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Abstract

In this paper we address the question of finding the point which maximizes the pth
moment of the exit time of planar Brownian motion from a given domain. We present
a geometrical method for excluding parts of the domain from consideration which
makes use of a coupling argument and the conformal invariance of Brownian motion. In
many cases the maximizing point can be localized to a relatively small region. Several
illustrative examples are presented.
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1. Introduction

Let Zt := Xt + iYt be a planar Brownian motion starting at a point a in a domain U. We
will let τU = τU(a) be the first time that Zt exits U, and we will use the standard notation
Ea to denote expectation conditioned on Z0 = a a.s. The focus of this paper is the following
optimization problem.

For a given domain in the plane and 0 < p < ∞, find the point a which maximizes the
quantity Ea[(τU)p].

We will refer to such a point as a pth center of U; it is not generally unique, as the easy example
of an infinite strip shows. For many domains, even simple ones such as an isosceles triangle, it
is difficult to find any of the pth centers, but we will show how elementary coupling arguments
and the conformal invariance of Brownian motion in many cases allows us to locate a small
region in U which must contain all pth centers. In certain cases in which the domain in question
has a high degree of symmetry, it will allow us to locate all pth centers.

Before describing our methods, we present a brief overview of some earlier works related
to this problem. The case p = 1 is commonly referred to as the ‘torsion problem’ due to its
connection with mechanics, and is naturally the most tractable. The function h(a) =Ea[τU]
satisfies �h = −2, and therefore PDE techniques can be employed to great effect. Sperb [17,
Chapter 6] gives a good account of this problem and methods for attacking it in special cases,
such as when the domain in question is convex. Further results along the same lines, focusing
in particular on convex domains, can be found in [9], [12], and [17].

Other interesting related problems have been tackled by PDE methods. For example, in the
famous paper [2] (see also the related work [3]) eigenvalue techniques are used to demonstrate
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1136 M. BOUDABRA AND G. MARKOWSKY

relationships between Ea[τU] and geometric qualities of the domain, such as the size of the
hyperbolic density and the inradius (the radius of the largest disk contained in the domain).
The methods developed there have been extended by other authors in a number of different
directions. For example, Méndez-Hernández [14] proved a number of related stochastic domi-
nation results concerning convex domains in R

n and various types of symmetrizations. These
results allow conclusions to be reached concerning the comparison of pth moments of the exit
times from these domains. One striking consequence of the eigenvalue methods is the fact that
over all domains with a given area, the disk maximizes the pth moment of the exit time of
Brownian motion for all p. The recent work by Kim [11] contains a discussion and refinements
of this result. We would also like to mention the interesting and very recent preprint [5], in
which questions similar to ours are addressed; the authors there demonstrate bounds on the
quantity λ

p
1(U) supa∈U Ea[(τU)p], where λ1(U) denotes the first Dirichlet eigenvalue for the

Laplacian in U, and prove the existence of extremal domains with regards to this quantity over
various classes of convex domains.

Our results differ from those described above in the following ways. We have not employed
PDE methods at all, choosing instead to work with an elementary coupling method. Perhaps as
a consequence of this, convexity plays little role in our discussion, although a weaker concept
called �-convexity (defined below) will be important. The type of coupling we will use is not
entirely new, and has found a number of uses in related topics, for instance in investigations
into the ‘hot spots’ conjecture such as [1], [4], and [16]. However, we believe that it has not yet
been applied directly in the manner we use here. Furthermore, we restrict our attention to two
dimensions, which allows conformal mappings to take prominence and to extend the standard
notion of coupling. We present several methods for localizing the p-centers of a domain, and
then consider a number of specific domains, showing in each case how our methods can be
used to localize the pth centers of the domain. In what follows we assume p is a fixed positive
number. However, in order to reduce the qualifications needed to state our results, for any
planar domain U for which we are interested in maximizing the pth moment, we will assume
that Ea[(τU)p] < ∞ for all points a ∈ U; this would follow if Ea[(τU)p] < ∞ for any a ∈ U, as
is shown in [7].

