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Abstract

Merca [‘Congruence identities involving sums of odd divisors function’, Proc. Rom. Acad. Ser. A Math.
Phys. Tech. Sci. Inf. Sci. 22(2) (2021), 119–125] posed three conjectures on congruences for specific
convolutions of a sum of odd divisor functions with a generating function for generalised m-gonal numbers.
Extending Merca’s work, we complete the proof of these conjectures.
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Euler’s partition function p(n) is the number of partitions of a nonnegative integer n
and its generating function is given by

∞∑
n=0

p(n)qn =

∞∏
k=1

1
1 − qk , |q| < 1.

The properties of the function p(n), such as its asymptotic behaviour and its parity,
have been an object of study for a long time. For instance, Ballantine and Merca [1]
recently made a conjecture on when ∑

ak+1 is a square

p(n − k)

is odd, which was proved by Hong and Zhang [2].
The function p(n) is linked to the divisor function

σ(n) :=
∑
d|n

d,
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whose generating function is given by
∞∑

n=1

σ(n)qn =

∞∑
n=1

nqn

1 − qn .

In particular, p(n) and σ(n) satisfy the following convolution identities, which differ
only in the values of p(0) and σ(0):

∞∑
k=−∞

(−1)k p(n − P5(k)) = δ0,n, with p(0) = 1,

∞∑
k=−∞

(−1)kσ(n − P5(k)) = 0, with σ(0) replaced by n,

where δij is the Kronecker delta and Pm(k) is the kth generalised m-gonal number

Pm(k) :=
(m

2
− 1
)
k2 −
(m

2
− 2
)
k. (1)

Motivated by these identities as well as the fact that the divisor functions σ(n) and

σodd(n) :=
∑
d|n

d odd

d,

where σodd(n) := 0 for n ≤ 0, have the same parity, Merca [3] recently studied the
relationship between σodd(n) and the generalised m-gonal numbers. More specifically,
he investigated for which positive integers m the following congruences hold for all
n ∈ Z+:

∞∑
k=−∞
σodd(n − Pm(k)) ≡

⎧⎪⎪⎨⎪⎪⎩
n (mod 2) if n = Pm( j), j ∈ Z,
0 (mod 2) otherwise,

(2)

∞∑
k=−∞
σodd(n − P5(k)) ≡

⎧⎪⎪⎨⎪⎪⎩
n (mod m) if n = P5( j), j ∈ Z,
0 (mod m) otherwise,

(3)

∞∑
k=−∞

(−1)P3(−k)σodd(n − P5(k)) ≡
⎧⎪⎪⎨⎪⎪⎩

(−1)P3(−j) · n (mod m) if n = P5( j), j ∈ Z,
0 (mod m) otherwise.

(4)

In particular, Merca posed the following conjectures in [3].

CONJECTURE 1. The following are true.

(i) The congruence (2) holds for all n ∈ Z+ if and only if m ∈ {5, 6}.
(ii) The congruence (3) holds for all n ∈ Z+ if and only if m ∈ {2, 3, 6}.
(iii) The congruence (4) holds for all n ∈ Z+ if and only if m ∈ {2, 4}.

Merca showed the ‘if’ condition for each of these conjectures. Using his work, we
obtain the following theorem.
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THEOREM 2. Merca’s conjectures are true.

PROOF. We begin by proving (ii). Merca showed that (3) holds if m ∈ {2, 3, 6} [3,
Theorem 3]. Hence, it suffices to show that if m � {2, 3, 6}, then there exists some
n ∈ Z+ such that n � P5( j) for all j ∈ Z and

∞∑
k=−∞
σodd(n − P5(k)) � 0 (mod m). (5)

Since σodd(n − P5(k)) = 0 whenever n − P5(k) ≤ 0, the sum in (5) is in fact finite and
we easily compute

∑
k σodd(3 − P5(k)) = 6, where 3 � P5( j) for j ∈ Z. Thus, (5) holds

unless 6 ≡ 0 (mod m). But this is the case only if m ∈ {2, 3, 6}.
Next, we prove (iii). Again, Merca proved that (4) holds if m ∈ {2, 4} [3, Theorem

4]. Hence, it suffices to show that if m � {2, 4}, then there exists some n ∈ Z+ such that
n � P5( j) for all j ∈ Z and

∞∑
k=−∞

(−1)P3(−k)σodd(n − P5(k)) � 0 (mod m). (6)

We compute
∑

k(−1)P3(−k)σodd(3 − P5(k)) = 4, where 3 � P5( j) for j ∈ Z, and so (6)
holds unless 4 ≡ 0 (mod m). But this is the case only if m ∈ {2, 4}.

