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Abstract

Disjunctive finitary programs are a class of logic programs admitting function symbols and hence
infinite domains. They have very good computational properties; for example, ground queries are
decidable, while in the general case the stable model semantics are Π1

1-hard. In this paper we
prove that a larger class of programs, called finitely recursive programs, preserve most of the good
properties of finitary programs under the stable model semantics, which are as follows: (i) finitely
recursive programs enjoy a compactness property; (ii) inconsistency checking and skeptical rea-
soning are semidecidable; (iii) skeptical resolution is complete for normal finitely recursive pro-
grams. Moreover, we show how to check inconsistency and answer skeptical queries using finite
subsets of the ground program instantiation. We achieve this by extending the splitting sequence
theorem by Lifschitz and Turner: we prove that if the input program P is finitely recursive, then
the partial stable models determined by any smooth splitting ω-sequence converge to a stable model
of P .

KEYWORDS: Answer set programming with infinite domains, infinite stable models, finitary pro-
grams, compactness, skeptical resolution.

1 Introduction

Answer set programming (ASP) (Marek and Truszczynski 1998; Niemelä 1999) is one of
the most interesting achievements in the area of logic programming and nonmonotonic rea-
soning. It is a declarative problem-solving paradigm, mainly centered around some well-
engineered implementations of the stable model semantics of logic programs (Gelfond and
Lifschitz 1988, 1991), such as SMODELS (Niemelä and Simons 1997) and DLV (Eiter et al.
1997).

The most popular ASP languages are extensions of Datalog, namely, function-free,
possibly disjunctive logic programs with negation as failure. The lack of function sym-
bols has several drawbacks, related to expressiveness and encoding style (Bonatti 2004).
In order to overcome such limitations and reduce the memory requirements of current
implementations, a class of logic programs called finitary programs has been introduced
(Bonatti 2004).

1 This paper extends and refines Baselice et al. (2007).
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In finitary programs function symbols (hence infinite domains) and recursion are al-
lowed. However, recursion is restricted by requiring each ground atom to depend on finitely
many ground atoms; such programs are called finitely recursive. Moreover, only finitely
many ground atoms must occur in odd cycles—that is, cycles of recursive calls involving
an odd number of negative subgoals—which means that there should be only finitely many
potential sources of inconsistencies. These two restrictions bring a number of nice seman-
tical and computational properties (Bonatti 2004). In general, function symbols make the
stable model semantics highly undecidable (Marek and Remmel 2001). On the contrary,
if the given program is finitary, then consistency checking, ground credulous queries, and
ground skeptical queries are decidable. Nonground queries were proved to be r.e.-complete.
Moreover, a form of compactness holds: an inconsistent finitary program has always a finite
unstable kernel, i.e., a finite subset of the ground instantiation of the program with no stable
models. All of these properties are quite unusual for a nonmonotonic logic.

As function symbols are being integrated in state-of-the-art reasoners such as DLV
(Calimeri et al. 2008), it is interesting to extend these good properties to larger program
classes. This goal requires a better understanding of the role of each restriction in the
definition of finitary programs. It has already been noted (Bonatti 2004) that by dropping
the first condition (i.e., if the program is not finitely recursive) one obtains a superclass
of stratified programs, whose complexity is then far beyond computability. In the same
paper, it is argued that the second restriction (on odd cycle) is needed for the decidability
of ground queries. However, if a program is only finitely recursive (and infinitely many
odd cycles are allowed), then the results of Bonatti (2004) do not characterize the exact
complexity of reasoning and say nothing about compactness or about the completeness of
the skeptical resolution calculus (Bonatti 2001b).

In this paper we extend and refine those results and prove that several important prop-
erties of finitary programs carry over to all disjunctive finitely recursive programs. We
prove that for all such programs the compactness property still holds and that incon-
sistency checking and skeptical reasoning are semidecidable. Moreover, we extend the
completeness of skeptical resolution (Bonatti 2001b, 2004) to all normal finitely recursive
programs. Our results clarify the role that each of the two restrictions defining normal
finitary programs has in ensuring their properties.

In order to prove these results we use program splittings (Lifschitz and Turner 1994),
but the focus is shifted from splitting sequences (whose elements are sublanguages) to the
corresponding sequences of subprograms that enjoy more invariant properties and may be
regarded as a sort of normal form for splitting sequences. For this purpose we introduce
the notion of module sequence. It turns out that disjunctive finitely recursive programs
are exactly those disjunctive programs whose module sequences consist of finite elements.
Moreover a disjunctive finitely recursive program P has a stable model whenever each ele-
ment Pi of the sequence has a stable model, a condition which is not valid in general for all
disjunctive programs with negation. This result provides an iterative characterization of the
stable models of P . Module sequences and this theorem constitute a powerful formal tool
that may facilitate the proof of new consistency results and provide a uniform framework
for comparing different approaches to decidable reasoning with infinite domains.

The paper is organized as follows: The next section is devoted to preliminaries. In Sec-
tion 3, we define module sequences and study their properties. In Section 4, we prove that
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every finitely recursive program with a consistent module sequence is consistent and use
this result to extend the compactness property of finitary programs to all finitely recursive
programs. Complexity results and two simple sound and complete algorithms for incon-
sistency checking and skeptical reasoning can be found in Section 5. Then, for a better,
goal-directed calculus, the completeness theorem for skeptical resolution is extended to all
finitely recursive programs in Section 6. Section 7 relates finitely recursive programs and
our iterative approach to previous approaches to decidable reasoning with infinite stable
models and makes a first step towards a unified picture based on our framework. Finally,
Section 8 concludes the paper with a summary and a brief discussion of our results, as well
as some interesting directions for future research.

2 Preliminaries

We assume the reader to be familiar with the classical theory of logic programming (Lloyd
1984).

Disjunctive logic programs are sets of (disjunctive) rules

A1 ∨ A2 ∨ · · · ∨ Am ← L1, . . . , Ln (m > 0, n � 0),

where each Aj (j = 1, . . . , m) is a logical atom and each Li (i = 1, . . . , n) is a literal, that
is, either a logical atom A or a negated atom notA.

If r is a rule with the above structure, then let head(r) = {A1, A2, . . . , Am} and body(r) =

{L1, . . . , Ln}. Moreover, let body+(r) (respectively body−(r)) be the set of all atoms A such
that A (respectively notA) belongs to body(r).

Normal logic programs are disjunctive logic programs whose rules r have one atom in
their head, that is, |head(r)| = 1.

The ground instantiation of a program P is denoted by Ground(P ), and the set of atoms
occurring in Ground(P ) is denoted by atom(P ). Similarly, atom(r) denotes the set of
atoms occurring in a ground rule r.

A Herbrand model M of P is a stable model of P iff M ∈ lm(PM), where lm(X)

denotes the set of least models of a positive (possibly disjunctive) program X and PM is
the Gelfond–Lifschitz transformation (Gelfond and Lifschitz 1988, 1991) of P , obtained
from Ground(P ) by

(i) removing all rules r such that body−(r) ∩M �= ∅ and
(ii) removing all negative literals from the body of the remaining rules.

Disjunctive and normal programs may have one, none, or multiple stable models. We
say that a program is consistent if it has at least one stable model; otherwise the program
is inconsistent. A skeptical consequence of a program P is any closed first-order formula
satisfied by all the stable models of P . A credulous consequence of P is any closed first-
order formula satisfied by at least one stable model of P .

The dependency graph of a program P is a labeled directed graph, denoted by DG(P ),
whose vertices are the ground atoms of P ’s language. Moreover,

(i) there exists an edge labeled ‘+’ (called positive edge) from A to B iff for some rule
r ∈ Ground(P ), A ∈ head(r), and B ∈ body(r);
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(ii) there exists an edge labeled ‘-’ (called negative edge) from A to B iff for some rule
r ∈ Ground(P ), A ∈ head(r), and notB ∈ body(r);

(iii) there exists an unlabeled edge from A to B iff for some rule r ∈ Ground(P ),
A ∈ head(r), and B ∈ head(r).

