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Abstract. Analogues of Scott’s isomorphism theorem, Karp’s theorem as well as results on lack
of compactness and strong completeness are established for infinitary propositional relevant logics.
An “interpolation theorem” (of a particular sort introduced by Barwise and van Benthem) for the
infinitary quantificational boolean logic L∞ω holds. This yields a preservation result characterizing
the expressive power of infinitary relevant languages with absurdity using the model-theoretic rela-
tion of relevant directed bisimulation as well as a Beth definability property.

§1. Introduction. In these pages we explore the model theory of a twofold nonclas-
sical logic: infinitary relevant propositional logic. By extending the language of relevant
logic by adding infinitary conjunctions and disjunctions, we naturally gain some expressive
power. Such extensions have been toyed with from time to time in the context of relevant
logic in an unsystematic and informal way (cf. [15, 16, 25]). In [25] (p. 336), Routley
reports some unpublished (and, according to him, not overly successful) attempts to study
infinitary relevant logic.

We will be working in the well-known Routley–Meyer semantics [13, 26–29]. This is
the more or less standard nonalgebraic semantics for relevant logic ( [24, 30] are examples
of quite recent applications). The reader can find a survey of the alternatives in [13],
though.1

Though the heyday of infinitary logic seems to be long gone, important results remain.
In the next sections, we will obtain relevant analogues of some of them such as Karp’s
theorem or Scott’s isomorphism theorem. Karp’s theorem (Corollary 3.5.3 in [17]) is the
claim that for any two models, L∞ω-equivalence is the same as the existence of a family
of partial isomorphisms with the back and forth properties. Scott’s isomorphism theorem
(Corollary 3.5.4 in [17]) says that, for denumerable models, making a single special for-
mula true suffices to characterize a structure up to isomorphism.

The main problem we will solve here, though, is that of characterizing the expressive
power of infinitary relevant logic. This will be accomplished by establishing a generalized
interpolation result for the classical infinitary logic L∞ω, from which the desired char-
acterization will follow in the form of a preservation theorem involving relevant directed
bisimulations. On a historical note, directed bisimulations were introduced in [20] and
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though it was hinted there, it seems like [22] is the first time they were applied to the study
of substructural logics in print. Recently, they have been shown to have a fundamental
place in the model theory of relevant logic in the Routley–Meyer semantic framework
(cf. [2], where the finitary case has been studied) analogous to bisimulations in the Kripke
semantics for modal logic.

The results on expressive power in this paper can be seen as a continuation of the work
in [2], turning our attention this time to the realm of infinitary languages. There are certain
differences in method worth mentioning, though. In [2], there was an appeal to the machin-
ery of saturated models in order to establish a preservation theorem characterizing relevant
formulas as a fragment of first order logic. This was, in fact, unnecessary for a much
more direct proof through a simple application of the compactness theorem of first order
logic was possible. It would have simply required the introduction of the notion of a rele-
vant directed n-bisimulation, a finite approximation of a relevant directed bisimulation.2

This approach is so basic that it generalizes to logics having some minimal forms of
compactness such as L∞ω. That is the main motivation behind our introduction of relevant
directed α-bisimulations in Definition 4.3.

In §2, we introduce the Routley–Meyer semantics for infinitary propositional relevant
languages with absurdity. In §3, we show that infinitary relevant languages with absurdity
are, in general, lacking compactness and most reasonable formal systems based on them are
not strongly complete. In §4, we define relevant directed bisimulations establishing some
basic propositions, including a relevant Karp theorem while in §5, we prove a relevant
analogue of Scott’s isomorphism theorem. In §6, we prove an interpolation theorem for the
infinitary quantificational boolean logic L∞ω which implies a preservation theorem say-
ing that the formulas of L∞ω preserved under relevant directed bisimulations are exactly
infinitary relevant formulas, as well as a Beth definability result. Finally, in §7 we briefly
summarize our work.

§2. Routley–Meyer semantics. In this section, we will review the Routley–Meyer
semantics for propositional infinitary relevant languages with absurdity and their embed-
dability in more traditional infinitary languages.

