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Consider the dynamics of a healing film driven by surface tension, that is, the
inward spreading process of a liquid film to fill a hole. The film is modelled using
the lubrication (or thin-film) approximation, which results in a fourth-order nonlinear
partial differential equation. We obtain a self-similar solution describing the early-time
relaxation of an initial step-function condition and a family of self-similar solutions
governing the finite-time healing. The similarity exponent of this family of solutions
is not determined purely from scaling arguments; instead, the scaling exponent is a
function of the finite thickness of the prewetting film, which we determine numerically.
Thus, the solutions that govern the finite-time healing are self-similar solutions of the
second kind. Laboratory experiments and time-dependent computations of the partial
differential equation are also performed. We compare the self-similar profiles and
exponents, obtained by matching the estimated prewetting film thickness, with both
measurements in experiments and time-dependent computations near the healing time,
and we observe good agreement in each case.

Key words: capillary flows, contact lines, thin films

1. Introduction
By ‘healing’ of a thin viscous film we refer to the inward spreading of the film to

fill a hole or dry spot in the film (see figure 1). Healing films are ubiquitous in a
wide spectrum of natural phenomena and technological applications from self-healing

† Email addresses for correspondence: zzheng@alumni.princeton.edu,
marco.fontelos@icmat.es, hastone@princeton.edu

‡ Z. Zheng and M. A. Fontelos contributed equally to this work.
§ Present address: School of Computing, Electronics and Mathematics, and Flow

Measurement and Fluid Mechanics Research Centre, Coventry University, Coventry CV1
5FB, UK.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-1964-8056
mailto:zzheng@alumni.princeton.edu
mailto:marco.fontelos@icmat.es
mailto:hastone@princeton.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.777&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.777&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.777&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.777&domain=pdf
https://doi.org/10.1017/jfm.2017.777


Healing capillary films 405

Healing thin film: spreading inwards to fill a hole

Impermeable
substrate

Container

FIGURE 1. (Colour online) Schematic of the healing of a thin film, i.e. the inward
spreading of a liquid film to fill a ‘hole’ at the centre. Here we focus in the regime when
the flow of the thin liquid film is driven by surface tension.

to spin coating, and glass transition processes (see e.g. Blossey 2003; Herminghaus,
Brinkmann & Seemann 2008; Backholm et al. 2014; Dijksman et al. 2015), and the
dynamics of axisymmetric holes or dry spots in thin films has been studied extensively
from a modelling perspective.

In previous studies, a major focus has been on the stability of the shape of holes
of certain size, which is dependent on the relative importance of surface tension,
buoyancy (gravity) and contact-line effects (e.g. surface wettability). Moriarty &
Schwartz (1993) used a lubrication model to investigate the stability and evolution
of holes. While, for a non-wetting surface, there may exist an equilibrium hole
configuration (Padday 1971), this situation is unstable (Sharma & Ruckenstein 1990),
and the hole will either heal, or expand: either indefinitely, or, in the presence of an
outer boundary, until the fluid is collected in a ring near that boundary. In the work of
Moriarty & Schwartz (1993), advancing and retreating contact angles were prescribed,
and the contact line was moved artificially by a mesh point if the angle was greater
or less than the advancing or retreating value, respectively (effectively a kind of
numerical slip). The stability of holes was also studied by López, Miksis & Bankoff
(2001), using the lubrication approximation together with a more natural Navier
slip model (along with an assumed contact angle–velocity relation) to regularize
the contact-line singularity, instead of the numerical slip that Moriarty & Schwartz
(1993) implemented, and the numerical results compared favourably to subsequent
experimental work (Bankoff et al. 2003).

In the present study, our focus is on the thickness profile and contact-line position
as a hole heals (see e.g. Diez, Gratton & Gratton 1992; López et al. 2001; Zheng,
Christov & Stone 2014; Dijksman et al. 2015). In this regard, López et al. (2001)
adopted a quasi-static approximation, i.e. that the contact-line velocity is much smaller
than the time for the thickness profile to reach the quasi-steady balance between
gravity and surface tension. Their results compared well with the experiments of
Diez et al. (1992), which were performed in a gravity-dominated parameter regime.
In fact, quasi-steadiness is a common assumption in the modelling of spreading
droplets and films (Hocking 1983; Savva & Kalliadasis 2009); however, in the limit
of a healing hole, the velocity is (theoretically) unbounded at the time the hole
closes, so there is no longer a clear separation of time scales and the quasi-static
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406 Z. Zheng and others

approximation is no longer valid. We expect this to be particularly true for healing
films driven primarily by capillarity, rather than gravity, as the curvature becomes
infinite when the hole eventually closes. Thus, instead of modelling the hole-healing
dynamics as a quasi-steady process (see e.g. Bostwick, Dijksman & Shearer 2017),
we employ an alternate approach, and assume self-similarity in the thickness profile
in this study.

We note that self-similar healing films have been studied previously for the case
when the flow is driven purely by gravity (Gratton & Minotti 1990; Diez et al.
1992), in which a second-order nonlinear diffusion equation describes the time
evolution of the interface shape. Also, the gravity-driven healing is analogous to the
converging flow processes in a porous medium (or a Hele-Shaw cell) with horizontal
heterogeneity (Zheng et al. 2014), and the fluid loss effect can be included for healing
above a permeable substrate (Zheng, Shin & Stone 2015). Although common flows of
spreading thin films often admit similarity solutions where the scaling exponents can
be identified by dimensional arguments (self-similarity of the first kind), the healing
dynamics for a gravity current admits a similarity solution where the scaling exponent
is determined from the solution of a nonlinear eigenvalue problem (self-similarity of
the second kind) (Barenblatt 1979).

For the case of surface-tension-driven flows, as in the present study, the evolution
of the interface shape is described by a fourth-order nonlinear partial differential
equation (PDE) of the evolution type, that may behave very differently from the
nonlinear diffusion equation for gravity-driven flows (see e.g. Voinov 1976; Tanner
1979; Hocking 1983; de Gennes, Hua & Levinson 1990; Jensen 1994; Oron, Davis &
Bankoff 1997; Kalliadasis, Bielarz & Homsy 2000; Craster & Matar 2009; Snoeijer &
Andreotti 2013; Eggers & Fontelos 2015). Here we seek various self-similar solutions
for this fourth-order PDE and support our findings via numerical simulations and
experiments. We start in § 2 by introducing the theoretical model and deriving
the self-similar solutions that develop at different times. In § 3, we report on
detailed laboratory-scale experiments for conditions where surface-tension-driven
spreading dominates the dynamics. We then compare the theoretical predictions and
experimental observations for the front location and the interface shape. In § 4, we
present numerical simulations of the original PDE and compare the results with the
self-similar solutions. We close the manuscript in § 5 by summarizing the major
findings of this work.

2. Theoretical model
2.1. Governing equations

We consider a converging thin-film flow driven by surface tension and assume
an axisymmetric geometry, as depicted in figure 2. We assume that the liquid
domain is long and thin, and the flow is radial (one-dimensional), so that the
lubrication approximation holds. We use t̃, r̃, µ and γ to denote time, the radial
coordinate, the viscosity of the fluid and surface tension coefficient between air and
the spreading fluid, respectively. We also assume that the spreading fluid perfectly
wets the substrate so that the contact angle vanishes. Stipulating radial symmetry
and neglecting gravitational effects, the governing partial differential equation for the
interface shape h̃

(
r̃, t̃
)

is (e.g. Oron et al. 1997; Bonn et al. 2009)

∂ h̃
∂ t̃
+
γ

3µ
1
r̃
∂

∂ r̃

(
r̃h̃3 ∂

∂ r̃

(
1
r̃
∂

∂ r̃

(
r̃
∂ h̃
∂ r̃

)))
= 0. (2.1)
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lock gate location origin

FIGURE 2. (Colour online) A healing capillary film: a converging thin viscous film is
driven by surface tension. The film thickness is denoted by h̃(r̃, t̃), while the location of
the propagating front is denoted by r̃f (t̃). r̃0 represents the location of a lock gate and
r̃out the location of the outer boundary. The viscosity of the fluid and surface tension
coefficient are denoted by µ and γ , respectively.