2. Partial symmetry and convexity with respect to a line.

Definition 2.1. Let U be a domain of C. We say that a line � : ax + by + c = 0 is a partial
symmetry axis for U if one of the two sets U+ := U ∩ {ax + by + c > 0} or U− := U ∩ {ax +
by + c < 0} can be folded over � and fits into U, more precisely if σ�(U+) or σ�(U−) remains
inside U, where σ� denotes the symmetry over �. The subset among U± that satisfies this
property (i.e. the smaller side with respect to the symmetry) is called symmetric side of U over
�. So, for instance, any line intersecting D= {|z| < 1} is a partial symmetry axis for D but the
line y = 2x is not one for the square {|x| < 1, |y| < 1}, since the reflection over this line of the
point (1,1) is the point (1/5, 7/5), which is not in the closure of the square. Note that both of
U± are symmetric sides if and only if � is a symmetry axis for U.

Theorem 2.1. Let S be the symmetric side of U over a partial symmetry axis �. Then, for
any a ∈ S we can find Brownian motions Zt starting at a and Z̃t starting at σ�(a) defined on
the same probability space such that τU ≤ τ̃U a.s. (where τ̃U is the exit time from U of Z̃).
Furthermore, if σ�(S) is strictly contained in U \ (S ∪ �) then P(τU < τ̃U) > 0. In particular,
Ea[τ p

U] ≤Eσ�(a)[τ̃
p
U] (with strict inequality if σ�(S) is strictly contained in U \ (S ∪ �)).
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Maximizing the pth moment of exit time 1137

Proof. This follows from a coupling argument. Let Zt start at a ∈ S, and let H� be its hitting
time of the line �. Form the process Z̃t by the rule

Z̃t =
{

σ�(Zt) if t < H�,

Zt if t ≥ H�.

It follows from the strong Markov property and the reflection invariance of Brownian
motion that Z̃t is a Brownian motion. Clearly τU = τ̃U on the set {τU ≥ H�}, and our con-
ditions on S imply τU ≤ τ̃U on the set {τU < H�}. Furthermore, if σ�(S) is strictly contained in
U \ (S ∪ �), then Zt has some positive probability of leaving U before Z̃t does; this is implied
for instance by [6, Theorem I.6.6]. The result follows. �

This theorem allows us in essence to exclude the symmetric side of any partial symmetry
axis for U in our search for pth centers. The only exception to this rule is when σ�(S) =
U \ (S ∪ �), i.e. when � is a symmetry axis of U. However, in most cases a symmetry axis
will contain all pth centers. To see why this is so, we need another definition.

Definition 2.2. Let � be a symmetry axis of U. We say that U is �-convex if

tz + (1 − t)σ�(z) ∈ U for all (z, t) ∈ U × [0, 1].

In other words, for every z ∈ U, the segment joining z and σ�(z) remains inside U.

It is clear that any convex U is �-convex for any symmetry axis �, and a less trivial example
can be given by {−f (x) < y < f (x)}, where f is a positive continuous function on the real line,
which is �-convex with � =R. A domain which is not �-convex with respect to a symmetry
axis can be given by

Wε = {−ε < y < ε, |x| < 1} ∪
{
|z − 1| < 1

2

}
∪

{
|z + 1| < 1

2

}
with ε < 1/2; this has the real and imaginary axes as symmetry axes but is not �-convex with
respect to the imaginary axis (though it is with respect to the real line). As will be seen below,
this domain also shows why �-convexity is required in the following proposition.

Proposition 2.1. Suppose U is �-convex with respect to a symmetry axis �. Then all pth
centers of U lie on �.

Proof. Let a ∈ U \ �, and let

â = 1

2
a + 1

2
σ�(a)

be the orthogonal projection of a onto �. Let L be the line parallel to � which passes through
the point

1

2
a + 1

2
â.

Speaking informally, this is the line halfway between a and �. �-convexity implies that L is
a partial symmetry axis of U, and if S is the component of U \ L containing a then σL(S) is
strictly contained in U \ (S ∪ L). It therefore follows from Theorem 2.1 that Ea[τ p

U] <Eâ[τ p
U].