An atom A depends positively (respectively negatively) on B if there is a directed path
from A to B in the dependency graph with an even (respectively odd) number of negative
edges. Moreover, each atom depends positively on itself. A depends on B if A depends
positively or negatively on B.

An odd cycle is a cycle in the dependency graph with an odd number of negative edges.
A ground atom is odd-cyclic if it occurs in an odd cycle. Note that there exists an odd cycle
iff some ground atom A depends negatively on itself.

The class of programs on which this paper is focussed can now be defined very concisely.

Definition 2.1
A disjunctive program P is finitely recursive iff each ground atom A depends on finitely
many ground atoms in DG(P ).2

For example, most standard list manipulation programs (like member, append, and
remove) are finitely recursive. The reader can find numerous examples of finitely recursive
programs in Bonatti (2004). In general, checking whether a program is finitely recursive
is undecidable (Bonatti 2004). However, in Bonatti (2001a, 2004) a large decidable sub-
class has been implicitly characterized via static analysis techniques. Another expressive,
decidable class of finitely recursive programs can be found in Simkus and Eiter (2007).

We will also mention frequently an important subclass of finitely recursive programs.

Definition 2.2 (Finitary programs)
We say that a disjunctive program P is finitary if the following conditions hold:

1. P is finitely recursive;
2. there are finitely many odd-cyclic atoms in the dependency graph DG(P ).

Finitary programs have very good computational properties (for example, ground infer-
ences are decidable). Many interesting programs, however, are finitely recursive but not
finitary, due to integrity constraints that apply to infinitely many individuals.

Example 2.3
Typical programs for reasoning about actions and change are finitary. Figure 4 of Bonatti
(2004) illustrates one of them, modeling a blocks world. That program defines—among
others—two predicates holds(fluent , time) and do(action , time). The simplest way to add
a constraint that forbids any parallel execution of two incompatible actions a1 and a2 is
including a rule

f ← not f, do(a1, T ), do(a2, T )

2 This definition differs from the one adopted in Bonatti (2002) because it is based on a different notion of
dependency. Here the dependency graph contains edges between atoms occurring in the same head, while in
Bonatti (2002) such dependencies are dealt with in a third condition in the definition of finitary programs.
Further comparison with Bonatti (2002) can be found in Section 7.
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in that program, where f is a fresh propositional symbol (often such rules are equivalently
expressed as denials like ← do(a1, T ), do(a2, T )). This program is not finitary (because
f depends on infinitely many atoms since T has an infinite range of values) but it can be
reformulated as a finitely recursive program by replacing the above rule with

f(T )← not f(T ), do(a1, T ), do(a2, T ) .

Note that the new program is finitely recursive but not finitary, because the new rule
introduces infinitely many odd cycles (one for each instance of f(T )).

Our results on finitely recursive programs depend on the splitting theorem that allows to
construct stable models in stages. In turn, this theorem is based on the notion of splitting
set.

Definition 2.4 (Splitting set and bottom program; Lifschitz and Turner 1994; Baral 2003)

A splitting set of a disjunctive logic program P is any set U of ground atoms such that, for
all rules r ∈ Ground(P ), if head(r) ∩U �= ∅, then atom(r) ⊆ U. If U is a splitting set for
P , we also say that U splits P . The set of rules r ∈ Ground(P ) such that head(r)∩U �= ∅
is called the bottom of P relative to the splitting set U and is denoted by botU(P ). The
subprogram Ground(P ) \ botU(P ) is called the top of P relative to U.

The bottom program characterizes the restriction of the stable models of P to the language
determined by the splitting set. The top program determines the rest of each stable model;
for this purpose it should be partially evaluated with respect to the stable models of the
bottom.

Definition 2.5 (Partial evaluation; Lifschitz and Turner 1994; Baral 2003)
The partial evaluation of a disjunctive logic program P with splitting set U with respect
to a set of ground atoms X is the program eU(Ground(P ), X) defined as follows:

eU(Ground(P ), X) ={r′ | there exists r ∈ Ground(P ) such that (body+(r) ∩U) ⊆ X,

(body−(r) ∩U) ∩X = ∅, head(r′) = head(r),

body+(r′) = body+(r) \U, and body−(r′) = body−(r) \U } .

We are finally ready to formulate the splitting theorem (and hence the modular construction
of stable models based on the top and bottom programs) in formal terms.

Theorem 2.6 (Splitting theorem; Lifschitz and Turner 1994)
Let U be a splitting set for a disjunctive logic program P . An interpretation M is a stable
model of P iff M = I ∪ J, where

1. I is a stable model of botU(P );
2. J is a stable model of eU(Ground(P ) \ botU(P ), I).

The splitting theorem has been extended to transfinite sequences in Lifschitz and Turner
(1994). A (transfinite) sequence is a family whose index set is an initial segment of ordinals
{α : α < μ}. The ordinal μ is the length of the sequence.

A sequence 〈Uα〉α<μ of sets is monotone if Uα ⊆ Uβ whenever α < β and continuous if
for each limit ordinal α < μ, Uα =

⋃
ν<α Uν .
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Definition 2.7 (Splitting sequence, Lifschitz and Turner 1994)
A splitting sequence for a disjunctive program P is a monotone, continuous sequence
〈Uα〉α<μ of splitting sets for P such that

⋃
α<μ Uα = atom(Ground(P )) .

Lifschitz and Turner (1994) generalize the splitting theorem to splitting sequences.

Theorem 2.8 (Splitting sequence theorem; Lifschitz and Turner 1994)
Let P be a disjunctive program;3 M is a stable model of P iff there exists a splitting
sequence 〈Uα〉α<μ such that

1. M0 is a stable model of botU0
(P );

2. for all successor ordinals α < μ, Mα is a stable model of eUα−1
(botUα

(P )\botUα−1
(P ),⋃

β<α Mβ);
3. for all limit ordinals λ < μ, Mλ = ∅;
4. M =

⋃
α<μ Uα.

3 Module sequences and a normal form for splitting sequences

In this section we replace the sequences of program slices botUα
(P )\botUα−1

(P ) adopted by
Lifschitz and Turner (1994) with slightly different and simpler program module sequences.
Then we prove some properties of module sequences that will be useful in proving our main
results.

Definition 3.1 (GH, Module sequence)
Let P be a disjunctive program, and let the set of its ground head atoms be

GH = { p | p ∈ head(r), r ∈ Ground(P ) }.

The module sequence P1, P2, . . . , Pn, . . . induced by an enumeration p1, p2, . . . , pn, . . . of
GH is defined as follows:

P1 = { r ∈ Ground(P ) | p1 depends on some A ∈ head(r) },
Pi+1 = Pi ∪ { r ∈ Ground(P ) | pi+1 depends on some A ∈ head(r) } (i � 1).

Of course, we are particularly interested in those properties of module sequences that
are independent from the enumeration of GH. We say that a ground subprogram P ′ ⊆
Ground(P ) is downward closed if for each atom A occurring in atom(P ′) the subprogram
P ′ contains all the rules r ∈ Ground(P ) such that A ∈ head(r).

Proposition 3.2
Let P be a disjunctive program. For all module sequences P1, P2, . . . , for P :

1.
⋃

i�1 Pi = Ground(P );
2. for each i � 1 and j � i, atom(Pi) is a splitting set of Pj , and Pi = botatom(Pi)(Pj);
3. for each i � 1, atom(Pi) is a splitting set of P , and Pi = botatom(Pi)(P );
4. for each i � 1, Pi is downward closed.

3 The splitting sequence theorem holds for disjunctive logic programs extended with so-called strong negation
that, however, is essentially syntactic sugar. Therefore, for the sake of simplicity, we ignore it here.
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This proposition follows easily from the definitions. It shows that each module sequence
for P consists of the bottom programs corresponding to a particular splitting sequence
〈atom(Pi)〉i<ω that depends on the underlying enumeration of GH . Roughly speaking,
such sequences (whose lengths are limited by ω) constitute a normal form for splitting
sequences and enjoy useful properties that are invariant with respect to the enumeration.

Definition 3.3 (Smoothness)
A transfinite sequence of sets 〈Xα〉α<μ is smooth iff X0 is finite, and for each non-limit
ordinal α + 1 < μ, the difference Xα+1 \Xα is finite.

Note that when μ = ω (as in module sequences), smoothness implies that each Xα in
the sequence is finite. Finitely recursive programs are completely characterized by smooth
module sequences.

Theorem 3.4
For all disjunctive logic programs P , the following are equivalent:

1. P is finitely recursive;
2. P has a smooth module sequence (where each Pi is finite);
3. all module sequences for P are smooth.

Proof
(1⇒ 3) Let P be a finitely recursive program, and let e = p1, p2, . . . be any enumeration

of GH . If S = P1, P2, . . . is the module sequence induced by the enumeration e, then S

is smooth because, for each atom pi in e, the set { r ∈ Ground(P ) | pi depends on some
A ∈ head(r) } is finite, as P is finitely recursive. Since this holds for an arbitrary
enumeration e, all module sequences for P are smooth.

(3⇒ 2) Trivial.
(2⇒ 1) Let S = P1, P2, . . . , be a smooth module sequence for P , and let p be an atom in

Ground(P ). By Proposition 3.2.(1), there is a program Pi in S such that p ∈ atom(Pi).
Moreover, Pi is downward closed by definition of module sequence, and it is finite
because S is smooth. Then p depends only on finitely many ground atoms. Since p

has been arbitrarily chosen, the same holds for all ground atoms; therefore P is finitely
recursive. �

Smooth module sequences clearly correspond to smooth splitting sequences of length
ω. In particular, for each smooth module sequence 〈Pi〉i<ω , 〈atom(Pi)〉i<ω is a smooth
splitting sequence. Conversely, given a smooth splitting sequence 〈Ui〉i<ω and an arbitrary
enumeration p1, p2, . . . , pi, the resulting module sequence must necessarily be smooth. Sup-
pose it is not; then some pi must depend on infinitely many atoms. Consequently, all the
sets Uj containing pi should be infinite as well (a contradiction). Note that in general a
smooth splitting sequence does not strictly correspond to a module sequence. For example,
the difference between two consecutive elements of a splitting sequence may contain two
atoms that do not depend on each other, while this is impossible in module sequences by
construction.

Using the above relationships between smooth module sequences and smooth splitting
sequences of length ω, the characterization of finitely recursive programs can be completed
as follows, in terms of standard splitting sequences:

https://doi.org/10.1017/S147106840900372X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840900372X


220 S. Baselice et al.

Corollary 3.5
For all disjunctive programs P , the following are equivalent:

1. P is finitely recursive;
2. P has a smooth splitting sequence of length μ � ω.

Proof
A straightforward consequence of Theorem 3.4 and the correspondence between smooth
module sequences and smooth splitting sequences of length μ � ω. �

Note the asymmetry between Corollary 3.5 and Theorem 3.4. It can be explained by
the generality of splitting sequences: even if the underlying program is finitely recursive,
splitting sequences are not forced to be all smooth. For example, the finitely recursive
program

even(0)

even(s(s(X))) ← even(X)

odd (s(0))

odd (s(s(X))) ← odd (X)

has a non-smooth splitting sequence 〈{even(sn(X)) | n even}, {odd (sn(X)) | n odd}〉 .
Next we illustrate how module sequences provide an incremental characterization of the

stable models of disjunctive logic programs.
Roughly speaking, the following theorem rephrases the splitting sequence theorem of

Lifschitz and Turner (1994) in terms of module sequences. The original splitting sequence
theorem applies to sequences of disjoint program “slices,” while our theorem applies to
monotonically increasing program sequences. Since no direct proof of the splitting se-
quence theorem was ever published (only the proof of a more general result for default
logic was published; Tuner 1996), here we give a direct proof of our result.

Theorem 3.6 (Module sequence theorem)
Let P be a disjunctive program and P1, P2, . . . be a module sequence for P . Then M is a
stable model of P iff there exists a sequence M1,M2, . . . such that:

1. for each i � 1, Mi is a stable model of Pi;
2. for each i � 1, Mi = Mi+1 ∩ atom(Pi);
3. M =

⋃
i�1 Mi.

Proof
Let M be a stable model of P . Since P1, P2, . . . is a module sequence for P , we have that
for each i � 1, atom(Pi) is a splitting set of P and Pi = botatom(Pi)(P ). Consider the
sequence of models Mi = M ∩ atom(Pi) , 1 � i < ω. By the splitting theorem (Lifschitz
and Turner 1994), for each i � 1, Mi is a stable model of Pi. Second, since Pi+1 ⊇ Pi, we
have Mi = M∩atom(Pi) = (M∩atom(Pi+1))∩atom(Pi) = Mi+1∩atom(Pi) . Finally, by
Proposition 3.2.(1) we have

⋃
i Mi = M. Then for each stable model M of P there exists

a sequence of finite sets of ground atoms that satisfies properties 1, 2, and 3.
Conversely, let P be a disjunctive logic program. For the sake of readability, we as-

sume without loss of generality that P is ground. Suppose that there exists a sequence
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M1,M2, . . . that satisfies properties 1, 2, and 3. We have to prove that the set M =
⋃

i�1 Mi

is a stable model of P ; equivalently,
⋃

i�1

Mi ∈ lm(PM).

Properties 2 and 3 imply that for all i � 1, (M∩atom(Pi)) = Mi; consequently PM
i = PMi

i ,
and by Proposition 3.2.(1),

PM =

(
⋃

i�1

Pi

)M

=
⋃

i�1

PM
i =

⋃

i�1

PMi

i . (1)

First we prove that M is a model of PM ; that is, for each rule r in PM , if body(r) ⊆M,
then head(r) ∩M �= ∅. Let r be any rule in PM such that body(r) ⊆ M. By equation (1),
there is an integer i � 1 such that r ∈ PMi

i . Moreover, it is not hard to prove that properties
2 and 3 and body(r) ⊆M imply body(r) ⊆Mi. Now, since Mi is a stable model of Pi and
body(r) ⊆ Mi, we have head(r) ∩Mi �= ∅. It follows immediately that head(r) ∩M �= ∅.
Since this holds for any r ∈ PM , we conclude that M is a model of PM .

We are left to show that M is a minimal model for PM . Suppose that PM has a model
M ′ ⊂ M. Let p ∈ (M \ M ′), and let i be an integer such that p ∈ atom(Pi). Since
PM
i = PMi

i is a bottom program for PM , M ′ ∩ atom(Pi) is a model for PMi

i and is strictly
contained in Mi, but this is a contradiction because by hypothesis Mi is a minimal model
of PMi

i . �

The module sequence theorem (respectively, the splitting sequence theorem) suggests
a relationship between the consistency of a program P and the consistency of each step
in P ’s module sequences (respectively, the sequence of program slices induced by P ’s
splitting sequences). To clarify this point we introduce another invariant property of module
sequences.

Definition 3.7
A module sequence S = P1, P2, . . . for a disjunctive program P is inconsistent if, for some
i < ω, Pi is inconsistent; otherwise S is consistent.

Proposition 3.8
If a disjunctive program P has an inconsistent module sequence, then P is inconsistent.

Proof
Suppose that P has an inconsistent module sequence P1, P2, . . . ; that is, some Pi in the
sequence is inconsistent. It follows that P has an inconsistent bottom program, and hence
P is inconsistent by the splitting theorem. �

Theorem 3.9
Let S = P1, P2, . . . be a module sequence for a disjunctive program P . If S is inconsistent,
then each module sequence for P is inconsistent.