A further assumption is that viscous fluid of height h̃0 initially fills the gap between
r̃0, the location of a lock gate, and r̃out, the location of a stationary outer boundary.
Within the lock gate there is a thin layer of a prewetting liquid film of thickness h̃pw.
The introduction of a prewetting film is consistent with our lock-release experiments,
as described in § 3, but also with other converging flow situations generated from
an instantaneous stop of a rotating container (Dijksman et al. 2015). In addition, the
existence of a prewetting film regularizes the stress singularity at the front. Thus, the
initial condition takes the form of

h̃ (r̃, 0)=

{
h̃0, r̃0 6 r̃ 6 r̃out,

h̃pw, 0 6 r̃< r̃0,
(2.2)

and we are interested in the dynamics of spreading toward the origin (r̃= 0). This step
initial condition is consistent with our lock-release experiments. We also note that,
although the thin-film model equation is strictly speaking valid for small interfacial
slopes and is expected to break down when interfacial slopes are large, the step
initial condition is rapidly smoothed out to a shape that is appropriate for the
thin-film approximation (see e.g. Huppert & Woods 1995; McGraw et al. 2012).

To close the problem, we impose the following boundary conditions:

∂ h̃
∂ r̃
=
∂3h̃
∂ r̃3
= 0 at r̃= 0, and

∂ h̃
∂ r̃
=
∂

∂ r̃

(
1
r̃
∂

∂ r̃

(
r̃
∂ h̃
∂ r̃

))
= 0 at r̃= r̃out. (2.3a,b)

The first pair of these are symmetry conditions applied at the centre of the domain,
while the second pair are, respectively, 90◦ contact-angle and zero-flux conditions at
the outer wall (see e.g. López et al. (2001) for a discussion of the outer contact-angle
condition).

Next, we define dimensionless variables h≡ h̃/h̃0, r ≡ r̃/r̃0 and t ≡ t̃/t̃c, where the
characteristic time is chosen as

t̃c =
3µr̃4

0

γ h̃3
0

, (2.4)
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and obtain the dimensionless form of (2.1):

∂h
∂t
+

1
r
∂

∂r

(
rh3 ∂

∂r

(
1
r
∂

∂r

(
r
∂h
∂r

)))
= 0. (2.5)

The dimensionless initial condition (2.2) becomes

h (r, 0)=

{
1, 1 6 r 6 rout,

hpw, 0 6 r< 1,
(2.6)

where hpw ≡ h̃pw/h̃0 � 1 and rout ≡ r̃out/r̃0 � 1, and the dimensionless boundary
conditions (2.3) become

∂h
∂r
=
∂3h
∂r3
= 0 at r= 0, and

∂h
∂r
=
∂

∂r

(
1
r
∂

∂r

(
r
∂h
∂r

))
= 0 at r= rout. (2.7a,b)

Equation (2.5) is solved subject to the initial and boundary conditions (2.6), (2.7) and
provides the time evolution of the profile shape h(r, t).

While the main focus of this study is on the behaviour of the film close to the time
when it heals, it is also interesting to analyse the early-time relaxation process. We
provide a self-similar solution in appendix A for the early-time relaxation dynamics
from the initial step condition (2.6).

2.2. Similarity transform
We now focus on the late-time dynamics as the hole closes, i.e. as rf (t)→ 0. We use
t0 to denote the dimensionless healing time, that is, the time for the (circular) front
of the air–fluid interface to reach the origin (r = 0), and we look for a self-similar
solution for equation (2.5) of the form

h(r, t)= (t0 − t)αf (ξ) , where ξ ≡
r

(t0 − t)β
. (2.8)

From dimensional analysis and (2.5), we obtain the following relationship between the
exponents

α =
(4β − 1)

3
. (2.9)

We can then rewrite (2.5) as an ordinary differential equation (ODE):

−
(4β − 1)

3
f + βξ

df
dξ
+

1
ξ

d
dξ

(
ξ f 3 d

dξ

(
1
ξ

d
dξ

(
ξ

df
dξ

)))
= 0, (2.10)

where the exponent β is as yet undetermined.

2.2.1. Far-field condition
Appropriate boundary conditions are needed to solve (2.10) for the interface shape

f (ξ) and determine parameter β. The similarity solution will not hold everywhere in
r and t, but rather, in a region near the apparent contact line, for time sufficiently
close to t0. Since ξ →∞ for fixed r as t→ 0, the similarity solution is defined on
the semi-infinite domain 0< ξ <∞.
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The rate of change of film thickness ∂h/∂t blows up as (t0 − t)α−1. However, we
expect ∂h/∂t to remain bounded away from the middle of the hole, which requires
the first two terms in (2.10) to balance. This gives the far-field ‘quasi-stationarity’
condition

−
(4β − 1)

3
f + βξ

df
dξ
→ 0 as ξ→∞. (2.11)

Solving this equation provides

f (ξ)∼ a1ξ
(4β−1)/(3β) as ξ→∞. (2.12)

This kind of condition has been employed previously in studying other problems
involving the formation of finite-time singularities such as the capillary-driven breakup
of viscous threads (see e.g. Eggers 1993; Papageorgiou 1995; Brenner, Lister & Stone
1996; Lister & Stone 1998; Eggers & Fontelos 2009), and the van der Waals-driven
rupture of thin films (see e.g. Witelski & Bernoff 1999; Zhang & Lister 1999;
Dallaston et al. 2017).

2.2.2. Near-field condition
ODE (2.10) permits a number of different near-field behaviours, as either ξ or f

approaches zero. However, only particular solutions will exhibit behaviour that can be
matched to a prewetting film. Assume that f becomes small at an apparent contact line
ξ = ξ0 > 0, while f ′ ≡ df /dξ remains of order unity: the dominant terms in (2.10) in
an ‘inner region’ near the contact line are βξ0f ′+ ( f 3f ′′′)′= 0, which can be integrated
once to give

βξ0 f + f 3 d3f
dξ 3
= ε. (2.13)

If f goes to zero it must do so as f ∼ c1(ξ − ξ0)
3/4, which is unphysical and cannot

match to a thin prewetting film. However, (2.13) also has solutions with a thin
prewetting film f ∼ fpw = ε/(βξ0) > 0 for ξ � ξ0 (Landau & Levich 1942; Myers
1998). We will find below that there is only one such solution to (2.10) that has such
a film for any given β, once certain scale invariances have been accounted for. An
expanded account on all the possible near-field behaviours is presented in § C.3.

2.3. Self-similar solutions for general exponent β
2.3.1. Shooting procedure

To compute the self-similar solutions for ODE (2.10), a shooting procedure can be
used from a large value of ξ , representing the far field, toward the contact line. For
example, when β = 2/5, the far-field behaviour of f (ξ) has a relatively simple form
(with details provided in appendix B)

f (ξ)∼ a1ξ
1/2
+ a2ξ

−8/5e−6/5(2/5)1/3a−1
1 ξ5/6
+O(1) as ξ→∞, (2.14)

where a1 and a2 are two free parameters. Thus, by specifying the values of a1 and
a2, we can obtain the values of f and its derivatives at a far-field location that can
be used in the shooting procedure. We note, however, that since (2.10) is invariant
under the transformation f 7→ λf , ξ 7→ λ3/4ξ , where λ is a positive constant, we may
set a1 = 1 without loss of generality, and, by varying a2, construct the one-parameter
family of solutions that are unique up to such a rescaling.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.777


410 Z. Zheng and others

0 2 4 6 8 10

1

2

3

4

10–110–3 10110–5
0

2

4

(Generic touch-down) Shooting back from 

In all cases: 

(Touch-down at origin)
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f

f

FIGURE 3. (Colour online) Representative solutions of (2.10) with similarity exponent β=
2/5 using a shooting procedure from a far-field location. In all cases, a1 = 1 and the far-
field location is chosen as ξ∞ = 10. Consistent with the asymptotic analysis for the near-
field behaviour, five different scenarios have been observed as is indicated in the legend:
blow-up, generic touch-down, touch-down at the origin, a thick film and a non-generic
critical solution that represents the crossover between generic touch-down and blow-up
solutions (see appendix C for details). The inset is a semi-log plot of the figure, which
highlights the near-field behaviours. The non-generic solution corresponds to the interface
shape of the healing capillary film problem.

In figure 3, we show representative solutions of (2.10) for β = 2/5, computed using
the described shooting procedure. In all the cases, we start from a far-field location
ξ∞ = 10, and shoot toward the origin using the MATLAB subroutine ODE45. Initial
conditions are provided by setting a1 = 1 and varying the values of a2 from −10 to
10. From figure 3, we observe five distinct near-field behaviours as a2 varies: blow-up,
generic touch-down, touch-down at the origin, a thick film and a non-generic solution
that separates the generic touch-down solutions from the blow-up ones. It is this non-
generic solution that has the appropriate structure near an apparent contact line, as we
see next.

