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Near-contact hydrodynamic interactions between a solid sphere and a plane porous
slab are investigated in the framework of lubrication theory. The size of pores in the
slab is small compared with the slab thickness so that the Darcy law holds there.
The slab is thin: that is, its thickness is small compared with the sphere radius.
The considered problem involves a sphere translating above the slab together with
a permeation flow across the slab and a uniform pressure below. The pressure is
continuous across both slab interfaces and the Saffman slip condition applies on its
upper interface. An extended Reynolds-like equation is derived for the pressure in
the gap between the sphere and the slab. This equation is solved numerically and the
drag force on the sphere is calculated therefrom for a wide range of values of the
slab interface slip length and of the permeability parameter β = 24k∗R/(eδ2), where
k∗ is the permeability, e is the porous slab thickness, R is the sphere radius and δ is
the gap. Moreover, asymptotics expansions for the pressure and drag are derived for
high and low β. These expansions, which agree with the numerics, are also handy
formulae for practical use. All results match with those of other authors in particular
cases. The settling trajectory of a sphere towards a porous slab in a fluid at rest is
calculated from these results and, as expected, the time for reaching the slab decays
for increasing slab permeability and upper interface slip length.

Key words: lubrication theory, porous media

1. Introduction
Many applications in chemical engineering, water filtration and biology involve

the motion of solid particles suspended in a Newtonian fluid near a porous slab or
membrane. For instance, in filtration technology the problem of membrane clogging
appears when particles approach very close to the membrane. This leads to membrane
fouling (see for instance Le-Clech, Chen & Fane (2006) and references therein).

The filtration flow field of a viscous fluid near an isotropic porous slab is usually
modelled using Navier–Stokes equations in the fluid and either Darcy (1856) or
Brinkman (1947) equations in the porous medium. In the Darcy equation the isotropic

† Email address for correspondence: sellier@ladhyx.polytechnique.fr
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porous medium is characterized by its (positive) permeability, denoted here as k∗. The
size of pores is of order

√
k∗. The more complicated case of an anisotropic porous

medium is modelled with a permeability matrix; see e.g. Karmakar & Raja Sekhar
(2018).

The Brinkman equation being mathematically more general than the Darcy equation,
the matching of the fluid and porous domains is simply done by prescribing continuity
of the velocity and stress across the permeable interface. On the other hand, the use
of the Darcy equation requires specific boundary conditions on the interface. Thus,
there is a large body of literature devoted to this topic; see e.g. Nield & Bejan
(2006). The conditions depend in general on the interface curvature. Henceforth,
attention is restricted to a plane interface. The simplest boundary conditions are the
continuity of normal velocity and pressure together with the no-slip condition for
the tangential velocity. These conditions, which are physically valid at scales much
larger than the size of pores, are widely employed. For instance Ramon et al. (2013),
whose results will be compared to the present work, use such conditions. A more
elaborate set of conditions valid at pore size was proposed by Saffman (1971). This
allows a slip of the tangential velocity on the fluid side of the interface. As shown
by Saffman (1971), this is the next approximation in an expansion for small

√
k∗/a,

where a is a typical length scale in the fluid (for instance, the size of a particle
embedded in the fluid). Note also that the Saffman slip condition is an extension
of the Navier (1823) slip condition for an impermeable wall. The Navier condition
involves a slip length. This model has been shown to be also relevant for rough
walls (see Lecoq et al. (2004)). Even more general conditions were proposed either
for the tangential velocity by Beavers & Joseph (1967) or for the shear stress by
Ochoa-Tapia & Whitaker (1995a,b) and this is an ongoing research field. These more
refined model conditions will not be considered here. Theoretically, the slip length
of a linear shear flow along a porous wall is obtained by dividing the (tangent) slip
velocity on the wall by the local shear rate. Practically, the needed shear flow profile
near the porous wall is obtained by different experimental techniques. For instance,
Carotenuto & Minale (2011) used measurement from a constant-stress rheometer to
infer the velocity profile and Wu & Mirbod (2018) measured directly the velocity
profile by particle image velocimetry. For anisotropic porous media the interface
might also be anisotropic and another anisotropic Saffman-like slip condition would
then apply, generalizing the case of an impermeable anisotropic plane slip wall (see
Bazant & Vinagradova (2008)).

Consider now particles near a plane impermeable or permeable solid boundary.
Assuming a dilute suspension of spheres, we are concerned with a single solid
impermeable sphere located close to a plane surface on which one of the above
boundary conditions applies.

The case of a sphere near an impermeable slip plane has been handled in several
works. Starting with the axisymmetric problem of a slip sphere translating normal
to an impermeable plane slip wall (using the Navier condition for both impermeable
surfaces), Goren (1973), Hocking (1973) and Vinogradova (1995) considered the
lubrication problem when the sphere is very close to the wall. Note that Goren
(1973) and Vinogradova (1995) allow two different slip lengths on the sphere and on
the wall, as opposed to Hocking (1973). Moreover, Goren (1973) implemented the
bipolar coordinates technique to solve the problem of arbitrary sphere–wall gap for
equal slip lengths. The asymmetric problem of a sphere translating and/or rotating
parallel to a plane impermeable wall has been solved, using bipolar coordinates,
by Davis, Kezirian & Brenner (1994) when there is slip either on the wall or on
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Lubricating motion of a sphere towards a thin porous slab 951

the sphere. The asymmetric case of a slip sphere immersed in an ambient shear flow
above a slip plane impermeable wall was also treated in Luo & Pozrikidis (2008) by
resorting to a boundary element method. Finally, the asymmetric case of a no-slip
sphere embedded in an ambient linear and quadratic shear flow parallel to a slip
impermeable wall was solved by Loussaief, Pasol & Feuillebois (2015) and Ghalia,
Feuillebois & Sellier (2016), respectively, using the bipolar coordinates technique.

The case of a no-slip impermeable sphere located near a plane permeable surface
(for instance near a porous half-space or near a porous slab or membrane with
finite thickness and parallel plane boundaries) has also been the subject of various
articles. The axisymmetric problem of a sphere translating normal to a no-slip
permeable plane has been solved, using bipolar coordinates for non-zero gap and
tangent bipolar coordinates for the contact problem: for the case of a thin no-slip
permeable membrane we may cite Goren (1979) for arbitrary sphere–plane gap and
Nir (1981) for a sphere in contact. In a similar way, the problem of a sphere near
a porous half-space was considered by Sherwood (1988) for the contact case and
Michalopoulou, Burganos & Payatakes (1992) otherwise. The axisymmetric problem
of a sphere translating towards the permeable and no-slip plane upper surface of a
porous slab with finite thickness is more involved, since it also requires the modelling
of the fluid flow inside the slab, by using either Darcy or Brinkman equations. For a
sphere close to the slab, a lubrication analysis of the flow field in the thin liquid film
is possible. Such an analysis can be derived from Lin, Lu & Yang (2001) for a no-slip
boundary condition at the motionless lower slab surface and a Brinkman model inside
the slab. Another lubrication analysis was performed by Ramon et al. (2013) who
deal with a Darcy model in a thin slab with the no-slip boundary condition on its
upper boundary and a prescribed uniform pressure on its lower boundary. The same
flow field configuration, but for the more general case of a sphere at some distance
of the slab, was solved by Debbech, Elasmi & Feuillebois (2010) using the method
of fundamental solution. This solution is based on the calculation of the Green tensor
for the Stokes flow near a Darcy porous slab by Elasmi & Feuillebois (2001). The
more general case of a porous slab of arbitrary thickness with the same boundary
condition (in particular no slip on the upper boundary and uniform pressure at the
lower boundary) was solved later by Elasmi & Feuillebois (2003) using the boundary
integral method.

For a small wall–particle gap (around of 5 % of the sphere radius), the boundary
integral method suffers from some lack of accuracy. This is the incentive to propose
here a lubrication analysis for the axisymmetric problem of a sphere translating normal
and close to a thin porous slab. The Darcy equation applies in the thin slab and the
Saffman slip condition is prescribed on its upper side.

The paper is organized as follows. The addressed filtration problem and adopted
numerical method are presented in § 2. Asymptotic predictions for large and small
normalized permeability and numerical results obtained for the pressure on the sphere
and the resulting drag force are presented in § 3. The settling of the sphere is then
examined in § 4 and finally conclusions are given in § 5.

2. Filtration problem and numerical procedure

This section presents the problem of the pressure distribution on a solid sphere
translating towards a permeable slip porous slab and the solving numerical procedure.
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FIGURE 1. A solid sphere with radius R settling towards a permeable porous slab S with
permeability k∗ > 0 and thickness e.

2.1. Considered axisymmetric flow fields
Consider, as sketched in figure 1, a Newtonian fluid (liquid or gas), with uniform
density ρ and viscosity µ, embedding a porous slab domain S with thickness e> 0
in −e< z< 0 and two open fluid domains in z<−e and z> 0. In the absence of the
sphere, the fluid velocity is uniform, i.e. −V0ez in each domain. The fluid pressure
is a constant p0 > 0 for z> 0, zero for z<−e and obeys the Darcy equation in the
slab with uniform Darcy permeability k∗ > 0. The pressure Q in the slab therefore
reads Q = µV0(z + e)/k∗. Finally, the fluid pressure is continuous across the porous
slab boundaries z = −e and z = 0, called here the lower and upper surfaces Σl and
Σu, respectively. Thus, the so-called background permeation velocity V0 in the whole
space, imposed by the pressure p0, is given by V0 = p0k∗/(µe).

A solid sphere, with centre O′ and radius R, is immersed above the slab in the
ambient permeation flow −V0ez. It translates towards the slab at the steady velocity
−Vpez. The resulting perturbed fluid flow has a quasi-steady velocity u − V0ez and
a pressure p0 + p in the fluid domain D above the slab and a quasi-steady velocity
u′−V0ez and a pressure Q+ p′ in the slab S . As will be shown below, it is irrelevant
to consider in the present work the velocity and pressure disturbances occurring below
the slab (i.e. in the z<−e domain) and such quantities are thus henceforth discarded.
The flow is governed by the quasi-steady Navier–Stokes and Darcy equations in D
and S , respectively. Accordingly,

ρ(u− V0ez) · ∇u=−∇p+µ∇2u and ∇ · u= 0 in D, (2.1a,b)
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u′ =−
k∗

µ
∇p′ and ∇ · u′ = 0 in S. (2.2a,b)

The problem (2.1)–(2.2) must be supplemented with proper boundary conditions.
Denoting by S the sphere boundary, the following far-field condition and no-slip
boundary condition on the sphere apply:

(u, p)→ (0, 0) at ∞, u= (V0 − Vp)ez on S. (2.3a,b)

Additional conditions on the permeable z= 0 upper surface Σu are also needed. The
continuity of both the velocity component normal to the slab and the pressure holds
there

u · ez = u′ · ez, p= p′ on Σu(z= 0). (2.4a,b)

In the present work we also impose on Σu the Saffman (1971) (SA) slip boundary
condition for the velocities ut= u− (u · ez)ez tangent to the slab. This condition reads

SA:
∂ut

∂z
=

(
σ
√

k∗

)
ut on Σu(z= 0), (2.5)

where the dimensionless slip parameter σ is positive. In practice, the Darcy law is
obtained when the porous slab thickness e is much larger than the typical length of
the pores rp =

√
k∗. Accordingly, we assume that e�

√
k∗. In addition, the Saffman

condition suggests introducing the so-called slab slip length l=
√

k∗/σ which means
that σ = rp/l. The widely employed Navier (1823) slip condition on a solid and
impermeable wall with given slip length l> 0 is retrieved by taking σ =

√
k∗/l and

letting k∗ vanish. The case of a permeable and no-slip slab, considered in Ramon
et al. (2013), is retrieved from the Saffman boundary condition with k∗ > 0 and
σ→∞. In summary, the retained assumptions are

√
k∗� e; σ > 0. (2.6a,b)

For symmetry reasons both flows (u, p) and (u′, p′) are axisymmetric, with no
swirl, about the (O, ez) axis. We use Cartesian coordinates (O, x, y, z) and cylindrical
coordinates (r, z) with the unit local vector er such that r = {x2

+ y2
}

1/2 and x =
zez + rer. Accordingly, p(x) = p(r, z) and u(x) = ur(r, z)er + w(r, z)ez with similar
properties for p′ and u′, the cylindrical components of which are u′r and w′. The stress
tensor of the flow field (u, p) is denoted as σ . For symmetry reasons, the force Fs

experienced by the translating sphere then reads Fs = Fsez with

Fs =

∫
S

ez · [σ · n− p0n] dS=
∫

S
ez · σ · n dS, (2.7)

where n denotes the unit normal vector on S pointing into the liquid (see figure 1).
The sphere centre is O′ and each point M on its boundary S is specified by an angle
θ ∈ [0,π] with O′M= Rn and n= sin θer + cos θez. Consequently,

Fs = 2πR2
∫ π

0

{
cos θ

[
2µ
∂w
∂z
− p
]
+µ sin θ

[
∂w
∂r
+
∂ur

∂z

]}
sin θ dθ. (2.8)
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2.2. Lubrication approximation and resulting problem for the pressure
In our notation, the continuity equation in (2.1) becomes the linear relation

∂w
∂z
=−

1
r
∂

∂r
[rur], (2.9)

while the momentum equation in (2.1) is nonlinear and thus much less tractable.
Now, for a near-contact sphere the well-known lubrication approximation is relevant
and makes it possible to solely retain the linear part of this equation. From the
assumption that the sphere–slab gap δ is small compared with the sphere radius R,
the classical (see Taylor, G. I., private communication cited in Handy & Bircumshaw
1925) lubrication analysis consists of asymptotically expanding in terms of the small
parameter ε= δ/R the flow velocity components (ur,w) and pressure p in the vicinity
of the origin O (recall figure 1), i.e. for z=O(δ) and r=O(R). In the present paper
the analysis is restricted to the first-order approximation. Let U and W denote the
typical magnitudes of the velocity components ur and uz in the lubrication domain.
The continuity equation (2.9) first gives W = εU. In approximating the momentum
equation in (2.1) with boundary condition (2.3), the following Reynolds number
Re0 arises: Re0 = ρ|V0 − Vp|δ/µ. We assume that ε = δ/R is small enough so that
Re0� 1. Then, the nonlinear term on the left-hand side of the momentum equation
(2.1) vanishes in the first approximation and, at the leading order in ε, this equation
becomes

∂p
∂r
=µ

∂2ur

∂z2
,

∂p
∂z
= 0. (2.10a,b)

In the lubrication domain the following scalings, also obtained using (2.9)–(2.10),
hold:

p∼µ
U
R

(
R
δ

)2

, µ
∂w
∂z
∼µ

W
δ
=µ

U
R
, µ

∂w
∂r
∼µ

δU
R2
, µ

∂ur

∂z
∼µ

U
δ
. (2.11a−d)

In the lubrication approximation the leading contribution to the force Fs given by (2.8)
is due to the part of the sphere located near the slab, i.e. to points of S for which
r = R sin θ with θ close to π. Furthermore, using (2.11) on the sphere boundary S
shows that it is possible to retain only the pressure term on the right-hand side of
(2.8). Upon performing the change of variable r= r(θ), and recalling from (2.10) that
the pressure p is independent of z in the lubrication domain gives

Fs ∼ 2π

∫ R

0
p(r)r dr. (2.12)

In (2.12) the upper limit R is large compared with δ. It will be shown below, after
(2.20), that the present (inner) expansion at scale δ is valid for R→∞.

In summary, the task in this work reduces to the determination of the approximated
lubrication pressure p and velocities (ur, w) governed by the linear equations (2.9)
and (2.7) and the far-field behaviour and boundary conditions (2.3)–(2.5).

The conditions (2.5) may be recast into the following form:

∂ur

∂z
= λur for z= 0, λ=

1
l
=

σ
√

k∗
. (2.13a,b)
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Now, the second equation (2.10) yields p = p(r). Integrating twice the first equation
(2.10) and taking into account (2.13) give the velocity profile

ur(r, z)= [1+ λz]ur(r, 0)+
z2

2µ

[
dp
dr

]
(r). (2.14)

At this stage the velocity ur(r, 0) on the interface is still unknown. It is obtained
here by enforcing the boundary condition (2.3) on the sphere surface S in the radial
direction. As shown in figure 1, this surface is described near the porous slab side by
the equation z = h(r). Therefore, equation (2.3) requires that ur(r, h) = 0. With this
condition the result for the radial velocity profile is

ur(r, z)=
1

2µ

[
dp
dr

]
(r)
{

z2
− h2

(
λz+ 1
λh+ 1

)}
. (2.15)

Next, integrating the continuity equation (2.9) over z in [0, h(r)] yields

w(r, h)=w(r, 0)−
1
r

∫ h

0

∂

∂r
[rur] dz. (2.16)

The boundary condition (2.3), when projected on the z direction, also provides
w(r, h) = V0 − Vp while the first condition (2.4) gives w(r, 0) = w′(r, 0). This latter
quantity is given by the Darcy law (see first equation (2.2)), i.e. by w′(r, 0) =
−(k∗/µ)(∂p′/∂z)z=0. As in Ramon et al. (2013), we assume a linear variation of
the pressure p′ across the slab: (∂p′/∂z)z=0 ∼ [p′(r, 0) − p′(r, −e)]/e. As shown in
appendix B, this assumption actually requires that e � R; that is, the porous slab
thickness is small compared with the sphere radius. We also consider that the fluid
below the slab imposes the pressure on the slab lower surface Σl(z = −e), i.e. that
p′(r,−e)= 0. Then we obtain the additional link w′(r, 0)=−k∗p′(r, 0)/(µe). Noting
that p′(r, 0) = p(r, 0) = p(r), the combination of (2.16) and (2.15) provides the
governing equation for the pressure p in the lubrication domain

1
12µr

d
dr

[{
(4+ λh)h3

1+ λh

}
r

dp
dr

]
= V0 − Vp +

k∗p(r)
µe

. (2.17)

Equation (2.17) may be seen as an extension of the classical Reynolds equation
(Reynolds 1886; Nguyen 2000). There is no mass injection on the (O, ez) axis and
thus u′r(r, 0)= 0 at r= 0. By symmetry, (dp/dr)(r= 0) vanishes. In addition p should
vanish for large r. From the small normalized sphere–wall gap δ/R assumption,
h(r) ∼ δ + r2/(2R) in the vicinity of the origin O, namely for r 6 O(

√
δR) as

classically found. As in Ramon et al. (2013), we henceforth use the lengths (l2, k)
and the dimensionless parameter β, length s and pressure P such that

l2 =
√

2δR, k=
k∗

e
, β =

24kR
δ2

, s=
r
l2
, p=

24µR
δ2

(Vp − V0)P. (2.18a−e)

Henceforth, the reduced permeability β is simply called the permeability while k is
the permeance. In addition, we also introduce the dimensionless sphere-to-slab gap λ̃:

λ̃= λδ = δ/l=
σδ
√

k∗
, (2.19)
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and then obtain for P the following dimensionless boundary value problem:

1
s

d
ds

{[
(4+ λ̃H)H3

1+ λ̃H

]
s

dP
ds

}
− βP=−1,

(
dP
ds

)
s=0

= P(∞)= 0, (2.20a,b)

with H = 1 + s2 the normalized sphere-to-wall distance at position s. The governing
problem (2.20) extends that considered in Ramon et al. (2013) by applying the
Saffman slip boundary condition. Not surprisingly, taking λ̃→∞ in (2.20) recovers
the Ramon formulation.

The problem (2.20) is well-posed for large s as may be proven by considering its
asymptotic expansion for s� 1. Then H ∼ s2 and the differential equation may be
recast in terms of the variable H

4
d

dH

(
H4 dP

dH

)
− βP=−1. (2.21)

For H� 1 the first term takes over and the formal solution behaves like P∼H−2
∼

s−4. Thus, the condition at infinity in (2.20) can indeed be applied and the lubrication
problem is regular as expected. Moreover, in the integral (2.12) for the force Fs the
upper limit R is rejected to infinity.

As in Ramon et al. (2013), the force Fs is normalized by that obtained for an
impermeable no-slip wall. Using our previous scalings (2.11) and (2.18) for s and P,
the normalized force F is

F=
δFs

6πµ(Vp − V0)R2
= 16

∫
∞

0
P(s)s ds. (2.22)

In this paper we focus on the normalized force F which, by virtue of (2.19)–(2.22),
depends on the sphere–slab gap δ, the sphere radius R and the porous slab properties
(k∗, e, σ ) through the dimensionless parameters β and λ̃. The validity of the present
formulation however brings some additional restrictions to the previously mentioned
ones in (2.6). First, we must recall the condition, discussed after (2.16), of a
sufficiently thin slab with e � R. Second, the lubrication approximation is valid
for r 6 O(l2) and the associated domain on the upper slab boundary z = 0 must
contain a large number of pores, i.e. rp =

√
k∗� l2. In summary, we require in the

present paper that for a slip porous slab

σ > 0,
√

k∗� e� R,
√

k∗�
√
δR. (2.23a−c)

The particular value σ = ∞ is here employed with k∗ > 0 to retrieve the no-slip
permeable slab (case l= 0) handled in Ramon et al. (2013).

2.3. Numerical implementation and tests

For the no-slip permeable slab case (Saffman case with λ̃=∞) the solution of (2.20)
for the lubrication pressure P is obtained in closed form. This solution, surprisingly
not reported in Ramon et al. (2013), is given in appendix A. In all other cases,
equation (2.20) has to be solved numerically. This is achieved using a truncated
domain 0 6 s 6 L and a O(h2) second-order finite-difference scheme with N + 1
nodal points sn = nh (taking n = 0, 1, . . . , N) and h = L/N. We then calculate the
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normalized force F taking as L the upper value of the domain of integration in the
integral occurring on the right-hand side of (2.22). This procedure is benchmarked
for β = 1, 100 against the force obtained for the no-slip permeable case. That force
is obtained here by integrating, using Maple computer algebra software and taking
L = ∞, the product P(s)s with P the analytical lubrication pressure displayed in
appendix A.

As shown in table 1, the numerical results converge as L increases and become
very close to the analytical results. In view of these results we henceforth take L= 80
which is sufficient for a three-digit accuracy.

3. Results for the pressure field and drag force
The normalized force, F, solely depends upon the positive dimensionless

permeability β and slip parameter λ̃ given by

β = 24
(

k
R

)(
R
δ

)2

, λ̃=
δ

l
=

(
δ

R

)/(
l
R

)
. (3.1a,b)

In practice, these parameters take values in the interval [ 0,∞[.

3.1. Asymptotic expansion for β� 1
As achieved in Ramon et al. (2013) for the no-slip case, it is worth estimating for
the Saffman slip case the resulting normalized lubrication pressure P and force F for
either large or small values of the permeability β. In this subsection we consider the
case of a sphere translating towards a near-contact permeable slab (k = k∗/e> 0) in
the limit β� 1 of large permeability. In such circumstances asymptotic expansions for
P and F can be derived by extending the treatment proposed in Ramon et al. (2013).
Curtailing the details, the pressure P takes, for β large, the following form:

P(s)=
P∗(η)
β

, η=
s
β1/4

, P∗(η)∼ P∗0(η)+
P∗1(η)
β1/2

+
P∗2(η)
β

, (3.2a−c)

with, using Maple software, the functions

P∗0(η)= 1−
[

1+ 2η2

2η2

]
e−1/(2η2), P∗1(η)=−

3
16

[
1+ λ̃

λ̃η6

]
e−1/(2η2), (3.3a,b)

P∗2(η) = −
1

256η10

[
9− 58η2

+ 4η4
+

1

λ̃
(18− 116η2

+ 8η4)

+
1

λ̃2
(9+ 122η2

+ 68η4)

]
e−1/(2η2). (3.4)

Of course, letting λ̃ tend to infinity in (3.2)–(3.4) retrieves the asymptotics given in
Ramon et al. (2013). Observe that for (3.2) to be an asymptotic expansion, λ̃ cannot
vanish (inspect P∗1 in (3.3) and P∗2 in (3.4)). In practice, the expansion (3.2) is valid
for
√
β�Max(1, λ̃−1). On the basis of (3.2)–(3.4), an asymptotic expansion is derived

for the dimensionless drag force from (2.22):

F∼
4
β1/2
−

[
6(λ̃+ 1)

λ̃

]
1
β
+

3
2

[
17+ λ̃(2+ λ̃)

λ̃2

]
1
β3/2

for
√
β�Max(1, λ̃−1). (3.5)
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L 50 80 100 200 ∞

F, β = 1 0.95996 0.96045 0.96056 0.96071 0.96077
F, β = 100 0.34087 0.34136 0.34147 0.34162 0.34167

TABLE 1. Normalized force F versus the length L for the no-slip permeable case (i.e. as
in Ramon et al. (2013)) and β = 1, 100. For L<∞ the lubrication pressure is calculated
numerically by solving (2.20) for the Saffman boundary condition (δBJ = 0) and λ̃→∞.
The last column for L=∞ is the analytical lubrication pressure given in appendix A.

Let us introduce the dimensionless permeability k = 24k/R = 24k∗/(eR) > 0 which
compares the porous slab typical pore size rp =

√
k∗ with the length

√
eR. From our

second assumption (2.23), it turns out that k∗� eR, i.e. that k� 24. The requirement
√
β �Max(1, λ̃−1) then becomes

√

k�Max(δ/R, l/R). These constraints tell us to
what extent the ratio k∗/(eR) must be large enough for given parameters (δ/R, l/R).
Using (2.22) and (3.5) provides the following approximation of the dimensional force
Fs experienced by a sphere translating normal and very close to a permeable (porous)
slab with upper surface subject to the Saffman condition:

Fs ∼ 6πµ(Vp − V0)R

{
4

(k)1/2
−

6(λ̃+ 1)

λ̃k

(
δ

R

)

+
3

2(k)3/2

[
17+ λ̃(2+ λ̃)

λ̃2

](
δ

R

)2
}

for
√

k�Max(δ/R, l/R). (3.6)

According to (3.2)–(3.6), the first approximations of the lubrication pressure and of
the resulting force exerted on a sphere close to the permeable (k> 0) porous slab are
independent of the slip parameter λ̃. For a large permeability this was not a priori
expected on physical grounds. The Saffman condition is found to affect the lubrication
pressure and dimensional force only at the next order.

The range of validity of the asymptotic expansion (3.5) is evaluated by comparing
in table 2 its predictions against the numerical results of three-digit accuracy . Clearly,
the asymptotic expansion does not actually hold for λ̃= 1 when β = 10, 50. (This is
actually still the case when λ̃ = 0.1 for β = 1000 with F = 0.0930 and Fa = 0.1421
and also for β = 5000 with F= 0.0474 and Fa = 0.0507. In contrast, for λ̃= 0.1 and
β = 10 000 the closer values F = 0.0348 and Fa = 0.0360 are obtained.) However, as
seen in table 2, the asymptotic expansion provides already for β = 50 and λ̃> 10 the
same three-digit accuracy and may therefore be seen as a handy formula in the range
β > 50 for this domain of the slip parameter λ̃. It also nicely matches the numerics
for λ̃> 1 when β > 100.

3.2. Asymptotic expansion for β� 1
For a vanishing porous slab permeance k = k∗/e, the dimensionless permeability β

might be small compared with unity even for a very small normalized sphere–slab
gap δ/R (see (2.23)). More precisely, since β= k(R/δ)2 the condition β�1 is ensured
for
√

k� δ/R. In such circumstances a regular expansion of the problem (2.20) for
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λ̃= 1 λ̃= 10 λ̃= 100 λ̃= 1000
β F Fa F Fa F Fa F Fa

* 0.01 0.6290 0.6293 0.9156 0.9159 0.9895 0.9898 0.9983 0.9986
0.01 0.6290 0.6293 0.9156 0.9159 0.9895 0.9898 0.9983 0.9986
* 0.1 0.6279 0.6283 0.9127 0.9130 0.9858 0.9863 0.9945 0.9948
0.1 0.6279 0.6283 0.9127 0.9130 0.9858 0.9862 0.9945 0.9949
* 0.7 0.6210 0.6212 0.8941 0.8937 0.9627 0.9619 0.9708 0.9699
0.7 0.6210 0.6214 0.8941 0.8945 0.9627 0.9631 0.9708 0.9708
* 1 0.6177 0.6177 0.8853 0.8840 0.9517 0.9498 0.9596 0.9575
1 0.6177 0.6180 0.8853 0.8857 0.9517 0.9522 0.9596 0.9593
10 0.5376 1.0136 0.7030 0.6699 0.7358 0.7074 0.7394 0.7118
50 0.3784 0.4105 0.4400 0.4395 0.4493 0.4488 0.4503 0.4498
100 0.3004 0.3100 0.3359 0.3361 0.3408 0.3409 0.3413 0.3414

TABLE 2. Computed normalized force in the Saffman case, F, for a large range of values
of the dimensionless permeability, β, and asymptotic estimate, Fa, for either β� 1 (§ 3.1)
or β� 1 (§ 3.2), both for various values of the parameter λ̃ (see (2.19)). The asymptotic
values Fa for β 6 1 have been obtained using the small β approximation given in § 3.2.
Each line with a ∗ symbol reports the closed-form (order O(β)) approximation in small
β obtained by retaining only the first two terms in (3.10).

small β is worked out, as also done in Ramon et al. (2013) for the no-slip case.
Omitting the details, the pressure P is approximated as

P(s)= P0(s)+ βP1(s)+ β2P2(s)+O(β3) for β� 1, (3.7)

with the zeroth-order pressure P0 and first-order pressure P1 derived in closed form
(again using the Maple software), that is

P0(s)=
3λ̃2

256
log

[
λ̃(1+ s2)

4+ λ̃(1+ s2)

]
+

2+ 3λ̃(1+ s2)

64(1+ s2)2
(3.8)

and a much more complicated form for P1 given in appendix C. Finally, the second-
order pressure P2 was calculated numerically using a finite-difference scheme (as in
§ 2.3) to solve the following problem (from the extended Reynolds equation (2.20)):

1
s

d
ds

{[
(4+ λ̃H)H3

1+ λ̃H

]
s

dP2

ds

}
= P1,

(
dP2

ds

)
s=0

= P2(∞)= 0. (3.9a,b)

Following (3.7) and applying (2.22), the expansion for the normalized force F reads

F= F0(λ̃)+ βF1(λ̃)+ β
2F2(λ̃)+O(β3) for β� 1. (3.10)

Although the analytical expression for the pressure P1 is very involved (see
appendix C), it is nevertheless possible to find a simple expression for F1(λ̃). The
results are

F0(λ̃)=
1
8
(2− 3λ̃)+

3λ̃
32
(4+ λ̃)X, X = log

(
4+ λ̃

λ̃

)
, (3.11a,b)
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F1(λ̃)=−
1

384
−

3λ̃
256
−

3λ̃2(4− X)
512

+
3λ̃3X
2048
[1+ 3X] +

9λ̃4X2

8192
. (3.12)

By inspection of (3.11)–(3.12) and as shown in figure 2 it is observed that both
coefficients F0 and F1 remain of the order of unity in the entire range λ̃> 0.

It should be noted that F0(λ̃) is actually the normalized force experienced by a
sphere located close to (i.e. in the lubrication regime δ� R) an impermeable surface
on which the usual Navier slip condition holds. In this case the result (3.11) is
recovered from Vinogradova (1995) lubrication analysis (see equations (3.18)–(3.19)
there), by letting in her notation R2 → ∞, b→ 0 and k → ∞ with kb = l being
the slip length. We used Maple computer algebra software to check this limit. In
principle, we should also retrieve the function F0(λ̃) from Goren (1973) lubrication
results (his equation (17)), converting his notation with Kns= l/R, h= δ and Knw→ 0.
(We could not however succeed in retrieving his result and suspect a misprint in his
equation (17) for two reasons: first, there are two analogous terms 4ST and 2ST in
the same parentheses and, second, his results from table 1 are not recovered from his
formula (17).)

As λ̃ becomes large the no-slip boundary condition applies and the zeroth-order
pressure P0 tends to the function obtained in Ramon et al. (2013) while F0(λ̃) ∼ 1
and F1(λ̃) ∼ −1/24. We also recover the results by Goren (1979) for a very thin
membrane.

Like P0 and P1, the pressure P2 solution of (3.9) is of order unity whatever the
value of λ̃> 0. Therefore, and in contrast to the previous case of large permeability
β, no restriction bearing on the slip parameter λ̃ appears here for the expansions
(3.7) and (3.10) to be valid. Again invoking (2.22) eventually provides the following
expansion for the dimensionless force:

Fs = 6πµ(Vp − V0)R

{
F0(λ̃)

(
R
δ

)
+ F1(λ̃)k

(
R
δ

)3

+F2(λ̃)k
2
(

R
δ

)5

+O

(
k

3
(

R
δ

)7
)}

for β� 1. (3.13)

As for the case of large permeability, the asymptotic estimate (3.10) of the normalized
force F for β� 1 was tested against the numerical predictions. The results displayed
in table 2 show the approximation (3.10) both at O(β2) ‘first order’ and O(β3) ‘second
order’. From table 2 the agreement between the three-digit numerics and both (first-
order and second-order) asymptotic approximations for the normalized force turns out
to be amazingly good (that is, within O(10−4) accuracy) up to β = 0.1 in the entire
range λ̃>1. Note also that the first-order approximation, obtained by retaining the first
two terms on the right-hand side of (3.10), may be considered as a handy formula for
practical use.

3.3. Numerical results
In practice the permeability parameter β can take values in the entire range β> 0. For
β neither small nor large the lubrication pressure P and resulting normalized force F
have to be calculated numerically. This is achieved in the present work, with a three-
digit accuracy, using the numerical method described in § 2.3.
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FIGURE 2. Coefficients F0 (E) and F1 (u) of the normalized force, see (3.11) and
(3.12), versus λ̃ for low dimensionless permeability, β� 1.
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FIGURE 3. Normalized force F versus the permeability parameter β for λ̃= 0.1 (E), λ̃= 1
(@), λ̃= 10 (A) and λ̃= 100 (solid curve). For comparison purposes, a few values obtained
for the no-slip Ramon case (associated with λ̃=∞) are also indicated by ∗ symbols.

Figure 3 displays the force F versus β in the range [0.01, 1000] for the Saffman
slip case λ̃= 0.1, 1, 10, 100 and also for the Ramon no-slip case (associated with the
value λ̃=∞). The slip parameter is also written λ̃= δ/l with l the porous slab slip
length. The curves in figure 3 reveal that F is deeply sensitive to the ratio δ/l in a
wide range (say here in the range [0.01, 100]) of the permeability β. Not surprisingly,
at given values of β and of the small sphere–slab gap δ, the normalized force
decreases as the slip increases (i.e. as l increases). Moreover, at given slip parameter
λ̃ the force quickly reaches for β 6 O(1) its limit value for the impermeable (β = 0)
slab case. This limit value agrees with the one obtained by Vinogradova (1995)
for the impermeable slipping wall case. Of course, as shown by the leading order
in expansion (3.5), all curves collapse as β becomes large enough. Moreover, it is
observed in figure 3 that curves for λ̃> 1 almost coincide as soon as β > 1000.
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FIGURE 4. Lubrication pressure P versus s for λ̃= 0.1 (E), λ̃= 1 (@), λ̃= 10 (A), λ̃= 100
(solid curve) and also for the λ̃ = ∞ case (no curve but ∗ symbols). (a) Case β = 1.
(b) Case β = 100.

The lubrication pressure P(s) is also displayed in figure 4 versus the normalized
radial coordinate in the gap, s, for β = 1, 100 and the same values of λ̃ as in figure 3.
As shown for β = 1 in figure 4(a), the pressure is strongly sensitive to the value of
λ̃ but is mainly exerted in the narrow domain s 6 1.5 close to the symmetry axis. In
contrast, figure 4(b) reveals that for β = 100 the pressure becomes less sensitive to
the parameter λ̃ but is mainly distributed in the extended range s 6 3.

4. Settling of a solid sphere near a porous slab
This section considers the settling of a solid sphere towards a near-contact porous

slab. There is no background permeation (V0 = 0) and the uniform gravity field g=
−gez is normal to the slab.

4.1. Time-dependent problem and numerical treatment

As displayed in figure 1, the sphere centre is O′ with OO′= (R+ δ)ez. The sphere–slab
gap δ now depends on time t. The sphere density ρs is uniform, so that the sphere
settles without rotating at the translational velocity −Vpez with Vp=−dδ/dt. Since the
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t̄ 1 2 3 5 10

Analytical 0.08840 0.03907 0.01727 0.003373 0.0000569
Numerical (i) 0.08840 0.03907 0.01727 0.003373 0.0000569
Numerical (ii) 0.08837 0.03905 0.01725 0.003369 0.0000568
Numerical (iii) 0.08837 0.03905 0.01725 0.003369 0.0000568

TABLE 3. Analytical and numerical values of normalized sphere–slab gap δ = δ/R at
different dimensionless times t̄ = 1, 2, 3, 5, 10 in the impermeable (β = 0) and no-slip
(λ = ∞) case. Here δ0 = 0.2 and (4.2) is solved numerically by the marching-in-time
algorithm taking for the dimensionless force F either (i) its analytical value F = 1; or
(ii) its numerical Ramon value (as in table 1); or (iii) its numerical value calculated for
the Saffman condition with λ̃=∞.

fluid has a uniform density ρ the sphere buoyancy-corrected mass is m = 4π(ρs −

ρ)R3/3. Accounting for gravity, the flow field perturbed by the sphere is (u, p +
ρg · x) in the fluid domain D and (u′, p′ + ρg · x) in the slab S with (u, p) and
(u′, p′) still governed by (2.2)–(2.5) and the lubrication approximation (2.10). The
total (hydrodynamic plus gravity) force exerted on the sphere with volume V is (Fs+

ρVg)ez where Fs is related to the normalized force F by (2.22) (in which one sets
V0 = 0). Neglecting the sphere inertia, which corresponds to either a liquid or a gas
at low Stokes number, the time-dependent sphere ‘location’ δ(t) is the solution to the
following problem:

dδ
dt
=−

mgδ
6πµR2F

, δ(t= 0)= δ0, (4.1a,b)

with δ0 the prescribed initial sphere–slab gap.
As outlined after (2.22), the normalized force F solely depends upon δ/R and

the dimensionless parameters (β, λ̃). From the definitions (3.1), the time-dependent
normalized sphere ‘location’ δ = δ/R is thus determined by the time scale τg =√

24πµR2/(mg) as in Ramon et al. (2013), the given initial sphere location δ0= δ0/R
and the auxiliary parameters (k/R, l/R). For convenience, the normalized time
t= t/τg is introduced. From (4.1), we obtain the ratio δ versus t, for given quantities
(δ0, k/R, l/R), by solving the problem

dδ
dt
=−

[
(2/3)1/2

F

]
δ, δ(t= 0)= δ0. (4.2a,b)

Except for a no-slip and impermeable slab (see below), this task requires a numerical
procedure. In the present work we resort to a predictor–corrector marching-in-time
algorithm (except for the first two time steps for which a second-order Runge–Kutta
scheme is used) to solve (4.2). This procedure is benchmarked against the analytical
solution available for a no-slip and impermeable slab (i.e. for the case of a usual
no-slip solid boundary wall Σu). Indeed, in such circumstances k=β=0 while λ̃→∞
so that (recall (3.10) and our discussion after (3.12)) F = 1 whatever δ. Analytically
solving (4.2) thus becomes possible and yields the analytical solution δa = δ0e−

√
2/3t.

As shown in table 3, the analytical solution δa is accurately retrieved by the
numerics.
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k/R l/R k
1/2

β1 β2 β3 λ̃1 λ̃2 λ̃3

1× 10−5 — 1.55× 10−2 2.4× 10−2 2.4 240 — — —
1× 10−4 — 0.049 0.24 24 2400 — — —
1× 10−3 — 0.155 2.4 240 24 000 — — —
1× 10−2 — 0.490 24 2400 240 000 — — —
— 1× 10−3 — — — — 100 10 1
— 1× 10−2 — — — — 10 1 0.1
— 1× 10−1 — — — — 1 0.1 0.01

TABLE 4. Values of k
1/2
, β and λ̃ for different parameters k/R, l/R and normalized

gap δ. Here βn and λ̃n are obtained for δ = 10−n with n= 1, 2, 3.

We compute the sphere trajectory δ(t) for prescribed sphere initial location δ0 and
parameters (k/R, l/R). Both parameters β and λ̃ evolve on the trajectory with, as the
sphere approaches the slab, an increase of β and a decrease of λ̃. The product C =
βλ̃2/24= (k/R)/(l/R)2 >0 is however constant on each trajectory with a value entirely
prescribed by the parameters (k/R, l/R) (i.e. indepently of the initial location δ0).

For a permeable slab (that is, for a positive slab permeance ratio k/R), note
that β → ∞ as the sphere approaches the slab. Moreover, for a sufficiently small
sphere–slab normalized gap δ then

√
β becomes large enough for (3.5) to hold with

F∼ 4β−1/2
= (2/3)1/2(k/R)−1/2δ and the sphere normalized velocity [dδ/dt]ez therefore

adopts the time-independent value −Vpcez with Vpc =
√

k/R. As found in § 3.1, the
sphere velocity Vp tends to Vpc for

√

k�Max(δ, l/R) with k= 24k/R.

4.2. Settling trajectories

The sphere trajectory sensitivity to the parameters k/R and l/R is illustrated in figure 5
which plots δ versus t for the initial location δ0 = 0.2 and various values of the
permeability parameter k/R= 0.001, 0.01 and of the slip parameter l/R= 0, 0.01, 0.1.

As expected, the sphere settles faster towards a porous slab than towards a no-
slip impermeable (dashed line) plane wall. In addition, for a given value of k/R the
sphere approaches faster the slap as the slip parameter l/R increases. Trajectories for
a slipping slab either for l/R= 0.01 or l/R= 0.1 differ either weakly or moderately,
respectively, from the one prevailing in the no-slip case (see Ramon et al. 2013).
Moreover, these differences decrease in magnitude as k/R increases.

The slopes of trajectories for slip and no-slip porous slabs approach each other as δ
decreases. This can be observed by tracking on a trajectory for given l> 0 the slope
ratio (see (4.2)) sr(δ)= F(∞, β)/F(λ̃, β) > 1 versus the pair (λ̃, β) which evolves as
δ drops. This can be done using table 4 and then figure 3.

Hence, for the l/R= 0.1 trajectory in figure 5(a) note that, from table 4, (λ̃, β)=
(λ̃1, β1) = (1, 2.4) for δ = 0.1 and (λ̃, β) = (λ̃2, β2) = (0.1, 240) for δ = 0.01. From
inspection of figure 3, it thus follows that st(δ1) > st(δ2).

As predicted at the end of § 4.1, each trajectory slope tends to the time-independent
limit −Vpc for δ sufficiently small in the following sense:

√

k� Max(δ, l/R). This
trend is checked by also plotting in figure 5(a,b) the fictitious straight trajectory Λ

of a sphere that would settle with the previous time-independent velocity Vpc=
√

k/R.
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FIGURE 5. Normalized sphere–slab gap δ versus dimensionless time t for a no-slip and
impermeable (k/R= 0) slab (dashed curve) and for a permeable slab, with either k/R=
0.001 (a) or k/R = 0.01 (b). The permeable slab is either no-slip with l/R = 0 (∗) or
slipping with the Saffman boundary condition with normalized slip length l/R= 0.01 (@)
and l/R= 0.1 (A). Here δ0 = 0.2 and the fictitious straight trajectory Λ (see § 4.1) of a
sphere settling at the constant velocity −Vpcez is also displayed (straight dash-dotted line).

For δ ∼ 0.01 the slopes of Λ and the trajectories for a permeable slab become close
for k/R= 0.001 and very close for k/R= 0.01, respectively. This is because, as shown
in table 4, the condition

√

k > Max(0.01, l/R) or
√

k � Max(0.01, l/R) is met for
k/R= 0.001 or k/R= 0.01, respectively.

5. Conclusions
The governing problem for the pressure exerted on a sphere translating towards

a porous slab at close range is solved within the lubrication approximation using
also the assumption of a thin slab. This latter assumption makes it possible to
circumvent the determination of the flows inside and below the slab. Using the
Saffman slip boundary condition on the porous slab upper interface, the pressure is
obtained by solving a Reynolds-like equation and the drag force is obtained therefrom.
These quantities solely depend on the dimensionless permeability β = 24kR/δ2 and
sphere–slab gap parameter λ̃= δ/l.
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Handy formulae are proposed for the normalized force at large and small
permeability β. These formulae agree well with the computed results which are
valid in the entire range β > 0.

For vanishing permeability β our asymptotics retrieve the result of Vinogradova
(1995) whatever the slip length. For small permeability β and a vanishing slip length
our asymptotic results agree with those of Ramon et al. (2013).

Based on the preceding results, the sphere settling trajectory is found to depend
significantly upon the slip length ratio l/R, especially at low permeance ratio
(low k/R).

This work is restricted to the analysis of a thin slab (e/R� 1) therefore simplifying
the flow field in the slab and disregarding that below the slab. It would be useful
to relax this thin-slab condition. This task however requires the determination of the
axisymmetric Stokes flows above and below the slab, coupled with the Darcy flow
in the slab through the Saffman slip condition on both permeable interfaces. This
challenging issue is therefore postponed to another work.

Appendix A. Closed-form lubrication pressure for the permeable no-slip thin-slab
case

The case of the no-slip thin permeable slab, handled in Ramon et al. (2013), is
obtained using the Saffman slip condition with λ̃ =∞. Setting v = [βs2/(1 + s2)]1/2

and using Maple software, the lubrication pressure P(s) solution to (2.20) in this case
is found to be

P(s)=
[v(1+ s2)]−1

2βI1(
√
β)

{
2s2
[I1(
√
β)v −

√
βI1(v)] + v[2I1(

√
β)−

√
βI0(v)]

}
, (A 1)

with I0 and I1 the usual modified Bessel functions (of the first kind) of zeroth and
first order, respectively (see Abramowitz & Stegun (1965)).

Appendix B. Approximation of (∂p′/∂z)z=0 for a thin porous slab

Using a Taylor expansion of the pressure p′(r, z) in the porous slab yields the
approximation

p′(r,−e)= p′(r, 0)− e
(
∂p′

∂z

)
z=0

+
e2

2

(
∂2p′

∂z2

)
z=0

+ · · · . (B 1)

From equations (2.2), it is classical that p′ is harmonic in the porous slab. With our
cylindrical coordinates (r, z) this property reads(

∂2p′

∂z2

)
=−

1
r
∂

∂r

[
r
∂p′

∂r

]
. (B 2)

If p′ scales like P′ in the slab, in which r has typical size R, the scale of the last
term in (B 1) is thus e2P′/R2. Accordingly, for e�R the expansion (B 1) becomes, as
discussed after (2.16), (∂p′/∂z)z=0 ∼ [p′(r, 0)− p′(r,−e)]/e.
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Appendix C. Pressure term P1 for vanishing β

Defining the dilogarithmic function dilog as (Abramowitz & Stegun 1965)

dilog(x)=
∫ x

1

log t dt
1− t

(C 1)

and setting u= s2, the pressure term P1 is found by running Maple software to take
the following form:

P1(s) =
3λ̃(1+ λ̃)

1024
[dilog(H)− dilog(1+ λ̃H/4)] +

3λ̃(4+ λ̃2)

1024(4+ λ̃)
dilog

(
4+ λ̃H

4+ λ̃

)

−

{
3λ̃3
[7λ̃+ 256 Y(λ̃)]

32768(4+ λ̃)
+

3λ̃(4+ λ̃H)
32768H2

[H(7λ̃+ 8)+ 4]

}
log(4+ λ̃H)

+

{[
3λ̃(λ̃− 4)− 16

128

]
Y(λ̃)+

3λ̃[1+ 2(1+ λ̃)H] + 4H2

2048H2

}
log(H)

−

{
3λ̃[16+ 7λ̃(4− λ̃)]

32768

}
log(H)+

1+ λ̃

2(4+ λ̃)

[
Y(λ̃)+

3λ̃− 2
128

]
log(H − 1)

+

[
2+H(4+ 3λ̃)

32H2

]
Y(λ̃)−

3λ̃(1+ λ̃)
512

(log 2)2 −
π2λ̃(1+ λ̃)

2048

+
9λ̃

65536
log(λ̃) log(4+ λ̃H)+

3λ̃2

65536
[2(8+ 7λ̃)− 3λ̃2 log(λ̃)] log(λ̃H)

−
3λ̃(1+ λ̃)

2048

[
(log(H))2 − 4 log 2 log(λ̃H)− log(4+ λ̃) log

(
4+ λ̃
(H − 1)2

)]

+
1

8192H3

[
(42λ̃2

+ 36λ̃− 16)H2
+ 4(3λ̃− 2)H −

16
3

]
, (C 2)

where it is recalled that H = 1+ s2 and the new quantity Y(λ̃) is defined as Y(λ̃)=
[2− 3λ̃++3λ̃(4+ λ̃) log(4+ λ̃)/4]/128.

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. A. 1965 Handbook of Mathematical Functions. Dover Publications.
BAZANT, M. & VINAGRADOVA, O. I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613,

125–134.
BEAVERS, G. & JOSEPH, D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech.

30, 197–207.
BRINKMAN, H. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense

swarm of particles. Appl. Sci. Res. A 1, 27–34.
CAROTENUTO, C. & MINALE, M. 2011 Shear flow over a porous layer: velocity in the real proximity

of the interface via rheological tests. Phys. Fluids 23 (6), 063101.
DARCY, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Dalmont.
DAVIS, A. M. J., KEZIRIAN, M. T. & BRENNER, H. 1994 On the Stokes–Einstein model of

surface diffusion along solid surfaces: slip boundary conditions. J. Colloid Interface Sci. 1065,
129–140.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.169


968 S. Khabthani, A. Sellier and F. Feuillebois

DEBBECH, A., ELASMI, L. & FEUILLEBOIS, F. 2010 The method of fundamental solution for the
creeping flow around a sphere close to a membrane. Z. Angew. Math. Mech. 90 (12), 920–928.

ELASMI, L. & FEUILLEBOIS, F. 2001 Green function for a Stokes flow near a porous slab. Z. Angew.
Math. Mech. 81 (11), 743–752.

ELASMI, L. & FEUILLEBOIS, F. 2003 Integral equation method for creeping flow around a solid
body near a porous slab. Q. J. Mech. Appl. Math. 56 (2), 163–185.

GHALIA, N., FEUILLEBOIS, F. & SELLIER, A. 2016 A sphere in a second degree polynomial creeping
flow parallel to a plane, impermeable and slipping wall. Q. J. Mech. Appl. Maths 69, 353–390.

GOREN, S. L. 1973 The hydrodynamic force resisting the approach of a sphere to a plane wall in
slip flow. J. Colloid Interface Sci. 44 (2), 356–360.

GOREN, S. L. 1979 The hydrodynamic force resisting the approach of a sphere to a plane permeable
wall. J. Colloid Interface Sci. 69 (1), 78–85.

HANDY, W. B. & BIRCUMSHAW, I. 1925 Bakerian lecture. Boundary lubrication – plane surfaces
and the limitations of Amontons’ law. Proc. R. Soc. Lond. A 108 (745), 1–27.

HOCKING, L. M. 1973 The effect of slip on the motion of a sphere close to a wall and of two
adjacent spheres. J. Engng Maths 7 (3), 207–221.

KARMAKAR, T. & RAJA SEKHAR, G. P. 2018 Squeeze-film flow between a flat impermeable bearing
and an anisotropic porous bed. Phys. Fluids 30, 043604.

LE-CLECH, P., CHEN, V. & FANE, T. A. G. 2006 Fouling in membrane bioreactors used in wastewater
treatment. J. Membr. Sci. 284, 17–53.

LECOQ, N., ANTHORE, R., CICHOCKI, B., SZYMCZAK, P. & FEUILLEBOIS, F. 2004 Drag force on
a sphere moving towards a corrugated wall. J. Fluid Mech. 513, 247–264.

LIN, J.-R., LU, R.-F. & YANG, C.-B. 2001 Derivation of porous squeeze-film Reynolds equations
using the Brinkman model and its application. J. Phys. D Appl. Phys. 34, 3217–3223.

LOUSSAIEF, H., PASOL, L. & FEUILLEBOIS, F. 2015 Motion of a spherical particle in a viscous
fluid along a slip wall. Q. J. Mech. Appl. Maths 68 (2), 115–144.

LUO, H. & POZRIKIDIS, C. 2008 Effect of surface slip on Stokes flow past a spherical particle in
infinite fluid and near a plane wall. J. Engng Maths 62, 1–21.

MICHALOPOULOU, A. C., BURGANOS, V. N. & PAYATAKES, A. C. 1992 Creeping axisymmetric
flow around a solid particle near a permeable obstacle. AIChE J. 38 (8), 1213–1228.

NAVIER, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluides. Mémoires de l’Acad.
des Sciences de l’Institut de France 6, 389–416.

NGUYEN, A. V. 2000 Historical note on the Stefan–Reynolds equations. J. Colloid Interface Sci.
231 (1), 195.

NIELD, D. A. & BEJAN, A. 2006 Convection in Porous Media. Springer.
NIR, A. 1981 On the departure of a sphere from contact with a permeable membrane. J. Engng

Maths 15 (1), 65–75.
OCHOA-TAPIA, J. A. & WHITAKER, S. 1995a Momentum transfer at the boundary between a porous

medium and a homogeneous fluid. I. Theoretical development. Intl J. Heat Mass Transfer 38
(14), 2635–2646.

OCHOA-TAPIA, J. A. & WHITAKER, S. 1995b Momentum transfer at the boundary between a porous
medium and a homogeneous fluid. II. Comparison with experiment. Intl J. Heat Mass Transfer
38 (14), 2647–2655.

RAMON, G. Z., HUPPERT, H. E., LISTER, J. R. & STONE, H. A. 2013 On the hydrodynamic
interaction between a particle and a permeable surface. Phys. Fluids. 25, 073103.

REYNOLDS, O. 1886 IV. On the theory of lubrication and its application to Mr. Beauchamp Tower’s
experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans.
R. Soc. Lond. 177, 157–234.

SAFFMAN, P. G. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl.
Maths 1 (2), 93–101.

SHERWOOD, J. D. 1988 The force on a sphere pulled away from a permeable half-space. Physico-
Chem. Hydrodyn. 10 (1), 3–12.

VINOGRADOVA, O. I. 1995 Drainage of a thin liquid film confined between hydrophobic surfaces.
Langmuir 11, 2213–2220.

WU, Z. & MIRBOD, P. 2018 Experimental analysis of the flow near the boundary of random porous
media. Phys. Fluids 30 (4), 047103.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

16
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.169

	Lubricating motion of a sphere towards a thin porous slab with Saffman slip condition
	Introduction
	Filtration problem and numerical procedure
	Considered axisymmetric flow fields
	Lubrication approximation and resulting problem for the pressure
	Numerical implementation and tests

	Results for the pressure field and drag force
	Asymptotic expansion for β1
	Asymptotic expansion for β1
	Numerical results

	Settling of a solid sphere near a porous slab
	Time-dependent problem and numerical treatment
	Settling trajectories

	Conclusions
	Appendix A. Closed-form lubrication pressure for the permeable no-slip thin-slab case
	Appendix B. Approximation of (p'/z)z=0 for a thin porous slab
	Appendix C. Pressure term P1 for vanishing β
	References