The result follows. �
Note that this proposition completely solves our problem in the case that our domain is �-

convex with respect to two or more non-parallel symmetry axes, since all pth centers must lie
at their point of intersection, and we have also incidentally proved the purely geometrical fact
that all such symmetry axes must coincide at a unique point; more on this in the final section.
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Thus, for instance, all p-centers of any regular polygon, a circle, an ellipse, a rhombus, and
any number of other easily constructed examples must lie at their natural centers. To see an
example of a domain with intersecting symmetry axes but where the point of intersection is
not a pth center, let us return to the domains Wε described immediately before this proposition.
Proposition 2.1 implies that all pth centers lie on the real line, but it is easy to see that if we
make ε sufficiently small then 0, the intersection point of the two symmetry axes, will not be
a pth center (clearly τWε (1) ≥ τ{|z−1|<1/2}(1), so that E1[τ p

Wε
] always remains greater than a

positive constant, but τWε (0) decreases monotonically to 0 a.s. as ε ↘ 0, so that E1[τ p
Wε

] ↘ 0).
Let us now look at an example that shows the use of the results proved up to this point, but

also their limitations. Suppose U is the isosceles right-angled triangle with vertices at −1, 1,

and i. The imaginary axis is an axis of symmetry, and U is �-convex with respect to this axis, so
all pth centers must lie on the imaginary axis. The line {y = 1/2} is a partial symmetry axis for
U, with U ∩ {y > 1/2} the symmetric side, so all p-centers must lie on {x = 0, y ≤ 1/2}. Now
common sense tells us that the pth centers cannot be too close to the real axis as well, because
this is a boundary component, but there is no good partial symmetry axis to apply to conclude
that rigorously. The way out of this difficulty is to extend our method of reflection to curves
more general than straight lines. For this, we will need to utilize the conformal invariance of
Brownian motion, via the following famous theorem of Lévy (see [6] or [15]).

Theorem 2.2. If f is a holomorphic function, then f (Zt) is a time-changed Brownian motion.
More precisely, f (Zκ−1(t)) is a Brownian motion where

κ(t) :=
∫ t

0
|f ′(Zs)|2 ds for t ≥ 0.

This allows us to extend Theorem 2.1 as follows.

Proposition 2.2. Suppose U is a domain with an axis of symmetry �, and suppose f is a con-
formal map defined on U with the property that |f ′(z)| ≥ |f ′(σ�(z))| for all z ∈ A, where A is one
component of U\� and σ� is the symmetry over �. Then, for any a ∈ A, we can find Brownian
motions Zt starting at f(a) and Z̃t starting at f (σ�(a)) defined on the same probability space
such that τf (U)(f (a)) ≥ τ̃f (U)(f (σ�(a))) a.s. (where τ̃U is the exit time from U of Z̃). In particular,

Ef (a)
[
τ

p
f (U)

] ≥Ef (σ�(a))
[
τ

p
f (U)

]
.

If there is any point in A at which |f ′(z)| > |f ′(σ�(z))| then

Ef (a)
[
τ

p
f (U)

]
>Ef (σ�(a))

[
τ

p
f (U)

]
(for this statement we recall the assumption that Ew[τ p

f (U)] < ∞ for any w ∈ f (U)).

Proof. Let Zt be a Brownian motion starting at a, and let Z̃t be defined as in Theorem 2.1.
According to Theorem 2.2, the processes f (Zt) and f (Z̃t) are time-changed Brownian motions,
and the time changes are given by κ−1(s) and κ̃−1(s), respectively, where

