bi)uivi+2

n∑
i=m+1

aiuivi =N2,

when n�m+4 and N1,N2 ∈ Z are not both zero.

1.3. Some words on the proof

Let F (X1, . . . ,Xn) be a generalised quadratic form defined over oK , and let N ∈ oK .

Our analysis of NW (F,N ;P ) relies on a Fourier-analytic interpretation of the indicator
function

δK(α) =

{
1, if α= 0,

0, if α ∈ oK \{0}.
(1.6)
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Browning and Vishe [2, Thm 1.2] have extended to arbitrary number fields the smooth

δ-function technology of Duke–Friedlander–Iwaniec [4], as later refined by Heath-Brown

[5]. This will underpin the work in this paper, affording us the opportunity to extract
nontrivial savings, in the spirit of Kloosterman’s method, in the proof of Theorem 1.5.

We will be led to an expression for NW (F,N ;P ) in Equation (4.6), involving an infinite

sum over nonzero integral ideals b. The next stage is to apply Poisson summation, but
an obstacle arises from the fact that it is no longer possible to break into residue classes

modulo b for generalised quadratic forms F. Instead, we shall break into residue classes

modulo a larger ideal Gb, which is the least common multiple of the ideals bτ
−1

, as τ ranges
over the automorphisms that actually occur in F. Poisson summation then leads to the

analysis of certain exponential sums Sb(N ;m) and oscillatory integrals Ib(N ;m), which

are indexed by b⊂ oK and suitable vectors m ∈Kn. While the treatment of Sb(N ;m) is

relatively standard, the main challenge is to understand Ib(N ;m). When F is a standard
quadratic form, these integrals factorise into a product of d oscillatory integrals, one for

each of the d real embeddings of K. This reduces the problem to looking at oscillatory

integrals over Rn. For generic generalised quadratic forms, it seems very difficult to obtain
the kind of cancellation one needs for the method to go through for the relevant oscillatory

integrals over Rdn.

We now summarise the contents of the paper. In §2, we shall prove Theorem 1.2 by
spelling out the connection between generalised quadratic forms over K and descended

systems over Q. In §3, we collect together some useful facts from algebraic number theory.

The rest of the paper will be concerned with estimating the size of the counting function

NW (F,N ;P ), as P →∞. In order to facilitate future investigation, we shall present most
of the arguments for arbitrary generalised quadratic forms in §4. Next, in §5 we shall

specialise to the case (1.3) and N = 0, in order to deduce Theorems 1.3 and 1.4. Finally,

§6 will deal with Theorem 1.5, which pertains to the diagonal generalised quadratic form
(1.5) and N �= 0.

2. Generalised quadratic forms and the descended system

In this section, we shall prove Theorem 1.2, by making explicit the correspondence

between generalised quadratic forms F and the descended system of d quadratic forms
over Q in dn variables. Let K/Q be a degree d Galois number field, which (in this

section only) need not be totally real. Assume that we are given a set of coefficients

(ci,j,τ,τ ′) of a generalised quadratic form, with ci,j,τ,τ ′ = cj,i,τ ′,τ for all 1 � i,j � n and
τ,τ ′ ∈ Gal(K/Q). We can write each coefficient ci,j,τ,τ ′ ∈ K with respect to the basis

{ω1, . . . ,ωd} as ci,j,τ,τ ′ =
∑d

k=1 c
(k)
i,j,τ,τ ′ωk. We proceed to compute the descended system

explicitly by writing Xi =
∑d

k=1Uk,iωk, for 1� i� n. Then

F (X1, . . . ,Xn) =
∑

1�i,j�n

∑
τ,τ ′∈Gal(K/Q)

∑
1�l,m,k�d

c
(k)
i,j,τ,τ ′ωkUl,iω

τ
l Um,jω

τ ′

m .

Let {ρ1, . . . ,ρd} be a dual basis of {ω1, . . . ,ωd} with respect to the trace so that

(TrK/Q(ρiωj))i,j is the identity matrix and any α ∈ K can be written in the form
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α=
∑d

p=1TrK/Q(αρp)ωp. Thus, F (X1, . . . ,Xn) is equal to

d∑
p=1

ωp

∑
1�i,j�n

∑
1�l,m�d

Ul,iUm,jTrK/Q

⎛⎝ρp
∑

1�k�d

∑
τ,τ ′∈Gal(K/Q)

c
(k)
i,j,τ,τ ′ωkω

τ
l ω

τ ′

m

⎞⎠
and we arrive at our descended system (1.2), with

Qp(U) =
∑

1�i,j�n

∑
1�l,m�d

βp,l,i,m,jUl,iUm,j,

for rational coefficients

βp,l,i,m,j =TrK/Q

⎛⎝ρp
∑

1�k�d

∑
τ,τ ′∈Gal(K/Q)

c
(k)
i,j,τ,τ ′ωkω

τ
l ω

τ ′

m

⎞⎠
=

∑
1�k�d

∑
τ,τ ′∈Gal(K/Q)

c
(k)
i,j,τ,τ ′ TrK/Q(ρpωkω

τ
l ω

τ ′

m).

By construction, the coefficients βp,l,i,m,j satisfy βp,l,i,m,j = βp,m,j,l,i, for all 1� p,l,m� d

and 1� i,j � n. Moreover, they depend linearly on the given set of coefficients (c
(k)
i,j,τ,τ ′).

Now, the space of all tuples (c
(k)
i,j,τ,τ ′) of rational numbers satisfying the symmetry

relation c
(k)
i,j,τ,τ ′ = c

(k)
j,i,τ ′,τ can be parametrised by Q

1
2dn(dn+1)d. Similarly, the space of

all symmetric rational tuples (βp,l,i,m,j) is naturally parametrised by Q
1
2dn(dn+1)d. We

define the map

Φ :Q
1
2dn(dn+1)d →Q

1
2dn(dn+1)d, (c

(k)
i,j,τ,τ ′) 	→ (βp,l,i,m,j).

We claim that this map is an injective linear map. This implies that there is a bijection

between generalised quadratic forms in n variables and systems of d rational quadratic

forms in nd variables, as claimed in Theorem 1.2.
To check the claim, we assume that βp,l,i,m,j = 0 for all 1� p,l,m� d and 1� i,j � n.

By the nondegeneracy of the trace as a bilinear form, we deduce that∑
τ,τ ′∈Gal(K/Q)

ci,j,τ,τ ′ωτ
l ω

τ ′

m = 0, 1� i,j � n, 1� l,m� d.

Note that the matrix (ωτ
l ) 1�l�d

τ∈Gal(K/Q)

is of maximal rank, and hence we obtain

∑
τ ′∈Gal(K/Q)

ci,j,τ,τ ′ωτ ′

m = 0, 1� i,j � n, τ ∈Gal(K/Q), 1�m� d.

Applying the same argument again, we finally obtain

ci,j,τ,τ ′ = 0, 1� i,j � n, τ,τ ′ ∈Gal(K/Q),

and hence c
(k)
i,j,τ,τ ′ = 0 for all 1� k � d.

https://doi.org/10.1017/S1474748024000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000161


Generalised quadratic forms 2867

3. Recap from algebraic number theory

In this section, we collect together some of the facts about algebraic number fields that
are important in our work. As usual, K/Q is a totally real Galois extension of degree d.

We shall henceforth write o= oK for its ring of integers. In §3.1 and §3.2, we recall some

facts about ideals and discuss the construction of primitive characters modulo ideals,
respectively. The need to deal with generalised quadratic forms naturally leads to two

basic objects that can be associated to a given integral ideal b in K, both of which depend

on the particular generalised quadratic form we are working with and will be introduced
in §3.3.

3.1. Properties of ideals

For any fractional ideal a in K, one defines the dual ideal

â= {α ∈K : TrK/Q(αx) ∈ Z for all x ∈ a}.

In particular, â = a−1d−1, where d = {α ∈ K : αô ⊆ o} denotes the different ideal of K

and is itself an integral ideal. One notes that ô= d−1. Furthermore, we have â⊆ b̂ if and

only if b⊆ a. An additional integral ideal featuring in our work is the denominator ideal

aγ = {α ∈ o : αγ ∈ o},

associated to any γ ∈ K. Recall that Na = |o/a| is the ideal norm of any integral ideal
a. One important property of the ideal norm is that Naτ = Na for any τ ∈ Gal(K/Q).

(This follows from the isomorphism o/a→ o/aτ given by α 	→ ατ .) Furthermore, we have

Na ∈ a for any integral ideal a.
We will write (a,b) = a+b for the greatest common divisor of two integral ideals a,b⊂ o.

When these ideals are coprime, meaning that a+ b = o, we shall adopt the abuse of

notation (a,b) = 1. We close this section by recording the following basic result.

Lemma 3.1. Let ε > 0, and let b,c be integral ideals. Then

(i) there exists α ∈ b such that ordp(α) = ordp(b) for every prime ideal p | c;
(ii) there exists α ∈ b and an unramified prime ideal p coprime to bτ for all τ ∈

Gal(K/Q), with Np� (Nb)ε, such that (α) = bp.

Proof. Part (i) is [2, Lemma 2.2(i)] and part (ii) follows from an obvious modification to

the proof of [2, Lemma 2.2(ii)].

We shall also require a version of the Chinese remainder theorem, as in [12, Lemma 3].

Lemma 3.2. Suppose that a,a1,a2 are integral ideals such that a= a1a2, with a1 and a2

coprime. Let α1,α2 ∈ o satisfy ordp(α1) = ordp(a1) and ordp(α2) = ordp(a2), for all p | a.
Then

o/a= {α1μ+α2β : β ∈ o/a1, μ ∈ o/a2}.
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3.2. Construction of primitive characters

Let ψ(·) = exp(2πiTrK/Q(·)) be a character on K. The following result gives a way to

construct primitive characters o/b→ C.

Lemma 3.3. Let σ0(·) = ψ(γ·) :K →C, for any γ ∈K, and let b� o be an integral ideal.
Then σ0 is a nontrivial primitive additive character modulo b if and only if aγ = be for

some e | d such that (d/e,b) = 1.

Proof. We begin by showing that σ0 is an additive character modulo b if and only if

bd⊂ aγ . But σ0 is an additive character modulo b if and only if σ0(x+z) = σ0(x) for all

x ∈ o and z ∈ b. But this happens if and only if γz ∈ ô for all z ∈ b, which is if and only
if bd⊂ aγ . This establishes the claim.

Now, suppose that bd⊂ aγ , which means that aγ | bd. Thus, there is an integral ideal h

such that bd= aγh. We wish to show that σ0 is primitive if and only if h | d with (h,b) = 1.
To do so, we note that σ0 is primitive if and only if aγ � b1d for all b1 | b with b1 �= b.

Indeed, if aγ | b1d for some proper divisor b1 | b, then γz ∈ ô for every z ∈ b1, which would

mean that σ0 is a character modulo b1. Suppose that σ0 is primitive, and suppose that

there is a prime ideal p | h such that p | b. Writing h′ = hp−1 and b′ = bp−1, it follows
that b′d= aγh

′, whence aγ | b′d, which is a contradiction. Thus, h is coprime to b and we

must have h | d. Suppose now that bd = aγh for some h | d such that (h,b) = 1. We wish

to deduce that σ0 is primitive, for which we suppose for a contradiction that there exists
a proper divisor b1 | b such that aγ | b1d. Writing b = b1b2 and recalling that bd = aγh,

we deduce that h= (a−1
γ b1d)b2, whence b2 | h, which is impossible since (h,b) = 1.

Finally we note that σ0 is a trivial character if and only if γ ∈ ô, which is equivalent to
aγ ⊇ d. This is clearly impossible for any primitive character σ0 modulo a proper ideal

b� o since (d/e,b) = 1 if aγ = be.

We proceed to define a particularly convenient additive character modulo b. Associated

to any nonzero integral ideal b is the subset F(b)⊂K given by

F(b) =

⎧⎪⎪⎨⎪⎪⎩
g

α
∈K :

∃ prime ideal p1 with Np1 �Nb s.t.

(i). (α) = bdp1

(ii). g ∈ p1∩Z with ((g), bτd) = 1 ∀ τ ∈Gal(K/Q)

(iii). ∃ e | d s.t. (d/e,b) = 1 and ag/α = be

⎫⎪⎪⎬⎪⎪⎭ .

Note that condition (i) implies that α ∈ bd and condition (ii) implies that p1 � bτd for

any τ ∈ Gal(K/Q). We may now record a variant of [2, Lemma 2.3], which shows that

F(b) �= ∅ for any choice of b.

Lemma 3.4. Let b � o be a nonzero ideal. Then there exists γ ∈ F(b) such that ψ(γ·)
defines a nontrivial primitive additive character modulo b.

Proof. We consider the integral ideal c = bd. Observe that dτ = d for all τ ∈ Gal(K/Q)

since d= ô−1 and the trace is invariant under the action of the Galois group. Taking ε= 1
in Lemma 3.1(ii), we can find α ∈ c and a prime ideal p1 coprime to cτ = bτd, for every

τ ∈ Gal(K/Q), with Np1 � Nb and such that (α) = cp1. It follows from Lemma 3.1(i)

that there exists ν ∈ p1 such that ((ν),cτ ) = 1 for any τ ∈ Gal(K/Q). But this implies
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that g =NK/Q(ν) is coprime to cτ , for any τ ∈Gal(K/Q), with g ∈ p1. We will show that

c = aγ with γ = g/α, after which an application of Lemma 3.3 with e = d will complete

the proof. To check the claim we note that

β ∈ aγ ⇔ γβ ∈ o⇔ (gβ)⊂ (α)⇔ (α) = bdp1 | (gβ)⇔ β ∈ bd

since p1 | (g) and bd is coprime with (g).

3.3. The G-invariant ideal and an important Z-module

Let F be a generalised quadratic form, as in Definition 1.1. Let G = GF ⊂ Gal(K/Q)

be the subset of automorphisms τ ∈ Gal(K/Q) that actually appear in F. Note that

G= {id} if and only if F is a standard quadratic form. For any integral ideal b, we define
the G-invariant ideal to be

Gb=
⋂
τ∈G

bτ
−1

. (3.1)

This is the least common multiple of the ideals bτ
−1

for τ ∈G.
Next, associated to our generalised quadratic form F is a generalised bilinear form

B(X1, . . . ,Xn;Y1, . . . ,Yn) =
∑

1�i,j�n

∑
τ,τ ′∈Gal(K/Q)

ci,j,τ,τ ′Xτ
i Y

τ ′

j . (3.2)

This defines a map Kn×Kn →K, with

B(x;u+v) =B(x;u)+B(x;v) and B(u+v;y) =B(u;y)+B(v;y),

for any vectors x,y,u,v ∈ Kn. (However, this fails to be a bilinear form on Kn since
B(λx;y), B(x;λy) and λB(x;y) needn’t be equal for λ ∈K.)