Let κ be some infinite cardinal. An infinitary relevant language with absurdity L→
κω

contains a possibly finite list PROP of propositional variables p, q, r . . . and the logical
symbols ⊥ (an absurdity constant), ∼ (negation),

∧
(conjunction),

∨
(disjunction), and

→ (implication). Formulas are constructed as expected:

φ ::= p
∣∣ ⊥ ∣∣ ∼ φ

∣∣ ∧
i∈I φi

∣∣ ∨
i∈I φi

∣∣ φ → ψ,

where p ∈ PROP and |I | < κ . The infinitary relevant language with absurdity L→∞ω comes
from letting the index I of a disjunction or a conjunction take any cardinality whatsoever.
L→
ωω is just an ordinary finitary relevant language.
A comment on the presence of ⊥ in our languages is in place here, given that ⊥ is

not standardly part of the languages of relevant logic (cf. [1]). The results in these pages
cannot dispense with ⊥, since languages without ⊥ have no reasonable model-theoretic
characterization. The interested reader is advised to consult §4 in [2].

Note that implications are still finitary in the sense that we can only build formulas of
the form

φ0 → (φ1 → (φ2 → (· · · → φλ) . . . )

2 Incidentally, this is how the main result of [3] characterizing the expressivity of propositional
bi-intuitionistic languages was obtained.
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when λ is finite. This is the reason for writing ω in L→
κω, it basically bounds the possible

number of iterations of a → symbol in a formula. This notation should not be confused
with the classical notation where the second subscript is used to bound the possible length
of a string of quantifiers.3

An example of a connective definable in L→∞ω (but not in L→
ωω) is

ω−→ (iterated

entailment), which was introduced by Humberstone (see [10], p. 36). The formula φ
ω−→ ψ

means that for some natural number n > 1,

φ → (φ → (. . . (φ︸ ︷︷ ︸
n−φs

→ ψ) . . . ))

holds. This, of course, boils down to an infinitary disjunction of finitary implications:∨
n>1 φ → (φ → (. . . (φ︸ ︷︷ ︸

n−φs

→ ψ) . . . )).

As we announced in §1, we will be working in the Routley–Meyer semantic framework.
In this setting, a model for L→

κω will be a structure M = 〈W, R, ∗, T, V 〉, where W is
a nonempty set, T ∈ W , ∗ is an operation ∗ : W −→ W (the so called Routley star),
R ⊆ W × W × W and V is a valuation function V : PROP −→ ℘(W ). In what follows we
frequently omit T from the presentation of our models since nothing essential hinges on
that (given that we will not be considering any connectives involving T in its semantics)
and the reader can easily fill in the omitted details.

We define satisfaction at w in M recursively as follows:

M, w � ⊥ never
M, w � p iff w ∈ V (p)
M, w � (∼ φ) iff M, w∗ � φ
M, w � (

∧
i∈I φi ) iff M, w � φi for every i ∈ I .

M, w � (
∨

i∈I φi ) iff M, w � φi for some i ∈ I .
M, w � φ → ψ iff for every a, b such that Rwab,

if M, a � φ then M, b � ψ .

Note that as ⊥ gives us a means to define the empty class of models, � =d f (∼ ⊥) allows
defining the class of all models since it is invariably true (for recall that ⊥ invariably fails
at w∗ for any w).

The basic semantic units in relevant logic are (as in modal logic) pointed models, that is,
pairs (M, w) where w is some distinguished element of W . This is simply due to the fact
that formulas are evaluated locally, at worlds.

3 It is opaque whether there is a connection here. For instance, φ → (φ → (. . . (φ︸ ︷︷ ︸
ω−φs

→ ψ) . . . ))

could be naïvely translated—without the intervention of infinitely long strings of quantifiers—
into a “classical infinitary” language with the appropriate signature, using the translation
function given below, as ∀y0z0(Rxy0z0 ∧ Tx (φ)

y0/x ⊃ ∀y1, z1(Rz0 y1z1 ∧ Tx (φ)
y1/x ⊃

(. . .∀vu(Rzωvu ∧ Tx (φ)
v/x ⊃ Tx (ψ)

u/x ) . . . ))). The problem is that this is not a formula of
any classical infinitary language Lκλ. The reason is that it violates the well-foundedness of the
subformula relation (Lemma 1.3.3 from [12]). To see this note that the collection of formulas
∀yi zi (Rzi−1 yi zi ∧ Tx (φ)

yi /x ⊃ ∀yi+1, zi+1(Rzi yi+1zi+1 ∧ Tx (φ)
yi+1/x ⊃ (. . .∀vu(Rzωvu ∧

Tx (φ)
v/x ⊃ Tx (ψ)

u/x ) . . . ))) (0 < i < ω) has no minimal element according to the subformula
relation.
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By considering restricted classes of Routley–Meyer structures where the relation R has
certain properties and only some valuations are admitted, we can get classes of models
corresponding to a number of formal systems of relevant logic like B,T, or R. Next we
will consider some famous examples from [26].