2.3.2. Alternative procedures
In principle, we can compute numerical solutions to ODE (2.10) for a range of

β values, and vary a2 to find the critical solution between blow-up and touch-down.
For β 6= 2/5, however, there is an infinite series of algebraic terms in the far-field
behaviour, and so it is much harder to set the prefactor on the exponential, e.g. a2
in (2.14), numerically. As an alternative, we handle the far field for general β by
posing a suitable boundary-value problem on the interval [ξ∞/2, ξ∞], where ξ∞� 1
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represents a far-field location, and then solving an initial-value problem on [0, ξ∞/2]
from ξ = ξ∞/2 toward ξ = 0 (the origin). In particular, the following conditions are
employed for the boundary-value problem on [ξ∞/2, ξ∞]:

−
4β − 1

3
f + βξ

df
dξ
= 0, f = ξ (4β−1)/3β at ξ = ξ∞, (2.15a)

−
4β − 1

3
f + βξ

df
dξ
= 0, f = B at ξ =

ξ∞

2
, (2.15b)

where B is a free parameter. Then, four initial conditions ( f , f ′, f ′′, f ′′′) can be
provided at ξ = ξ∞/2, and an initial-value problem can be solved toward the origin.
Different values of B correspond to different values of a1 in (2.14), thus generating
different solutions such as the generic touch-down, non-generic thin-film and blow-up
solutions, analogous to the different scenarios identified for β = 2/5 in figure 3. As
a check on our handling of the far field, for β = 2/5 the non-generic touch-down
solution obtained using this method (shown in figure 4a) is indistinguishable from
the corresponding solution obtained using the shooting procedure with far-field
condition (2.14). In order to resolve the features of the solution near f = 0, we used
an adaptive ODE solver with a precision of up to thirty digits, implemented in the
computer algebra system MAPLE.

We show in figure 4(a) representative self-similar solutions for β= 0.40, 0.42, 0.44,
0.46, 0.48, 0.50. By varying B, we approach the non-generic solution in which a thin
prewetting film is present, instead of a front ( f = 0) near the contact line. The film
thickness fpw ranges from O(10−4) for β = 0.50 to O(10−21) for β = 0.40, as shown in
figure 4(b). In this case, we can define the apparent front location ξf as the location
of the local minimum of the profile shapes, by which ξf ≈ 0.245 for β = 0.40. Here
we distinguish between ξf , the location of the apparent contact line, and ξ0, the actual
touch-down point for any given generic solution.

We note that numerical solutions for ODE (2.10) can also be computed by solving
the associated two-point boundary-value problem using numerical continuation, as
another alternative procedure. We have carried this out for the case of generic
touch-down solutions, with details in appendix D, and the results agree well with the
solutions of the shooting procedure, particularly the relationship between β and fpw

depicted in figure 4(b).

2.3.3. Determining β from the prewetting film thickness
The presence of a continuum of self-similar solutions with regard to parameter β

raises the question how a particular value of β is chosen for a given prewetting
film thickness hpw. Although there is a clear relationship between β and the
scaled prewetting thickness fpw, a constant value of hpw, arising from the initial
condition (2.6), implies a varying value of fpw, and from the scaling (2.8), the
connection is given by

hpw = (t0 − t)(4β−1)/3fpw. (2.16)

Since fpw depends on β, as illustrated in figure 4(b), equation (2.16) can be viewed
as an equation for β as a function of a logarithmic time variable τ ≡−log(t0− t). By
taking log on both sides of (2.16), we obtain

log hpw =−
4β − 1

3
τ + log fpw(β), (2.17)
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0

0.002
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f

(a)

(b)

FIGURE 4. (Colour online) Self-similar solutions in the contact-line-dominated regime
with general values of β. (a) Profile shapes for β= 0.40, 0.42, 0.44, 0.46, 0.48, 0.50. The
slope in the far field increases when β increases. Inset: taking β = 0.50 as an example,
numerical solutions show that a thin prewetting film develops near the contact line. (b)
The influence of β on the thickness of the prewetting film fpw developed toward the origin.
The film thickness fpw ranges from O(10−4) for β = 0.50 to O(10−21) for β = 0.40. In all
cases, a representative far-field location is chosen as ξ∞ = 10.

which yields, upon differentiation with respect to τ ,(
−

4
3
τ +

d
dβ

log fpw(β)

)
dβ
dτ
=

4β − 1
3

, (2.18)

and hence
dβ
dτ
=

4β − 1(
−4τ + 3

d
dβ

log fpw(β)

) . (2.19)

We must therefore think of β as slowly changing in time, thus our solutions are
only ‘quasi’-self-similar in nature. However, the very fast variation of fpw(β), with β
depicted in figure 4(b), suggests that d/dβ log fpw(β)=O(102), which results in a small
right-hand side in (2.19), i.e. dβ/dτ =O(10−2). Thus, the change in β will be small
when τ only changes a few units, i.e. when (t0 − t) only changes for a few decades,
which is usually the case in both experiments and numerical simulations.
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A more rigorous approach requires an adiabatic approximation, where we write
h(r, t)= (t0 − t)(4β(τ)−1)/3f (τ , ξ), and f (τ , ξ) satisfies the following equation:

∂f
∂τ
+ e−τ

(
4
3

f − ξ
∂f
∂ξ

)
dβ
dτ
−
(4β − 1)

3
f + βξ

∂f
∂ξ
+

1
ξ

∂

∂ξ

(
ξ f 3 ∂

∂ξ

(
1
ξ

∂

∂ξ

(
ξ
∂f
∂ξ

)))
= 0.

(2.20)
After neglecting the terms associated with dβ/dτ and ∂f /∂τ , we recover equation
(2.10) for the similarity solutions, except that now β(τ) is a slowly varying parameter
evolving according to (2.19).

Given the exponent (4β − 1)/3< 1, the factor (t0 − t)(4β−1)/3 in (2.16) is of O(1),
so the order of magnitudes of fpw and hpw will match except for when t is very close
to t0. From an experimental perspective, we will observe an apparent power law (thus
a value for β), from which we can derive an appropriate order of magnitude for fpw

and hence hpw through the curve in figure 4(b). In other words, once hpw is provided
in an experiment or numerical simulation, a corresponding scaling exponent β will be
observed.

2.3.4. The special value β = 2/5
As well as producing the convenient far-field behaviour (2.14), the value β = 2/5

also has the property of exhibiting a constant, non-zero flow rate far from the front
of a healing film. A non-zero flow rate must be sustained away from the hole during
the healing process in order to fill the hole with liquid. Setting the flow rate to be
constant, or equivalently, ∂h/∂t= 0, in (2.5), we obtain the interface shape in the far
field

h∝ r1/2 for r� rf (t). (2.21)

We note that we have neglected the solutions behaving as h ∝ r2 and as h ∝ ln r in
the far field, since these solutions correspond to zero flux, whereas the asymptotic
behaviour given by (2.21) corresponds to a time-independent flow rate in the far field

F≡ 2πrh3 d
dr

(
1
r

d
dr

(
r

dh
dr

))
. (2.22)

Thus, the equivalent far-field behaviour in the self-similar solutions has f ∝ ξ 1/2, which
corresponds to the value β = 2/5. We will see some experimental and computational
evidence in §§ 3 and 4 that the exponent β = 2/5 influences the profile shape of the
film away from the contact line.

3. Experimental observations
In this section, we describe our laboratory experiments of inward spreading liquid

films and compare the experimentally obtained time-dependent front locations and
profile shapes with the self-similar solutions from the theoretical model (§ 2).

3.1. Experimental set-up and calibration
A schematic of our experimental set-up is depicted in figure 5(a). We first prepare a
clean oil-wetting slide glass as a flat substrate, with an LED panel placed below to
provide a uniform back lighting. We then place a rubber container above the slide
glass to form a circular outer boundary. A rubber cylinder, as a cylindrical lock gate,
is then placed at the centre of the circular area surrounded by the outer boundary.
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(a) (b)
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FIGURE 5. (Colour online) Experimental set-up to measure the front location and film
thickness of healing liquid films. (a) A camera or a microscope is placed at the top of
the inwardly spreading liquid film. A small amount of dye is added to the liquid film.
(b) A representative image taken by the digital camera, using silicone oil (500 cSt) as
the spreading liquid. The difference in the colour intensity indicates the difference in the
film thickness at different locations. (c) The profile shape (along the straight line I–II of
panel b) can be reconstructed based on a calibration that links the intensity with the film
thickness.

A digital camera (Nikon 7100) or an inverted fluorescence microscope (DMI4000B,
Leica) is placed above the set-up, and photographs are taken from the top. The
microscope has a smaller range (0 6 r̃ 6 2.5 mm) but a much higher resolution, so
is used to measure the profile shape evolution when the hole is small.

In each experiment, we first fill the gap between the lock gate (rubber cylinder) and
the outer boundary (rubber container) with a viscous fluid. We use silicone oils with
different viscosities (e.g. Sigma-Aldrich: 20 cSt, 100 cSt, 500 cSt) as the working
fluids in our experiments, which do not wet the lock gate and the outer boundary
significantly. However, the silicone oils wet the substrate (slide glass), and we expect
the existence of a prewetting film. Upon the removal of the lock gate, the liquid
spreads inward, filling the hole at the centre. The initial film thickness is chosen to be
less than 1 mm. A representative picture (top view) taken by the camera is shown in
figure 5(b). The front of the liquid film is approximately circular, and we can measure
the radius of the circular front r̃f (t̃) as a function of time, t̃.

A summary of the parameters of the different experiments is given in table 1. To
measure the interface shape, we add a small amount of dye (Sigma-Aldrich: Sudan
III) to the silicone oils. The dye and silicone oils are well mixed, and the presence
of the dye does not significantly change the viscosity and surface tension. As a result,
different film thicknesses correspond to different signal intensities received by the
digital camera (see e.g. Bischofberger, Ramachandran & Nagel 2014). In addition,
we are able to conduct a careful calibration that relates the film thickness to the
intensity of the image taken by the digital camera or the microscope; see figure 6
as an example. Then, in our post-experimental data analysis, we reconstruct the
profile shapes h̃(r̃, t̃) at different times t̃. A representative profile shape is shown in
figure 5(c), which corresponds to the images displayed in figure 5(b).
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FIGURE 6. (Colour online) Calibration experiments: (a) experimental set-up; (b)
calibration curve. A tapered cell filled with dyed liquid was used for the calibration
experiments, for example. A representative image (top view) is shown in (a), which
indicates an intensity change as the thickness of the dyed liquid varies. The relationship
between the liquid thickness and image intensity is shown in (b), and a linear fit is used
for the data analysis.

5 s 35 s 65 s 95 s

1 s

1 cm

3 s 5 s 7 s

(a)

(b)

FIGURE 7. (Colour online) Time-dependent images of the inward spreading films in two
different experiments: (a) silicone oil 500 cSt (experiment 1 in table 1), and (b) silicone
oil 20 cSt (not shown in table 1). The front location is indicated with the dashed line.
In both experiments, we kept the same locations for the lock gate (r̃0≈ 6.4 mm) and the
outer boundary (r̃out ≈ 16.7 mm). The initial film thickness is (a) h̃0 ≈ 0.65 mm, and (b)
h̃0 ≈ 0.4 mm.

3.2. Front location
As we mentioned above, the time evolution of the location of the propagating front
can be obtained from the top view still images, using a digital camera. Typical
experimental results showing the closing of the initial hole are shown in figure 7.
We note that a drift can occur in some experiments, as can be seen, for example, in
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Experiment µ/ρ (cSt) ρ (kg m−3) γ (mN m−3) h̃0 (mm) r̃0 (mm) r̃out (mm) t̃0 (s)

No. 1 500 970 20.2± 0.8 0.65± 0.05 6.4 16.7 96
No. 2 500 970 20.2± 0.8 0.65± 0.05 6.4 16.7 112
No. 3 20 950 20.6± 0.8 0.40± 0.05 6.4 16.7 4.8
No. 4 20 950 20.6± 0.8 0.15± 0.05 6.4 16.7 46
No. 5 100 960 19.9± 0.8 0.65± 0.05 6.4 16.7 19
No. 6 100 960 19.9± 0.8 0.65± 0.05 6.4 16.7 20
No. 7 100 960 19.9± 0.8 0.36± 0.05 9.5 16.7 52
No. 8 100 960 19.9± 0.8 0.53± 0.05 6.4 12.7 27
No. 9 100 960 19.9± 0.8 0.80± 0.05 8.0 13.0 39
No. 10 100 960 19.9± 0.8 0.80± 0.05 8.0 13.0 45

TABLE 1. Summary of the parameters of the different experiments that we performed of
viscous thin films propagating inwards to fill a hole. We note that we verified that the
addition of small amount of dye (Sudan III) does not influence the physical properties such
as viscosity, density and surface tension. The viscosity values in this table are provided
from the manufacturer. t̃0 corresponds to the time when the front reaches the origin.

10010–110–2 103102101 10010–110–210–3

101

100

10–1

100

10–1

10–2

Expt 1
Expt 2
Expt 3
Expt 4
Expt 5
Expt 6
Expt 7
Expt 8
Expt 9

(a) (b)

FIGURE 8. Time-dependent front locations from the experimental measurements: (a) raw
data and (b) rescaled experimental data. The initial film thickness is chosen to be smaller
than or equal to 0.8 mm in this figure. A nonlinear power-law fit of the data in the range
0.016 rf (t)6 0.2 provides an exponent of β = 0.489± 0.045. The slopes of 2/5 and 0.49
in the log–log graph are also shown as straight lines for reference.

figure 7(b). However, in all the experiments, the propagating front appears circular as
time progresses, which allows us to define the front location r̃f (t) based on the radius
of the circle, and relocate the origin r̃= 0 at the centre of the circle. In addition, in
each experiment, there exists a critical time t̃0 at which the front reaches the origin,
i.e. when r̃f = 0. Equivalently, t̃0 − t̃ represents the time that remains for the front to
reach the origin.

The experimental data of r̃f versus t̃0− t̃ are shown in figure 8(a). We also present
the non-dimensionalized experimental data of the front location in figure 8(b). We
impose a nonlinear power-law fit for the experimental data in the range 0.016 rf (t)6
0.2, which provides an exponent of 0.489± 0.045. It is noteworthy that the similarity
exponent β ≈ 0.49 corresponds to a value of prewetting thickness fpw (and hence hpw,
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as argued in § 2.3.3) of O(10−5). In addition, hpw of O(10−5) corresponds to h̃pw of
O(10) nm in our experiments, which is consistent with the typical order of the surface
roughness of the substrate (glass slide) and also the typical thickness of prewetting
films (see e.g. Bonn et al. 2009). In addition, we note that the observed power law
is consistent with the power-law data fitting results of the related converging flow
experiments and numerical computations of Dijksman et al. (2015).

3.3. Profile shapes
Using an inverted fluorescence microscope, we are able to measure the spatiotemporal
evolution of the profile shapes in our experiments. The time-dependent profile shapes
from a representative experiment (experiment 1 in table 1) are shown in figure 9(a),
where silicone oil of viscosity µ≈ 500 cSt and surface tension γ ≈ 20.2 mN m−1 was
used.

We then rescale the profile shapes based on the self-similar solution with β = 0.49,
as shown in figure 9(b), and we observe excellent data collapse in the region close
to the contact line. The theoretical prediction with β = 0.49 is also plotted as the
black curve in figure 9(b), and is found to agree well with collapsed profiles from
experimental measurements. The collapse of profile shapes at different times and the
agreement with self-similar solutions have not been reported in previous experimental
studies on converging films (see e.g. Dijksman et al. 2015).

In addition, we also rescale the raw profiles based on the self-similar solution with
β = 2/5, as shown in figure 9(c), and the theoretical prediction with β = 2/5 is also
plotted as the black curve. It appears that the β = 2/5 solution agrees well with the
rescaled profiles in an intermediate region far away from both the contact line and
the outer wall. We note that, as the profiles get close to the outer wall r̃out, persistent
over-prediction of the similarity solutions appears, as the zero-flux boundary condition
at r̃out becomes more significant. More evidence suggesting the existence of the β =
2/5 scaling will be provided in § 4.3.2.

3.4. Experimental uncertainty
There exist various uncertainties in our experimental study, and we briefly mention
some of these here. First, while the propagating front appears circular in our
experiments, the front may not perfectly lie at the centre of the slide glass (possibly
due to the defects of the surface), for example, as shown in figure 7(b). Secondly,
when removing the lock gate, small disturbances can also be introduced, and a small
amount of liquid may stick to the lock gate (and leave the system), which modifies
the initial condition from being a step function. Further experimental uncertainties
occur in the measurement of the viscosity and surface tension of the fluids, the
wettability of the lock gate and the outer boundary, and in the calibration that relates
the film thickness to the intensity of the pictures.