For any ideal b⊂ o, let

Hb = {h ∈ on : F (a+h)≡ F (a) mod b for all a ∈ on} .

This is an additive group, and it is clear that Gb
n ⊂Hb ⊂ on, where Gb is the G-invariant

ideal defined in Equation (3.1). By testing the hypothesis with a ≡ 0 mod Gb, we have

F (h)≡ 0 mod b for any h ∈ Hb. Hence,

Hb = {h ∈ on : 2B(a;h) ∈ b for all a ∈ on} . (3.3)

We claim that Hb has the structure of a finitely generated Z-module. To see this, let ei
be the ith unit vector, for 1 � i � n. Observe that (Nb)ωjei ∈ Hb for all 1 � i � n and

1 � j � d. Hence, the image of Hb under the isomorphism on ∼= Znd is a lattice of full
rank and, thus, finitely generated as a Z-module.

The set Hb will emerge naturally in our analysis of certain key exponential sums, and

it will be important to have an estimate for its index in on. In the special case (1.3), it will
be easier to calculate Hb directly, but for now we content ourselves with proving a general

bound. In the following lemma, we consider the coefficient matrix (ci,j,τ,τ ′)(i,τ)×(j,τ ′) of

a generalised quadratic form as a nd×nd matrix.
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Lemma 3.5. There is a constant C1 > 0, depending only on F, such that for all b we
have

|on/Hb|� C1(Nb)rank(ci,j,τ,τ′ ).

Moreover, there is an integral ideal d1 such that one can take C1 = 1 for all ideals b with

(b,d1) = 1.

Proof. Let Δ = rank(ci,j,τ,τ ′)(i,τ)×(j,τ ′). Let S ⊂ {1, . . . ,n}×Gal(K/Q) be a subset of
indices such that the vectors (ci,j,τ,τ ′)(j,τ ′), (i,τ) ∈ S , are linearly independent and |S |
is maximal. Then, for any (k,σ) ∈ {1, . . . ,n}×Gal(K/Q) there are numbers a

(k,σ)
i,τ (for

(i,τ) ∈ S ) such that

ck,j,σ,τ ′ =
∑

(i,τ)∈S

a
(k,σ)
i,τ ci,j,τ,τ ′,

for all 1� j � n and τ ′ ∈Gal(K/Q). Let α ∈ o such that αa
(k,σ)
i,τ ∈ o for all (i,τ) ∈ S and

(k,σ) ∈ {1, . . . ,n}×Gal(K/Q). Now, set

H ′
b =

⎧⎨⎩h ∈ on :
∑

1�j�n

∑
τ ′∈Gal(K/Q)

ci,j,τ,τ ′hτ ′

j ∈ (α)b, ∀(i,τ) ∈ S

⎫⎬⎭ .

Observe that H ′
b ⊂ Hb. Moreover, if b and (α) are coprime, then the ideal (α) may be

omitted in the definition of H ′
b .

Finally, we observe that there is an injection

ψ : on/H ′
b → (o/αb)Δ, [h] 	→

⎛⎝ ∑
1�j�n

∑
τ ′∈Gal(K/Q)

ci,j,τ,τ ′hτ ′

j

⎞⎠
(i,τ)∈S

.

Hence, |on/H ′
b |� (N(αb))Δ, which suffices since H ′

b ⊂ Hb.

We now wish to provide an alternative upper bound involving Hb under a suitable

assumption on the generalised quadratic form.

Definition 3.6. We say that F (X1, . . . ,Xn) is admissible if there exist vectors

v1, . . . ,vn ∈Kn

such that B(vi;h) = 0 for all 1� i� n if and only if h= 0.

In this language, a standard quadratic form is admissible if and only if it is nonsingular.
We may now prove the following result.

Lemma 3.7. Assume that F is admissible. Then there exists a constant C2 > 0, depending
only on F, such that

|Hb/
Gb

n|� C2
(NGb)n

(Nb)n
.
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Moreover, there exists an integral ideal d2 such that one can take C2 = 1 for all ideals b

with (b,d2) = 1.

We can use this result to get information about the index of Hb in on via the identity

|on/Hb||Hb/
Gb

n|= |on/Gbn|= (NGb)n. (3.4)

Lemma 3.7 is of the expected magnitude, which we can see by considering the case of
the standard diagonal quadratic form F (X) =

∑n
i=1 ciX

2
i , for example, with nonzero

c1, . . . ,cn ∈ o. In this case, G = {id} and Gb = b. It therefore follows that |Hb/
Gb

n| � 1

since Hb = (2c1)
−1b×·· ·× (2cn)

−1b.

Proof of Lemma 3.7. Let v1, . . . ,vn be a set of vectors as in Definition 3.6. By scaling

these vectors with a rational integer, we may assume that vi ∈ on for all 1 � i � n. We
define the auxiliary set

H̃b = {h ∈ on : 2B(vi; h) ∈ b, ∀1� i� n},

and observe that Hb ⊂ H̃b. Next, consider the map

ϕ : on → on, h 	→ (2B(vi;h))1�i�n,

which is injective by the definition of admissibility in Definition 3.6. Let Γ be the image

of on under the map ϕ. Then ϕ induces an isomorphism

on/H̃b
∼= Γ/(bn∩Γ).

Note that Γ only depends on B(X;Y ) and vectors v1, . . . ,vn and hence can be taken to
be independent of the ideal b. As in Equation (3.4), we therefore obtain

|Hb/
Gb

n|� |H̃b/
Gb

n|= |on/Gbn|
|on/H̃b|

=
(NGb)n

|Γ/(bn∩Γ)| � CΓ
(NGb)n

(Nb)n
,

where CΓ is a constant only depending on Γ. Moreover, there is an ideal d2 such that

|Γ/(bn∩Γ)|= (Nb)n whenever (d2,b) = 1. This completes the proof of the lemma.

4. Enter the circle method

Our primary tool in this paper is a number field version of the Hardy–Littlewood circle
method to interpret the function δK in Equation (1.6). Let K be a totally real Galois

extension of Q of degree d. Let Q� 1, and let α ∈ o. Then we shall use the version worked

out by Browning and Vishe [2, Thm. 1.2]. This states that there exists a positive constant

cQ =1+OA(Q
−A), for anyA> 0 and an infinitely differentiable function h : (0,∞)×R→R

such that

δK(α) =
cQ
Q2d

∑
(0) �=b⊆o

∑∗

σ (modb)

σ(α)h

(
Nb

Qd
,
|NK/Q(α)|

Q2d

)
, (4.1)

where Nb = |o/b| denotes the norm of the ideal b and the notation
∑∗

σ (modb) means

that the sum is taken over primitive additive characters modulo b. Furthermore, we have

h(x,y)� x−1 and h(x,y) �= 0 only if x�max{1,2|y|}.
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We fix some notation before proceeding further. Let DK be the discriminant of K,
and note that DK > 0 since K is totally real. Let ρ1, . . . ,ρd :K ↪→ R be the distinct real

embeddings of K, and let V =K⊗QR∼=Rd. There is a canonical embedding K ↪→ V given

by α 	→ (ρ1(α), . . . ,ρd(α)). We identify K with its image in V. If v = (v1, . . . ,vd) ∈ V , then
we extend the norm and trace on K to get functions Nm(v) : V → R and Tr(v) : V → R,

with

Nm(v) =

d∏
l=1

vl, Tr(v) =

d∑
l=1

vl.

We extend the absolute value on R to give a norm on V via |v| = max1�l�d |vl|, which
we extend to V n in the obvious way.

Let N ∈ o and let F (X1, . . . ,Xn) be a generalised quadratic form defined over o. Our
central concern is with the asymptotic behaviour of the sum

NW (F,N ;P ) =
∑
x∈o

n

F (x)=N

W (x/P ),

as P → ∞, for W ∈ W +
n (V ), where W +

n (V ) is the class of smooth weight functions

described in [2, §2.2]. Our goal in this section is to lay some groundwork that will be
useful for Theorems 1.3–1.5 but which applies to arbitrary generalised quadratic forms.

First, in §4.1 we shall discuss the link between the descended system associated to F and

the ‘embedded system’ that arises from looking at all of the different real embeddings
of F. In §4.2, we shall construct the weight function W that features in our counting

function NW (F,N ;P ). In §4.3, we shall combine Equation (4.1) with Poisson summation

in order to arrive at a preliminary expression for NW (F,N ;P ) in Lemma 4.1. In §4.4, we
make some preliminary investigations into exponential sums and similarly for exponential

integrals in §4.5. In §4.6, we shall discuss the main term that comes from the trivial

character after Poisson summation is applied. Finally, in §4.7 we shall make some initial

observations concerning the contribution from the nontrivial characters.

4.1. The embedded system

Let F (X1, . . . ,Xn) be a generalised quadratic form, and let {ω1, . . . ,ωd} be a Z-basis for o.

We have seen in Equation (1.2) how there is a descended system {Q1, . . . ,Qd} of quadratic

forms, that is associated to F via

F (X1, . . . ,Xn) =
∑

1�i�d

ωiQi(U1, . . . ,Ud),

with variables Ul = (Ul1, . . . ,Uln) for 1� l � d.

We will need to be able to relate the descended system to the embedded system, which

amounts to how F (x) embeds in V for given x ∈ Kn. We extend F : Kn → K to get
a map V n → V , through the identification of K with V. Associated to x is the vector

(x(1), . . . ,x(d)), with x(l) ∈ Rn for 1� l � d. Let l ∈ {1, . . . ,d}. To any τ ∈Gal(K/Q) may

be associated a unique integer lτ ∈ {1, . . . ,d} such that Equation (1.4) holds. Then we
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define

F (l)(x(1), . . . ,x(d)) =
∑

1�i,j�n

∑
τ,τ ′∈Gal(K/Q)

c
(l)
i,j,τ,τ ′x

(lτ−1 )
i x

(lτ′−1 )
j , (4.2)

where c
′(l)
i,j,τ,τ = ρl(ci,j,τ,τ ′) ∈ R. With this notation, we have

ρl(F (x)) = F (l)(x(1), . . . ,x(d)).

Thus, ρl(F (x)) is a real quadratic form in the dn variables x(1), . . . ,x(d). We call

{F (1), . . . ,F (d)} the embedded system. In particular, it is clear that NK/Q(F (x)) =
Nm(F (x)) and

Tr(vF (x)) =
∑

1�l�d

vlρl (F (x)), (4.3)

for any v = (v1, . . . ,vd) ∈ V and x ∈ V n, identities that we shall often make use of in our

analysis of the exponential integrals in §4.5.
Note that if F is a standard quadratic form, then ρl(F (x)) =F (l)(x(l)) for 1� l� d. One

positive effect of this is that the relevant oscillatory integrals factorise into a product of d
integrals, one for each embedding. The situation is much more complicated for generalised

quadratic forms since there is usually no such factorisation.

Let A= (ω
(i)
j )1�i,j�d, where ω

(i)
j = ρi(ωj). Then (detA)2 =DK . Moreover, on recalling

that x= ω1u1+ · · ·+ωdud, we have⎛⎜⎝x(1)

...

x(d)

⎞⎟⎠=W

⎛⎜⎝u1

...

ud

⎞⎟⎠, (4.4)

where W is the dn×dn block matrix

W =

⎛⎜⎜⎜⎝
ω
(1)
1 In ω

(1)
2 In . . . ω

(1)
d In

ω
(2)
1 In ω

(2)
2 In . . . ω

(2)
d In

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ω
(d)
1 In ω

(d)
2 In . . . ω

(d)
d In

⎞⎟⎟⎟⎠ . (4.5)

Switching appropriate rows and columns takes W to Diag(A, . . . ,A), whence detW =

(detA)n =D
n/2
K . In particular, it follows that

F (l)(x(1), . . . ,x(d)) =
∑

1�i�d

ω
(l)
i Qi(u1 . . . ,ud),

for any 1� l � d, under the transformation (4.4).

4.2. Construction of the weight W

We assume that the descended system is of codimension d and has a nonsingular real

point. This means that there exists ξ = (ξ1, . . . ,ξd) ∈Rdn such that JQ1,...,Qd
(ξ) has rank
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d, where

JQ1,...,Qd
=

(
∂

∂X
(k)
j

Ql

)
1�l�d

1�k�d,1�j�n

is the associated d×dn Jacobian matrix. Define the smooth weight function

w(x) =

{
e−1/(1−x2) if |x|< 1,

0 if |x|� 1,

and let δ > 0 be a small parameter. In this paper, we shall work with the weight function
W : V n → R�0, which is given by

W (x) = w(δ−1|W−1x−ξ|),

where x is identified with (x(1), . . . ,x(d)), and whereW is the matrix in Equation (4.5). It is

clear thatW is infinitely differentiable and that it is supported on the region |W−1x−ξ|�
δ. Ultimately, we will want to work with a value of δ that is sufficiently small but which
still satisfies 1� δ � 1 for an absolute implied constant.

4.3. Poisson summation

It follows from Equation (4.1) that

NW (F,N ;P )

=
cQ
Q2d

∑
b

∑
∗

σ (modb)

∑
x∈on

σ(F (x)−N)W (x/P )h

(
Nb

Qd
,
|NK/Q(F (x)−N)|

Q2d

)
,

(4.6)

for any Q � 1. Here, the constant cQ satisfies cQ = 1 +OA(Q
−A), for any A > 0.

Furthermore, we have h(x,y)� x−1 for all y and h(x,y) �= 0 only if x�max{1,2|y|}.
In our work, we will take Q = P and we henceforth follow the convention that the

implied constant in any estimate involving W is allowed to depend implicitly on the

parameters that enter into its definition of Wn(V ) in [2, §2.2]. Likewise, the integer N

and the number field K are considered fixed once and for all so that all implied constants
are allowed to depend implicitly on N and K. In view of the fact that h(x,y) �= 0 only if

x�max(1,2|y|), it is clear that the sum over b is restricted to Nb�Qd = P d.

If F were a standard quadratic form over o, we would proceed by breaking the sum over
x into residue classes modulo b before executing an application of Poisson summation.

This would ultimately lead to an expression of the form [2, Thm. 5.1]. For generalised

quadratic forms F, this route is not directly accessible, since for given a,h ∈ on and any
primitive character σ modulo b, one may have σ(F (a+h)) �= σ(F (a)) even when h ∈ bn.

In this way, we see that a special role will be played by the set Hb that was introduced

in §3.3.
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Lemma 4.1. We have

NW (F,N ;P ) =
cPP

(n−2)d

D
n/2
K

∑
Nb�Pd

∑
m∈Ĝb

n

(NGb)−nSb(N ;m)Ib(N/P 2;Pm),

where the sum over b is over nonzero integral ideals and

Sb(N ;m) =
∑

∗

σ (modb)

∑
a(modGb)

σ(F (a)−N)ψ(m.a),

Ib(t;k) =

∫
V n

W (x)h

(
Nb

P d
,|Nm(F (x)− t)|

)
ψ (−k.x)dx.

Proof. Our approach is based on breaking the x-sum in Equation (4.6) into residue

classes modulo Gb. Since Q= P and Gb
n ⊂ Hb, it follows that this sum equals∑

a∈(o/Gb)n

σ(F (a)−N)
∑

x∈Gb
n

W ((x+a)/P )h

(
Nb

P d
,
|NK/Q(F (x+a)−N)|

P 2d

)
,

for any primitive character σ modulo b. We apply the multidimensional Poisson
summation formula (cf. [2, §5]). Recalling that K is totally real, we find that the inner

x-sum is equal to

1

D
n/2
K (NGb)n

∑
m∈Ĝb

n

ψ(m.a)

∫
V n

W (x/P )h

(
Nb

P d
,
|Nm(F (x)−N)|

P 2d

)
ψ(−m.x)dx,

where we recall that Ĝb = Gb
−1

d−1 is the dual of Gb. Putting everything together in

Equation (4.6), we have therefore established that

NW (F,N ;P ) =
cP

D
n/2
K P 2d

∑
Nb�Pd

∑
m∈Ĝb

n

(NGb)−nSb(N ;m)Ĩb(m),

with Sb(N ;m) as in the statement of the lemma and

Ĩb(m) =

∫
V n

W (x/P )h

(
Nb

P d
,
|Nm(F (x)−N)|

P 2d

)
ψ (−m.x)dx.

A simple change of variables yields Ĩb(m) = P dnIb(N/P 2;Pm), as required.

4.4. The exponential sum

We proceed by discussing Sb(N ;m) in Lemma 4.1, for m ∈ Ĝb
n
. Let γ = g/α ∈ F(b) be

as in Lemma 3.4. Then we have∑
∗

σ (modb)

σ(x) =
∑

a∈(o/b)∗

ψ(γax),

for any x ∈ o. It follows that

Sb(N ;m) =
∑

a∈(o/b)∗

ψ(−γaN)
∑

x(modGb)

ψ (γaF (x)+m.x) . (4.7)
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Our work hinges upon the following upper bound for this sum.

Lemma 4.2. We have

|Sb(N ;m)|� |(o/b)∗||Hb/
Gb

n|1/2|o/Gb|n/2,

where Hb is given by Equation (3.3).

Proof. For fixed a ∈ (o/b)∗, we have∣∣∣∣∣ ∑
x(modGb)

ψ(γaF (x)+m.x)

∣∣∣∣∣
2

=
∑

h(modGb)

∑
u(modGb)

ψ(γa(F (u+h)−F (u))+m.h)

�
∑

h(modGb)

∣∣∣∣∣ ∑
u(modGb)

ψ(2γaB(u;h))

∣∣∣∣∣
in the notation of Equation (3.2). We observe that the function u 	→ ψ(2γaB(u;h)) is a

character modulo Gb
n
, and it is the trivial character precisely when

2γaB(u;h) ∈ d−1, ∀u ∈ (o/Gb)n.

We rewrite γ in the form γ = g/α with (α) = bdp1 for some prime ideal p1 and g ∈ p1∩Z
with the property that ((g),dGb) = 1. Thus, the above condition is equivalent to the

condition

2gaB(u;h) ∈ (α)d−1 = bp1, ∀u ∈ (o/Gb)n.

Since a ∈ (o/b)∗, g ∈ p1 and ((g),dGb) = 1, this is equivalent to saying that

2B(u;h) ∈ b, ∀u ∈ (o/Gb)n.

Finally, since this condition on u is invariant modulo Gb
n
, this is equivalent to the

condition 2B(u;h) ∈ b, for all u ∈ on, which is equivalent to specifying that h ∈ Hb,

by Equation (3.3). The statement of the lemma now follows.

Corollary 4.3. Assume that F is admissible in the sense of Definition 3.6. Let b be an

integral ideal, and let m ∈Kn. Then Sb(N ;m)� (Nb)1−n/2(NGb)n.

Proof. This follows from combining Lemmas 3.7 and 4.2.

It is straightforward to show that Sb(N ;m) vanishes unless m satisfies additional
constraints, as demonstrated in the following result.

Lemma 4.4. We have Sb(N ;m) = 0 unless m.h ∈ d−1 for all h ∈ Hb.

Proof. Returning to the definition of Sb(N ;m) in Lemma 4.1 and noting that Gb
n ⊂

Hb ⊂ on, we may write

Sb(N ;m) =
∑

∗

σ (modb)

∑
a∈on/Hb

σ(−N)
∑

h∈Hb/Gb
n

σ(F (a))ψ(m.a)ψ(m.h).
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However, orthogonality of characters gives∑
h∈Hb/Gb

n

ψ(m.h) =

{
|Hb/

Gb
n| if m.h ∈ d−1 ∀h ∈ Hb/

Gb
n
,

0 otherwise.

Since we automatically have m.h ∈ d−1 for any m ∈ Ĝb
n
and h ∈ Gb

n
, the statement of

the lemma follows.

We shall also need to establish a multiplicativity property for the exponential sums.

This is achieved in the following result.

Lemma 4.5. Let b be a nonzero integral ideal, and suppose that b = b1b2 for integral

ideals b1,b2 such that gcd(Nb1,Nb2) = 1. Then, for any N ∈ o and any m∈ Ĝb
n
, we have

Sb(N ;m) = Sb1
(Nb2

2
N ; (Nb2)m)Sb2

(Nb1
2
N ; (Nb1)m).

Proof. According to Lemma 3.4, there exists γ = g/α∈F(b) such that ψ(γ·) is a primitive

character modulo b. Then, Equation (4.7) implies that

Sb(N ;m) =
∑

a∈(o/b)∗

ψ(−γaN)
∑

x(modGb)

ψ (γaF (x)+m.x) .

Let us write Nbi=bi for i=1,2. The assumption gcd(b1,b2)=1 implies that (Gb1,
Gb2)=1.

Moreover, we have b1 ∈ b1, b2 ∈ b2 and

((b1),b2) = ((b2),b1) = 1. (4.8)

According to Lemma 3.1(i), we find elements λ,μ ∈ o such that ordp(λ) = ordp(b1) and

ordp(μ) = ordp(b2) for all p | Gb1Gb2. It follows from the Chinese remainder theorem, in
the form Lemma 3.2, that we can write a= μb+λc for b(modb1) and c(modb2). Likewise,

we claim that we can write x= b2b+ b1c, for b(modGb1) and c(modGb2). To prove the

claim it suffices to show that there is an isomorphism o/Gb1× o/Gb2 → o/Gb, given by
(u,v) 	→ b2u+b1v. This map is clearly well defined since b1 ∈ Gb1 and b2 ∈ Gb2. Moreover,

injectivity follows from the coprimality conditions ((b2),
Gb1) = ((b1),

Gb2) = 1, which are

a direct consequence of Equation (4.8). The claim follows, since the cardinalities are the
same, by the Chinese remainder theorem.

In summary, on observing that b1 ∈ Gb1 and b2 ∈ Gb2, it follows that

Sb(N ;m) =
∑

b∈(o/b1)
∗

c∈(o/b2)
∗

ψ(−γ(μb+λc)N)

×
∑

b(modG
b1)

c(modG
b2)

ψ (γ(μb+λc)F (b2b+ b1c)+m.(b2b+ b1c))

=
∑

b∈(o/b1)∗

ψ(−γμbN)
∑

b(modGb1)

ψ
(
γμb22bF (b)+ b2m.b

)
×

∑
c∈(o/b2)∗

ψ(−γλcN)
∑

c(modGb2)

ψ
(
γλb21cF (c)+ b1m.c

)
.
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We claim that ψ(γμb22·) defines a primitive character modulo b1. For this, we note that

β ∈ aγμb22
⇔ γμb22β ∈ o⇔ (gμb22β)⊂ (α)⇔ b1d | (μb22b−1

2 )(gp−1
1 )(β)

since b2 ∈ b2 and g ∈ p1. Now, (g) is coprime to b1d and (μb2) is coprime to b1. Thus, it

follows that

β ∈ aγμb22
⇔ β ∈ b1e,

where e= d/(d,μb22b
−1
2 ). Clearly, e | d. We claim that (d/e,b1) = 1. To see this, note that

d/e is equal to the common divisor (d,μb22b
−1
2 ). Now, μ is coprime to b1 and so is b2.

Hence, the common divisor of these ideals most be coprime to the ideal b1, as claimed.
Thus, Lemma 3.3 establishes the claim that ψ(γμb22·) is a primitive character modulo b1.

It follows that∑
b∈(o/b1)∗

ψ(−γμbN)
∑

b(modGb1)

ψ
(
γμb22bF (b)+ b2m.b

)
= Sb1

(Nb2
2
N ; (Nb2)m),

where Nb2 is the multiplicative inverse of Nb2 modulo b1. Similarly,∑
c∈(o/b2)∗

ψ(−γλcN)
∑

c(modGb2)

ψ
(
γλb21cF (c)+ b1m.c

)
= Sb2

(Nb1
2
N ; (Nb1)m),

from which the lemma follows.

Corollary 4.6. Let b be a nonzero integral ideal, and suppose that b= b1b2 for integral

ideals b1,b2 such that gcd(Nb1,Nb2) = 1. Then Sb(N ;0) = Sb1
(N ;0)Sb2

(N ;0).

Proof. On making an obvious change of variables to the a-sum and the x-sum in Equation
(4.7), we note that Sb(c

2N ;0) = Sb(N ;0) for any c ∈ Z which is coprime to b. The

statement now follows from an application of Lemma 4.5.

4.5. The exponential integral

In this section, we discuss the exponential integral Ib(t;k) that appears in Lemma 4.1 for

given t ∈ V and k ∈ V n. It will be convenient to set

0< ρ=
Nb

P d
� 1,

with which notation we have

Ib(t;k) =

∫
V n

W (x)h(ρ,|Nm(F (x)− t)|)ψ (−k.x)dx.

We now bring into play the work in [2, §6]. It follows from an application of Fourier
inversion, as in [2, Eq. (6.3)], that there exists a function pρ(v) : V → C such that

Ib(t;k) =

∫
V

pρ(v)ψ(−vt)K(v,k)dv, (4.9)
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where

K(v,k) =

∫
V n

W (x)ψ (vF (x)−k.x)dx. (4.10)

In our analysis, it will be useful to have the notion of a height function on V.

Accordingly, we define H : V → R�1 via

H(v) =
d∏

l=1

max{1,|vl|},

for v = (v1, . . . ,vd) ∈ V . In the closing stages of our argument, we will need to estimate
integrals involving powers of H(v) over various regions in V. First, it follows from [2,

Lemma 5.3] that ∫
V

H(v)αdv � 1 if α <−1. (4.11)

We can use this to deduce two further bounds that will play important roles.

For any A� 1 and ε > 0, we claim that∫
{v∈V :H(v)�A}

H(v)αdv �Aα+1+ε if α <−1. (4.12)

If α < −1, then we can clearly assume that ε < −α− 1. But then the conditions of
integration imply that (H(v)/A)−α−1−ε � 1, whence∫

{v∈V :H(v)�A}
H(v)αdv �Aα+1+ε

∫
V

H(v)−1−εdv �Aα+1+ε

by Equation (4.11).

Next, for any B � 1 and ε > 0, we claim that∫
{v∈V :H(v)�B}

H(v)αdv �Bα+1+ε if α�−1. (4.13)

To see this, we note that (B/H(v))α+1+ε � 1, under the conditions of the integral, if

α�−1. But then∫
{v∈V :H(v)�B}

H(v)αdv �Bα+1+ε

∫
V

H(v)−1−εdv �Bα+1+ε

by Equation (4.11).

Returning to the function pρ(v) in Equation (4.9), the following result summarises its

key properties and is extracted from [2, Lemmas 6.3 and 6.4].

Lemma 4.7. For any ε > 0, we have pρ(v)� P ε, for any v ∈ V . Moreover, for any ε > 0

and A� 1, we have

pρ(v)�A ρ−1
(
ρ−1P εH(v)−1

)A
.
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Recall here that ρ > 0. The next result is a straightforward consequence of the previous
result, once combined with Equation (4.9) and the bound

|K(v,k)|�
∫
V n

W (x)dx� 1,

which follows from the fact that W is compactly supported.

Corollary 4.8. Let ε > 0. Let t ∈ V and k ∈ V n. Then

Ib(t;k)�A P ε

∫
U

|K(v,k)|dv+P−A,

for any A� 1, where

U = Uε =

{
v ∈ V : H(v)� P d+ε

Nb

}
.

It is interesting to pause and reflect on the corresponding situation for cubic forms G
over a number field K that was considered in [2], recalling that we are assuming K to be

totally real in our setting. In [2], crucial use was made of the fact that the integral over

x factors as ∏
1�l�d

∫
Rn

W (l)(x(l))e
(
v(l)G(l)(x(l))−k(l).x(l)

)
dx(l)

since Tr(vG(x)) =
∑d

l=1 v
(l)G(l)(x(l)), where G(l) = ρl(G) is a cubic form over R. We have

chosen our main example Equation (1.3) in order that a similar property holds. Such
a factorisation is not necessarily enjoyed for arbitrary generalised quadratic forms F,

however, and it seems very difficult to analyse the integrals K(v,k) in generic situations.

Define

Q(x(1), . . . ,x(d)) =
∑

1�l�d

vlF
(l)(x(1), . . . ,x(d)), (4.14)

for fixed v ∈ V , where F (l) is the quadratic form (4.2). Thus, Q is a quadratic form over
R in dn variables. Let us write, temporarily, x = (x(1), . . . ,x(d)) and k = (k(1), . . . ,k(d)).

Then, in the light of Equation (4.3), we may write

K(v,k) =

∫
Rdn

W (x)e(Q(x)−k.x)dx. (4.15)

A general study of these exponential integrals has been carried out by Heath-Brown and
Pierce [6, Lemma 3.1]. Assuming that the support of W is contained in [−1,1]dn, we may

appeal to their work, which we record here for the convenience of the reader.

Lemma 4.9. Let Q ∈ R[X1, . . . ,Xm] be a quadratic form with coefficients of maximum

modulus ‖Q‖ and eigenvalues ρ1, . . . ,ρm. Let λ ∈ Rm, and suppose that w : Rm → R is
any smooth weight function supported on [−1,1]m. Then∫

Rm

w(u)e(Q(u)−λ.u)du�w

m∏
i=1

min
{
1,|ρi|−1/2

}
.

Furthermore, if |λ|� 4‖Q‖, then the integral is Ow,A(|λ|−A) for any A� 1.
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We will apply this result with λ = k and with the real quadratic form in Equation
(4.14). Note that ‖Q‖� |v|. Next, define

F (v) = det

⎛⎝ ∑
1�l�d

vlM
(l)

⎞⎠,

where M(l) is the dn× dn matrix associated to F (l). The function F (v) is a real form

of degree dn in the variables v1, . . . ,vd. The following estimate is a direct consequence of

Lemma 4.9.

Corollary 4.10. Assume |k| � |v|. Then K(v,k) �A |k|−A, for any A � 1. Moreover,

K(v,k)�min{1,|F (v)|−1/2} for any k ∈ V n.

Unfortunately, it appears difficult to extract anything useful from the second bound,
unless the generalised quadratic form is assumed to have extra structure.

4.6. Contribution from the trivial character

In this section, we study the overall contribution from the vector m= 0 in the expression

for NW (F,N ;P ) in Lemma 4.1. This contribution is

M(P ) =
P (n−2)d

D
n/2
K

∑
0 �=b⊂o

Nb�Pd

(NGb)−nSb(N ;0)Ib(N/P 2;0)+OA(P
−A)

in the notation of that result.
It will ease notation if we put t=N/P 2 ∈ R. Assuming that the descended system has

codimension d, we begin by analysing the exponential integral Ib(t;0), writing

Ib(t;0) =

∫
V n

W (x)h(ρ,|Nm(F (x)− t)|)dx=

∫
V

f(v)h(ρ,|Nm(v)|)dv, (4.16)

where ρ=Nb/P d and

f(v) =

∫
x∈V n

F (x)−t=v

W (x)dx,

where, by an abuse of notation, dx is the surface measure obtained by eliminating

d variables from the equation F (x)− t = v. We shall think of f(y) as a function of
y = (y1, . . . ,yd) on Rd, in which t is fixed and bounded absolutely. The following result

summarises its main properties.

Lemma 4.11. Assume that the descended system has codimension d. There exist positive
constants C,C0,C1, . . . such that the function f :Rd →R is a smooth weight function that

is supported on [−C,C]d and satisfies∣∣∣∣∣ ∂i1+···+id

∂yi11 · · ·∂yidd
f(y)

∣∣∣∣∣� Ci1+···+id
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for any y ∈ [−C,C]d and any i1, . . . ,id � 0. The constants C,C0,C1, . . . depend only on the
coefficients of F and the parameter δ in the definition of W.

Proof. In the course of the proof, it will be convenient to write s = (s1, . . . ,sd), u =

(u1, . . . ,ud), ξ= (ξ1, . . . ,ξd) and t= (t1, . . . ,td). Recall the definition of the weight function

W in §4.2 for a suitable fixed ξ ∈Rdn. Making the change of variables in Equation (4.4),
we see that

f(y) =D
−n/2
K

∫
u∈Rdn

Ql(u)−τl=wl

w(δ−1|u−ξ|)du, (4.17)

where τ =A−1t and w=A−1y. It will clearly suffice to prove the properties recorded in

the lemma for the integral on the right-hand side, f̃(w) say, regarded as a function of w.

Making the change of variables s= u−ξ, we have

f̃(w) =

∫
s∈Rdn

Ql(s+ξ)−τl=wl

w(δ−1|s|)ds.

It is now clear that f̃(w) = 0 unless w ∈ [−C,C]d for suitable C > 0.

Next, we recall that JQ1,...,Qd
(ξ) has rank d. We may assume without loss of generality

that

det

(
∂

∂Uj1
Qi(ξ)

)
1�i,j�d

�= 0.

Let ϕ : Rdn → Rdn be given by

s 	→
(
Q1(s+ξ)− τ (1),s1,2, . . . ,s1,n, . . . ,Qd(s+ξ)− τ (d),sd,2, . . . ,sd,n

)
.

The implicit function theorem implies that there exist open subsets W ′,W ⊂ Rdn with

0 ∈W ′ and ϕ(0) ∈W such that ϕ :W ′ →W is a bijection and has differentiable inverse
ϕ−1 on W. It is now clear that we wish to choose δ > 0 small enough to ensure that s∈W ′

whenever |s|� δ.

We may now conclude that

f̃(w) =

∫
s′∈Rd(n−1)

∂1ϕ
−1w(δ−1|(s1,1, . . . ,sd,n) |)ds′,

where s′ = (s1,2, . . . ,s1,n, . . . ,sd,2, . . . ,sd,n), and s1,1,s2,1, . . . ,sd,1 are implicitly given by s′

and w, and

∂1ϕ
−1 = det

(
∂(ϕ−1)in+1−n

∂wj

)
1�i,j�d

∣∣∣∣∣
(s1,1,...,sd,n)

is the associated Jacobian. Since ϕ−1 is smooth, this implies that f̃(w) is infinitely

differentiable and that its partial derivatives satisfy the bound claimed in the lemma.
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Now, it follows from Corollary 4.8 that for t=N/P 2 ∈R, and ε fixed as in the corollary,

we have

Ib(t;0)�
P d+2ε

Nb
.

Furthermore, in view of Lemma 4.11, it follows from Equation (4.16) and [2, Lemma 4.1]

that

Ib(t;0) =
√
DKf(0)+OA

((
Nb

P d

)A
)
,

for any A� 0, where

f(0) =

∫
x∈Rdn

F (l)(x)=tl

W (x)dx,

if x= (x1, . . . ,xd). According to Equation (4.17), we have f(0) =D
−n/2
K σ∞(t), where

σ∞(t) =

∫
u∈Rdn

Ql(u)=τl

w(δ−1|u−ξ|)du (4.18)

is the usual singular integral for the descended system. In particular, arguing as in

Davenport and Lewis [3, §6], a standard argument ensures that σ∞(t) > 0 since ξ is
a nonsingular real point on the descended system.

We summarise our preliminary treatment of the main term in the following result.

Lemma 4.12. Let ε > 0. Then, for any A� 1, we have

M(P ) =
P (n−2)d

D
n−1/2
K

∑
0 �=b⊂o

Nb�Pd

(NGb)−nSb(N ;0)

(
σ∞(N/P 2)+OA

((
Nb

P d

)A
))

+OA(P
−A),

where σ∞(N/P 2)> 0 is given by Equation (4.18).

In order to proceed further, it is clear that one requires a good enough upper bound for

Sb(N ;0) in order to show that the error term is satisfactory and the sum over b can be

extended to infinity. Such a bound is available for admissible F, thanks to Corollary 4.3.
Although we omit details, one can use it to prove that

M(P ) =
σ∞(N/P 2)

D
n−1/2
K

P (n−2)d
∑

0 �=b⊂o

(NGb)−nSb(N ;0)+O(P dn/2+ε),

for any admissible F such that n � 5. In the setting of Theorems 1.4 and 1.5, we

shall produce better bounds for Sb(N ;0) which allow such a deduction under milder

hypotheses.
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We close this section with a formal analysis of the singular series

S(N) =
∑

(0) �=b⊂o

(NGb)−nSb(N ;0),

ignoring issues of convergence. This is summarised in the following result.

Lemma 4.13. Assume that S(N) is absolutely convergent. Then

S(N) =
∏
p

lim
�→∞

p−d�(n−1)#
{
x ∈ (o/p�o)n : F (x)≡N (modp�)

}
.

We have S(N)> 0 if the shifted descended system has a nonsingular p-adic solution for

every prime p.

Proof. We may write

S(N) =

∞∑
k=1

∑
b⊂o

Nb=k

(NGb)−nSb(N ;0) =

∞∑
k=1

S(k),

say. It follows from Corollary 4.6 that S(k1k2) = S(k1)S(k2) if k1,k2 are coprime integers.

Hence,

S(N) =
∏
p

∑
j�0

S(pj).

Since K is Galois, we may assume that p admits a factorisation (p) = (p1 · · ·pr)e, with
Np1 = · · ·=Npr = pf . Let �� 0, and let I� denote the set of integral ideals b= p

k1
1 · · ·pkr

r ,
with 0� ki � �e for 1� i� r. Then the union of I� over �� 0 exactly matches the set of

integral ideals whose norm is a power of p. Hence,

S(N) =
∏
p

lim
�→∞

∑
b∈I�

(NGb)−nSb(N ;0).

It follows from Equation (4.7) that

Sb(N ;0) =
∑

a∈(o/b)∗

ψ(−γaN)
∑

x(modGb)

ψ (γaF (x))

=
(NGb)n

p�dn

∑
a∈(o/b)∗

ψ(−γaN)
∑

x(modp�o)

ψ (γaF (x)),

on extending the inner sum to a sum over elements of (o/p�o)n. Hence, on rearranging,
we obtain ∑

b∈I�

(NGb)−nSb(N ;0) =
1

p�dn

∑
x(modp�o)

E(p),

where

E(p) =
∑
b∈I�

∑
a∈(o/b)∗

ψ (γa(F (x)−N)) .
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We claim that ψ(γa·) runs over all characters modulo p�, as a runs over (o/b)∗ and b

runs over I�. On one hand, since a∈ (o/b)∗, each character ψ(γa·) is a primitive character

modulo b. Since b = pk1 · · ·pkr
r , for k1, . . . ,kr � �e and p� = (p1 · · ·pr)�e, we conclude that

each such character induces a character modulo p�. In order to complete the proof of

the claim, it remains to show that we get all p�d characters modulo p� this way. But the
number of characters is precisely∑

b∈I�

Nb
∏
p|b

(
1− 1

Np

)
=
∑
b∈I�

pf(k1+···+kr)
∏
p|b

(
1− 1

pf

)

=
∏

1�i�r

⎛⎝1+
∑

1�k��e

pfk
(
1− 1

pf

)⎞⎠
= p�d,

as required.
We may now conclude from orthogonality of characters that

E(p) =

{
p�d if F (x)≡N (modp�),

0 otherwise,

from which the first part of the lemma follows. The second part is standard. Using
Equation (1.2), the solubility of F (x)−N in o/p�o can be reduced to the solubility

of a shifted descended system Qi(u1, . . . ,ud)−Ni modulo primes powers, for 1 � i � d,

where we have written N = ω1N1+ · · ·+ωdNd. Arguing as in work of Birch [1, Lemma

7.1], for example, the existence of nonsingular p-adic zeros of this system is enough to
deduce that S(N)> 0. The details of this will not be repeated here.

4.7. Contribution from the nontrivial characters

In this section, we make some initial steps in the treatment of the contribution from
the nonzero vectors m in the asymptotic formula for NW (F,N ;P ) in Lemma 4.1. This

contribution is

� P (n−2)dE(N ;P ),

where

E(N ;P ) =
∑

0 �=b⊂o

Nb�Pd

∑
0 �=m∈Ĝb

n

(NGb)−n|Sb(N ;m)||Ib(N/P 2;Pm)|. (4.19)

The primary task is to establish conditions under which there is an absolute constant

Δ> 0 such that E(N ;P ) =O(P−Δ).

We now place ourselves in the context of the generalised quadratic forms (1.3) and
make some initial steps that will be common to Theorems 1.3–1.5. It will be convenient

to consider the overall contribution from b such that Nb and NGb are constrained to lie

in dyadic intervals. Note that Nb� P d and NGb� (Nb)2 since #G= 2. Accordingly, we
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let X,Y be parameters such that

1�X � Y �X2, X � P d. (4.20)

We then write E(N ;P ;X,Y ) for the overall contribution to E(N ;P ) from nonzero ideals
b⊂ o for which

X �Nb< 2X and Y �NGb< 2Y.

We denote by B(X,Y ) the set of all such ideals. On summing over dyadic intervals for
X,Y satisfying Equation (4.20), it will suffice to establish the existence of Δ > 0 such

that

E(N ;P ;X,Y ) =O(P−Δ), (4.21)

for any X,Y satisfying Equation (4.20).

It follows from Corollary 4.8 that

Ib(N/P 2;Pm)�A P ε

∫
U

|K(u,Pm)|du+P−A,

for any A� 1, where K(u,Pm) is given by Equation (4.10) and

U =

{
u ∈ V : H(u)� P d+ε

Nb

}
. (4.22)

Hence, Equation (4.19) yields

E(N ;P ;X,Y )�A P−A+P εY −n
∑

b∈B(X,Y )

∑
0 �=m∈Ĝb

n

|Sb(N ;m)|
∫

U

|K(u,Pm)|du,

(4.23)

for any A� 1, where B(X,Y ) is the set of nonzero ideals b⊂ o for which X � Nb< 2X

and Y �NGb< 2Y .

5. Homogeneous case: proof of Theorems 1.3 and 1.4

We begin by proving a general result about rank drop in pencils of quadratic forms

in situations where one of the matrices has much smaller rank. It parallels the basic
fact in Reid’s thesis [10, Prop. 2.1] about rank drop in pencils ν1A+ ν2B, for suitable

n×n matrices A,B, and shows how Assumption 2 can be deduced from an appropriate

hypothesis about the shape of the associated singular locus.

Lemma 5.1. Let L be an algebraically closed field of characteristic not equal to 2, and let

m< n. Consider two matrices A,B ∈Mn×n(L) such that B has only nonzero entries in

the upper left m×m submatrix, which we also assume to be nonsingular. Let det(A) �= 0.
Assume that all singular points of the intersection of the two quadratic forms associated

to A and B have the shape (0,x′′) with x′′ = (xm+1, . . . ,xn), and that the intersection has

codimension 2. Then we have

rank(A+λB)� n−1, ∀λ ∈ L.
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Proof. Assume that there is some λ ∈ L with

rank(A+λB)� n−2.

Let V0 ⊂ An be the affine subspace given by the kernel of A+ λB. Then dimV0 � 2.

Let P(V0) = V ⊂ Pn−1, and let QB ⊂ Pn−1 be the quadric given by the matrix B. Then

dimV � 1 and dimQB = n− 2 as projective varieties. We deduce that the intersection
V ∩QB is nonempty. Consider a point x= (x′,x′′) ∈Ln \{0} in the affine cone of V ∩QB ,

where x′ ∈ Lm and x′′ ∈ Ln−m. Then we deduce that

0 = xt(A+λB)x= xtAx+λxtBx= xtAx.

We deduce that x lies on the quadric given by A and as it is in the kernel of A+λB, it
is a singular point of the intersection QA∩QB . We claim that x′ �= 0, that is, x is not of

the shape (0,x′′). Assume for a moment that x= (0,x′′). Note that

0 = (A+λB)(0,x′′) =A(0,x′′).

This is a contradiction to A being nonsingular. Hence, we found a singular point of the
intersection QA∩QB which is not of the form (0,x′′).

The main aim of this section is to carry out the proof of Theorems 1.3 and 1.4, which

corresponds to taking N = 0 and

F (X1, . . . ,Xn) =Q(X1, . . . ,Xn)+R(Xτ
1 , . . . ,X

τ
m),

as in Equation (1.3). Suppose that A is the n×n symmetric matrix defining Q and that B

is the n×n symmetric matrix given by the condition that its upper left m×m submatrix

defines R, with all other entries are equal to 0. We may proceed under the assumption
that Assumptions 1–3 hold.

We have two tasks remaining. The first is to show that the sum over b in Lemma

4.12 can be extended to infinity, with acceptable error, and the second is to prove that

Equation (4.21) holds. We’ll need some more preparations for estimating the relevant
exponential sum in Lemma 4.12 and Equation (4.23). Recalling the definition (3.3) of

Hb, we lower bound its index in on.

Lemma 5.2. There exist nonzero constants κ1, . . . ,κn,κ̃1, . . . ,κ̃m ∈K, depending only on
F and K such that

Hb ⊆ (κ1b∩ κ̃1b
τ−1

)×·· ·× (κmb∩ κ̃mbτ
−1

)×κm+1b×·· ·×κnb.

Moreover, we have κ−1
1 , . . . ,κ−1

n ,κ̃−1
1 , . . . ,κ̃−1

m ∈ o.

Proof. Assume that A has symmetric entries ai,j ∈ o, for 1 � i,j � n, and that B has
symmetric entries bi,j ∈ o for 1 � i,j � m. Then the associated bilinear form takes the

shape

B(X1, . . . ,Xn;Y1, . . . ,Yn) =
∑
i,j�n

ai,jXiYj +
∑

i,j�m

bi,jX
τ
i Y

τ
j .
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Now, h ∈ Hb if and only if 2B(h,k) ∈ b for all k ∈ on. Let ω1, . . . ,ωd be an integral basis

of o with ω1 = 1. Let l ∈ {1, . . . ,d} and j ∈ {1, . . . ,n} and consider a vector k such that

the j -th entry is equal to ωl and all other entries are equal to zero. Then the condition
B(h,k) ∈ b implies that

2ωl

n∑
i=1

ai,jhi+2ωτ
l

m∑
i=1

bi,jh
τ
i ∈ b, 1� l � d, 1� j � n.

As the matrix (ωτ
l )1�l�d,τ∈Gal(K/Q) is invertible, this implies that there exists β ∈K with

β−1 ∈ o such that

n∑
i=1

ai,jhi ∈ βb,

m∑
i=1

bi,jh
τ
i ∈ βb, 1� j � n.

Thus, we find that Ah ∈ (βb)n and B(h′)τ ∈ (βb)m, where h′ = (h1, . . . ,hm). As both

matrices A and B are nonsingular, this implies that

h ∈ 1

(detA)
(βb)n, h′ ∈ 1

(detB)τ−1 (β
τ−1

bτ
−1

)m.

Putting these together, the statement of the lemma easily follows.

Corollary 5.3. Let N ∈ o and let F be given by Equation (1.3). Suppose that Assumption

1 holds. Then

Sb(N ;m)� (Nb)1−(n−m)/2(NGb)n−m/2.

Moreover, Sb(N ;m) = 0 unless mi ∈ d−1b−1 for m< i� n.

Proof. It follows from Lemma 5.2 that |on/Hb| � (NGb)m(Nb)n−m. Thus, Equation

(3.4) implies that

|Hb/
Gb

n|= |on/Gbn|
|on/Hb|

� (NGb)n

(NGb)m(Nb)n−m
=

(
NGb

Nb

)n−m

.

Inserting this into Lemma 4.2 yields the desired upper bound. We have already observed in
Lemma 4.4 that Sb(N ;m) = 0 unlessm.h∈ d−1 for all h∈Hb. Noting that

Gb
m×bn−m ⊂

Hb, the second part easily follows.

Returning to Lemma 4.12, it immediately follows from this that the overall contribution

from the tail Nb� P d is

� P (n−2)d
∑
b⊂o

Nb�Pd

(NGb)−n|Sb(N ;0)|

� P (n−2)d
∑
b⊂o

Nb�Pd

(Nb)1−n/2+m/2(NGb)−m/2.

Since NGb � Nb, this is acceptable provided that n > 4, which is certainly implied by

the hypotheses in Theorems 1.3 and 1.4. Thus, we can focus our remaining efforts on

establishing Equation (4.21).
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Our next goal is to analyse the integrals K(u,Pm) in Equation (4.23) for the case

that F has the shape F (x) = Q(x) +R(xτ
1,x

τ
2, . . . ,x

τ
m), for τ ∈ Gal(K/Q) some fixed

automorphism. Taking the lth embedding into the real numbers gives

F (l)(x(1), . . . ,x(d)) =Q(l)(x(l))+R(l)(ρl(x
(τ))), 1� l � d,

where we write x(l) = ρl(x). For each 1 � l � d, we define lτ through the relation (1.4).

With this notation, we obtain

Q(x) =
∑

1�l�d

ulF
(l)(x)

=
∑

1�l�d

ulQ
(l)(x(l))+

∑
1�l�d

ulR
(l)(ρl(x

τ ))

=
∑

1�l�d

ulQ
(l)(x(l))+

∑
1�l�d

ulτR
(lτ )(x(l)).

Hence,

K(u,Pm) =

d∏
l=1

∫
Rn

W (x(l))e(G(l)(x(l))−Pm(l).x(l))dx(l),

with

G(l)(x(l)) = ulQ
(l)(x(l))+ulτR

(lτ )(x(l)).

Note that G(l)(x(l)) is a quadratic form in x(l) and hence can be represented by a

symmetric matrix, which can be diagonalised using an orthogonal base change. Thus,
for every tuple u= (u1, . . . ,ud), there exists a diagonal matrix Diag(ðl,i(u))1�i�n and an

orthogonal matrix Ml(u) ∈O(n) such that

G(l)(x(l)) = (x(l))tMl(u)
tDiag(ðl,i(u))Ml(u)x

(l).

Set

K(l)(u,Pm) =

∫
Rn

W (x(l))e(G(l)(x(l))−Pm(l).x(l))dx(l), for 1� l � d.

With the change of coordinates Ml(u)x
(l) = y(l), we get

K(l)(u,Pm)

=±
∫
Rn

W (Ml(u)
ty(l))e((y(l))tDiag(ðl,i(u))y

(l)−Pm(l).(Ml(u))
ty(l))dy(l)

=±
∫
Rn

W (Ml(u)
ty(l))e((y(l))tDiag(ðl,i(u))y

(l)−PMl(u)m
(l).y(l))dy(l).

We are now ready to prove the following result.

Lemma 5.4. For any ε > 0, the integral K(l)(u,Pm) is essentially supported on the set

of u and m for which

|(Ml(u)m
(l))i| � P−1+ε|ðl,i(u)|, 1� i� n,
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and

|m(l)
i | � P−1+ε|ul|, m < i� n.

Moreover, we have

K(l)(u,Pm)�
n∏

i=1

min

(
1,

1

|ðl,i(u)|1/2

)
.

Proof. Recall that Ml(u) ∈ O(n). In particular, all entries of Ml(u) are bounded
independently of u and we obtain

∂k

∂(y
(l)
i )k

W (Ml(u)
ty(l))�k 1,

uniformly in u for all k ∈ N. The result now follows from Lemma 4.9.

Henceforth, we take N = 0 and write E(P ;X,Y ) = E(0;P ;X,Y ) in Equation (4.23).

We shall adhere to common convention and allow the value of ε > 0 to change at each
appearance so that P ε logP � P ε, for example. Moreover, all implied constants are

allowed to depend on ε.

Applying Corollary 5.3, we deduce that

E(P ;X,Y )� P εX1−(n−m)/2Y −m/2
∑

b∈B(X,Y )

∑
0 �=m∈Ĝb

n

i>m⇒mi∈d
−1

b
−1

∫
U

|K(u,Pm)|du.

Let δ ∈ Gbd, and let p1 be a prime ideal coprime to Gbd, with Np1 � (Nb)ε/d, such that

(δ) = Gbdp1. On multiplying δ by an appropriate unit, there is no loss of generality in

assuming that

Y 1/d � |δ(l)| � Y 1/d+ε, (5.1)

for 1� l � d, since Y �NGb< 2Y . We are led to make the change of variables

ci = δmi, (5.2)

for 1� i� n, so that c= (c1, . . . ,cn) ∈ on. Then

ci ∈ δd−1b−1 = p1b
−1Gb⊂ b−1Gb, for m< i� n. (5.3)

We may now write

E(P ;X,Y )� P εX1−(n−m)/2Y −m/2
∑

b∈B(X,Y )

∑
0 �=c∈o

n

(5.3) holds

∫
U

|K(u,Pδ−1c)|du.

Define the function

f(u) =
∏

1�l�d

∏
1�i�n

min

(
1,

1

|ðl,i(u)|1/2

)
. (5.4)
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Let R(m) be the set of u ∈ U such that

|(Ml(u)m
(l))i| � P−1+ε|ðl,i(u)|, 1� i� n,1� l � d,

and

|m(l)
i | � P−1+ε|ul|, m < i� n, 1� l � d.

We now have

E(P ;X,Y )� P εX1−(n−m)/2Y −m/2
∑

b∈B(X,Y )

∑
0 �=c∈o

n

(5.3) holds

∫
R(δ−1c)

f(u)du.

Let

L(u) =
∑

b∈B(X,Y )

∑
c∈C (u,b)

1,

where C (u,b) is the set of nonzero vectors c ∈ on for which Equation (5.3) holds,

|(Ml(u)c
(l))i| � P−1+εY 1/d|ðl,i(u)|, 1� i� n, 1� l � d,

and

|c(l)i | � P−1+εY 1/d|ul|, m < i� n, 1� l � d.

Then we have

E(P ;X,Y )� P εX1−(n−m)/2Y −m/2

∫
U

f(u)L(u)du.

Our next goal is to estimate L(u). For each 1� l � d, we sort the eigenvalues ðl,i(u) in

a way such that

|ðl,1(u)|� |ðl,2(u)|� · · ·� |ðl,n(u)|.

Note that we can always achieve this by adjusting the orthogonal matrix Ml(u) with

suitable permutations. Moreover, for all 1� i� n and 1� l � d, we have

|ðl,i(u)| � |ul|+ |ulτ |. (5.5)

It will now be useful to make the observation

d∏
l=1

(1+ |ul|+ |ulτ |)�
d∏

l=1

((1+ |ul|)(1+ |ulτ |))� H(u)2. (5.6)

We proceed by proving the following result.

Lemma 5.5. Let u ∈ V such that H(u)� P d+ε/X. If L(u) �= 0, then

P−d+εY H(u)2 � 1. (5.7)

Moreover, we have L(u)� P εXJ(u), where

J(u) =
∏

1�l�d

∏
1�i�m

(1+P−1+εY 1/d|ðl,i(u)|).
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Proof. Let us write c= (c′,c′′), where c′ = (c1, . . . ,cm) and c′′ = (cm+1, . . . ,cn). Keeping

in mind Equation (5.3), we first fix a choice of c′′ ∈
(
b−1Gb

)n−m
satisfying

|c(l)i | � P−1+εY 1/d|ul|,

for m+1 � i � n and 1 � l � d. Choose λ ∈K such that (λ) = b−1Gbp
−1
2 , for a suitable

prime ideal p2 of norm O(P ε). We may assume that λ is well shaped in the sense of

Equation (5.1), on multiplying by a suitable unit. Thus,X1/dY 1/d �|λ(l)|�X1/dY 1/d+ε,
for 1 � l � d. Making the change of variables c′′ = λd′′ and recalling that Nb � X and

NGb� Y , we must have

|d(l)i | � P−1+εX1/d|ul|,

for m+1� i� n and 1� l � d.

We begin by showing that Equation (5.7) holds if L(u) �= 0. Thus, there exists c �= 0
counted by L(u). Suppose first that c′′ �= 0. Then there exists i ∈ {m+1, . . . ,n} such that

1� |NK/Q(di)| � P−d+εX|Nm(u)|,

whence 1�P−d+εXH(u)�P−d+εY H(u)2 since X � Y . This is satisfactory for Equation
(5.7). Suppose next that c′ �= 0. In particular, we have

|(Ml(u)c
(l))i| � P−1+εY 1/d|ðl,i(u)|, 1� i� n, 1� l � d. (5.8)

As Ml(u) is an orthogonal matrix, this implies that

|c(l)j | � P−1+εY 1/d max
1�i�n

|ðl,i(u)|, 1� j � n, 1� l � d,

whence Equation (5.6) yields

1� P−d+εY

d∏
l=1

max
1�i�n

|ðl,i(u)| � P−d+εY

d∏
l=1

(|ul|+ |ulτ |)� P−d+εY H(u)2.

This completes the proof of Equation (5.7) under the assumption that L(u) �= 0.

Turning now to the estimation of L(u), it readily follows from a result in Lang [9, Thm.

0 in §V.1] that the overall number of vectors d′′ is

�
(
1+

d∏
l=1

P−1+εX1/d|ul|
)n−m

�
(
1+P−d+εXNm(u)

)n−m � P ε.

It remains to count the number of vectors c′ associated to a particular choice of c′′. Let
L(u,b,c′′) be the number of c′ ∈ om such that Equation (5.8) holds. Assume that the

matrix Ml(u) is given by Ml(u) = (mlαβ)1�α,β�n. Write

Ml(u) = (M ′
l (u)M

′′
l (u)),

with M ′
l (u) = (mlαβ)1�α�n

1�β�m
and M ′′

l (u) = (mlαβ) 1�α�n
m<β�n

. Then we consider the system of

inequalities

|M ′
l (u)c

′(l)+ rli| � P−1+εY 1/d|ðl,i(u)|, 1� i� n, 1� l � d,

https://doi.org/10.1017/S1474748024000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000161


Generalised quadratic forms 2893

where rl = (rli)1�i�n =M ′′
l (u)c

′′(l).
Write

ci =

d∑
l=1

cilωl, cil ∈ Z, 1� i�m.

Then, for 1� i� n, we can write

(M ′
l (u)c

′(l))i =
m∑

β=1

mliβc
(l)
β =

m∑
β=1

mliβ

d∑
k=1

cβkω
(l)
k =

m∑
β=1

d∑
k=1

mliβω
(l)
k cβk.

Let H be the dn×dm matrix given by

H = (mliβω
(l)
k )(l,i)×(k,β),

with 1� l � d, 1� i� n, 1� k � d, 1� β �m, and consider the lattice

Λ =HZmd ⊂ Rnd.

Then L(u,b,c′′) counts lattice points in Λ which lie in a box of side length

� P−1+εY 1/d|ðl,i(u)|, 1� i� n, 1� l � d.

We claim that the successive minima of the lattice Λ are bounded above and below by

constants depending only on K and n. Taking this on faith, it will then follow that

L(u,b,c′′)�
∏

1�l�d

∏
1�i�m

(1+P−1+εY 1/d|ðl,i(u)|),

which will settle the lemma, on summing over O(X) choices for b ∈ B(X,Y ).
To check the claim, we order the index tuples (l,i) and (k,β) in the matrix H

lexicographically. Write

Alk = (mliβω
(l)
k )1�i�n,1�β�m = ω

(l)
k (mliβ)(i,β) = ω

(l)
k Bl,

with the n×m matrix Bl = (mliβ)1�i�n,1�β�m. Note that Bl has orthogonal and norm

one columns for 1� l � d. We can then write H as a block matrix

H = (Alk)1�l,k�d.

Let B =B(u) be the nd×md matrix which is a diagonal block matrix, with the matrices

B1, . . . ,Bd on the diagonal. Let W be the md×md block matrix, with blocks ω
(l)
k Em at

each place 1� l,k � d, where Em is the m-dimensional identity matrix. Then

H =BW.

Consider the lattice Γ = WZmd ⊂ Rmd, and note that this only depends on the basis

ω1, . . . ,ωd. Moreover, if w ∈ Γ, then

〈Bw,Bw〉=wtBtBw =wtEmdw = 〈w,w〉.

Hence, the successive minima of the lattice Λ coincide with those of Γ, which thereby

establishes the claim.
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It follows from the previous result that

E(P ;X,Y )� P εX2−(n−m)/2Y −m/2

×
∫

U ∗
f(u)

∏
1�i�m

∏
1�l�d

(1+P−1+εY 1/d|ðl,i(u)|)du, (5.9)

where f(u) is given by Equation (5.4) and U ∗ is the set of u ∈ U such that Equation

(5.7) holds.
Recall that the ðl,i(u) are the eigenvalues of the matrix associated to the quadratic

form

ulQ
(l)(x(l))+ulτR

(lτ )(x(l)).

The next result collects together a number of properties concerning the size of the

eigenvalues ðl,i(u).

Lemma 5.6. Assume that Assumptions 1–3 hold, and suppose that m̃ � m− 1 is the

degree of the polynomial appearing in Assumption 3. For each 1 � l � d, we order the

eigenvalues ðl,i(u) such that

|ðl,1(u)|� |ðl,2(u)|� · · ·� |ðl,n(u)|.

Then there exist constants C1, . . . ,Cd > 0 such that the following holds:

(1) If |ulτ |� Cl|ul|, then

|ðl,1(u)| � |ul| and |ðl,n−1(u)| � |ul|.

Moreover, if m= 1 and m̃= 0, then

|ðl,1(u)| � |ul| and |ðl,n(u)| � |ul|.

(2) If |ulτ |>Cl|ul|, then

|ðl,m+1(u) · · ·ðl,n(u)| �
|ul|n−m̃

|ulτ |m−m̃
.

Proof. To begin with, according to Assumption 3, for each 1 � l � d there exists a

constant Cl such that

|det(Q(l)+ tR(lτ ))| � |t|m̃,

for |t|� Cl.

We start by examining the case |ulτ | � Cl|ul|. The first bound |ðl,1(u)| � |ul|
follows directly from Equation (5.5). Assume now that ul �= 0. Note that each of the
eigenvalues ðl,i(u) arises by multiplication with ul from the eigenvalues of the matrix

corresponding to

Q(l)+
ulτ

ul
R(lτ ).

Write ð̃l,i(u) for those eigenvalues in the same ordering. Assume that the lower bound

|ð̃l,n−1(u)| � 1 is not satisfied. Thus, there exists a sequence of tj in the range |tj |� Cl
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such that ð̃l,n−1(tj) → 0, for j → ∞, where we write ð̃l,n−1(t) for the second smallest

eigenvalues of Q(l)+ tR(lτ ). As the set of t is compact there is a convergent subsequence,

convergent to t′ say, with rank(Q(l)+ t′R(lτ ))< n−1. This contradicts Assumption 2.
Now, we consider the case m= 1 and m̃= 0. By Assumptions 1 and 3, we deduce that

det(Q(l)+ tR(lτ )) is a nonzero constant independent of t. In particular, the rank of this

matrix is always n and the argument above shows that |ðl,n(u)| � |ul|.
Next, we consider the case |ulτ | > Cl|ul| and ul �= 0. Again, we write ð̃l,i(u) for the

eigenvalues of Q(l)+
ulτ

ul
R(lτ ). Note that we have

|ð̃l,i(u)| � |ulτ

ul
|, 1� i� n.

Moreover, we observe that

|ð̃l,1(u) · · · ð̃l,n(u)|= |det(Q(l)+
ulτ

ul
R(lτ ))| �

∣∣∣∣ulτ

ul

∣∣∣∣ m̃.

We therefore find that

|ð̃l,m+1(u) · · · ð̃l,n(u)| �
∣∣∣∣ ul

ulτ

∣∣∣∣m ∣∣∣∣ulτ

ul

∣∣∣∣ m̃ =

∣∣∣∣ ul

ulτ

∣∣∣∣m−m̃.

From this, we obtain the lower bound

|ðl,m+1(u) · · ·ðl,n(u)| � |ul|n−m

∣∣∣∣ ul

ulτ

∣∣∣∣m−m̃ =
|ul|n−m̃

|ulτ |m−m̃
,

which completes the proof of the lemma.

We now continue with our analysis of E(P ;X,Y ) in Equation (5.9). Recall our

assumptions on X,Y in Equation (4.20). Let E1(P ;X,Y ) denote the overall contribution

from the case Y � P d, and let E2(P ;X,Y ) denote the remaining contribution. The
following pair of results treats these two quantities in turn.

Lemma 5.7. Assume m̃�m−1. Then E1(P ;X,Y )� P d(2−n/2+m/2)+ε+P−dm+ε.

Proof. On recalling the definition Equation (5.4) of f(u), we deduce from Equation (5.9)

that

E1(P ;X,Y )� P εX2−(n−m)/2Y −m/2P−mdY m

×
∫

U ∗

⎛⎝ ∏
1�l�d

(1+ |ul|+ |ulτ |)m/2

⎞⎠ ∏
1�l�d

∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)
du

since Equation (5.5) implies that∏
1�i�m

(1+ |ðl,i(u)|)1/2 � (1+ |ul|+ |ulτ |)m/2.

https://doi.org/10.1017/S1474748024000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000161


2896 T. Browning et al.

Here, we recall that U ∗ is the set of u ∈ U such that Equation (5.7) holds. Consider for

a moment a fixed value of l. If Cl|ul|� |ulτ |, then Lemma 5.6 yields∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)
�min

(
1,|ul|−(n−m−1)/2

)
.

If Cl|ul|< |ulτ | and m̃�m−1, then Lemma 5.6 yields∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)
�min

(
1,

1

|ðl,m+1(u) · · ·ðl,n(u)|1/2

)

�min

(
1,

|ulτ |1/2
|ul|(n−m+1)/2

)
.

In either of these two cases, we therefore have∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)
� (1+ |ul|+ |ulτ |)1/2min

(
1,|ul|−(n−m)/2

)
,

whence

E1(P ;X,Y )� P εX2−(n−m)/2Y −m/2P−mdY m

×
∫

U

⎛⎝ ∏
1�l�d

(1+ |ul|+ |ulτ |)(m+1)/2

⎞⎠ ∏
1�l�d

min

(
1,

1

|ul|(n−m)/2

)
du.

It follows from Equation (5.6) that

E1(P ;X,Y )� P εX2−(n−m)/2Y −m/2P−mdY m

∫
H(u)�Pd+ε/X

H(u)m+1−(n−m)/2du

� P εX2−(n−m)/2Y −m/2P−dmY m(1+(P d/X)2+m−(n−m)/2)

� P εX−mY m/2P d(2−n/2+m/2)+P εX2−(n−m)/2Y m/2P−dm.

The contribution gets maximal for Y �X2, in which case we get the upper bound

E1(P ;X,Y )� P εX−mXmP d(2−n/2+m/2)+P εX2−n/2+3m/2P−dm

� P d(2−n/2+m/2)+ε+X2−n/2+3m/2P−dm+ε.

The first term is satisfactory for the lemma. If 2−n/2+3m/2� 0, then the second term is

O(P−dm+ε), which is satisfactory. If n� 3+3m, on the other hand, then we take X �P d

and get the satisfactory upper bound O(P d(2−n/2+m/2)+ε).

Lemma 5.8. Assume that n�m+4 and m̃�m−1. Let

κ=

{
1 if m= 1 and m̃= 0,

0 otherwise.

Then E2(P ;X,Y ) is

� P−d(n−m−4+κ)/4+ε+P−1/2+ε+P−2m+d(3m+4−κ−n)/2+ε+P−2m+d(3m+4−κ−n)/4+ε.
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Proof. For 1� i�m, we clearly have

min

(
1,

1

|ðl,i(u)|1/2

)
(1+P−1+εY 1/d|ðl,i(u)|)� 1+P−1+εY 1/d|ðl,i(u)|1/2.

Hence, we find that E2(P ;X,Y ) is

� P εX2−(n−m)/2Y −m/2

×
∫

U ∗

⎛⎝ ∏
1�l�d

∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)⎞⎠ ∏
1�l�d

∏
1�i�m

(1+P−1+εY 1/d|ðl,i(u)|1/2)du.

If Cl|ul|� |ulτ |, then Lemma 5.6 leads to the bound

∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)
�min

(
1,|ul|−(n−m−1+κ)/2

)
.

For the case Cl|ul|< |ulτ |, we still have

∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)
�min

(
1,

|ulτ |1/2
|ul|(n−m+1)/2

)

since m̃�m−1. We now deduce that in either case we have

∏
m<i�n

min

(
1,

1

|ðl,i(u)|1/2

)
� (1+ |ul|+ |ulτ |)1/2min

(
1,|ul|−(n−m+κ)/2

)
.

It now follows from Equation (5.6) that E2(P ;X,Y ) is

� P εX2−(n−m)/2Y −m/2

×
∫

U ∗
H(u)1−(n−m+κ)/2

∏
1�l�d

∏
1�i�m

(1+P−1+εY 1/d(|ul|+ |ulτ |)1/2)du

� P εX2−(n−m)/2Y −m/2

×
∫

U ∗
H(u)−

n−m−2+κ
2

∏
1�l�d

(1+P−1+εY 1/d(|ul|+ |ulτ |)1/2)mdu.

Let I1 denote the contribution to the integral from those u for which there exists at least

one ul with |ul| � (P/Y 1/d)2, and let I2 denote the remaining contribution.

On recalling that U ∗ is the set of u ∈U such that Equation (5.7) holds, it is clear that

I2 �
∫
Pd/2−ε/Y 1/2�H(u)�Pd+ε/X

|ul|�P 2Y −2/d, 1�l�d

H(u)−
n−m−2+κ

2 du.
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Turning to I1, we see that∏
1�l�d

(1+P−1+εY 1/d(|ul|+ |ulτ |)1/2)m

� P ε
∏

1�l�d

|ul|+|ulτ |�(P/Y 1/d)2

(P−1Y 1/d(|ul|+ |ulτ |)1/2)m

� P εH(u)m(P−1Y 1/d)m�{1�l�d:|ul|+|ulτ |�(P/Y 1/d)2}

by Equation (5.6). But if there is one ul with |ul| � (P/Y 1/d)2, then clearly

�{1� l � d : |ul|+ |ulτ |� (P/Y 1/d)2}� 2.

Hence, since P−1Y 1/d � 1, it now follows that

I1 � P ε

∫
Pd/2−ε/Y 1/2�H(u)�Pd+ε/X

H(u)−
n−m−2+κ

2 +m(P−1Y 1/d)2mdu.

In summary, we have shown that

E2(P ;X,Y )� P εX2−(n−m)/2Y −m/2 (I1+ I2),

with I1,I2 as above.
Since n�m+4, the exponent of H(u) in I2 is less than or equal to −1. If n−m−2+κ

2 > 1,

then it follows from Equation (4.12) that

I2 � P ε(P d/2/Y 1/2)−
n−m−2+κ

2 +1.

However, if n−m−2+κ
2 = 1, then we apply Equation (4.13) to deduce that the same bound

holds.

On the other hand, Equations (4.12) and (4.13) also yield

I1 � P−2m+εY 2m/d
(
(P d/X)−

n−m−2+κ
2 +m+1+(P d/2/Y 1/2)−

n−m−2+κ
2 +m+1

)
�X

n−m−2+κ
2 −m−1Y 2m/dP−2m−d(n−m−2+κ

2 )+md+d+ε

+Y 2m/d+n/4−3m/4+κ/4−1P−2m+d/2(−n−m−2+κ
2 +m+1)+ε.

We conclude that

E2(P ;X,Y )�Xκ/2−mY −m/2+2m/dP−2m+3md/2+(4−κ)d/2−dn/2+ε

+X2−(n−m)/2Y 2m/d+n/4−5m/4−(4−κ)/4P−2m−dn/4+3md/4+(4−κ)d/4+ε

+X2−(n−m)/2Y −3m/4+n/4−(4−κ)/4P d/2(−n−m−2+κ
2 +1)+ε.

We now consider these three terms separately, starting with the third and recalling that

n−m� 4. If −3m/4+n/4− (4−κ)/4� 0, then we get an upper bound

� P d/2(−n−m−2+κ
2 +1)+ε � P−d(n−m−4+κ)/4+ε.

In the opposite case, we get the upper bound � P−dm/2+ε � P−m+ε, on using Y � P d

and d� 2.
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We now turn to the second term. If 2m/d+n/4−5m/4− (4−κ)/4� 0, then we get the

upper bound

� P−2m−dn/4+3md/4+(4−κ)d/4+ε.

In the opposite case, on using X � Y 1/2, we get the upper bound

� Y 1−(n−m)/4Y 2m/d+n/4−5m/4−(4−κ)/4P−2m−dn/4+3md/4+(4−κ)d/4+ε

� Y κ/4−m+2m/dP−2m−dn/4+3md/4+(4−κ)d/4+ε.

If d� 3 or κ= 0, then we reduce to the case above. If d= 2 and κ= 1, on the other hand,

we obtain the upper bound

� P d/4P−2m−dn/4+3md/4+(4−κ)d/4 � P−(n+m−4)/2+ε

since Y � P d. Clearly, (n+m− 4)/2 � m if n � m+4, whence this case contributes
O(P−m+ε), which is satisfactory.

It remains to deal with the first term. Again, we use the lower bound X � Y 1/2, allowing

us to bound the first term by

� Y κ/4−m/2Y −m/2+2m/dP−2m+3md/2+(4−κ)d/2−dn/2+ε

� Y κ/4−m+2m/dP−2m+3md/2+(4−κ)d/2−dn/2+ε.

If d � 3 or κ = 0, then we get O(P−2m+3md/2+(4−κ)d/2−dn/2+ε), which is satisfactory.