Consider a relevant language with absurdity L . A structure 〈W, R, ∗, T, V 〉 is called a
B-model if for any x, y, z, v ∈ W :

(i) RT xx .

(ii) RT xv and Rvyz implies that Rxyz.

(iii) x = x∗∗.

(iv) RT xy only if RT y∗x∗.

(v) x ∈ V (p) and RT xy implies that y ∈ V (p).

An R-model is a B-model where condition (iv) is strengthened to

(iv)′ Rzxy only if Rzy∗x∗,

and, furthermore (abbreviating the claim that there is a u such that Rxyu and Ruzv as
R2(xy)zv , and the claim that there is an u such that Rxuv and Ryzu as R2x(yz)v), for any
x, y, z, v ∈ W :

(v) R2(xy)zv only if R2x(yz)v .

(vi) Rxxx .

(vii) Rxyz only if Ryxz.

An RM-model is an R-model such that and for any x, y, z ∈ W :

(v) Rxyz only if either RT xz or RT yz.

When � is the deducibility relation of some formal system S of relevant logic, a syntactic
claim of the form φ � ψ is to be interpreted on the class of corresponding models VS as
saying that M, T � φ only if M, T � ψ for every model M ∈ VS. In what follows we
will use the symbol VS as a variable for the class of models corresponding to any system S
described in [26] between B and RM.4

Next we give an example of the increased expressive power of infinitary relevant lan-
guages. Suppose 	 and 
 are sets of formulas. We speak of the pair (	,
) as being
satisfiable or having a model in a class K of pointed models if there is a model (M, w) ∈ K
such that M, w � φ for each φ ∈ 	 and M, w � ψ for every ψ ∈ 
. These pairs are
called tableaux in [11] (pp. 37–38).5 Let V be a class of pointed models. A class of pointed
models K ⊆ V is said to be axiomatizable in L→

ωω with respect to V if there is a set of
formulas � of L→

ωω such that K = Mod(�)—where Mod(�) the class of pointed model
satisfying �. Let (M, w) be a model for L→

ωω. We say that (M, w) is inconsistent if for
some p ∈ PROP, M, w � (p ∧ (∼ p)).

4 A caveat is in place here. The variable sharing property is a folklore requirement from any formal
system of relevant logic. The property states that whenever φ → ψ is a theorem then φ and ψ
must share some propositional variable in common. When our language has ⊥, the principle
fails quite easily since ⊥ → θ (for arbitrary θ) would be a theorem, tempting one to claim
that no system involving ⊥ should qualify as a system of relevant logic. However, Yang [31]
has suggested recently the strong implicit relevance property as a nice substitute of the variable
sharing property that would allow for systems containing ⊥.

5 See also the bi-theories in [23].
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Inconsistency is definable by a sentence of a propositional relevant language with absur-
dity L→

ωω if PROP is finite, for in this case
∨

p∈PROP(p ∧ (∼ p)) expresses that a model
is inconsistent. If the signature is not finite, inconsistency is not in general a property
axiomatizable in L→

ωω. This has been pointed out for L P essentially in [14] with an argu-
ment using a version of Łoś’s theorem on ultraproducts.

PROPOSITION 2.1. If |PROP| � ω, inconsistency is not a property of models axiomati-
zable in L→

ωω with respect to any VS.

Proof. Suppose it were. Say the theory 
 axiomatizes the class of inconsistent models.
Now, the pair (
,	) where 	 = {(p ∧ (∼ p)) : p ∈ PROP} is finitely satisfiable in VS.
To see this take a finite subset {p0, . . . , pn} ⊂ PROP. Consider the model 〈W, R, ∗, V, T 〉
(in VS since it is in VRM) such that

W = {t, s}.
∗ = {〈t, s〉, 〈s, t〉}.
R = {〈t, t, t〉, 〈t, s, t〉, 〈t, s, s〉, 〈s, t, t〉, 〈s, t, s〉, 〈s, s, t〉, 〈s, s, s〉}.
T = t .
V (pi ) = W (for i = 0, . . . , n).
V (q) = {t} (for q ∈ PROP, and q �= pi for i = 0, . . . , n).