We also note that, while the flow is mainly driven by surface tension, buoyancy
effects are always present and may play a role in the spreading of the films and the
shape of the air–fluid interface. We can estimate the Bond number Bo ≡ 1ρgh̃2

0/γ ,
and in a typical experiment, Bo ≈ 980 × 9.8 × (0.65 × 10−3)2/0.02 ≈ 0.2. For this
Bond number, the buoyancy effects are found to be negligible from the numerical
simulations from a thin-film model, as shown in figure 7 of Dijksman et al. (2015).

4. Time-dependent computations
In this section, we employ a finite-difference scheme to solve the thin-film

equation (2.5), subject to initial and boundary conditions (2.6) and (2.7), respectively,
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FIGURE 9. (Colour online) Experimental measurement of the time evolution of the profile
shape near the touch-down point, using an inverted fluorescence microscope: (a) raw data,
(b) rescaled data with β = 0.49, and (c) rescaled data with β = 2/5. The theoretical
prediction from the self-similar solutions are also shown as the black curves in (b) with
β = 0.49 and (c) with β = 2/5. The insets in (b) and (c) demonstrate the data collapse
of the rescaled profiles near the contact line. The parameters are set to be the same as
experiment 1 in table 1. The time listed in the figure indicates the remaining time (t̃0− t̃)
before the hole eventually closes.

with the outer boundary at rout = 10. Details of the numerical scheme are provided in
appendix E. Here, we compare numerical results to the self-similar solutions described
in § 2. The numerical scheme was also used to verify another self-similar behaviour
at early times, as described in appendix A.

4.1. Front location
Since solutions to the PDE (2.5) have a thin prewetting film rather than an actual
contact line, we must choose a method to define the location of the propagating front
rf (t) from the numerical solutions. There are two reference heights in the problem: the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.777


Healing capillary films 419

initial film thickness h(rrut, 0)= 1, and the prewetting film thickness hpw� 1. A front
rf (t) can be defined as the value of r that corresponds to a small reference value hrf

of the film thickness, i.e. h(rf (t), t)= hrf . Using this method, we show rf (t)/r0 as a
function of 1− t/t0 for hrf = 0.01, as an example, in figure 10(a), from a numerical
simulation in which hpw= 10−5. In this case, a slope of β≈ 0.49 is predicted from the
theory, as discussed in § 2.3.3, and the simulation data agree well with this theoretical
prediction as the front propagates toward the origin.

We also vary the value of hrf , and show the sensitivity of the estimate of β as a
function of hrf in figure 10(b). As hrf decreases, the scaling exponent β increases
toward a value of approximately 0.5, which is consistent with the time-dependent
computations of Dijksman et al. (2015), who used a more sophisticated technique to
estimate the power-law exponents. Thus, we set hrf = 0.01 as a representative value in
the definition of the front location in this study. We also performed time-dependent
computations of PDE (2.5) subject to different prewetting film thickness hpw in
the initial condition (2.6), and the dependence of β on hpw will be discussed later
in § 4.3.1.

4.2. Profile shapes

Profile shapes at times close to healing are shown in figure 11(a) from the same time-
dependent computation depicted in figure 10(a). The touch-down time is found to be
t0 ≈ 7.36. In figure 11(b), we rescale the profile shapes based on the prediction of
the self-similar solution with β = 0.49, and we observe good data collapse near the
contact line. In addition, we plot the self-similar solution with β = 0.49 as the solid
curve, which exhibits excellent agreement with the collapsed profile shapes.

The raw profiles in figure 11(a) are also rescaled based on the self-similar solution
with β = 2/5, as shown in figure 11(c). Similar to the experimental measurements, as
shown in figure 9(c), we observe data collapse in an intermediate region away from
both the contact line and the outer wall. The β= 2/5 similarity solution is also plotted
in the same figure, and we observe good agreement in the intermediate region. We
provide more discussions on the evidence of the β = 2/5 scaling in § 4.3.2.

4.3. Discussions
4.3.1. Influence of prewetting film thickness hpw

Multiple time-dependent computations have been performed for the PDE (2.5),
subject to initial conditions (2.6) with different values of the prewetting film thickness
hpw, so as to examine the dependence of the scaling exponent β and the healing time
t0 on the value of hpw. The result for the scaling exponent β is shown in figure 12(b),
which indicates that β increases monotonically with hpw. Here, the value of β is
identified using a nonlinear power-law fit for the numerical data of the front location
rf (t) versus (t0 − t), and we choose rf (t) in the range 0.01 6 rf (t) 6 0.2. We note
that the case of hpw= 10−4 is also studied in Dijksman et al. (2015), and the authors
found β ≈ 0.5 in their time-dependent computations of a thin-film PDE, which is in
agreement with our calculations for this specific prewetting film thickness.

We also provide the theoretical calculation of the scaling exponent β for different
hpw, and plot the results in figure 12(b). The theoretical predictions for β are found to
be in good qualitative agreement with the results from time-dependent computations,
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FIGURE 10. The location of the propagating front rf (t) from a numerical simulation of
PDE (2.5) with a prewetting film thickness hpw= 10−5, based on the definition of the front
location h(rf (t), t)≡ hrf . (a) The theoretical prediction of β ≈ 0.49 is also plotted as the
straight line, which agrees well with the numerical data as the hole becomes small (here,
hrf = 0.01). (b) The scaling exponent β as a function of hrf : as hrf decreases, the scaling
exponent β increases toward approximately 0.5. Thus, we set hrf = 0.01 as a representative
value to define the front location in this study.

while the theoretical calculations are slightly smaller than the results from data
fitting of the time-dependent computations. It is noteworthy that, in the theoretical
calculation, to estimate fpw from a given hpw, we use (2.16) using a representative
time tr = 0.99t0 close to healing (the estimate is only weakly dependent on this
choice).

In addition, we show the dependence of the healing time t0 on hpw in figure 12(a).
From the time-dependent computations, we found that t0 increases logarithmically with
hpw. Such a dependence is common in contact-line problems, where the velocity of a
moving contact line is logarithmically dependent on a small regularizing parameter,
which, in our case, is the prewetting film thickness hpw.

4.3.2. Evidence of the β = 2/5 scaling
The profile shape measurements in both laboratory experiments (figure 9c) and time-

dependent computations (figure 11c) suggest the existence of a self-similar solution
with β = 2/5 in an intermediate region away from both the contact line and the outer
wall. Here we provide more evidence of the β = 2/5 scaling from the time-dependent
computations.

We first show in figure 13 the interface profile versus the distance to the centre
(both in logarithmic scale) for various values of hpw and at a particular time when the
front is at a distance rf = 10−3 from the centre. It is evident that very well-defined
power laws, depending on the value of β, appear in the vicinity of the contact line.
The thickness of the prewetting layer considered here ranges from 10−10 to 10−4, and
the observed exponents for h(r, t) range from 0.59 to 0.70, which correspond to the
value of β from 0.45 to 0.53. This is consistent with the dependence of β on hpw, as
shown in figure 12(a).

On the other hand, sufficiently far from the contact line but before the boundary
effects at rout become important, the interface shape behaves as h∝ r1/2, as shown in
figure 13, and such behaviour is independent of the thickness of the prewetting layer
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FIGURE 11. (Colour online) Time evolution of the profile shapes near the healing time
t0 ≈ 7.36 from time-dependent computation of PDE (2.5): (a) raw data, (b) rescaled data
with β = 0.49, (c) rescaled data with β = 2/5. The numbers in the legends indicate the
remaining time (t0− t) before the hole eventually closes. Near the contact line, the rescaled
profiles agree excellently with the prediction of the self-similar solution with β = 0.49,
shown as the solid curve in (b). Away from the contact-line region, the β = 2/5 solution
seems to agree with the rescaled profiles, as shown in (c). The insets show the profile
shapes near the contact line. The thickness of the prewetting film is hpw = 10−5 in the
numerical simulation, and the definition of the front is based on hrf = 0.01.

hpw. To further verify this power law, we rescale the profile shapes at different times
according to (ξ , f 2)= (r/(t0 − t)2/5, h2/(t0 − t)2/5), as shown in figure 14. The profiles
(ξ , f 2) approach a straight line as t→ t0, which indicates the approach of h toward
the asymptotic behaviour of h∝ r1/2. We also observe the absence of convergence of
the interface profiles near the contact line in figure 14, which is consistent with the
argument that the 2/5 scaling fails near the contact line.
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FIGURE 12. Influence of the thickness of the prewetting film hpw on (a) the scaling
exponent β and (b) the healing time t0. (a) A thinner prewetting film corresponds to
a smaller value of scaling exponent β, which is also consistent with the theoretical
calculations as described in § 2.3.3. (b) A thinner prewetting film corresponds to a greater
healing time t0, and the numerical data suggest a logarithmic fit for the dependence of t0
on hpw.
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FIGURE 13. (Colour online) Interface profiles in a logarithmic scale when rf = 10−3 with
different thicknesses for the prewetting film hpw = 10−10, 10−9, 10−8, 10−7, 10−6, 10−5

and 10−4. We note the presence of power laws with scaling exponents (4β − 1)/3β from
0.59 (for hpw=10−10) to 0.70 (for hpw=10−4) near the contact-line region, and a transition
to a 1/2 power law (i.e. β = 2/5) that is independent of hpw away from the contact-line
region.

In addition, from the time-dependent computations of the PDE (2.5), the evolution
of the flow rate is available, as defined by (2.22), which can also be used to
investigate the β = 2/5 scaling. The flow rate remains maximum (in absolute value)
at an approximately constant distance from the origin, as shown in figure 15(a), and
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FIGURE 14. (Colour online) Rescaled interface profiles (r,h2) from rf ≈0.46 down to rf ≈

0.04 with time intervals 1t≈ 0.67. The rescaling is based on β= 2/5, i.e. ξ = r/(t0− t)2/5,
and f 2

= h2/(t0 − t)2/5. Notice that the convergence of the rescaled profile shapes to a
straight line away from the contact line when t→ t0. Near the contact line, the profiles
do not converge as expected, since the scaling with a different exponent β holds there.
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Self-similar solution

FIGURE 15. (Colour online) Time evolution of the flow rate F from direct numerical
simulation: (a) raw data, and (b) rescaled data. The collapse of the flow rate data occurs
in the region near the propagating front, but not too close to the contact line. Here the
thickness of the prewetting film is hpw= 10−5, and the definition of the front is based on
hrf = 0.01. The curve represents the prediction from a self-similar solution with β = 2/5.

its value decreases but is bounded from below as rf → 0+. We further compare the
results of the flow rate with the prediction of a β = 2/5 self-similar solution by
rescaling the horizontal axis by (t0 − t)2/5 in figure 15(b). We observe good data
collapse in an intermediate region away from both the contact line and the outer
boundary, and also good agreement with the prediction of a self-similar solution with
β = 2/5.
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5. Summary and discussions
We presented a combined analytical, numerical and experimental study of the

healing process of a thin viscous film driven by surface tension, i.e. the inward
spreading process of a liquid film in a container to fill a hole in the centre. Such
a situation exists in a wide spectrum of natural and industrial applications such as
self-healing, spin coating, surfactant spreading and glass transition processes.

The analytical study was based on a well-known fourth-order differential equation
of the evolution type for the film thickness that is valid in the thin-film/lubrication
approximation. In addition, to resolve the stress singularity at the moving contact line,
we introduced a thin prewetting liquid film in the problem, via the initial condition,
which is assumed to move hydrodynamically with the bulk liquid behind the contact
line (see e.g. Tanner 1979; Kataoka & Troian 1997; Levy & Shearer 2004; Savva
& Kalliadasis 2011; Eggers & Fontelos 2015). Such a thin prewetting film might be
generated, for example, by van der Waals forces or diffusion (see e.g. Snoeijer &
Andreotti 2013). We did not attempt to justify the microscopic origin of this layer
here, but merely used it to regularize the stress singularity. We do note, however, that
using elements from the statistical mechanics of classical fluids it can be shown that
a ‘liquid-like’ film (i.e. a film with density between the liquid and its vapour), due to
adsorption of liquid molecules on the substrate, is always present due to the attractive
part in the liquid–solid interaction (if the interaction were fully repulsive there would
be no contact with the substrate) (e.g. Yatsyshin, Parry & Kalliadasis 2016). Statistical
mechanics can also be used to obtain the precise form of the associated disjoining
pressure (Yatsyshin, Savva & Kalliadasis 2015). The influence of the various forms
of van der Waals interactions on the precursor layer and their overall effects on the
healing process will be the subject of future work.

For the hole-healing process, the velocity increases and becomes unbounded as the
hole closes, so there is no longer a clear separation of time scales. Thus, instead
of assuming quasi-steadiness for the hole-healing dynamics (see e.g. Bostwick et al.
2017), we employed a self-similar ansatz to predict the power-law decay of the hole
radius, as well as the film profile. As far as later stages of the healing are concerned,
we found that the profile shapes are described by solutions of an ODE that contains
one similarity exponent, β. We computed solutions to the similarity equation with
different values of β, and found that the solutions can exhibit five distinct near-field
behaviours: blow-up, generic touch-down, touch-down at the origin, a thick film and a
non-generic critical behaviour that separates the generic touch-down solutions from the
generic blow-up ones. These observations were supported by the asymptotic analysis
of the solutions in the near field. We suggested that the non-generic critical solution
is the one that describes the healing process. In addition, the similarity exponent β
is not determined purely from scaling arguments. Instead, β becomes a function of
the finite thickness of the prewetting film, which we determine numerically. Thus, the
solutions we obtained are self-similar solutions of the second kind.

We also performed time-dependent computations for the full PDE that describes the
evolution of the interface. There is very good agreement for both the front location
and the profile shapes near the contact line between the numerical results and the self-
similar solutions that predict the correct thickness of the prewetting film. A systematic
study of the dependence of the exponent β on the thickness of the prewetting film
was also performed and very good agreement was obtained between the theoretical
prediction and the results of time-dependent computations. Further, we designed and
conducted laboratory experiments of healing liquid films in the regime where surface
tension dominates the spreading. A comparison between the experimental observations
and theoretical predictions for the profile shape and front location further supports the
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existence of the late-time self-similar solutions we obtained. The theoretical framework
can also be extended to study the hole-healing processes in other practical contexts
such as the spreading of floating liquid layers (see e.g. Lister & Kerr 1989; Feng
et al. 2014) and surfactants (see e.g. Jensen 1994).
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Appendix A. Early-time dynamics
While our focus in this study is on the behaviour of the film close to the time when

it heals, it is also of interest to analyse the early-time relaxation from the initial step
condition (2.6). The initial behaviour occurs in a small region near the step at r= 1,
and it is appropriate to use the approximation r = ρ + 1, with ρ � 1, so that the
early-time dynamics of spreading is described by

∂h
∂t
+
∂

∂ρ

(
h3 ∂

3h
∂ρ3

)
= 0. (A 1)

Thus, the early dynamics near t= 0 can be approximated by a self-similar solution in
the form h(ρ, t)=H(η), where η= ρ/t1/4. The scaled profile H satisfies

−
1
4
η

dH
dη
+

d
dη

(
H3 d3H

dη3

)
= 0, (A 2)

while appropriate boundary conditions are, from (2.6),

H = hpw,
dH
dη
= 0 as η→−∞, (A 3a,b)

H = 1,
dH
dη
= 0 as η→+∞. (A 3c,d)

For a given hpw, equation (A 2) with (A 3) may be solved numerically as a
boundary-value problem on a sufficiently large domain. An example solution is plotted
in figure 16 for hpw = 0.02. For verification, we compare this solution to a numerical
solution of the full problem (2.5)–(2.7) and obtain very good agreement. A description
of the numerical method to solve the full problem is given in appendix E. For the
numerical solution of (2.5), we set rout = 10, while in computing the self-similar
solution from (A 2), we set η=±10 as the far-field locations.

The main feature of the solutions depicted in figure 16 is the creation of capillary
oscillations on both sides of the initial step. On the side of the thick film (r > 1)
a large capillary ridge forms, which moves towards the outer boundary, while
on the side of the prewetting film (r < 1) the small oscillations preceding the
moving (apparent) contact line are reminiscent of those that exist in related problems
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FIGURE 16. (Colour online) Time evolution of the profile shape h(r, t) at early times,
0 < t < 10−5: (a) unscaled profiles, and (b) scaled profiles, compared to the self-similar
profile (dotted curve). The self-similar solution agrees well with the numerical solution at
early times.

(see e.g. Bertozzi et al. 1994; Eggers & Fontelos 2015), such as the linear problem
that describes the dynamics of flexible filaments in a viscous fluid (Stone & Duprat
2016), and the Bretherton problem (Bretherton 1961), in which a thin prewetting
film connects to an advancing apparent contact line. We also note that, although the
thin-film model equation is strictly speaking valid for small interfacial slopes and is
expected to break down when interfacial slopes are large, experimental work appears
to support the use of thin-film models to describe the relaxation process from step
initial shapes (see e.g. Huppert & Woods 1995; McGraw et al. 2012).

Appendix B. Far-field asymptotics
Here we analyse the asymptotic behaviour of the solutions of (2.10) for the special

value β = 2/5 in the far field (i.e. as ξ→∞). First, we note that f = ξ 1/2 is an exact
solution, as mentioned in § 2.2. Thus, we impose the far-field behaviour in the form

f (ξ)= a1ξ
1/2
+ f̃ (ξ) as ξ→∞, (B 1)

where f̃ (ξ)� ξ 1/2.
For simplicity and without loss of generality, we impose a1= 1. Then, we substitute

(B 1) in (2.10) and obtain the following linearized equation:

−
1
5

f̃ +
2
5
ξ

df̃
dξ
+

1
ξ

d
dξ

(
−

9
8
ξ−1/2 f̃ + ξ 5/2 d

dξ

[
1
ξ

d
dξ

(
ξ

df̃
dξ

)])
= 0, (B 2)

which can be simplified to the form

ξ 3/2 d4 f̃
dξ 4
+

7
2
ξ 1/2 d3 f̃

dξ 3
+

1
2
ξ−1/2 d2 f̃

dξ 2
+

2
5
ξ

df̃
dξ
−

1
5

f̃ = 0. (B 3)

Next, we employ a WKB strategy, and make the following substitution:

f̃ = e−W . (B 4)
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Assuming that W ′′ � (W ′)2, W ′′′ � (W ′)3 and W ′′′′ � (W ′)4, where ′ denotes d/dξ ,
equation (B 3) can be simplified to the equation

ξ 3/2(W ′)4 − 7
2ξ

1/2(W ′)3 + 1
2ξ
−1/2(W ′)2 − 2

5ξW ′ − 1
5 = 0. (B 5)

We further make the substitution

W ′ = ξ−1/6V. (B 6)

Then, equation (B 5) can be rewritten as

ξ 5/6V4
−

7
2 V3
+

1
2ξ
−5/6V2

−
2
5ξ

5/6V − 1
5 = 0, (B 7)

and the leading-order balance is

ξ 5/6V4
−

2
5ξ

5/6V = 0, (B 8)

which provides three non-trivial solutions for V:

V =
(

2
5

)1/3
,
(

2
5

)1/3 e±2πi/3. (B 9)

The two complex roots are neglected since they lead to f̃ (ξ) being highly oscillatory
and growing faster than any power-law behaviour. To compute the next-order
contribution to V , we write

V =
(

2
5

)1/3
+ Ṽ(ξ), (B 10)

where Ṽ� 1, and, substituting (B 10) in (B 7), can obtain

Ṽ = 8
5ξ
−5/6. (B 11)

Substituting (B 10) and (B 11) in (B 6), we can obtain the asymptotic expression in
the far field for W(ξ),

W = 6
5

(
2
5

)1/3
ξ 5/6
+

8
5 ln ξ +O(1), (B 12)

and also the asymptotic expression for f̃ (ξ) using (B 4) and for f (ξ) using (B 1) with
a1 = 1:

f (ξ)∼ ξ 1/2
+ ã2ξ

−8/5e−(6/5)(2/5)
1/3ξ5/6

as ξ→∞, (B 13)

where ã2 is a constant.
We recall that to obtain (B 13) we set a1 = 1 in (B 1) for simplicity (but without

loss of generality). In fact, due to the invariance of (2.10) for β = 2/5 under the
transformation f 7→ λf , ξ 7→ λ3/4ξ , where λ is a positive constant, we obtain the
following more general asymptotic behaviour of f (ξ) as ξ→∞:

λf (ξ)∼
(
λ3/4ξ

)1/2
+ ã2

(
λ3/4ξ

)−8/5
e−(6/5)(2/5)

1/3(λ3/4ξ)
5/6

, (B 14)

which can be rearranged to the form

f (ξ)∼ a1ξ
1/2
+ a2ξ

−8/5e−(6/5)(2/5)
1/3a−1

1 ξ5/6
as ξ→∞, (B 15)

where a1 ≡ λ
−5/8 and a2 ≡ ã2λ

−11/5.
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Appendix C. Near-field asymptotics
C.1. Asymptotics for touch-down at the origin

If f → 0 as ξ approaches the origin, then in general,

f ∼ 3
20(75α − 100β)ξ 4/3, (C 1)

while if β = 2/5 there is also the special behaviour f ∼ cξ 1/2 for any c, as this is an
exact solution over all ξ .

C.2. Asymptotics for the blow-up solutions
Next, we analyse the asymptotic behaviour of solutions of (2.10) that blow up at the
origin. We first assume the power-law form f ∼ b1ξ

γ with γ < 0. Substituting this
expression in (2.10), we obtain the leading-order behaviour of each term:

−
4β − 1

3
f + βξ f ′ ∼

(
−

4β − 1
3
+ βγ

)
b1ξ

γ ,

1
ξ

[
ξ f 3

(
1
ξ
(ξ f ′)′

)′]′
∼ γ 2(γ − 2)b1ξ

4γ−2.

 (C 2)

No balance is possible for negative γ , so f does not behave as a simple power law.
We therefore assume a general power-law-logarithmic expansion of the form

f ∼
∞∑

j=1

bjξ
γj(−log ξ)∆j, (C 3)

where γ1 6 0, ∆1 > 0 is required for blow-up. Substitution of (C 3) into the terms in
(2.10) gives the leading-order behaviour

−
1
5

f +
2
5
ξ f ′ ∼

(
−

4β − 1
3
+ βγ1

)
b1ξ

γ1(−log ξ)∆1, (C 4)

1
ξ

[
ξ f 3

(
1
ξ
(ξ f ′)′

)′]′
∼ γ 2

1 (γ1 − 2)(4γ1 − 2)b4
1ξ

4γ1−4(−log ξ)4∆1, γ1 6= 0. (C 5)

The second term (C 5), resulting from the surface tension term in (2.10), is too
singular to match with (C 4) with γ1 6= 0, so we must have γ1= 0. Taking γ1= 0, the
asymptotic behaviour is

1
ξ

[
ξ f 3

(
1
ξ
(ξ f ′)′

)′]′
∼ 4b4

1∆1(∆1 − 1)
(−log ξ)4∆1−2

ξ 4
, ∆1 6= 0, 1. (C 6)

Again, this is too singular to match with (C 4), so ∆1 = 1. The coefficient b1 is
arbitrary.

Continuing this process, we find that the exponents of the first three terms are
determined in a similar manner: (γ2, ∆2)= (0, 0), (γ3, ∆3)= (2, 0), (γ4, ∆4)= (2,−2),
with b2, b3, b4 arbitrary. The fifth term in (C 3) does not feature an arbitrary constant,
as it must cancel out the O(ξ−2(−log ξ)−2) term introduced by the fourth term in
(C 3), giving b5 =−2b4(b1 + b2)/b1. The same holds for higher terms, with the first
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term matching with (C 4) occurring at O(ξ 4(−log ξ)−2). We thus obtain the following
asymptotic expansion:

f ∼ b1(− log ξ)+ b2 + b3ξ
2
+ b4

ξ 2

(−log ξ)2
+O

(
ξ 2

(−log ξ)3

)
, (C 7)

where b1, b2, b3, b4 are parameters. As a special case it includes thick-film solutions
when b1 = b4 = 0, in which case f is analytic and the error term is O(ξ 4).

C.3. Asymptotics near a touch-down point
In this section, we analyse the asymptotic behaviour of solutions of (2.10) near a
touch-down point ξ0 > 0. The leading-order terms of (2.10) near ξ0 are

βξ0
df
dξ
+

d
dξ

(
f 3 d3f

dξ 3

)
= 0. (C 8)

Integrating (C 8) once provides

βξ0f + f 3 d3f
dξ 3
= ε. (C 9)

We assume the power-law form f ∼ c1 (ξ − ξ0)
∆1 + c2(ξ − ξ0)

∆2 + . . . with
0 < ∆1 < ∆2, . . . , and c1 > 0. Then, on substitution into (C 9) we obtain ∆ = 3/4,
c1 = (64ε/15)1/4 (or, equivalently, ε = 15c4

1/64), ∆2 = 3/2 and c2 =−(64βξ0)/(21c2
1),

thus:

f ∼ (64ε/15)1/4 (ξ − ξ0)
3/4
−

8
√

15βξ0

21
√
ε
(ξ − ξ0)

3/2. (C 10)

We note that such generic touch-down behaviour occurs only for ε > 0. When ε < 0,
there is no real solution for c1, and we do not have a power-law behaviour touching
the ξ -axis from above as ξ→ ξ+0 .