Proof
Let S = P1, P2, . . . be an inconsistent module sequence for P induced by the enumeration
p1, p2, . . . of GH , and let i be the least index such that Pi is inconsistent. Let S ′ = P ′1, P

′
2, . . .

be any module sequence for P induced by the enumeration p′1, p
′
2, . . . of GH . Since i is
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finite, there exists a finite k such that {p1, p2, . . . , pi} ⊆ {p′1, p′2, . . . , p′k}. So, by construction,
Pi ⊆ P ′k, and then atom(Pi) ⊆ atom(P ′k). Moreover, by definition, Pi is downward closed;
therefore Pi = botatom(Pi)(P

′
k). Since Pi is inconsistent, P ′k is inconsistent (by the splitting

theorem), and hence S ′ is inconsistent, too. �

In other words, for a given program P , all module sequences are either inconsistent or
consistent. In particular, if P is consistent, then every member Pi of any module sequence
for P must be consistent. The converse property would allow to define a procedure for
enumerating the stable models of P (as shown in the following sections). Unfortunately,
even if each step in a module sequence is consistent, the entire program P is not necessarily
consistent, as shown by the following example:

Example 3.10
As a preliminary step, consider the following program Pf (due to Fages 1994):

q(X)← q(f(X)).

q(X)← not q(f(X)).

r(0).

The third rule is only needed to introduce the constant 0 into the program’s language.
This program is inconsistent. To see this, note that—roughly speaking—the first two

rules in Pf are classically equivalent to

q(X)← q(f(X)) ∨ not q(f(X)) .

Since the body is a tautology, and the stable models of a program are also classical models
of the program (if not is interpreted as ¬), we have that every stable model of Pf should
satisfy all ground instances of q(X). However, the Gelfond–Lifschitz transformation with
respect to such a model would contain only the first and the third program rules, and hence
the least model of the transformation would contain no instance of q(X). It follows that Pf

is inconsistent (it has no stable models). Now consider the following extension P of Pf :

1. q(X)← q(f(X)), p(X).

2. q(X)← not q(f(X)), p(X).

3. r(0).

4. p(X)← not p′(X).

5. p′(X)← not p(X).

6. c(X)← not c(X), not p(X).

The program P is inconsistent, too. To verify it, suppose that M is a stable model of P .
By rules 4 and 5, for all ground instances of X, exactly one of p(X) and p′(X) is true in
M. However, if p(X) is false, then rule 6 produces an inconsistency due to the odd cycle
involving c(X). It follows that all ground instances of p(X) must be true in M. But then
rules 1, 2 and 3 become equivalent to program Pf and prevent M from being a stable
model, as explained above. So P is inconsistent.

Next, consider the enumeration e = r(0), q(0), p(0), p′(0), c(0), q(f(0)), p(f(0)), p′(f(0)),

c(f(0)), . . . , of the set GH . This enumeration induces the following module sequence for
P (where the expression [X/t] denotes the substitution mapping X onto t):
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P0 = {r(0)},
P1 = P0 ∪

⋃
k<ω{q(X)← q(f(X)), p(X),

q(X)← not q(f(X)), p(X),

p(X)← not p′(X),

p′(X)← not p(X) } [X/fk(0)],

Pi+1= Pi ∪ {c(X)← not c(X), not p(X)} [X/fi−1(0)] (i � 1) .

Note that M0 = {r(0)} is a stable model of P0, and for each i � 1 and k � i− 2

Mk
i = {r(0), p(f0(0)), p(f1(0)), p(f2(0)), . . . , p(fk(0)),

p′(fk+1(0)), p′(fk+2(0)), . . . , p′(fk+j(0)), . . .

q(f0(0)), q(f1(0)), q(f2(0)), . . . , q(fk(0))}

is a stable model of Pi. Therefore, each Pi is consistent, while
⋃

i Pi = Ground(P ) is
inconsistent. This happens because for each stable model M of P1 there exists a Pj (j > 1)

such that M is not the bottom part of any stable model of Pj . Intuitively, M has been
“eliminated” at step j. In this example P1 has infinitely many stable models, and it turns
out that no finite step eliminates them all. Consequently, each Pi in the module sequence is
consistent, but the entire program is not.

Note that P is not finitely recursive because, for each grounding substitution σ, q(X)σ

depends on the infinite set of ground atoms { q(f(X))σ, q(f(f(X)))σ, . . . } (due to rules 1
and 2). In the following section we are going to prove that finitely recursive programs are
not affected by the problem illustrated in Example 3.10; that is, they enjoy the converse of
Theorem 3.9. This property will be used to design an effective enumeration procedure for
their stable models.

4 Compactness property of disjunctive finitely recursive programs

Here we prove that the compactness theorem proved in Baselice et al. (2007) for normal
finitely recursive programs actually holds for all disjunctive finitely recursive programs.

The first step is to prove the converse of Theorem 3.9 for all finitely recursive programs.

Theorem 4.1
For all disjunctive finitely recursive programs P , if some module sequence for P is consis-
tent, then P is consistent.

Proof
Let S be any module sequence for P . If S is consistent, then each module Pi in S has a
nonempty set of stable models. It suffices to prove that there exists a sequence M1,M2, . . .

of stable models of P1, P2, . . . , respectively, that satisfy the properties of Theorem 3.6,
because this implies that M =

⋃
i Mi is a stable model of P .

We call a stable model Mi of Pi bad if there exists a k > i such that no stable model
Mk of Pk extends Mi; otherwise it is called good. We say that Mk extends Mi if Mk ∩
atom(Pi) = Mi.
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Claim 1: Each Pi must have at least one good stable model.
To prove the claim, suppose that there exists an i such that all stable models of Pi are

bad. Since Pi is a finite program, it has a finite number Mi,1, . . . ,Mi,r of stable models. By
assumption, for each Mi,j there is a program Pkj none of whose stable models extends Mi,j .
Let k = max{k1, . . . , kr}; clearly, no stable model of Pk extends any stable model of Pi, and
this is a contradiction because Pk, by hypotheses, has at least one stable model Mk, and by
the splitting theorem, Mk must extend a stable model of Pi. This proves Claim 1.

Claim 2: Each good stable model Mi of Pi is extended by some good stable model Mi+1

of Pi+1.
Suppose it is not. Then, none of the stable models Mi+1,1, . . . ,Mi+1,r of Pi+1 that extend

the good stable model Mi of Pi is good. This implies (by analogy with the proof of Claim 1)
that there exists a module Pk (k > i + 1) none of whose stable models extends any
of Mi+1,1, . . . ,Mi+1,r. It follows that none of Pk’s stable models can extend Mi, and this
contradicts the hypothesis that Mi is good.

From the two claims it follows immediately that there exists an infinite sequence M1,

M2, . . . that satisfies properties 1 and 2 of Theorem 3.6, and hence the union M =
⋃

i Mi

is a stable model of P . �

Note that in Example 3.10, module P1 is infinite and has infinitely many stable models, all
of which are “bad”. Each of them is eliminated at some step, but no finite step eliminates
them all, which is why that module sequence is consistent, although the entire program P

is not.
Theorem 4.1 can be extended to all smooth splitting sequences with length ω.

Corollary 4.2
Let 〈Uα〉α<ω be a smooth splitting sequence for a disjunctive program P . Then P is
consistent iff for all α < ω, botUα

(P ) is consistent.

Proof
A straightforward consequence of the correspondence between module and splitting se-
quences. �

The restriction to sequences with length ω is essential to derive the above corollary,
which is not valid otherwise, as shown by the following example:

Example 4.3
Let P be the following program, where rule 1 has the role of creating an infinite Herbrand
domain:

1. r(f(0)).

2. p(X)← not q(X).

3. q(X)← not p(X).

4. some q ← q(X).

5. f ← not f, not some q.

6. c(X)← not c(X), q(X).

This program is inconsistent for the following reasons: For all ground instances of X,
rules 2 and 3 force exactly one of p(X) and q(X) to be true. If no instance of q(X) is
true, then rules 4 and 5 create a contradiction by “activating” the odd cycle involving
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f. However, if some instance of q(X) is true, then rule 6 generates a contradiction by
“activating” the odd cycle involving c(X). It follows that P has no stable models.

However, P has a smooth splitting sequence with length 2ω whose bottom programs are
all consistent:

U0 = { p(0), q(0), r(0) },
Ui = Ui−1 ∪ { p(fi(0)), q(fi(0)), r(fi(0)) } (0 < i < ω),

Uω =
⋃

i<ω

Ui,

Uω+1 = Uω ∪ { some q, f, c(0) },
Uω+j+1 = Uω+j ∪ { c(fj(0)) } (0 � j < ω).

In particular,

(i) botUω
(P ) has infinitely many stable models, one for each choice between p(X) and

q(X), for all instances of X;
(ii) botUω+1

(P ) keeps all the stable models where at least one instance of q(X) is true;
(iii) botUω+j+1

(P ) keeps only those stable models where the first true instance of q(X)

is q(fk(0)) with k > j.

Now we are ready to extend the compactness property of finitary normal programs to all
disjunctive finitely recursive programs.

Definition 4.4
An unstable kernel for a disjunctive program P is a set K ⊆ Ground(P ) with the following
properties:

1. K is downward closed;
2. K has no stable model.

Theorem 4.5 (Compactness)
A disjunctive finitely recursive program P has no stable model iff it has a finite unstable
kernel.

Proof
By Proposition 3.8 and Theorem 4.1, P has no stable model iff it has an inconsistent
module sequence. So, let P1, P2, . . . , Pn, . . . be an inconsistent module sequence for P and
choose an index i � 1 such that Pi is inconsistent. By Proposition 3.2, Pi ⊆ Ground(P );
moreover, Pi is downward closed. Then Pi is an unstable kernel for P . Moreover, by
Theorem 3.4, Pi is finite. �

5 Reasoning with disjunctive finitely recursive programs

By taking an effective enumeration of the set GH of ground head atoms, one can effec-
tively compute each element of the corresponding module sequence. Let us call CON-
STRUCT (P , i) an effective procedure that, given a finitely recursive program P and an
index i, returns the ground program Pi, and let SM (Pi) be an algorithm that computes the
finite set of the finite stable models of Pi:
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Theorem 5.1
Let P be a disjunctive finitely recursive program. Whether P is inconsistent is semidecid-
able.

Proof
Given a module sequence P1, P2, . . . , Pn, . . . for the program P , consider the algorithm
CONSISTENT (P ).

Algorithm CONSISTENT (P )

1: i = 0;
2: answer = TRUE;
3: repeat
4: i = i + 1;
5: Pi =CONSTRUCT (P , i);
6: if SM (Pi) = ∅ then
7: answer = FALSE;
8: until ¬answer OR Pi = Ground(P )

9: return answer;

By Proposition 3.8 and Theorem 4.1, P is inconsistent iff there exists an i � 1 such that
Pi is inconsistent (note that we can always check the consistency of Pi because Pi is finite).
Then, the algorithm returns FALSE iff P is inconsistent.

Note that if Ground(P ) is infinite, then any module sequence for P is infinite, and the
algorithm CONSISTENT (P ) terminates iff P is not consistent. �

Next we deal with skeptical inference. Recall that a closed first-order formula F is a
skeptical consequence of P iff F is satisfied (according to classical semantics) by all the
stable models of P .

Theorem 5.2
Let P be a disjunctive finitely recursive program and P1, P2, . . . be a module sequence for
P . A ground formula F in the language of P is a skeptical consequence of P iff there exists
a finite k � 1 such that F is a skeptical consequence of Pk and atom(F) ⊆ atom(Pk).

Proof
Let h be the least integer such that atom(F) ⊆ atom(Ph). (Note that there always exists
such an h because atom(F) is finite.) Suppose that there exists a k � h such that F is
a skeptical consequence of Pk. Since Pk is a bottom program for P , each stable model
M of P extends a stable model Mk of Pk and then satisfies F . (Here the assumption that
atom(F) ⊆ atom(Pk) is essential to conclude that M and Mk agree on the truth of F .) So,
F is a skeptical consequence of P . This proves the “if” part.

Now suppose that, for each k � h, F is not a skeptical consequence of Pk. This implies
that each Pk is consistent (hence P is consistent), and, moreover, the set S of all the stable
models of Pk that falsify F is not empty.

Note that S is finite because Pk is finite (as P is finitely recursive). So, if all the models
in S are bad (cf. the proof of Theorem 4.1), then there exists a finite integer j > k such
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that no model of Pj contains any model of S . Consequently, F is a skeptical consequence
of Pj—a contradiction.

Therefore at least one of these models must be good. Then there must be a model M
of P that contains this good model of Pk, and hence F is not a skeptical consequence
of P . �

The next theorem follows easily.

Theorem 5.3

Let P be a disjunctive finitely recursive program. For all ground formulas F , the problem
of deciding whether F is a skeptical consequence of P is semidecidable.

Proof

Given a module sequence P1, P2, . . . , Pn, . . . for the program P , consider the algorithm
SKEPTICAL (P , F).

Algorithm SKEPTICAL (P , F)

1: answer = FALSE;
2: i = 0;
3: repeat
4: i = i + 1;
5: Pi =CONSTRUCT (P , i);
6: until atom(F) ⊆ atom(Pi)

7: repeat
8: if SM (Pi) = ∅ OR Pi skeptically entails F then
9: answer = TRUE;

10: else
11: i = i + 1;
12: Pi =CONSTRUCT (P , i);
13: until answer OR Pi = P

14: return answer;

For each Pi such that atom(F) ⊆ atom(Pi), the algorithm SKEPTICAL (P , F) checks if F
is a skeptical consequence of Pi. Since Pi is finite, we can always decide if F is a skeptical
consequence of Pi. So, by Theorem 5.2, the algorithm returns TRUE iff F is a skeptical
consequence of P .

Note that if Ground(P ) is infinite, then any module sequence for P is infinite, and the
algorithm SKEPTICAL (P , F) teminates iff F is a skeptical consequence of P . �

For a complete characterization of the complexity of ground queries and inconsistency
checking, we are only left to prove that the above upper bounds are tight. Actually, we
prove slightly stronger lower bounds that hold even for normal finitely recursive programs.

Theorem 5.4

Deciding whether a normal finitely recursive program P is inconsistent is r.e.-hard.
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Proof
The proof is by reduction of the problem of skeptical inference of a quantified formula over
a finitary normal program (proved to be r.e.-complete in Bonatti 2004, Corollary 23) to the
problem of inconsistency checking over a normal finitely recursive program.

Let P be a finitary program and ∃F be a closed existentially quantified formula. Let
((l11∨ l12 ∨ . . . )∧ (l21∨ l22 ∨ . . . ) ∧ . . . ) be the conjunctive normal form of ¬F . Then ∃F is
a skeptical consequence of P iff the program P ∪ C is inconsistent, where

C =

⎧
⎪⎨

⎪⎩

p1(�x1)← not l11, not l12, . . . , not p1(�x1)

p2(�x2)← not l21, not l22, . . . , not p2(�x2)
...

⎫
⎪⎬

⎪⎭
,

p1, p2, . . . are new atom symbols not occurring in P or F , and �xi is the vector of all variables
occurring in (li1∨ li2 ∨ . . . ). Note that P ∪ C is a normal finitely recursive program.

The constraints in C add no model to P , but they only discard those models of P that
satisfy Fθ (for some substitution θ). So let SM (P ) be the set of stable models of P . Then
each model in SM (P ∪ C) satisfies ∀¬F . Iff either SM (P ) = ∅ or all stable models of P
satisfy ∃F , SM (P ∪ C) = ∅ (that is, P ∪ C is inconsistent). Then SM (P ∪ C) = ∅ iff ∃F
is a skeptical consequence of P . �

Theorem 5.5
Deciding whether a normal finitely recursive program P skeptically entails a ground for-
mula F is r.e.-hard.

Proof
The proof is by reduction of inconsistency checking for normal finitely recursive programs
to the problem of skeptical inference of a ground formula from a normal finitely recursive
program.

Let P be a normal finitely recursive program and q be a new ground atom that doesn’t
occur in P . Then, P is inconsistent iff q is a skeptical consequence of P . Since q occurs in
the head of no rule of P , q cannot occur in a model of P . So, P skeptically entails q iff P
has no stable model. �

Corollary 5.6
Deciding whether a disjunctive finitely recursive program P credulously entails a ground
formula F is co-r.e.-complete.

Proof
The proof follows immediately from Theorems 5.3 and 5.5 and from the fact that a ground
formula F is a credulous consequence of P iff ¬F is not a skeptical consequence
of P . �

6 Skeptical resolution for finitely recursive normal programs

In this section we extend the work in Bonatti (2001b, 2004) by proving that skeptical
resolution (a top-down calculus which is known to be complete for Datalog and normal
finitary programs under the skeptical stable model semantics) is complete also for the
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class of finitely recursive normal programs. Skeptical resolution has several interesting
properties. For example, it does not require the input program P to be instantiated before
reasoning (unlike the major state-of-the-art stable model reasoners), and it can produce
nonground (i.e., universally quantified) answer substitutions. The goal-directed nature of
skeptical resolution makes it more interesting than the naive algorithms illustrated in Sec-
tion 5.

We are not describing all the formal details of the calculus here—the reader is referred to
Bonatti (2001b). Skeptical resolution is based on goals with hypotheses (h-goals for short)
which are pairs (G | H), where H and G are finite sequences of literals. Roughly speaking,
the answer to a query (G | H) should be yes if G holds in all the stable models that
satisfy H . Hence (G | H) has the same meaning in answer set semantics as the implication
(
∧
G←

∧
H). Finally, a skeptical goal (s-goal for short) is a finite sequence of h-goals.

The calculus consists of five inference rules given next.

6.1 Resolution

This rule may take two forms; a literal can be unified with either a program rule or a
hypothesis. First suppose that Li is an atom; A← B1, . . . , Bk is a standardized apart variant
of a rule of P ; and θ is the mgu of Li and A. Then the following is an instance of the rule:

Γ (L1 . . . Li−1, Li, Li+1 . . . Ln | H) Δ
[
Γ (L1 . . . Li−1, B1, . . . , Bk, Li+1 . . . Ln | H) Δ

]
θ
.

Next, let Li be a (possibly negative) literal; let L′ be a hypothesis; and let θ be the mgu of
Li and L′. Then the following is an instance of the rule:

Γ (L1 . . . Li−1, Li, Li+1 . . . Ln | H,L′) Δ
[
Γ (L1 . . . Li−1, Li+1 . . . Ln | H,L′) Δ

]
θ
.

6.2 Contradiction

This rule tries to prove (G | H) “vacuously,” by showing that the hypotheses H cannot be
satisfied by any stable model of P . Hereafter L̄ = notA if L is an atom A, and L̄ = A if
L = notA:

Γ (G | H,L) Δ

Γ (L̄ | H,L) Δ
.

6.3 Split

Essentially, this rule is needed to compute floating conclusions and discover contradictions.
It splits the search space by introducing two new, complementary hypotheses. Let G0 be the
restart goal (i.e., the left-hand side of the first h-goal of the derivation), L be an arbitrary
literal and σ be the composition of the mgus previously computed during the derivation;
the Split rule is

Γ (G | H) Δ

Γ (G | H,L) (G0σ | H, L̄) Δ
.
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6.4 Success

This is a structural rule that removes h-goals once they have been successfully proved. As
usual, � denotes the empty goal:

Γ (� | H) Δ

Γ Δ
.

6.5 Counter-supports

We are left to illustrate the last rule of the calculus, that models negation as failure. In order
to abstract away the details of the computation of failed facts, the rule is expressed in terms
of so-called counter-supports that in turn are derived from the standard notion of support.
Recall that a support for a ground atom A is a set of negative literals obtained by applying
SLD resolution to A with respect to the given program P until no positive literal is left in
the current goal. (The final, negative goal of the SLD derivation is a support for A.)

Definition 6.1 (Bonatti 2001b)
Let A be a ground atom. A ground counter-support for A in a program P is a set of atoms
K with the following properties:

1. for each support S for A, there exists notB ∈ S such that B ∈ K;
2. for each B ∈ K, there exists a support S for A such that notB ∈ S .

In other words, the first property says that K contradicts all possible ways of proving A,
while the second property is a sort of relevance property. Informally speaking, the failure
rule of skeptical resolution says that if all atoms in a counter-support are true, then all
attempts to prove A fail, and hence notA can be concluded.

Of course, in general, counter-supports are not computable and may be infinite (while
skeptical derivations and their goals should be finite).

In Bonatti (2001b) the notion of counter-support is generalized to nonground atoms in
the following way:

Definition 6.2
A (generalized) counter-support for a ground atom A is a pair 〈K, θ〉, where K is a set
of atoms and θ a substitution, such that for all grounding substitutions σ, Kσ is a ground
counter-support for Aθσ.

The actual mechanism for computing counter-supports can be abstracted by means of
a suitable function CounterSupp, mapping each (possibly nonground) atom A onto a
set of finite generalized counter-supports for A. The underlying intuition is that function
CounterSupp captures all the negative inferences that can actually be computed by the
chosen implementation. Now negation-as-failure can be axiomatized as shown next.

6.6 Failure

Suppose that Li = notA and 〈{B1, . . . , Bk}, θ〉 ∈ CounterSupp(A). Then the following
is an instance of the Failure rule:

Γ (L1 . . . Li−1, Li, Li+1 . . . Ln | H) Δ
[
Γ (L1 . . . Li−1, B1, . . . , Bk, Li+1 . . . Ln | H) Δ

]
θ
.

https://doi.org/10.1017/S147106840900372X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840900372X


On finitely recursive programs 231

To achieve completeness for the nonground skeptical resolution calculus, we need the
negation-as-failure mechanism to be complete in the following sense:

Definition 6.3
The function CounterSupp is complete iff for each atom A, for all of its ground instances
Aγ, and for all ground counter-supports K for Aγ, there exist 〈K ′, θ〉 ∈ CounterSupp(A)

and a substitution σ such that Aθσ = Aγ and K ′σ = K.

6.7 Skeptical derivations

A skeptical derivation from P and CounterSupp with restart goal G0 is a (possibly infinite)
sequence of s-goals Γ0,Γ1, . . . , where each Γi+1 is obtained from Γi through one of the five
rewrite rules of the calculus. A skeptical derivation is successful if its last s-goal is empty;
in this case we say that the first s-goal has a successful skeptical derivation from P .

Example 6.4
Let P be

1. p(X)← not q(X)

2. q(X)← not p(X)

3. r(f(X))← not p(X)

4. r(f(X))← not q(X)

For all ground terms t, the literal not p(t) is the unique support of q(t). Therefore, we can
set CounterSupp(q(X)) = {〈p(X), ε〉} (where ε denotes the empty substitution), since the
truth of p(X) suffices to block all derivations of q(X), for all possible values of X (the
issue of how to compute CounterSupp will be briefly discussed at the end of this section).
The following is a successful derivation of (r(Y ) | ∅) from P with answer substitution
[Y /f(X)], showing that for all X, r(f(X)) is a skeptical consequence of P .

(r(Y ) | ∅)
(not p(X) | ∅) by resolution with 3; it binds Y to f(X);

(not p(X) | not p(X)) (r(f(X)) | p(X)) by the splitting rule;
(� | not p(X)) (r(f(X)) | p(X)) by resolution with the hypothesis;

(r(f(X)) | p(X)) by the success rule;
(not q(X) | p(X)) by resolution with 4;

(p(X) | p(X)) by the failure rule using 〈p(X), ε〉;
(� | p(X)) by resolution with the hypothesis;

� by the success rule.

Skeptical resolution is sound for all normal programs and counter-support calculation
mechanisms, as stated in the following theorem:

Theorem 6.5 (Soundness; Bonatti 2001b)
Suppose that an s-goal (G | H) has a successful skeptical derivation from a normal program
P and CounterSupp with restart goal G and answer substitution θ. Then, for all ground-
ing substitution σ, all the stable models of P satisfy (

∧
Gθ ←

∧
Hθ)σ (equivalently,

∀(
∧
Gθ ←

∧
Hθ) is skeptically entailed by P ).
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However, skeptical resolution is not always complete. Completeness analysis is founded
on ground skeptical derivations that require a ground version of CounterSupp.

Definition 6.6
For all ground atoms A, let CounterSuppg(A) be the least set such that if 〈K, θ〉 ∈
CounterSupp(A′) and for some grounding σ, A = A′θσ, then

〈Kσ, ε〉 ∈ CounterSuppg(A),

where ε is the empty substitution.

Theorem 6.7 (Finite Ground Completeness, Bonatti 2001b)
If some ground implication

∧
G←

∧
H is skeptically entailed by a finite ground program

P and CounterSupp is complete with respect to P , then (G | H) has a successful skeptical
derivation from P and CounterSuppg with restart goal G. In particular, if G is skeptically
entailed by P , then (G | ∅) has such a derivation.

This basic theorem and the following standard lifting lemma allow to prove complete-
ness for all finitely recursive normal programs.

Lemma 6.8 (Lifting; Bonatti 2001b)
Let CounterSupp be complete. For all skeptical derivations D from a normal program
P and CounterSuppg with restart goal G0, there exists a substitution σ and a skeptical
derivation D′ from P and CounterSupp with restart goal G′0 and answer substitution θ,
such that D = D′θσ and G0 = G′0θσ.

Theorem 6.9 (Completeness for finitely recursive normal programs)
Let P be a finitely recursive normal program. Suppose CounterSupp is complete with
respect to P and that for some grounding substitution γ, (

∧
G ←

∧
H)γ holds in all

the stable models of P . Then (G | H) has a successful skeptical derivation from P and
CounterSupp with restart goal G and some answer substitution θ more general than γ.

Proof
By Theorems 3.4 and 5.2, there exists a smooth module sequence for P with finite elements
P1, P2, . . . , and a finite k such that (

∧
G ←

∧
H)γ holds in all the stable models of

Pk. Since each Pi is downward closed, the ground supports of any given A ∈ atom(Pk)

with respect to program Pk coincide with the ground supports of A with respect to the
entire program P . Consequently, also ground counter-supports and (generalized) counter-
supports, respectively, coincide in Pk and P . Therefore, CounterSupp is complete with
respect to Pk, too. As a consequence, since Pk is a ground, finite program, the ground
completeness theorem can be applied to conclude that (G | H)γ has a successful skeptical
derivation from Pk and CounterSuppg with restart goal Gγ. The same derivation is also a
derivation from P (as Pk ⊆ Ground(P )) and CounterSuppg . Then, by the Lifting lemma
(note that P is supposed to be normal), (G | H) has a successful skeptical derivation from P

and CounterSupp, with restart goal G and some answer substitution θ, such that (G | H)γ

is an instance of (G | H)θ. It follows that θ is more general than γ. �

An important question is whether any computable, complete function CounterSupp

exists. Take any module sequence P1, P2, . . . , Pi, . . . based on any effective enumeration of
GH . Note that for all ground atoms A one can effectively find a k ∈ � such that A ∈
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atom(Pk). Now, if the given program P is finitely recursive, then the ground supports of A
can be computed by building all the acyclic SLD derivations for A, using the finitely many
ground rules of Pk. Consequently, the ground counter-supports of A are finite and finitely
many, too, and can be easily computed from the ground supports of A. Now consider
a nonground atom A. Let CounterSupp(A) be the set of pairs 〈K, γ〉 such that γ is a
grounding substitution for A and K is a ground counter-support for Aγ. Clearly, for any
given A such pairs can be recursively enumerated by enumerating the ground instances of
A and computing for each of them the corresponding ground counter-supports as explained
above. Clearly, this counter-support function is complete by construction. This proves the
following:

Theorem 6.10
If P is normal and finitely recursive, then there exists a complete CounterSupp function
such that for all atoms A, CounterSupp(A) is recursively enumerable.

This property allows to recursively enumerate all skeptical derivations from P . There-
fore, skeptical resolution provides an alternative proof that skeptical inference from finitely
recursive normal programs is in r.e.

7 Finitary programs and other decidable fragments

The inherent complexity of finitely recursive programs calls for further restrictions to make
deduction decidable.

One of such additional restrictions is based on the following idea: Suppose that there
exists a module sequence P1, P2, . . . , Pi, . . . and an index k such that for all interpretations
I ⊆ atom(Pk), the “top” program eatom(Pk)(Ground(P ) \ Pk, I) is consistent. Then the
splitting theorem guarantees that every stable model of Pk can be extended to a stable
model of P , and, conversely, every stable model of P extends a stable model of Pk. As a
consequence, given a ground goal G (be it credulous or skeptical) whose atoms are included
in atom(Pk), the answer to G can be computed by inspecting only the stable models
Mk,1, . . . ,Mk,n of Pk (which is a finite ground program if P is finitely recursive). The
“upper” part of the stable models of P , that is, the stable models of eatom (Pk)(Ground(P )\
Pk,Mk,i) (1 � i � n), need not be computed at all—we only need to know that they exist
to be confident that Mk,1, . . . ,Mk,n are sufficient to answer G.

This is the idea underlying finitary programs (Bonatti 2004). For normal programs, the
consistency of the top program is guaranteed by means of a theorem due to Fages (1994),
stating that order consistent normal programs are always consistent. A normal program is
order consistent if there exists no infinite sequence of (possibly repeated) atoms 〈Ai〉i<ω

such that Ai depends both positively and negatively on Ai+1 for all i < ω. For example, all
positive programs are trivially order consistent, while Fages’s (1994) program

q(X)← q(f(X))

q(X)← not q(f(X))

exploited in Example 3.10 is not, as well as any normal program whose dependency graph
contains some odd cycle. The above program shows that a program may fail to be order
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consistent even if the program is acyclic. However, if P is normal and finitely recursive,
then it can be shown that P is order consistent iff P is odd-cycle-free (Bonatti 2004).
This observation justifies the definition of finitary programs (Definition 2.2): by requiring
finitary programs to have finitely many odd cycles, it is possible to confine all odd cycles
into a single, finite program module Pk and ensure that the “top” programs are odd-cycle-
free and hence consistent.

As proved in (Bonatti 2004), the extra condition on odd cycles suffices to make both
credulous and skeptical ground queries decidable. However, in Bonatti (2004) the state-
ment erroneously fails to include the set of odd-cyclic literals among the inputs of the
algorithm. The correct statement and a slightly different proof based on module sequences
is given next.

Theorem 7.1
Given a finitary normal program P and a finite set C containing (at least) all of the odd-
cyclic atoms of P ’s Herbrand base,

(i) whether a ground formula G is a credulous consequence of P is decidable;
(ii) whether a ground formula G is a skeptical consequence of P is decidable.