We see that if q ∈ PROP but q �= pi for i = 0, . . . , n, then M, t � (q ∧ (∼ q)). On the
other hand, M, t � (pi ∧ (∼ pi )) (i = 0, . . . , n) since t∗ = s ∈ V (pi ), which means that
M, t � (∼ pi ).

Finally, by Proposition 2.5 of [2], the pair (
,	) is satisfiable in VS, which is a contra-
diction since by definition 
 says that at least one of φ ∈ 	 must hold. �

When |PROP| � ω, inconsistency is expressible by a single formula in the extension
L→

|PROP|+ω of L→
ωω. Again,

∨
p∈PROP(p ∧ (∼ p)) expresses that a model is inconsistent.

This fact shows that L→
|PROP|+ω is a proper expressive extension of L→

ωω.
Consider an infinitary language with equality and boolean negation admitting conjunc-

tions and disjunctions of size at most κ (the standard reference for the study of such
languages is [12]) and quantifications over at most finitely many variables that comes
with an individual constant symbol T , one function symbol ∗, a distinguished three place
relation symbol R, and a unary predicate P for each p ∈ PROP. Following the tradition
in modal logic, we might call this a correspondence language Lcorr

κω for L→
κω (cf. [9]).

Now we can read a model M as a classical model for Lcorr
κω in a straightforward way:

W is taken as the domain of the structure, the constant T denotes the obvious distin-
guished world, V specifies the denotation of each of the predicates P, Q, . . . , while ∗
is the denotation of the function symbol ∗ of Lcorr , and R the denotation of the relation
R of Lcorr

κω .
Where t is a term in the correspondence language, we write φt/x for the result of replac-

ing x with t everywhere in the formula φ. As expected, it is easy to specify a translation
from the formulas of the basic relevant language with absurdity to the correspondence
language as follows:

Tx (⊥) = ¬Rxxx ∧ Rxxx .
Tx (p) = Px .

Tx (∼ φ) = ¬Tx (φ)
x∗/x .

Tx (
∧

i∈I φi ) = ∧
i∈I Tx (φi ).

Tx (
∨

i∈I φi ) = ∨
i∈I Tx (φi ).

Tx (φ → ψ) = ∀y, z(Rxyz ∧ Tx (φ)
y/x ⊃ Tx (ψ)

z/x ).
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The symbols ¬ and ⊃ appear here representing boolean negation and material implica-
tion in quantificational infinitary logic (which should not be confused with the relevant
∼ and →).

The following proposition gives a bridge between the satisfaction relation � for rele-
vant propositional languages we just defined and the standard satisfaction relation � from
classical logic (where when φ is a classical formula, we write M � φ[w] to mean that the
object w satisfies φ in the usual Tarskian sense).

PROPOSITION 2.2. For any w, M, w � φ if and only if M � Tx (φ)[w].

Proof. We simply need to note that, according to the Routley–Meyer semantics, each
propositional relevant formula φ says the same about w as Tx (φ) does in the Tarskian
semantics. �

The existence of a satisfaction preserving translation function allows us to study relevant
languages with absurdity as fragments of model-theoretically better understood creatures.

§3. Failure of compactness and strong completeness. In this section, we study briefly
a phenomenon pervasive in infinitary logic even at the propositional level: the loss of
compactness. This quickly leads to a loss of strong completeness for any reasonable in-
finitary formal system (cf. [18]). Such seems to be the price to pay for having infinitely
long conjunctions and disjunctions around. Here we will focus our attention on specific
classes of models since we will be discussing questions sensitive to the choice of formal
system such as incompleteness.

DEFINITION 3.1. Let L→
κω be a relevant language with absurdity, K a class of Routley–

Meyer structures for it and (	,
) a pair of collections of relevant formulas. L→
κω is said to

be λ-compact with respect to K if for every	0 ⊆ 	 and
0 ⊆ 
 such that |	0|, |
0| < λ,
the pair (	0, 
0) has a model in K only if (	,
) has a model in K .

PROPOSITION 3.2. Let |PROP| � κ . L→
κω is κ-compact with respect to some VS only if

κ is a regular limit cardinal.

Proof. