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A Note on Chirally Cosmetic Surgery on
Cable Knots

Tetsuya Ito

Abstract. We show that a (p, q)-cable of a non-trivial knot K does not admit chirally cosmetic

surgeries for q ≠ 2, or q = 2 with additional assumptions. In particular, we show that a (p, q)-cable of

a non-trivial knot K does not admit chirally cosmetic surgeries as long as the set of JSJ pieces of the

knot exterior does not contain the (2, r)-torus exterior for any r. We also show that an iterated torus

knot other than the (2, p)-torus knot does not admit chirally cosmetic surgery.

1 Introduction

Let S3K(m/n) be the Dehn surgery along a knot K in S3 of slope m/n. Two
Dehn surgeries S3K(m/n) and S3K(m

′/n′) along different slopes are purely cosmetic
(resp. chirally cosmetic) if S3K(m/n) ≅ S

3
K(m

′/n′) (resp. S3K(m/n) ≅ −S
3
K(m

′/n′)).
Here for an oriented 3-manifold M, we denote by −M the same 3-manifold with
opposite orientation, and M ≅ N means that they are orientation preservingly
homeomorphic.

It is expected that a non-trivial knotK in S3 does not have purely cosmetic surgeries
(cosmetic surgery conjecture [Ki, Problem 1.81 (A)]), whereas there are two families
of chirally cosmetic surgeries on non-trivial knots;

(a) For an amphicheiral knot K, S3K(m/n) ≅ −S
3(−m/n).

(b) For a (2, r)-torus knot K , we have S3K(
2r2(2m+1)
r(2m+1)+1

) ≅ −S3K(
2r2(2m+1)
r(2m+1)−1

) for any

m ∈Z ([Ro], see also Appendix of [IIS]).

Since no other examples of chirally cosmetic surgery of knots in S3 are currently
known, one encounters a natural question.

Question 1 Is chirally cosmetic surgery of knots in S3 either (a) or (b) ?

At first glance, this may sound too optimistic, since there are several unexpected
phenomenon or clever constructions that negate naive conjectures onDehn surgeries.
Moreover, when we extend our attention to knots in general 3-manifoldsM, there are
more examples of chirally cosmetic surgeries that are not generalizations of the above
examples (a) and (b) [BHW, IJ].
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Nevertheless, we recently observed some results supporting the affirmative answer
to this question [It, IIS]. In this note, we show the non-existence of chirally cosmetic
surgery for cable knots under some technical assumptions.

Let E(K) = S3 ∖ N(K) be the knot exterior, where N(K) denotes an open tubular
neighborhood of K. �ere is a family of essential tori T = {T1 , . . . , Tn} (possibly
empty) of E(K) such that each component of E(K) ∖ T ∶= E(K) ∖ (⋃i Ti) is geo-
metric (i.e., either hyperbolic or Seifert fibered). Such a family of tori T, called the
JSJ tori, is unique up to isotopy when we take a minumum one. We call a connected
component X of E(K) ∖ T a JSJ piece of E(K).

�eorem 1.1 Let Kp,q be the (p, q)-cable of a non-trivial knot K. Assume that one of
the following conditions is satisfied.

(i) q ≠ 2.
(ii) q = 2, p ≠ ±1, and the set of JSJ pieces of E(K) does not contain the (−p, 2)-torus

knot exterior.
(iii) q = 2, p = ±1, and the set of JSJ pieces of E(K) does not contain the (r, 2)-torus

knot exterior for any r.
(iv) q = 2, p = ±1, and a2(K) ≠ 0.

�en Kp,q does not admit chirally cosmetic surgeries.

Here, a2(K) is the coefficient of z2 for the Conway polynomial ∇K(z) of K. We
remark that in our notation, the (p, q) cable Kp,q of K is defined so that it has
wrapping number q; Kp,q intersects with {pt} × D2 ⊂ S1 × D2 ≅ N(K) at q points.

We mention that the non-existence of purely cosmetic surgery of cable knots are
shown in [Ta]. Although there are many similarities we do not use this result. Indeed,
a mild modification of the proof of �eorem 1.1 proves a non-existence of purely
cosmetic surgery on cable knots.

In light of example (b) of chirally cosmetic surgery and�eorem 1.1, one can think
that an iterated torus knot is a possible candidate for new chirally cosmetic surgeries.
However, we show that iterated torus knots does not admit chirally cosmetic surgery.

�eorem 1.2 An iterated torus knot that is not a (2, p)-torus knot does not admit
chirally cosmetic surgeries.

2 Dehn Surgery of Cable Knots

For a torus boundary component T of a 3-manifold X, a slope γ (on T) is an isotopy
class of a non-trivial unoriented simple closed curve on T. We take an ordered basis
(α, β) of H1(T ;Z) to identify the set of slopes with Q ∪ {∞ = 1

0
}. We view γ as an

oriented simple closed curve by taking one of its orientations. �en [γ] = pα + qβ ∈
H1(T ;Z) for coprime integers p and q. We assign the slope γ a rational number
p/q ∈ Q ∪ {∞ = 1

0
} (note that p and q depend on a choice of orientation, whereas

p/q does not).
In the case of a knot complement E(K), we take the standard meridian-longitude

pair ([µ], [λ]) as an ordered basis of H1(∂E(K);Z). �e m/n-surgery on K is the

https://doi.org/10.4153/S0008439520000338 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000338
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3-manifold S3K(m/n) obtained from E(K) by attaching the solid torus S1 × D2 along
∂E(K) so that the slope m/n bounds a disk in the attached solid torus.

�e (p, q) torus knot Tp,q is a slope
p

q
curve on a boundary of the standardly

embedded solid torus S1 × D2 in S3, with respect to the basis ([{∗} × ∂D2], [S1 ×
{∗}]) of H1(∂S1 × D2;Z). �us, in our convention, the (p, q)-torus knot Tp,q is the
closure of the q-braid (σ1⋯σq−1)p . In the sequel, we will o�en view Tp,q as a knot in
the solid torus S1 × D2.

�e (p, q)-cable Kp,q of the knot K is the image f (Tp,q) of the standard torus

knot Tp,q ⊂ S1 × D2, where f ∶ S1 × D2
→ N(K) is a homeomophism such that f (S1 ×

{∗}) = λ, f ({∗} × ∂D2) = µ, and N(K) denotes the closure of N(K). Since Kp,q = K
if q = 1, in the sequel, we always assume that q > 1.

By [Go], the Dehn surgery along a cable knot is described as follows:

S3Kp,q
(m/n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S3K(p/q)#L(q, p) ∣npq −m∣ = 0,
S3K(m/nq2) ∣npq −m∣ = 1,
E(K) ∪T Pp,q ,m ,n ∣npq −m∣ > 1.

In the last case Pp,q ,m ,n is a Seifert fibered space with base surface D2 having two
singular fibers, glued along the boundary T ∶= ∂E(K) of E(K). Moreover, Pp,q ,m ,n is
a JSJ piece of S3Kp,q

(m/n).
In the following, we prove �eorem 1.1 by dividing arguments into the following

four cases, according to ∣npq −m∣ and ∣n′pq −m∣.
Case 1: ∣npq −m∣ = 0 (Lemma 2.3)
Case 2: ∣npq −m∣ = ∣n′pq −m∣ = 1 (Lemma 2.4).
Case 3: ∣npq −m∣ = 1, ∣n′pq −m∣ > 1 (Lemma 2.5).
Case 4: ∣npq −m∣, ∣n′pq −m∣ > 1 (Lemma 2.6).

In Case 4, we use additional assumptions (i)–(iv).
Before starting discussions, we review some known results on chirally cosmetic

surgery that will be used in the argument.
A knot K is an L-space knot if a Dehn surgery on K yields an L-space. For an L-

space knot K, its Alexander polynomial ∆K(t), normalized so that ∆K(t) = ∆K(t−1)
and ∆K(1) = 1 hold, is of the form

∆K(t) = (−1)k +
k

∑
j=1

(−1)k− j(tn j + t−n j)

for some 0 < n1 < n2 < ⋯ < nk = g(K) [OS1, Corollary 1.3]. From this property, we
have the following proposition.

Proposition 2.1 If K is an L-space knot that is not an unknot, then a2(K) ≠ 0.

Proof �e coefficient of z2 of the Conway polynomial∇K(z) is given by

a2(K) = 1

2
∆′′K(1) =

k

∑
j=1

(−1)k− jn2
j ≠ 0. ∎
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�e relevance of L-space knots and (chirally) cosmetic surgery comes from the
following result.

�eorem 2.2 [OS2, �eorem 1.6] If S3K(r) ≅ ±S3K(r′) with rr′ > 0, then K is an L-
space knot.

�en we turn to the proof of �eorem 1.1.

Lemma 2.3 If ∣npq −m∣ = 0, then S3Kp,q
(n/m) /≅ −S3Kp,q

(m/n′).

Proof S3Kp,q
(m/n) = S3K(p/q)#L(q, p) is reducible, but S3Kp,q

(m/n′) is irreducible
whenever n′pq −m ≠ 0 [Sc]. Hence, they are not homeomorphic. ∎

Lemma 2.4 If ∣npq −m∣ = ∣n′pq −m∣ = 1, then S3Kp,q
(m/n) /≅ −S3Kp,q

(m/n′).

Proof We can assume that npq = m + 1 and n′pq = m − 1, hence (n − n′)pq = 2.
�erefore, we have (p, q) = (±1, 2) and consequently 2n = m + 1 and 2n′ = m − 1, or,
−2n = m + 1 and−2n′ = m − 1.We consider the former case 2n = m + 1 and 2n′ = m −
1. �e latter case is similar.

Since S3Kp,q
(m/n) = S3K(m/4n) = S3K(m/2m + 2) and S3Kp,q

(m/n′) = S3K(m/4n′) =
S3K(m/2m − 2), we have a chirally cosmetic surgery on the knot K ∶

S3K(m/2m + 2) ≅ −S3K(m/2m − 2).
Since (m/2m + 2)(m/2m − 2) > 0, i.e., the sign of two surgery slopes are the same,
by�eorem 2.2, K is an L-space knot. Hence, a2(K) ≠ 0 by Proposition 2.1.

On the other hand, by the surgery formula of Casson–Walker invariant λ [BL,Wa],
we have

λ(S3K(m/2m + 2)) =
2m + 2
m

a2(K) − 1

2
s(2m + 2,m),

λ(−S3K(m/2m + 2)) = −
2m − 2
m

a2(K) + 1

2
s(2m − 2,m);

here, s(a, b) denotes the Dedekind sum. Since the Dedekind sum has the properties

s(a, b) = s(a′ , b) if a ≡ a′ (mod b), s(−a, b) = −s(a, b),
s(2m + 2,m) + s(2m − 2,m) = 0. Since λ(S3K(m/2m + 2)) = λ(−S3K(m/2m + 2)),
we have

8a2(K) = s(2m + 2,m) + s(2m − 2,m) = 0.
�is is a contradiction. ∎

Lemma 2.5 If ∣npq −m∣ = 1 and ∣n′pq −m∣ > 1, then S3Kp,q
(n/m) /≅ −S3Kp,q

(m/n′).

Proof Let k be the number of JSJ tori of E(K), and let X0 be the JSJ piece of E(K)
that contains ∂E(K). When X0 is hyperbolic, the simplicial volume of its exterior
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satisfies ∥E(K)∥ ≥ ∥E(X0)∥ > 0. Since the simplicial volume strictly decreases under
Dehn fillings when X0 is hyperbolic,

∥S3Kp,q
(m/n)∥ = ∥S3K(m/4n)∥ < ∥E(K)∥

On the other hand,

∥S3Kp,q
(m/n′)∥ = ∥E(K) ∪T2 Pp,q ,m ,n′∥ = ∥E(K)∥;

we conclude S3Kp,q
(m/n) ≠ −S3Kp,q

(m/n′).
When X0 is Seifert fibered, S3Kp,q

(m/n) = S3K(m/nq2) has at most k essential

tori, whereas −S3Kp,q
(m/n′) contains (k + 1) essential tori, so they are not

homeomorphic. ∎

To treat Case 4, we give a more precise description of the Seifert fibered piece
Pp,q ,m ,n and how E(K) is attached to Pp,q ,m ,n .

In the following, we use Hatcher’s notation M(g , b; α1

β1
, . . . , αn

βn
) for Seifert fibered

manifold [Ha]. For a compact oriented surface with genus g and b boundary com-
ponents B, let B′ ∶= B ∖ (D1 ∪⋯∪ Dn) where D1 , . . . ,Dn ⊂ Int(B) are disjoint disks.
Let π ∶ M′ → B′ be the circle bundle over B′ with orientable total space. By taking a
cross section σ ∶ B′ → M , we identify the total spaceM′ with σ(B′) × S1 = B′ × S1. For
each torus boundary component T ofM′ , we have a canonical ordered basis given by
([cT] ∶= [B′ × {∗} ∩ T], [h] ∶= [{∗} × S1]), whichwe call a section-regular fiber basis.
�enM(g , b; α1

β1
, . . . , αn

βn
) is a 3-manifold obtained by attaching n tori along each torus

boundary Ti ∶= ∂D′i × S
1 so that the slope α i

β i
bounds a disk.

Let C = Cp,q ∶= (S1 × D2) ∖ N(Tp,q) be the cable space, the complement of the
regular neighborhood of the (p, q) torus knot Tp,q in a solid torus S1 × D2. We fix
integers s, r so that pr + qs = 1. With a suitable choice of section, the cable space Cp,q

is identified with M(0, 2; r
q
).

Besides a section-regular fiber basis, the boundaries of Cp,q has another natural
ordered basis. Let ∂1C ∶= ∂N(Tp,q). By viewing Tp,q as usual (p, q) torus knot lying
in S1 × D2 ⊂ S3, we have the standard meridian-longitude basis (µ, λ) ofH1(∂1C;Z).
In terms of the meridian-longitude basis, the section-regular fiber basis ([c1], [h]) is
written by

[c1] = −[µ], [h] = pq[µ] + [λ] ∈ H1(∂1C;Z).
Since m[µ] + n[λ] = (npq −m)[c1] + n[h], we have an identification

Pp,q ,m ,n = M(0, 1; r
q
,

n

npq −m
).

For ∂2C ∶= ∂(S1 × D2), we have a natural basis ([M] = [{∗} × ∂D1], [L] = [S1 ×
{∗}]) of H1(∂2C;Z) which we call outer torus basis. In terms of the section-regular
fiber basis ([c2], [h]), the outer torus basis ([M], [L]) is written by

[M] = q[c2] − r[h], [L] = p[c2] + s[h] ∈ H1(∂2C;Z).
By the definition of cabling, the exterior E(K) is glued to Pp,q ,m ,n by the homeomor-
phism φ ∶ ∂E(K)→ ∂Pp,q ,m ,n such that φ(µK) = [M] and φ(λK) = [L].
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Lemma 2.6 Assume the following hold.

(i) If q = 2 and p ≠ ±1, then the set of JSJ pieces of E(K) does not contain the (−p, 2)-
torus knot exterior.

(ii) If q = 2, p = ±1, then either a2(K) = 0, or, the set of JSJ pieces of E(K) does not
contain the (r, 2)-torus knot exterior for any r.

�en for ∣npq −m∣, ∣n′pq −m∣ > 1 with n ≠ n′, S3Kp,q
(m/n) /≅ −S3Kp,q

(m/n′).

Proof Assume, to the contrary that S3Kp,q
(m/n) ≅ −S3Kp,q

(m/n′) so there is an

orientation preserving homeomorphism f ∶ S3Kp,q
(m/n)→ −S3Kp,q

(m/n′).
By isotopy, we assume that f induces homeomorphisms of JSJ pieces. By the

assumption ∣npq −m∣, ∣n′pq −m∣ > 1, S3Kp,q
(m/n), and −S3Kp,q

(m/n′) have distin-

guished JSJ piece Pp,q ,m ,n and −Pp,q ,m ,n′ . Let X0 = Pp,q ,m ,n and Y0 = f (X0).

Claim 2.7 Y0 ≠ −Pp,q ,m ,n′ . ∎

Proof Assume to the contrary that Y0 = −Pp,q ,m ,n′ , so f induces an orientation
reversing homeomorphism fP = f ∣Pp,q ,m ,n

∶ Pp,q ,m ,n → Pp,q ,m ,n′ . By uniqueness of
Seifert fibration, fP sends the regular fiber h of Pp,q ,m ,n to the regular fiber h′ of
Pp,q ,m ,n . Since f is orientation reversing, it inverts the orientation of regular fiber;
hence, we have f ([h]) = −[h′].

On the other hand, f induces an orientation reversing homeomorphism
f ∣E(K) ∶ E(K)→ E(K) hence K is amphicheiral. In particular, we have f ([µK]) =
−[µK], f ([λK]) = [λK].

As we have discussed, in S3Kp,q
(m/n), the outer torus basis ([M], [L]) of Pp,q ,m ,n

are identified with [µK] and [λK], respectively. Similarly, in S3Kp,q
(m/n′), the outer

torus basis ([M′], [L′]) of Pp,q ,m ,n′ are identified with [µK] and [λK], respectively.
�erefore, f ([M]) = −[M′] and f ([L]) = [L′]; hence, in terms of the section-regular
fiber basis ([c2], [h]) and ([c′2], [h′]) of Pp,q ,m ,n and Pp,q ,m ,n′ , we have

f ([M]) = f (q[c2] − r[h]) = q f ([c2]) + r[h′] = −q[c′2] + r[h′] = −[M′],
f ([L]) = f ( p[c2] + s[h]) = p f ([c2]) − s[h′] = p[c′2] + s[h′] = [L′].

�e first equation shows f ([c2]) = −[c′2], which contradicts the second equation. ∎

�us, Y0 = f (X0) ≅ Pp,q ,m ,n is a JSJ piece of −E(K). Hence, there exists a JSJ piece
X1 of E(K) = −(−E(K)) that is homeomorphic to −Y0 ≅ −Pp,q ,m ,n .

�enext claim, togetherwith our assumption (i), shows that such a JSJ piece cannot
be sent to −Pp,q ,m ,n′ .

Claim 2.8 Let X be a JSJ piece of E(K) that is homeomorphic to −Pp,q ,m ,n . If f (X) =
−Pp,q ,m ,n′ , then q = 2 and X is homeomorphic to (−p, 2)-torus knot exterior. Moreover,
Kp,q is an L-space knot.
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Proof of Claim 2.8 Since −X ≅ Pp,q ,m ,n is a Seifert fibered space with disk base
and two singular fibers that appears as a JSJ piece of the knot exterior E(K), X is
homeomorphic to the torus knot exterior E(TP ,Q) for some P,Q. We fix integers S , R
so that PR + QS = 1. If f (X) = −Pp,q ,m ,n′ ,

−X ≅ E(TP ,Q) ≅ M(0, 1; R
Q
,
S

P
) ≅ M(0, 1; r

q
,

n

npq −m
) ≅ Pp,q ,m ,n

≅ M(0, 1; r
q
,

n′

n′pq −m
) ≅ Pp,q ,m ,n′

�us, we can assume that we have q = Q, r = R, P = npq −m = −(n′pq −m) and that
there are integers i , j such that

n

npq −m
+ i =

S

P
and

−n′

npq −m
+ j =

S

P
.

In particular, we have

⎧⎪⎪⎨⎪⎪⎩
r(npq −m) + qn + qi(npq −m) = 1,
r(npq −m) − qn′ + q j(npq −m) = 1.(1)

Since P = npq −m = −(n′pq −m), we have (n + n′)pq = 2m. By (1), q and m are
coprime hence we have q = 2. Consequently, we get r = R = 1, q = Q = 2, and

P = npq −m = 2np − (n + n′)p = (n − n′)p.
�en (1) is written as

⎧⎪⎪⎨⎪⎪⎩
(n − n′)p + 2n + 2i(n − n′)p = 1,
(n − n′)p − 2n′ + 2 j(n − n′)p = 1.

So we have (n − n′)(1 + p + ip + jp) = 1, hence (n − n′) = ±1. If (n − n′) = 1, we
have P = (n − n′)p = p, so X ≅ −Pp,q ,m ,n ≅ −E(TP ,2) ≅ E(T−p,2). Moreover, n − n′ =
1 means that the signs of surgery slopesm/n andm/n′ are the same; hence, Kp,q is an
L-space knot by�eorem 2.2.

If (n − n′) = −1, we have p(1 + i + j) = −2, so p = ±1. �en we have ∣npq −m∣ =
∣(n − n′)p∣ = 1, so it contradicts the assumption. ∎

�us, Y1 = f (X1) is a JSJ piece of −E(K). Hence, we have a JSJ piece X2 of E(K)
that is homeomoprhic to Pp,q ,m ,n . �e next claim, similar to Claim 2.8, together with
the assumption (ii) shows that such a JSJ piece cannot be sent to −Pp,q ,m ,n′ , either.

Claim 2.9 Let X be a JSJ piece of E(K) that is homeomorphic to Pp,q ,m ,n . If f (X) =
−Pp,q ,m ,n′ then q = 2, p = ±1 and a2(K) = 0.Moreover, X is homeomoprhic to (2,±(n −
n′))-torus knot exterior.

Proof of Claim 2.9 As in Claim 2.8, X is homeomorphic to the torus knot exterior
E(TP ,Q) for some coprime P,Q , and we have
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X ≅ E(TP ,Q) ≅ M(0, 1; R
Q
,
S

P
) ≅ M(0, 1; r

q
,

n

npq −m
) ≅ Pp,q ,m ,n

≅ M(0, 1;− r
q
,−

n′

n′pq −m
) ≅ −Pp,q ,m ,n′ .

Here, S , R are integers chosen so that PR + QS = 1. We can assume that q = Q, r = R,
P = npq −m.

We have either ∣npq −m∣ = ∣n′pq −m∣ or ∣npq −m∣ = ∣q∣. In the latter case, we
also have ∣n′pq −m∣ = ∣q∣ = ∣n′pq −m∣, so in both cases, we always have ∣npq −m∣ =
∣n′pq −m∣. Since n ≠ n′ , we have npq −m = −n′pq +m, so (n + n′)pq = 2m.

On the other hand, there is an integer i such that n
npq−m

+ i = S
P
, so we have

r(npq −m) + qn + qi(npq −m) = 1. �is implies that m and q are coprime so we
have q = Q = 2. Consequently, (n + n′)p = m; hence, npq −m = 2np − (n + n′)p =
(n − n′)p.

By comparing Seifert invariants, we have integers i , j such that

⎧⎪⎪⎨⎪⎪⎩
(n − n′)p + 2n + 2i(n − n′)p = 1,
(n − n′)p + 2n′ + 2 j(n − n′)p = 1,

so we have (n − n′)(ip − jp + 1) = 0. Consequently, we have (i − j)p = −1, so p = ±1.
�us P = npq −m = (n − n′)p = ±(n − n′).

Also, by p = ±1, we have n + n′ = ±m.�is shows that n + n′ ≡ 0 (mod m). By the
Casson–Walker invariant, we have

λ(S3K±1,2(m/n)) =
n

m
a2(K±1,2) − 1

2
s(n,m)

= −
n′

m
a2(K±1,2) + 1

2
s(n′ ,m) = λ(−S3K±1,2(m/n′))

and

n + n′

m
a2(K±1,2) = 1

2
(s(n,m) + s(n′ ,m)) = 0.

Since n + n′ ≠ 0, because this implies m = 0, we have a2(Kp,q) = 0. On the other
hand, since ∆Kp,q

(t) = ∆K(tq)∆Tp,q
(t), we have a2(Kp,q) = q2a2(K) + a2(Tp,q).

�us, a2(K±1,2) = 4a2(K) = 0. ∎

�erefore, Y2 = f (X2) appears as a JSJ piece of −E(K); hence, we have a JSJ piece
X3 of E(K) which is homeomoprhic to −Pp,q ,m ,n .

�en we repeat the argument; for each i > 2, we have a JSJ piece X i that is
homeomorphic to −Pp,q ,m ,n (if i is odd) or Pp,q ,m ,n (if i is even). �en by assumption
(i) and Claim 2.8 (if i is odd) or by assumption (ii) and Claim 2.9 (if i is even), we
see that f (X i) ≠ −Pp,q ,m ,n′ . Hence, Yi ∶= f (X i) gives a new JSJ piece of −E(K). �is
means that we find a new JSJ piece X i+1 in E(K), homeomorphic to −Pp,q ,m ,n (if i is
even) or Pp,q ,m ,n (if i is odd) (see Figure 1 for a schematic illustration). �us, E(K)
contains infinitely many JSJ pieces, which is absurd.
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Figure 1: Proof of Lemma 4: S3Kp,q
(n/m) ≇ −S3Kp,q

(m/n′) imposes infinitely many JSJ pieces.

3 Iterated Cables

For a sequence (p1 , q1), . . . , (pN , qN) of coprime integers with q i > 1 and a knot K,
we define an iterated cable K(p1 ,q1), . . . ,(pN ,qN) inductively by

K(p1 ,q1) = Kp1 ,q1 , K((p1 ,q1), . . . ,(pN ,qN)) = (K((p1 ,q1), . . . ,(pN−1 ,qN−1)))(pN ,qN) .

WhenK is the unknotU, the iterated cableU(p1 ,q1), . . . ,(pN ,qN) is called the iterated torus
knot.

We prove a theorem that is slightlymore general than�eorem 1.2, by addingmore
arguments to Lemma 2.6.

�eorem 3.1 Let K be a non-satellite knot. �en an iterated cable K(p1 ,q1), . . . ,(pN ,qN)
for N ≥ 1 that is not a (2, p)-torus knot does not admit chirally cosmetic surgery.

Proof of�eorem 3.1 An iterated cable of torus knot is an iterated torus knot, so
we can assume that K is either hyperbolic or unknot. We put p = pN , q = qN and
view the iterated cableK(p1 ,q1), . . . ,(pN ,qN) asK

∗
(p,q), the (p, q)-cable of the iterated cable

K∗ = K(p1 ,q1), . . . ,(pN−1 ,qN−1).
�e JSJ decomposition of E(K∗) is given by

E(K∗) = E(Tp1 ,q1) ∪T1
Cp2 ,q2 ∪T2

⋯∪TN−2
CpN−1 ,qN−1

if K is unknot, and

E(K∗) = E(K) ∪T0
Cp1 ,q1 ∪T1

Cp2 ,q2 ∪T2
⋯∪TN−2

CpN−1 ,qN−1

otherwise (i.e., K is hyperbolic). When K is hyperbolic, no JSJ piece of EK∗ is
homeomorphic to the torus knot exterior so by �eorem 1.1, K∗p,q does not admit
chirally cosmetic surgery.�us, we assume that K∗ is an iterated torus knot. Since the
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classification of chirally cosmetic surgery of torus knots are known [IIS, Ro], in the
following, we assume that K is not a torus knot.

Assume, to the contrary that S3K∗p,q
(m/n) ≅ −S3K∗p,q(m/n

′), so there is an

orientation preserving homeomorphism f ∶ S3K∗p,q(m/n)→ −S
3
K∗p,q
(m/n′). By

Lemmas 2.3, 2.4, and 2.5, ∣npq −m∣, ∣n′pq −m∣ > 1; hence, S3K∗p,q(m/n) = E(K
∗) ∪T

Pp,q ,m ,n , S
3
K∗p,q
(m/n′) = E(K∗) ∪T Pp,q ,m ,n′ .

By isotopy we assume that f induces homeomorphisms of JSJ pieces. By Claim 2.7
in the proof of Lemma 2.6, f (Pp,q ,m ,n) is a JSJ piece of −E(K∗). Since the cable space
Cp i ,q i

has two boundary components, whereas the boundary of Pp,q ,m ,n is connected,
we have f (Pp,q ,m ,n) = −E(Tp1 ,q1). Since f (E(Tp1 ,q1)) is a JSJ piece of −S3K∗p,q(m/n

′) =
−E(K∗) ∪T −Pp,q ,m ,n′ other than −E(Tp1 ,q1), we have f (E(Tp1 ,q1)) = −Pp,q ,m ,n′ .�is
shows that f gives an orientation preserving homeomorphism

f ∶ − f (Pp,q ,m ,n) = E(Tp1 ,q1)Ð→ −Pp,q ,m ,n′ .

By Claim 2.8 in the proof of Lemma 2.6, we have q1 = 2, p1 = −p and K =
K∗p,q is an L-space knot. On the other hand, by [Hom] an iterated torus knot
K(−p,2), . . . ,(pN−1 ,qN−1),(p,2) is an L-space knot implies that −p, p2 , p3 , . . . , p has the
same sign. �is is a contradiction. ∎

Acknowledgment �e author is grateful to Kazuhiro Ichihara for invaluable
comments and discussions.
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