Proof
(Sketch) Let P1, P2, . . . , Pi, . . . be any (recursive) module sequence induced by a recur-
sive enumeration of P ’s Herbrand base, and let k be the minimal index such that C ∪
atom(G) ⊆ atom(Pk). Clearly, such a k exists and is effectively computable. Moreover, Pk

is ground and finite (because P is finitely recursive); therefore the set of its stable models
Mk,1, . . . ,Mk,n can be effectively computed as well; it is finite, and consists of finite models.
Now, by construction, the “top” programs eatom(Pk)(Ground(P ) \ Pk,Mk,i) (1 � i � n) are
all odd-cycle-free—and hence consistent, by Fages’s (1994) theorem. It follows by the
splitting theorem that for all i = 1, . . . , n, the program P has a stable model M such that
M ∩ atom(Pk) = Mk,i. As a consequence, if G is true (respectively false) in a stable model
of Pk, then G must be true (respectively false) in a stable model of P . Conversely, by the
splitting theorem, if G is true (respectively false) in a stable model of P , then G must be
true (respectively false) in a stable model of Pk (because atom(Pk) splits P ). It follows
easily that G is a credulous (respectively skeptical) consequence of P iff G is a credulous
(respectively skeptical) consequence of Pk. Of course, since the set of stable models of Pk

is finite, recursive, and contains only finite models, both the credulous and the skeptical
consequences of Pk are decidable. �

Extending this result to disjunctive programs is not a trivial task because, unfortunately,
Fages’s (1994) theorem does not scale to disjunctive programs in any obvious way. Con-
sider the possible natural generalization of atom dependencies from the class of normal
programs to the class of disjunctive programs:

1. First assume that the unlabeled edges of DG(P ) are ignored; that is, let A depend on
B iff there is a path from A to B in DG(P ) with no unlabeled edges. This is equivalent
to adopting a dependency graph similar to the traditional graphs for normal programs,
with no head-to-head edges. Using the resulting notion of atom dependencies, one
can find programs that are order consistent but have no stable models. One of them
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is

p1 ∨ p2

q1 ∨ q2

p1 ← not q1

q1 ← not p2

p2 ← not q2

q2 ← not p1 .

2. Next, suppose that unlabeled edges are regarded as positive edges; that is, A depends
positively (respectively negatively) on B iff there is a path from A to B in DG(P )

with an even (respectively odd) number of negative edges. The above inconsistent
program is still order consistent under this new notion of dependency.

3. Finally, assume that unlabeled edges are regarded as negative edges. This is a natural
assumption given the minimization-based nature of disjunctive stable models: For
instance, if P = {p ∨ q}, then the falsity of p implies the truth of q and vice versa.
(Indeed P is equivalent to {p ← not q, q ← not p}.) A major problem is that with
this form of dependency, too many interesting disjunctive programs are not order
consistent:

• every rule with at least three atoms in the head generates an odd cycle through
those atoms; therefore the program would not be order consistent;
• for every cycle C containing a head-to-body edge (A,±, B) originated by a

“proper” disjunctive rule (i.e., a rule with two or more atoms in the head) there
exists an odd cycle (possibly C itself or the cycle obtained by extending C with
a negative edge from A to another atom in the same head). This means that
disjunctive rules could never be applied in any recursion.

Similar problems (preconditions that are difficult to ensure in practical cases) affect
Turner’s (1994) approach to consistency. His signed programs generalize order consistent
normal programs as follows: It should be possible to partition the Herbrand base into two
sets H1 and H2 such that

1. negative edges always cross the two partitions; positive edges never do;
2. each rule head is entirely contained in a single partition;
3. the set of rules whose head is contained in H1 is a normal program.

Unfortunately, to the best of our knowledge no application domains naturally require pro-
grams satisfying the third condition (that roughly speaking makes the program “half nor-
mal”).

A more recent paper (Bonatti 2002) ensures consistency through the theory of program
shifting (Bonatti 1993). A shifting of P is a modified version of P in which some atoms
are moved from heads to bodies and enclosed in the scope of a negation symbol. This
transformation preserves the classical semantics of the program but not its stable models.
However, every stable model of a shifted program is also a stable model of the original
program, so the consistency of the former implies the consistency of the latter. Then the
approach of Bonatti (2002) consists in adding more conditions to the definition of finitary
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programs to ensure that at least one “full” shifting of P—transforming P into a normal
program—is finitary, so that the original consistency theorem by Fages (1994) can be
applied. The main drawback of this approach is that the extra conditions required are
clumsy and—again—difficult to use in practice.

A very interesting and novel recent approach by Simkus and Eiter (2007) consists in
replacing the consistency property with other properties enjoyed by some decidable frag-
ments of first-order logic such as description logics and the guarded fragment. In these
fragments, consistent theories always have both a finite model and a tree model which is the
“unwinding” of the finite model, i.e., a regular tree. Syntactic restrictions on predicate arity
and on the occurrences of function symbols (modeled around the skolemization of guarded
formulae) have been exploited to prove the decidability of a new class of finitely recursive
programs called FDNC programs. In our framework, this idea roughly corresponds to
having regular module sequences in which after some steps the new rules contained in
Pi \ Pi−1 are isomorphic to some previous program slice Pj \ Pj−1 (j < i). Therefore
in order to find a stable model of P one needs only to find a stable model M for some
finite module Pi, as a model for the upper part can then be constructed by cloning M

or submodels thereof. FDNC programs can be applied to encode ontologies expressed
in description logics and are suitable to model a wide class of planning problems. An
interesting open question is whether this approach can be generalized to wider interesting
classes of programs by studying regular module sequences.

8 Conclusions

In this paper we have extensively studied the properties of stable model reasoning with
disjunctive, finitely recursive programs—a very expressive formalism for ASP. Finitely
recursive programs extend the class of finitary programs by dropping the restrictions on odd
cycles, that is, on the number of possible sources of inconsistencies. We extended to finitely
recursive programs many of the nice properties of finitary programs: (i) a compactness
property (Theorem 4.5); (ii) the r.e.-completeness of inconsistency checking and skeptical
inference (Theorem 5.4); (iii) the completeness of skeptical resolution (Theorem 6.9); note
that this result applies to normal programs only, unlike (i) and (ii).

Unfortunately, some of the nice properties of finitary programs do not carry over to
finitely recursive programs: (i) ground queries are not decidable (Theorem 5.5 and Corol-
lary 5.6); (ii) nonground credulous queries are not semidecidable (Corollary 5.6).

We proved our results by extending the splitting sequence theorem that, in general,
guarantees only that each consistent program P has a consistent module sequence for P .
We proved that in general the converse does not hold (Example 3.10), unless P is finitely
recursive: in that case, the stable models of a consistent module sequence always converge
to a model of P (Theorem 4.1).

As a side benefit, our techniques introduce a normal form for splitting sequences and
their bottom programs, where sequence length is limited to ω and—if the program is
finitely recursive—the sequence is smooth (i.e., the “delta” between each non-limit element
and its predecessor is finite). Such properties constitute an alternative characterization of
finitely recursive programs. The theory of module sequences is a powerful tool for working
on decidable inference with infinite stable models, as it provides a constructive, iterative
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characterization of the stable models of a large class of programs with infinite domains.
In Section 7 we carried out a first attempt at relating different approaches using module
sequences as a unifying framework. However such an analysis is still very preliminary and
partially informal; its development constitutes an interesting subject for future work, and it
may contribute to recent areas such as research on FDNC programs.

Another interesting open problem is extending to disjunctive programs Fages’s (1994)
consistency result (an important ingredient in several decidability results). The existing
approaches are based on rather restrictive assumptions that call for more flexible solutions.

Finally, an interesting theoretical question is whether skeptical resolution can be ex-
tended to disjunctive programs. A related challenge is finding a satisfactory goal-directed
calculus for the positive fragment, which is based on a minimal model semantics.
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