Finally, we prove (i). Since σodd(n) is odd if and only if n is a square or twice a
square (see [3, page 3]),

∞∑
n=1

σodd(n)qn ≡
∞∑

n=1

qn2
+

∞∑
n=1

q2n2
(mod 2). (7)

The nth coefficient of
( ∞∑
�=1

σodd(�)q�
)( ∞∑

k=−∞
qPm(k)

)
=

∞∑
�=1

∞∑
k=−∞
σodd(�)q�+Pm(k)=

∞∑
n=1

( ∞∑
k=−∞
σodd(n − Pm(k))

)
qn

is given by
∑∞

k=−∞ σodd(n − Pm(k)). On the other hand, the nth coefficient of

( ∞∑
�=1

q�
2
+

∞∑
�=1

q2�2
)( ∞∑

k=−∞
qPm(k)

)
=
∑
�≥1
k∈Z

(q�
2+Pm(k) + q2�2+Pm(k))

is given by am(n) + bm(n), where

am(n) = |Am(n)| := #{(�, k) ∈ Z+ × Z : �2 + Pm(k) = n},
bm(n) = |Bm(n)| := #{(�, k) ∈ Z+ × Z : 2�2 + Pm(k) = n}.

Thus, due to (7),
∞∑

k=−∞
σodd(n − Pm(k)) ≡ am(n) + bm(n) (mod 2).
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Suppose first that m ≥ 7. Then we claim that Pm(0) = 0, Pm(1) = 1 and Pm(k) > 3
for all k � {0, 1}. From (1), it is clear that Pm(0) = 0 and Pm(1) = 1. To see
that Pm(k) > 3 for all k � {0, 1}, note that since the leading term of Pm(x) is
positive and its minimum is at (m − 4)/(2m − 4), where 0 < (m − 4)/(2m − 4) < 1,
we have Pm(k) ≥ Pm(2) = m ≥ 7 for k ≥ 2 and Pm(k) ≥ Pm(−1) = m − 3 ≥ 4 for
k ≤ −1.

Now, let n = 3. Then the above shows that n is not a generalised m-gonal number
for m ≥ 7, and so for (2) to hold, we must have

∑∞
k=−∞ σodd(3 − Pm(k)) ≡ 0 (mod 2).

If (�, k) ∈ Am(3), then �2 = 3 − Pm(k), so that in particular �2 ≤ 3, which forces � = 1.
But then we must have Pm(k) = 2, which we have seen to be impossible. Hence, Am(3)
is empty and am(3) ≡ 0 (mod 2). On the other hand, if (�, k) ∈ Bm(3), we must again
have � = 1. It follows that Pm(k) = 1, which is the case if and only if k = 1. Hence,
Bm(3) = {(1, 1)} and bm(3) ≡ 1 (mod 2). We conclude that

∑∞
k=−∞ σodd(3 − Pm(k)) ≡

am(3) + bm(3) ≡ 1 � 0 (mod 2).
Merca showed that (2) holds for m ∈ {5, 6} and, for m ∈ {1, 2}, the sum in (2)

diverges; hence, it remains to consider m ∈ {3, 4}. Suppose first that m = 3 and note
that P3(k) = 1

2 (k2 + k). We have 3 = P3(−3) = P3(2), so for (2) to hold, we must have∑∞
k=−∞ σodd(3 − P3(k)) ≡ 3 ≡ 1 (mod 2). If (�, k) ∈ A3(3), then � = 1 and P3(k) = 2,

which is impossible. Hence, A3(3) is empty. If (�, k) ∈ B3(3), then � = 1 and P3(k) = 1,
which is the case if and only if k ∈ {−2, 1}. It follows that B3(3) = {(1,−2), (1, 1)} and∑∞

k=−∞ σodd(3 − P3(k)) ≡ a3(3) + b3(3) ≡ 0 � 1 (mod 2).
Finally, suppose that m = 4 and note that P4(k) = k2. Since 4 = P4(2), for (2) to

hold we must have
∑∞

k=−∞ σodd(4 − P4(k)) ≡ 4 ≡ 0 (mod 2). If (�, k) ∈ A4(4), then
either � = 1 and P4(k) = 3, which is impossible, or � = 2 and P4(k) = 0, which is the
case if and only if k = 0. Thus, A4(4) = {(2, 0)}. On the other hand, if (�, k) ∈ B4(4),
then � = 1 and P3(k) = 2, which is impossible. It follows that B4(4) is empty and∑∞

k=−∞ σodd(4 − P4(k)) ≡ a4(4) + b4(4) ≡ 1 � 0 (mod 2). �
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