Alternatively, if d= 2 and κ= 1, then we get

� P 1/2P−2m+3md/2+(4−κ)d/2−dn/2+ε � P−(n−m−7/2)+ε.

This is � P−1/2+ε since n�m+4, which thereby completes the proof of the lemma.

It remains to combine Lemmas 5.7 and 5.8. We make the assumption

n�m+5.

Under this assumption, the bound in Lemma 5.7 is O(P−d/2+ε). Moreover, the bound in

Lemma 5.8 is

� P−d(1+κ)/4+ε+P−1/2+ε+P−2m+d(3m+4−κ−n)/2+ε+P−2m+d(3m+4−κ−n)/4+ε.

Hence, since d� 2 and m� 1, it finally follows that Equation (4.21) holds for a suitable

Δ> 0, provided that n�m+5 and

n > 3m+4− 4m

d
−κ,

where κ is defined in the statement of Lemma 5.8.

Suppose first that m = 1 and place ourselves under the hypotheses of Theorem 1.3.
Then Assumptions 1–3 hold with m̃= 0. Hence, κ= 1 and the condition on n reduces to

n� 6, as required for Theorem 1.3. Assume now that m� 1, but κ= 0. Since d� 2, we

have 3m+4−4m/d�m+4, from which the statement of Theorem 1.4 follows.
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6. Inhomogeneous case: proof of Theorem 1.5

In this section, we complete the proof of Theorem 1.5. We note that the quadratic
form in Equation (1.5) is a special case of Equation (1.3), with A = Diag(a1, . . . ,an)

and B=Diag(b1, . . . ,bm,0, . . . ,0). Hence, Corollary 5.3 applies to the situation considered

in Theorem 1.5. In particular, assuming that n > 4, the argument in the previous section
shows that the sum over b in Lemma 4.12 can be extended to infinity with acceptable

error. Since the assumption n> 4 is implied by the hypotheses in Theorem 1.5, this leaves

us free to focus our efforts on proving Equation (4.21).
In the present setting, it will be vital to obtain additional cancellation from the sum

over primitive characters in Sb(N ;m). We plan to improve on Corollary 5.3 in generic

situations, beginning with an examination of a particular exponential sum modulo degree

1 prime ideals. The saving we shall achieve is linked to the fact that N �= 0 and will also
involve the special generalised quadratic form

G(x) = a1 · · ·anb1 · · ·bm
(
x2
1

a1
+ · · ·+ x2

n

an
+

(xτ
1)

2

b1
+ · · ·+ (xτ

m)2

bm

)
, (6.1)

that is the analogue of the dual form in our setting. (Note that it has coefficients in o.)

For any unramified prime ideal p and any vector v ∈ Ĝp
n
, it will be convenient to observe

that ordp(G(v))�−2, since ordp(vi)�−1 and ordp(v
τ
i )�−1 for any vi ∈ Ĝp. With this

in mind, we proceed by proving the following bound for Sp(N ;v).

Lemma 6.1. Let p be a prime ideal of residue degree 1, and let v ∈ Ĝp
n
. Then

Sp(N ;v)� (Np)θp(v)+(3n−m)/2,

where

θp(v) =

{
1 if p |N and ordp(G(v))�−1,
1
2 otherwise.

Proof. Let p be a prime ideal of residue degree 1 so that Np= p for a rational prime p.

We may assume that p is unramified in K and that

p � 2a1 · · ·anb1 · · ·bm
since the desired estimate is trivial otherwise. Since K/Q is Galois, this means that there
is a factorisation (p) = p1 · · ·pd into prime ideals, where p1, . . . ,pd are the d conjugates of

p under Gal(K/Q), satisfying Npi = p for 1� i� d.

It will be convenient to write Sp = Sp(N ;v) and p̃ = pτ
−1

in the proof. Then p and p̃

are distinct prime ideals, with Gp = pp̃ and Np = N p̃ = p. Choose γ = g/α ∈ F(p) as in

Lemma 3.4 so that ψ(γ·) is a primitive character modulo p. Then we can write

Sp =
∑

a∈(o/p)∗

∑
x(modGp)

ψ (γa(F (x)−N)+v.x)

=
∑

a∈(o/p)∗

ψ(−γaN)
∑

x(modGp)

ψ (γ {aF (x)+αv.x}),

as in Equation (4.7).
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Lemma 3.2 yields

Sp =
∑

a∈(o/p)∗

ψ(−γaN)
∑

u∈(o/p)n

∑
w∈(o/p̃)n

ψ (γ {aF (μu+λw)+α(μu+λw).v}),

for suitable λ,μ ∈ o such that

ordp(μ) = ordp̃(λ) = 0 and ordp(λ) = ordp̃(μ) = 1.

Clearly,

ψ (γα(μu+λw).v) = ψ (γαμu.v)ψ (γαλw.v)

and

ψ (γaF (μu+λw)) = ψ

(
γa

{
μ2

n∑
i=1

aiu
2
i +(λτ )2

m∑
i=1

bi(w
τ
i )

2

})

since the characters ψ(γλ·) and ψ(γμτ ·) are both trivial on o. Putting everything together,
it follows that

Sp =Σ0

∑
a∈(o/p)∗

ψ(−γaN)Σ1(a)Σ2(a), (6.2)

where

Σ0 =

n∏
i=m+1

∑
w∈o/p̃

ψ (γαλwvi),

Σ1(a) =
∑

u∈(o/p)n

ψ

(
γ

{
aμ2

n∑
i=1

aiu
2
i +αμu.v

})
,

Σ2(a) =
∑

w∈(o/p̃)m

ψ

(
γ

{
a(λτ )2

m∑
i=1

bi(w
τ
i )

2+αλ
m∑
i=1

wivi

})
.

We estimate the first sum trivially via Σ0 � (N p̃)n−m = (Np)n−m.

The second sum factorises as

Σ1(a) =

n∏
i=1

∑
u∈o/p

ψ
(
γ
{
aμ2aiu

2+u(αμvi)
})

.

Recall from the definition of F(p) that α ∈ pd. Hence,

αμvi ∈ pd · p̃ ·̂Gp= o

since ordp̃(μ) = 1 and v ∈ Ĝp
n
, by assumption. Making the change of variables

u→ u−2aμ2aiαμvi,
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where 2aμ2ai denotes the multiplicative inverse of 2aμ2ai modulo p, we are led to the

expression∑
u∈o/p

ψ
(
γ
{
aμ2aiu

2+u(αμvi)
})

= ψ
(
−γ4aμ2ai(μαvi)

2
) ∑

u∈o/p

ψ
(
γaμ2aiu

2
)

since 4− 2 ≡ −4 (modp). The inner sum is a classical Gauss sum, as found in work of

Hecke [7, Satz 155], for example. We obtain∑
u∈o/p

ψ
(
γ
{
aμ2aiu

2+u(αμvi)
})

=

(
aai
p

)
τpψ

(
−γ4aμ2ai(μαvi)

2
)
,

where

τp =
∑

u∈o/p

ψ
(
γu2

)
.

This completes the proof of the identity

Σ1(a) =

(
a

p

)n(
a1 · · ·an

p

)
τnp ψ

(
−γ4aμ2

n∑
i=1

ai(μαvi)
2

)
.

It turns out that the remaining sum Σ2(a) can also be interpreted as a product of Gauss

sums. First, we observe that we have the factorisation

Σ2(a) =
m∏
i=1

∑
w∈o/p̃

ψ
(
γ
{
a(λτ )2bi(w

τ )2+αλwvi
})

=

m∏
i=1

∑
u∈o/p

ψ
(
γ
{
a(λτ )2biu

2+αλuτ−1

vi

})
,

on making the change of variables u= wτ . The trace is left invariant under conjugation.
On recalling that g ∈ Z so that gτ = g, it therefore follows that

ψ
(
γαλuτ−1

vi

)
= ψ (γτατλτuvτi ) = ψ (γαλτuvτi )

since (γα)τ = g = γα. Hence,

Σ2(a) =

m∏
i=1

∑
u∈o/p

ψ
(
γ
{
a(λτ )2biu

2+u(αλτvτi )
})

,

where

αλτvτi ∈ pd ·pτ · (̂Gp)τ ∈ o,

for 1 � i �m. The inner sum is a Gauss sum that we can evaluate, as previously. This
yields

Σ2(a) =

(
a

p

)m(
b1 · · ·bm

p

)
τmp ψ

(
−γ4a(λτ )2

m∑
i=1

bi(λ
ταvτi )

2

)
.

https://doi.org/10.1017/S1474748024000161 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000161


Generalised quadratic forms 2903

We now piece everything together in Equation (6.2). To begin with, it follows from

squaring and differencing that

|τp|2 =
∑

u∈o/p

ψ
(
γu2

) ∑
v∈o/p

ψ (2γuv) .

Since p � 2, we see that the inner sum is Np if u ∈ p and and 0 otherwise. Hence, it follows
that |τp|=

√
Np, from which we deduce that

Sp � (Np)(3n−m)/2

∣∣∣∣∣∣
∑

a∈(o/p)∗

(
a

p

)m+n

ψ
(
γ
{
−aN −4aM

})∣∣∣∣∣∣,
where

M = μ2

n∑
i=1

ai(μαvi)
2+(λτ )2

m∑
i=1

bi(λ
ταvτi )

2.

Since p � 2a1 · · ·anb1 · · ·bmμλτ , we may replace a by 4aa1 · · ·anb1 · · ·bmμ2(λτ )2 by a in

order to obtain

Sp(v)� (Np)(3n−m)/2|Kp|,

with

Kp =
∑

a∈(o/p)∗

(
a

p

)m+n

ψ
(
γ
{
−aμ2(λτ )2α2G(v)−4aa1 · · ·anb1 · · ·bmμ2(λτ )2N

})
,

with G is given by Equation (6.1). One notes that μ2(λτ )2α2G(v) ∈ o when v ∈ (Ĝp)n.
In particular,

ordp
(
μ2(λτ )2α2G(v)

)
= ordp(G(v))+2.

Thus, Kp is a Kloosterman sum, if 2 |m+n, and a Salié sum if 2 �m+n. It follows that

Kp �
{
Np if p |N and ordp(G(v))+2> 0,
√
Np otherwise.

The statement of the lemma is now clear.

We are now ready to reveal our final estimate for the exponential sum Sb(N ;m).

Lemma 6.2. Let ε > 0. Let b⊂ o be a nonzero ideal, and let m ∈ Ĝb
n
. Then

Sb(N ;m)� (Nb)
1
2−(n−m)/2+ε(NGb)n−m/2

∏
p|(b,N)
Np‖Nb

ordp(G(m))�−1

(Np)
1
2

∏
pk‖Nb

k�2

p
k
2 ,

where G is given by Equation (6.1).
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Proof. There is a factorisation b= b1b2, where Nb1 is square-free and Nb2 is square-full,
with gcd(Nb1,Nb2) = 1. It follows from Lemma 4.5 and Corollary 5.3 that

Sb(N ;m) = Sb1
(Nb2

2
N ; (Nb2)m)Sb2

(Nb1
2
N ; (Nb1)m)

� |Sb1
(Nb2

2
N ; (Nb2)m)|(Nb2)

1−(n−m)/2(NGb2)
n−m/2.

(6.3)

We now turn to Sb1
(Nb2

2
N ; (Nb2)m), in which we note that

(Nb2)mi ∈ (Nb2)Ĝb ∈ Ĝb1(Nb2)
Gb

−1

2 ∈ Ĝb1,

for 1� i� n. Since Nb1 is square-free, we have a factorisation

b1 = q1 · · ·qr,

for distinct prime ideals q1, · · · ,qr of residue degree 1 such that Nq1, · · · ,Nqr are distinct

rational primes. Let

ci =

r∏
j=1
j �=i

Nqj,

for 1� i� r. It now follows from a further application of Lemma 4.5 that

Sb1
(Nb2

2
N ; (Nb2)m) = Sq1

(Nb2
2
c1

2N ; (Nb2)c1m) · · ·Sqr
(Nb2

2
cr

2N ; (Nb2)crm).

In particular, we plainly have (Nb2)cim ∈ (Ĝqi)
n for 1� i� r.

We are now aligned for an application of Lemma 6.1. For each i ∈ {1, . . . ,r}, this yields

Sqi
(Nb2

2
ci

2N ; (Nb2)cim)� (Nqi)
θqi

+(3n−m)/2,

where

θqi
=

{
1 if qi |N and ordqi

(G(m))�−1,
1
2 otherwise.

Note that

(Nqi)
θqi

+(3n−m)/2 = (Nqi)
θqi

−(n−m)/2(NGqi)
n−m/2

since NGqi = (Nqi)
2. Thus,

Sb1
(Nb2

2
N ; (Nb2)m)� (Nb1)

1
2−(n−m)/2+ε(NGb1)

n−m/2
∏

p|(b1,N)
ordp(G(m))�−1

(Np)
1
2 .

Combining these estimates in Equation (6.3), we conclude that

Sb(N ;m)� (Nb)
1
2−(n−m)/2+ε(NGb)n−m/2(Nb2)

1
2

∏
p|(b1,N)

ordp(G(m))�−1

(Np)
1
2

since (Nb1)(Nb2) = Nb and (NGb1)(N
Gb2) = NGb. The statement of the lemma is now

clear.
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Our next task is to analyse the oscillatory integral K(u,Pm) when F is given by

Equation (1.5), based on Equation (4.15). To the fixed automorphism τ ∈ Gal(K/Q) in

Equation (1.5), we can associated a unique integer lτ ∈ {1, . . . ,d}, as in Equation (1.4).
We therefore have

F (l)(x) =
n∑

i=1

a
(l)
i (x

(l)
i )2+

m∑
i=1

b
(l)
i (x

(lτ−1 )
i )2,

for 1 � l � d. Let Al = Diag(a
(l)
1 , . . . ,a

(l)
n ) and Bl = Diag(b

(l)
1 , . . . ,b

(l)
m ,0, . . . ,0). Then it

follows that the quadratic form Equation (4.14) has an underlying matrix which is the

block diagonal matrix⎛⎜⎜⎜⎝
u1A1+u1τB1τ 0 · · · 0

0 u2A2+u2τB2τ · · · 0
...

...
. . .

...

0 0 · · · udAd+udτ
Bdτ

⎞⎟⎟⎟⎠ .

If m is given coordinates m= (m(1), . . . ,m(d)) on V n, then we have

K(u,Pm) =
d∏

l=1

∫
Rn

W (x(l))e
(
G(l)(x(l))−Pm(l).x(l)

)
dx(l),

where G(l) has underlying matrix ulAl+ulτBl. Since this matrix is diagonal, on assuming
that the weight W is chosen suitably, we may further factorise to obtain

K(u,Pm) =

d∏
l=1

H
(l)
1 · · ·H(l)

m I
(l)
m+1 · · ·I(l)n ,

where we write

H
(l)
i =

∫
R

W (x)e
(
(a

(l)
i ul+ b

(lτ )
i ulτ )x

2−Pm
(l)
i x

)
dx

for i�m, and

I
(l)
i =

∫
R

W (x)e
(
a
(l)
i ulx

2−Pm
(l)
i x

)
dx

for i > m.