Generic touch-down corresponds to ε > 0. In the limit ε → 0+ (or, equivalently,
c1 → 0) the generic touch-down (C 10) becomes singular, as the coefficient of the
second term blows up. In fact, Duffy & Wilson (1996) have shown that for solutions
of (C 9) with ε = 0, there are no solutions touching down the ξ -axis from above as
ξ→ ξ+0 . In this case, the behaviour of f near ξ = ξ0 is (assuming ξ > ξ0)

f ∼− (3βξ0)
1/3 (ξ − ξ0)[−log(ξ − ξ0)]

1/3. (C 11)

This cannot approach the touch-down point from above, so, as with the case where
ε < 0, this touch-down behaviour does not pertain to the similarity solutions we
consider.

Finally, as well as the touch-down solutions, equation (C 9) admits solutions that
remain strictly positive. These solutions are also relevant to the travelling wave or
‘quasi-steady’ moving contact line between a fluid body and a much thinner prewetting
film, originally derived by Landau & Levich (1942) (see also Myers 1998). The ξ�
ξ0 behaviour of such solutions is either quadratic [ f ∝ (ξ − ξ0)

2] or almost linear
[ f ∝ (ξ − ξ0) log1/3(ξ − ξ0)] (Bender & Orszag 1978; Eggers 2004). Our numerical
results have indicated that the solution to (2.10) with this behaviour matches to the
latter behaviour and is unique for a given β. This solution is approached as c1, say,
is reduced to near zero, as long as β is greater than 2/5. The full similarity solution
(2.10) does not support the existence of a prewetting film (as constant f = fpw is not
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a solution to (2.10)), so the similarity solution can only be assumed to hold in some
region near the contact line.

Appendix D. Self-similar solutions using numerical continuation
The self-similar solutions to the ODE (2.10) were computed using shooting in § 2.

Another method of computation is to solve the governing equation as a boundary-
value problem on a suitably large domain. Here we compute the solutions to generic
touch-down using such a method, implemented in the numerical continuation package
AUTO-07p (Doedel et al. 2007). Numerical continuation is a particularly useful and
powerful method to use, as it allows us to systematically and efficiently compute the
one-parameter family of solutions (parametrized, say, by ξ0) for each exponent β. We
note that numerical continuation techniques have also been used for computation of
self-similar solutions in a related problem of a thin-film rupture on a solid substrate:
see Tseluiko, Baxter & Thiele (2013), Dallaston et al. (2017).

Firstly, we compute solutions with a generic touch-down behaviour at ξ0. Since we
expect f ∼ c1(ξ − ξ0)

3/4, we perform the change of variables

ξ = ξ0 + z4, f = z3g(z), (D 1a,b)

which removes the singularity at ξ = ξ0, so that g is smooth in z. Now, we define
state variables

U1 = g, U2 =
ξ0 + z4

4
(zg′ + 3g), U3 =

zU′2 −U2

4(ξ0 + z4)
, U4 =

(ξ0 + z4)g3

4
(zU′3 − 5U3),

(D 2a−d)
(where ′ represents differentiation with respect to z), from which we obtain a system
of four first-order ODEs:

U′1 =
1
z

[
4

ξ0 + z4
U2 − 3g

]
, (D 3)

U′2 =
1
z

[
4(ξ0 + z4)U3 +U2

]
, (D 4)

U′3 =
1
z

[
4

(ξ0 + z4)U3
1

U4 + 5U3

]
, (D 5)

U′4 = 4α(ξ0 + z4)z6U1 − 4β(ξ0 + z4)z2U2. (D 6)

The last of these comes from equation (2.10).
The boundary conditions follow from the analysis of the far-field and touch-down

behaviour discussed in appendices B and (C.3), respectively. In particular, we
found that for the far-field behaviour there are two growing modes as ξ → ∞
(or, equivalently, as z→∞). To eliminate these modes, it is appropriate to impose
two boundary conditions that are consistent with the far-field behaviour. We can
impose, for instance, the conditions

U2 ∼
α

β
z4U1, U3 ∼

α2

β2
U1 as z→∞. (D 7a,b)

In practice these conditions are imposed at z= L for sufficiently large L.
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The generic touch-down behaviour has one growing mode as ξ → ξ+0 (or,
equivalently, as z → 0). To eliminate this mode, it is appropriate to impose one
boundary condition, e.g.

U2 =
3ξ0U1

4
at z= 0, (D 8)

which follows from substituting z= 0 in the definition of U2 in (D 2).
In addition, to eliminate scale invariance of the solutions, we need to impose one

more condition. We can, for example, impose

U1 ∼ a1z4α/β−3, (D 9)

with a given value of a1. In our calculations, we use a1 = 1 for direct comparison
with figure 3.

This completes the formulation of the boundary-value problem. One of the
parameters can be used as the continuation parameter to obtain families of solutions.
For example, rather than varying a far-field parameter (as is necessary in shooting),
we may instead vary ξ0 (for fixed values of β and L). To track how coefficient c1
varies along a family of solutions, we can add c1 as an additional parameter in the
formulation of the boundary-value problem and impose one more boundary condition,
e.g.

U1 = c1. (D 10)

We plot the results of continuation in figure 17 in the (ξ0, c1) plane for various
values of β. We used L = 16 in the computations. We note that for each β > 0, an
apparent critical value of ξ0 is approached as c1→ 0, until a sharp turn in the (ξ0, c1)
curve that corresponds to the growth of a ‘foot’ with a well-defined thickness fpw. The
apparent contact-line location remains fixed as ξ0→ 0. We may thus build up a fpw
versus β curve, that matches with the results from shooting in figure 4. As β gets
close to 0.4, the prewetting thickness becomes too small to resolve.

Appendix E. Numerical scheme
We use a finite-difference scheme to solve the PDE (2.5), subject to appropriate

boundary conditions (2.7) and initial condition (2.6) on the domain [0, 10]. We first
rewrite (2.5) as

∂h
∂t
+

1
r
∂

∂r
(rhv)= 0, (E 1)

where

v ≡ h2 ∂κ

∂r
, and κ ≡

1
r
∂

∂r

(
r
∂h
∂r

)
. (E 2a,b)

Equation (E 1) can be rearranged in the form

∂(rh)
∂t
+ v

∂(rh)
∂r
+ rh

∂v

∂r
= 0, (E 3)

and we note that the first two terms represent the convection of rh with velocity v.
In the healing process, we expect a front advancing towards the origin, and we

impose an upwind scheme to discretize the r derivative of rh. Hence, if we discretize

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

77
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.777


432 Z. Zheng and others

0.5

0

1.0

0

1

2

3

0.5

0.40 0.45 0.420 0.425 0.430 0.3870 0.3875

5

(a) (b)

2

0

4

(c)

2

0

4

(d)

0.5

0

6 1.0
(e)

f

f

FIGURE 17. (Colour online) (a) Families of self-similar solutions to (2.10) in the (ξ0, c1)-
plane computed using numerical continuation, for various values of β. As c1 is decreased,
the profiles tend to a non-generic profile, shown in (b), with a foot of width fpw(β). (c–e)
the region near the apparent contact line for (c) β = 0.5, (d) β = 0.48 and (e) β = 0.46,
showing the development of the foot as c1 is decreased.

h at time t by a set of values
{

ht
i

}N

i=1 at the nodes {ri}
N
i=1, we obtain the discretized

equation
ht+1t

i − ht
i

1t
=−

vt
i

ri

ri+1ht
i+1 − riht

i

ri+1 − ri
− ht

i

vt
i+1/2 − v

t
i−1/2

(ri+1 − ri−1)/2
, (E 4)

where

vt
i =

(
ht

i

)2 κ
t
i+1 − κ

t
i−1

ri+1 − ri−1
, (E 5a)

vt
i+ 1

2
=

(
ht

i+1 + ht
i

2

)2
κ t

i+1 − κ
t
i

ri+1 − ri
, (E 5b)

κ t
i =

2
ri+1 − ri−1

(
ht

i+1 − ht
i

ri+1 − ri
−

ht
i − ht

i−1

ri − ri−1

)
+

1
ri

ht
i+1 − ht

i−1

ri+1 − ri−1
. (E 5c)

The discretized curvature κ t
i is approximated using the central difference of ht

i. In
order to resolve the structure of the profiles near the apparent contact line, the code is
adaptive and introduces finer meshes in the regions where more nodes are needed. For
example, the grid size is of O(10−5) to O(10−7) close to the centre of the hole, and the
time step starts from 10−18, for example, and gradually increases as time progresses.
We performed convergence tests to verify that the results are insensitive to further
mesh refinements.
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