κ(t) =
∫ t

0
| f ′(Zt) |2 dt

κ̃(t) =
∫ t

0
| f ′(Z̃t) |2 dt

⎫⎪⎪⎬⎪⎪⎭ t < τU .
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Now our assumptions imply |f ′(Zt)| ≥ |f ′(Z̃t)| a.s. for all t < τU , and thus κ(t) ≥ κ̃(t) a.s. for
all t < τU . It follows from this that τ ≥ τ̃ a.s., where τ and τ̃ are the exit times from f (U) of
the Brownian motions f (Zκ−1(s)) and f (Z̃κ̃−1(s)), which begin at f (a) and f (σ�(a)), respectively.
The result follows. �

We can obtain a corollary that will be useful for the isosceles triangle and in other cases by
taking

f (z) = z0 + R

(
z + i

z − i

)
for z0 ∈C and R > 0,

which takes the real axis to the circle C = {|z − z0| = R}, the upper half-plane to the outside of
C, and the lower half-plane to the inside. We have

|f ′(z)| = 2R

|z − i|2 ,

and it is easy to check that |f ′(z)| > |f ′(z̄)| for all z in the upper half-plane. Applying Proposition
2.2 and working through the implications yields the following.

Corollary 2.1. Let C = {|z − z0| = R} be a circle in C, with inside I and outside O. If U is a
domain such that σC(U ∩ I) ⊆ (U ∩O), then no pth center of U lies in I.

Note that here σC denotes reflection over the circular arc C, that is,

σC(z) = z0 + R2

z − z0
.

We remark further that the singularity that f has at i does not cause a problem in this result,
because E0(Zt = i for some t ≥ 0) = 0, so a.s. a Brownian motion starting at 0 will not hit the
singularity in any case. The compact set {Bt : 0 ≤ t ≤ τU} is therefore bounded away from i
a.s., and the result goes through.

Let us now apply this corollary to the isosceles right-angled triangle U shown in Figure 1.
If C is the circle passing through −1 and 1 which intersects the real axis at angles of π/8, then
the reflection of the set A= I ∩ U will be the region B in the upper half-plane bounded by C
and the circle which passes through −1 and 1 and intersects the real axis at angles of π/4; this
can be seen by noting that the transformation σC preserves angles and also preserves the class
of circles on the Riemann sphere (which includes lines, interpreted as circles through ∞).

As this region lies within U, we conclude that no pth centers lie within A. A bit of Euclidean
geometry shows that C intersects the imaginary axis at csc (π/8) − cot (π/8) ≈ 0.20, and cou-
pled with our observations above we see that all pth centers must lie on the imaginary axis
between the points 0.2i and 0.5i. In fact, the upper bound of 0.5i can be improved by using the
angle bisector of the angles at 1 or −1; see Example 3.2. The reader may also have observed
that the reflected circular domain does not do a good job of filling the triangle, and therefore it
stands to reason that the lower bound may also be improved; more on this in the final section.

Finally, the following result can be useful when U is mapped to itself by an antiholomorphic
function f̄ (this means that the conjugate of f̄ , f (z), is holomorphic). We will denote the deriva-
tive of this function (with respect to z̄) by f ′(z). An example of this is when U is an annulus, as
will be explored in Section 3.

Proposition 2.3. Let f : U −→ U be antiholomorphic, and consider the two sets

	 := {z ∈ U | |f̄ ′(z)| < 1},

 := {z ∈ U | |f̄ ′(z)| = 1}.

If f̄ (U \ 	) ⊂ 	 and f̄|
 = id
, then all pth centers are contained in 	.
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FIGURE 1: Reflection over a circle.

Proof. Let Zt be a Brownian motion starting at z ∈ U \ 	 and let H
 be its hitting time of

, and consider Wt the Brownian motion derived from f (Zt), that is,

Wt := f (Zκ−1(t)),

where

κ(t) =
∫ t

0
|f̄ ′(Zs)|2 ds.

Now we are going to construct two Brownian motions Z̃t and W̃t starting respectively at z and
w := f (z), such that W̃t leaves U before Z̃t, as follows.

(1) If H
 < τ Z
U , then run an independent Brownian motion, say Bt, starting at ZH
 , and set

Z̃t := Zt1{t≤H
} + Bt−H
1{H
<t},
W̃t := Wt1{t≤κ(H
)} + Bt−κ(H
)1{κ(H
)<t},

where W̃t and Z̃t are well-defined Brownian motions as

W̃κ(H
) = Wκ(H
) = f (ZH
) = ZH
 = Z̃H
 .