Lemma 6.3. Let

Li(u) = aiu+ τ−1(biu),

for 1� i�m. Then, for any ε > 0, K(u,Pm) is essentially supported on the set of u and

m for which

|m(l)
i | �

{
P−1+ε|ρl(Li(u))| if i�m,

P−1+ε|ul| if i > m,
(6.4)
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for 1� l � d. Moreover, we have

K(u,Pm)� 1√
H(L1(u)) · · ·H(Lm(u))H(u)n−m

.

Proof. Clearly, we get exponential decay in K(u,Pm) unless P |m| � |u|P ε, as we now

assume. However, on examining each of the factors in K(u,Pm) separately, the essential
support of K(u,Pm) is rendered clear. Next, for each i � m and 1 � l � d, we have

ρl(Li(u)) = a
(l)
i ul+ b

(lτ )
i ulτ . The second derivative bound for exponential integrals yields

H
(l)
i �min

(
1, |ρl(Li(u))|−1/2

)
,

for i�m, and

I
(l)
i �min

(
1, |ul|−1/2

)
,

for i > m. The statement is now clear.

We now piece everything together in our expression (4.23) for E(N ;P ;X,Y ). We shall

continue to adhere to the convention that the value of ε > 0 is allowed to change at each

appearance and that all implied constants are allowed to depend on ε.

Recall the definition of U from Equation (4.22). Combining Equation (4.23) and Lemma
6.3, we obtain

E(N ;P ;X,Y )�A P εY −n
∑

b∈B(X,Y )

∑
0 �=m∈Ĝb

n

|Sb(N ;m)|
∫

R(m)

f(u)du+P−A,

where now

f(u) =
1√

H(L1(u)) · · ·H(Lm(u))H(u)n−m
(6.5)

and R(m) denotes the set of u ∈ U such that Equation (6.4) holds.

We now make the exact same change of variables c = δm that we made previously in
Equation (5.2). Then, in particular, we can assume that Equation (5.3) holds. Moreover,

on dropping the information about G(m), Lemma 6.2 yields

Sb(N ;δ−1c)� (Nb)
1
2−(n−m)/2+ε(NGb)n−m/2

√
g(b)

�X
1
2−(n−m)/2+εY n−m/2

√
g(b),

where

g(b) =
∏

p|(b,N)
Np‖Nb

Np
∏

pk‖Nb

k�2

pk.

In this notation, we conclude that

E(N ;P ;X,Y )�A
X

1
2−(n−m)/2P ε

Y m/2

∑
b∈B(X,Y )

∑
0 �=c∈o

n

(5.3) holds

√
g(b)

∫
R(δ−1c)

f(u)du+P−A.
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Let

L(u) =
∑

b∈B(X,Y )

∑
c∈C (u,b)

√
g(b),

where C (u,b) is the set of nonzero vectors c ∈ on for which Equation (5.3) holds and

|c(l)i | �
{
P−1+εY 1/d|ρl(Li(u))| if i�m,

P−1+εY 1/d|ul| if i > m,

for 1� l � d. Then we may write

E(N ;P ;X,Y )� X
1
2−(n−m)/2P ε

Y m/2

∫
U

f(u)L(u)du, (6.6)

rendering our next task to estimate L(u). The following result is an analogue of

Lemma 5.5.

Lemma 6.4. Let u ∈ V be such that H(u)� P d+ε/X. If L(u) �= 0, then

P d−ε

X
� H(u)� P d+ε

X
or P−d+εY max

1�i�m
H(Li(u))� 1. (6.7)

Moreover, we have L(u)� P εXJ(u), where

J(u) =
m∏
i=1

max
{
1,P−dY H(Li(u))

}
.

Proof. Let us write b = b1b2, where Nb1 is square-free and Nb2 is square-full, with

gcd(Nb1,Nb2) = 1. Then g(b) = Nb2Nh, where h is the greatest common ideal divisor of
b1 and N. In summary, we may now write

L(u)�
∑

Nb2�X
Nb2 square-full

√
Nb2

∑
Nb1�X/(Nb2)

NG
b1�Y/NG

b2

gcd(Nb1,Nb2)=1

μ2(Nb1)
∑

h|(b1,N)

√
Nh#C (u,b1b2). (6.8)

In order to proceed, we assume without loss of generality that u ∈ V satisfies

H(L1(u))� · · ·� H(Lm(u)).

Let us write c= (c′,c′′), where c′ = (c1, . . . ,cm) and c′′ = (cm+1, . . . ,cn). Keeping in mind

Equation (5.3), we first fix a choice of c′′ ∈
(
(b1b2)

−1Gb1
Gb2

)n−m
satisfying

|c(l)i | � P−1+εY 1/d|ul|,

for m+1� i� n and 1� l � d. We claim that there exists λ ∈K such that

(λ) = (b1b2)
−1Gb1

Gb2p
−1
2 ,

for a suitable prime ideal p2 of norm O(P ε). To begin with, it follows from part (ii)

of Lemma 3.1 that there exists λ3 ∈ o such that (λ3) = (b1b2)
−1Gb1

Gb2p3 for a suitable

prime ideal p3 of norm O(P ε). A second application of this result reveals that there exists
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λ2 ∈ o and a prime ideal p2 of norm O(P ε) such that (λ2) = p3p2. The claim now follows

with λ= λ3/λ2.

On multiplying by units, we can further assume that

X−1/dY 1/d � |λ(l)| �X−1/dY 1/d+ε,

for 1� l � d, on recalling that Nb1Nb2 �X and NGb1N
Gb2 � Y . Making the change of

variables c′′ = λd′′, we deduce that for m+1� i� n, we have di ∈ o and

|d(l)i | � P−1+εX1/d|ul|,

for 1� l � d. In particular, if c′′ �= 0, then there exists i ∈ {m+1, . . . ,n} such that

1� |NK/Q(di)| � P−d+εX|Nm(u)|.

Recalling that Nm(u)� H(u)� P d+ε/X, we deduce that

c′′ �= 0=⇒ P d−ε

X
� H(u)� P d+ε

X
. (6.9)

Moreover, arguing as in Lemma 5.5, it readily follows from a result in Lang [9, Thm. 0 in

§V.1] that the overall number of vectors d′′ is O(P ε). We must next address the number

of c′ ∈ om, with (c′,c′′) �= 0, which satisfy

|c(l)i | � P−1+εY 1/d|ρl(Li(u))|,

for 1� i�m and 1� l � d. It is clear that

c′ �= 0=⇒ 1� P−d+εY H(Lm(u)). (6.10)

Together, Equations (6.9) and (6.10) yield the first part of the lemma.

Appealing once more to Lang [9, Thm. 0 in §V.1], we deduce that the number of c′ is

�
m∏
i=1

(
1+

d∏
l=1

P−1+εY 1/d|ρl(Li(u))|
)

� J(u)

in the notation of the lemma. Returning to Equation (6.8), we deduce that

L(u)� P εJ(u)
∑

Nb2�X
Nb2 square-full

√
Nb2

∑
h|N

√
Nh

∑
Nb1�X/(Nb2)

h|b1

1

� P εJ(u)
∑

Nb2�X
Nb2 square-full

√
Nb2

∑
h|N

√
Nh · X

(Nb2)(Nh)

� P εXJ(u)
∑

Nb2�X
Nb2 square-full

1√
Nb2

since there are O(1) ideal divisors h |N when N ∈ o is nonzero. Finally, the lemma follows

on noting that there are O(
√
X) integral ideals such that Nb2 is a square-full integer of

modulus at most X.
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We may now apply Lemma 6.4 in Equation (6.6). Let R denote the set of u ∈ U such

that Equation (6.7) holds. On recalling the definition (6.5) of f(u), we deduce that

E(N ;P ;X,Y )�A P−A+
X

3
2−(n−m)/2P ε

Y m/2
I(X,Y ), (6.11)

where

I(X,Y ) =

∫
R

∏m
i=1max

{
1,P−dY H(Li(u))

}√
H(L1(u)) · · ·H(Lm(u))H(u)n−m

du.

The following result deals with this integral.

Lemma 6.5. We have

I(X,Y )� P ε(P−dY )m

((
P d

X

)3m/2−n/2+1

+1

)

+ cY P
ε

(
P d(m/2−n/2+1)Y m−1

X3m/2−n/2
+

Y

P d

)
+P ε

(
P d

X

)1−(n−m)/2

,

where

cY =

{
1 if Y � P d,

0 otherwise.

Proof. In the proof of this result, we shall make frequent use of the observation that

H(Li(u)) =
d∏

l=1

max{1,|a(l)i ul+ b
(lτ )
i ulτ |} � H(u)2,

for any i ∈ {1, . . . ,n}, which follows from Equation (5.6).
We may assume without loss of generality that the range of integration is restricted to

satisfy

H(L1(u))� · · ·� H(Lm(u)). (6.12)

We further break the range of integration into m+1 regions. For 0� t�m, let Rt denote

the set of u ∈ V with H(u)� P d+ε/X, such that Equations (6.7) and (6.12) hold, with

H(Lt(u))� P d−ε/Y , H(Lt+1(u))� P d−ε/Y.

(Note that the left inequality is vacuous when t = 0 and similarly for the right-hand
inequality when t=m.) In particular, it is clear that Rm = ∅ when the second inequality

in Equation (6.7) holds. Moreover, when t ∈ {1, . . . ,m−1}, we observe that

Rt �= ∅=⇒ Y � P d−ε

since H(Lt(u))� 1. We have

I(X,Y )�
m∑
t=0

P ε

∫
Rt

(
(P−dY )m−tH(Lt+1(u)) · · ·H(Lm(u))

)√
H(L1(u)) · · ·H(Lm(u))H(u)n−m

du.
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Thus,

I(X,Y )�
m∑
t=0

I(t)(X,Y ),

where

I(t)(X,Y ) = (P−dY )m−tP ε

∫
Rt

(H(Lt+1(u)) · · ·H(Lm(u)))
1
2

H(u)(n−m)/2
du,

on taking H(L1(u)) · · ·H(Lt(u))� 1.
We first deal with I(0)(X,Y ). Recalling that H(Li(u))�H(u)2 for 1� i�m, it follows

that

(H(L1(u)) · · ·H(Lm(u)))
1
2

H(u)(n−m)/2
� H(u)3m/2−n/2.

If 3m/2−n/2�−1, then Equation (4.13) yields∫
R0

H(u)3m/2−n/2du� P ε

(
P d

X

)3m/2−n/2+1

.

Alternatively, if 3m/2−n/2 < −1, then the left-hand side is O(1) by Equation (4.11).
Thus,

I(0)(X,Y )� P ε(P−dY )m

((
P d

X

)3m/2−n/2+1

+1

)
,

which is satisfactory.

Terms with 1 � t �m− 1 only contribute when Y � P d. Arguing as above, it follows
from Equations (4.11) and (4.13) that

m−1∑
t=1

I(t)(X,Y )�
m−1∑
t=1

(P−dY )m−t

∫
Rt

H(u)3m/2−t−n/2du

� P ε
m−1∑
t=1

(P−dY )m−t

((
P d

X

)3m/2−t−n/2+1

+1

)

� P ε
m−1∑
t=1

(
(P−dY )m

(
P d

X

)3m/2−n/2+1(
X

Y

)t

+(P−dY )m−t

)

� P ε

{
P d(m/2−n/2+1)Y m−1

X3m/2−n/2
+

Y

P d

}
since X � Y . This is satisfactory for the lemma.

It remains to estimate I(m)(X,Y ). In this case, we may assume that u satisfies the first

inequality in Equation (6.7) since Rm = ∅ otherwise. Hence, Equation (4.12) yields

I(m)(X,Y ) =

∫
{u∈V :Pd−ε/X�H(u)�Pd+ε/X}

1

H(u)(n−m)/2
du� P ε

(
P d

X

)1−(n−m)/2

,

which is satisfactory and so completes the proof of the lemma.
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It is now time to return to our goal of proving that Equation (4.21) holds for a suitable

Δ> 0 for any X,Y � 1 satisfying Equation (4.20). We wish to do so under the assumption

that n−m � 4. Applying Lemma 6.5 in Equation (6.11), the overall contribution to
E(N ;P ;X,Y ) from the final term is seen to be

� X
3
2−(n−m)/2P ε

Y m/2
·
(
P d

X

)1−(n−m)/2

� X1/2

Y m/2
P−d(n−m−2)/2+ε

� P−d(n−m−2)/2+ε,

on taking X � Y and m � 1. This is O(P−d+ε), if n−m � 4, which is satisfactory for

Equation (4.21). Next, the second term in Lemma 6.5 makes the overall contribution

� X
3
2−(n−m)/2P ε

Y m/2
· cY

(
P d(m/2−n/2+1)Y m−1

X3m/2−n/2
+

Y

P d

)
� cY P

ε

(
Y m/2−1

Xm−3/2P d(n−m−2)/2
+

X3/2−(n−m)/2

Y m/2−1P d

)
.

If m� 2, we take Y �X2 in the first term, and X,Y � 1 in the second term. Assuming

that n−m� 4, this yields

� P−d(n−m−2)/2+ε+P−d+ε � P−d+ε,

which is satisfactory for Equation (4.21). If m = 1, on the other hand, then we get the

contribution

� cY P
ε

(
X1/2

Y 1/2P d(n−3)/2
+

Y 1/2

X(n−4)/2P d

)
� P−d/2+ε,

by Equation (4.20) and the assumption n�m+4= 5, together with the fact that Y � P d

when cY �= 0.
Turning to the contribution to Equation (6.11) from the first term in Lemma 6.5, we

see that this is

� X
3
2−(n−m)/2P ε

Y m/2
· (P−dY )m

((
P d

X

)3m/2−n/2+1

+1

)

=
Y m/2P d(m−n+2)/2+ε

Xm−1/2
+

X
3
2−(n−m)/2Y m/2P ε

P dm

�X1/2P d(m−n+2)/2+ε+X
3
2−n/2+3m/2P−dm+ε.

Taking X � P d, the first term is O(P−d(n−m−3)/2+ε), which is O(P−d/2+ε), if n−m� 4.
The second term is plainly P−dm+ε if 3

2 −n/2+3m/2� 0, and it is

� P d( 3
2−n/2+m/2)+ε = P−d(n−m−3)/2+ε
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otherwise, on taking X � P d. This is O(P−d/2+ε) if n−m� 4. All of our estimates are
satisfactory for Equation (4.21), which therefore concludes the proof of Theorem 1.5.
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