Now note that

τ Z̃
U = H
 + inf{t, Bt /∈ U | B0 = ZH
} ≤ κ(H
) + inf{t, Bt /∈ U | B0 = ZH
} = τ W̃

U .

(2) If H
 ≥ τ Z
U , then just set Z̃t = Zt and W̃t = Wt. Therefore

τ Z̃
U ≤ κ(τ Z̃

U) = τ W̃
U .

In both cases we have
τ Z̃

U
a.s≤ τ W̃

U .
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Maximizing the pth moment of exit time 1141

Hence
Ez((τ

Z̃
U)p) ≤Ew((τ W̃

U )p),

which ends the proof. �
Remark 2.1. Reflection over the circle, obtained above as a corollary of Proposition 2.2, can
just as easily be deduced as a corollary of Proposition 2.3.

3. Applications

In this section we work through a series of examples that show how our results may be
applied.

Example 3.1. Let U be the upper half-disk {|z| < 1, Im(z) > 0}. The imaginary axis is an axis
of symmetry, and U is �-convex with respect to this axis, so all pth centers lie on the imaginary
axis. The line

� =:

{
Im(z) = 1

2

}
is clearly a partial symmetry axis with symmetric part

U ∩
{

Im(z) >
1

2

}
,

and U is �-convex as well. Thus all p-centers belong to the set{
Re(z) = 0, 0 ≤ Im(z) ≤ 1

2

}
.

Now, if we let C be the circle {|z + i| = √
2}, then C passes through 1 and −1, making an angle

of π/4 at each point with the real axis. If we let A= U ∩ I as before, with I the inside of C,
then σC(A) =B, where B = U ∩O and O is the outside of C. By Corollary 2.1, no pth center
lies in A. Thus all pth centers lie on the line segment{

Re(z) = 0,
√

2 − 1 ≤ Im(z) ≤ 1

2

}
,

which is in bold in Figure 2.

Example 3.2. Now let U be an isosceles triangle with vertices at −1, 1, and Ni with N > 0. It
will be convenient for us to index U by the angles at 1 and −1, so if we let θ be this angle then
N = tan θ . Proposition 2.1 tells us that all pth centers lie on the imaginary axis. We have seen
already from the example discussed in connection with Proposition 2.2 that all pth centers must
lie below (M/2)i, but we will now show how this can be improved. Let B be the angle bisector
of one of the base angles of U. B is a partial symmetry axis of U, with symmetric side given
by the component of U\B corresponding to the shorter side of the triangle. Thus, if θ > π/3,
then all pth centers must lie above B, while if θ < π/3, then all pth centers must lie below B.
Now let M be the perpendicular bisector of the edge connecting 1 to Mi (this is often referred
to as the mediator). This is also a partial symmetry axis of U, and the symmetric side is the
component of U\M which does not contain −1. Thus, if θ > π/3, then all pth centers must
lie below M, while if θ < π/3, then all pth centers must lie above M. Thus the intersections of
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FIGURE 2: Reflection over a circle.

FIGURE 3: The angle bisector and mediator.

M and B with the imaginary axis provide upper and lower bounds for all pth centers, although
which is the upper bound and which is the lower bound depends on θ . Figure 3 demonstrates
this phenomenon (� denotes the imaginary axis).

Naturally they coincide at θ = π/3. It can be checked that, regardless of θ , this gives a better
upper bound than N/2, which was given by reflection over {Im(z) = N/2}. A bit of Euclidean
geometry shows that the intersection of B with the imaginary axis is at the point tan (θ/2)i, and
the intersection of M with the imaginary axis is at the point (1/tan θ − 1/sin 2θ )i. Furthermore,
we always have as a lower bound the intersection of the imaginary axis and the circle passing
through 1 and −1, making an angle of θ/2 with the real axis; this follows from Corollary 2.1
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FIGURE 4: Upper and lower bounds for pth centers.

as above. This point is
1 − cos (θ/2)

sin (θ/2)
.

Figure 4 shows these upper and lower bounds; all pth centers must lie in the regions
labeled 	.

Remark 3.1. We believe that a better lower bound can be achieved through numerical
conformal mapping; more on this in the final section.

Example 3.3. Let Ar,R be the annulus {r < |z| < R}. Then all p-centers lie in {√rR < |z| <
(R + r)/2}.

Proof. Consider f (z) = rR/z, which maps Ar,R to itself. Under the same notation as in
Proposition 2.3, we have

	 := {√
rR < |z| < R

}
,


 := {|z| = √
rR}

and we can check easily that f satisfies the requirements of Proposition 2.3). Therefore we
can eliminate U \ 	 from consideration, and we obtain the lower bound

√
rR. In order to get

the upper bound (R + r)/2 we can see, as illustrated by Figure 5, that the line � is a partial
symmetry axis. The result follows. �
Remark 3.2.

• Another way to get the same lower bound as above is to note that Proposition 2.2 extends
to non-injective maps in suitable situations. We may use the map

f :
{ln r < Re(z) < ln R} −→Ar,R

z �−→ ez
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FIGURE 5: Bounds for the annulus.

and apply this extension of Proposition 2.2 with reflection axis {Re(z) = ln R + ln r/2}
in order to obtain the result.

• It should be mentioned that an explicit formula for the first moment can be obtained by
Dynkin’s formula, and it is

Ez(τAr,R ) = R2 ln (|z|/r) − r2 ln (|z|/R)

ln (R/r)
− |z|2.

This can be shown to be maximal at

|z| =
√

R2 − r2

2 ln (R/r)
.

Our estimates are therefore not necessary for the first moments, but as an aside we obtain
the inequality

√
Rr <

√
R2 − r2

2 ln (R/r)
<

R + r

2
.
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FIGURE 6: Bounds for the hyperbolic region.

Setting a = R2, b = r2, and squaring the inequalities gives the following:

√
ab <

a − b

ln (a/b)
<

a + b + 2
√

ab

4
≤ a + b

2
.

The quantity
a − b

ln (a/b)

is of great importance in the study of heat flow, and in that context it is known as the
logarithmic mean temperature difference, or LMTD (see [10]). We have therefore given
a new proof of the fundamental fact that the LMTD lies between the arithmetic and
geometric means, and in fact have proved that the upper bound can be lowered to the
arithmetic mean of the arithmetic and geometric means.

Example 3.4. Let H be the region {|x| > |y|, x2 − y2 < 1}; this is the region bounded by the
lines y = ±x and the hyperbola x2 − y2 = 1; see Figure 6.

It is perhaps not obvious for which p we have Ew[τ p
H ] < ∞, but we can show that

Ew[τ p
H ] < ∞ for any p > 0 and w ∈ H , as follows. H is contained in the union of two infinite

strips which are orthogonal. Any strip has all moments of its exit time finite: Brownian motion
is rotation-invariant, so the moments are the same as for a horizontal strip, and these moments
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in turn are the same as for a one-dimensional Brownian motion from a bounded interval, since
that is what we obtain when we project the Brownian motion onto the imaginary axis; these
moments are well known to be finite for all p, and in fact they can be calculated explicitly for
integer p using the Hermite polynomials. We would like to conclude that the union of these
two strips must then have finite pth moment, but easy examples show that it is not necessar-
ily the case that the union of two domains with finite pth moment must itself have finite pth
moment. A method does exist for reaching the desired conclusion, however, and it is contained
in Theorem 3 and Lemmas 1 and 2 of [13]. It is straightforward to verify that our infinite strips
satisfy the required conditions: their intersection is bounded, and boundary arcs intersect at
non-zero angles. Therefore the exit time for their union has finite pth moments for all p, and
thus so does H . See [13] for details.

Now let us see how our methods can be used to localize the pth centers. The real axis
is an axis of symmetry, but the domain is not �-convex, so we may not apply Proposition
2.1. However, all p-centers lie on the real axis, and we may prove this as follows. The map
f (z) = √

z maps the strip {0 < Re(z) < 1} conformally onto H . Any horizontal line can be
used in Proposition 2.2, and we note that

|f ′(z)| = 1

2
√|z|

is monotone decreasing in |z| and therefore in |Im(z)|. Thus all pth centers must lie on the
image of the real axis under f , which is again the real axis. So we need only consider points
on R. The line {Re(z) = 1/2} is a partial symmetry axis, which gives a lower bound of 1/2
for all pth centers. For an upper bound, note that {Re(z) = 1/2} is another axis of symmetry of
{0 < Re(z) < 1}, and the monotonicity of the derivative shows again via Proposition 2.2 that
we only need to look in the region

f

({
0 < Re(z) <

1

2

})
,

which is the region {x2 − y2 < 1/2} inside U. This gives an upper bound of 1/
√

2 on the real
axis. Thus all p-centers lie on {

Im(z) = 0,
1

2
< Re(z) <

1√
2

}
.

This set is in bold in Figure 6.

Example 3.5. Let CR be the crescent-like shape limited by the two circles{∣∣∣∣z − 1

2

∣∣∣∣ = 1

2

}
and

{∣∣∣∣z − R

2

∣∣∣∣ = R

2

}
(see Figure 7). CR is the image of the region{

1

R
< Re(z) < 1

}
under the conformal map f (z) = 1/z. Note that |f ′(z)| = 1/|z|2 is monotone decreasing in |z|,
so by the same argument as in Example 3.4, all pth centers lie on the real axis. Furthermore,{

Re(z) = R + 1

2

}
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FIGURE 7: Bounds for the crescent region.

is a partial symmetry axis for CR, and this allows us to eliminate the region{
Re(z) >

R + 1

2

}
from consideration. We may also use an axis of symmetry{

Re(z) = 1 + 1/R

2

}
to conclude via Proposition 2.2 that we can exclude the region

f

({
1

R
< Re(z) <

1 + 1/R

2

})
,

which is the region

CR ∩
{∣∣∣∣z − R

R + 1

∣∣∣∣ <
R

R + 1

}
,

in the search for pth centers. We see that all p-centers lie on the interval{
Im(z) = 0,

2R

R + 1
< Re(z) <

R + 1

2

}
,

which is in bold for R = 2 in Figure 7.
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4. Concluding remarks

As remarked earlier, in Figure 1 the regions A and B do not fill all of U, and it is natural
to search for a better bound by finding a conformal map that fills the entire domain. Let us
consider the Schwarz–Christoffel transformation sending the unit disk to U(θ ) given by (see
[8, Chapter 2])

f (z) = A + C
∫ z

0
(1 − w)θ/π−1(1 + w)θ/π−1(1 + iw)−2θ/π dw

for appropriate choices of constants A and C; note that this is chosen so that 1 and −1 are
mapped to the base angles, and i is mapped to the top angle. We have

|f ′(z)| = |C||1 − z|θ/π−1|1 + z|θ/π−1|1 + iz|−2θ/π .

It can then be checked that |f ′(z)| > |f ′(z̄)| whenever Re(z) > 0, so Proposition 2.2 implies
that no pth centers can be found in the image of D∩ {Re(z) < 0}. From this point a numerical
method can be employed, and the resulting bound should improve the one we found, if desired.

As was mentioned in connection with �-convexity, there are some purely geometrical
consequences of our results. In that context, the following may be proved.

Proposition 4.1. Suppose a domain U is �-convex with respect to two parallel symmetry axes.
Then we can find a ∈ [−∞, ∞) and b ∈ ( − ∞, ∞] so that U is a rotation of the domain {a <

Re(z) < b}; in other words, U is all of C, is a half-plane, or is an infinite strip.

As a corollary of this, and of our probabilistic results above, we obtain the following.

Corollary 4.1. Suppose U is a domain which is not all of C, a half-plane, or an infinite strip.
Then if there are multiple axes of symmetry to which U is �-convex, then they all meet at a
unique point.

Acknowledgements

The authors would like to thank Paul Jung, Fuchang Gao, and Lance Smith for helpful
conversations. We are also grateful to several anonymous referees for helpful comments.

References

[1] BAÑUELOS, R. AND BURDZY, K. (1999). On the ‘hot spots’ conjecture of J. Rauch. J. Funct. Anal. 164 (1),
1–33.

[2] BAÑUELOS, R. AND CARROLL, T. (1994). Brownian motion and the fundamental frequency of a drum. Duke
Math. J. 75 (3), 575–602.

[3] BAÑUELOS, R. AND CARROLL, T. (2011). The maximal expected lifetime of Brownian motion. Math. Proc.
Roy. Irish Acad. 111A (1), 1–11.

[4] BAÑUELOS, R., PANG, M. AND PASCU, M. (2004). Brownian motion with killing and reflection and the ‘hot-
spots’ problem. Prob. Theory Relat. Fields 130, 56–68.

[5] BAÑUELOS, R., MARIANO, P. AND WANG, J. (2020). Bounds for exit times of Brownian motion and the first
Dirichlet eigenvalue for the Laplacian. arXiv:2003.06867.

[6] BASS, R. (1994). Probabilistic Techniques in Analysis. Springer.
[7] BURKHOLDER, D. (1977). Exit times of Brownian motion, harmonic majorization, and Hardy spaces. Adv.

Math. 26 (2), 182–205.
[8] DRISCOLL, T. AND TREFETHEN, L. N. (2002). Schwarz–Christoffel Mapping (Cambridge Monographs on

Applied and Computational Mathematics 8). Cambridge University Press.
[9] KEADY, G. AND MCNABB, A. (1993). The elastic torsion problem: solutions in convex domains. New Zealand

J. Math. 22, 43–64.

https://doi.org/10.1017/jpr.2020.54 Published online by Cambridge University Press

https://arXiv.org/abs/2003.06867
https://doi.org/10.1017/jpr.2020.54


Maximizing the pth moment of exit time 1149

[10] KERN, D. (1950). Process Heat Transfer. McGraw-Hill.
[11] KIM, D. (2019). Quantitative inequalities for the expected lifetime of Brownian motion. To appear in Michigan

Math. J. Available at arXiv:1904.09565.
[12] MAKAR-LIMANOV, L. (1971). Solution of Dirichlet’s problem for the equation �u = −1 in a convex region.

Math. Notes Acad. Sci. USSR 9 (1), 52–53.
[13] MARKOWSKY, G. (2015). The exit time of planar Brownian motion and the Phragmén–Lindelöf principle. J.

Math. Anal. Appl. 422 (1), 638–645.
[14] MÉNDEZ-HERNÁNDEZ, P. (2002). Brascamp–Lieb–Luttinger inequalities for convex domains of finite inra-

dius. Duke Math. J. 113 (1), 93–131.
[15] MÖRTERS, P. AND PERES, Y. (2010). Brownian Motion (Cambridge Series in Statistical and Probabilistic

Mathematics). Cambridge University Press.
[16] PASCU, M. (2002). Scaling coupling of reflecting Brownian motions and the hot spots problem. Trans. Amer.

Math. Soc. 354 (11), 4681–4702.
[17] PHILIPPIN, G. AND PORRU, G. (1996). Isoperimetric inequalities and overdetermined problems for the Saint-

Venant equation. New Zealand J. Math. 25, 217–227.
[18] SPERB, R. P. (ed.) (1981). Maximum Principles and their Applications. Elsevier.

https://doi.org/10.1017/jpr.2020.54 Published online by Cambridge University Press

https://arXiv.org/abs/1904.09565
https://doi.org/10.1017/jpr.2020.54

	Introduction
	Partial symmetry and convexity with respect to a line.
	Applications
	Concluding remarks
	Acknowledgements
	References

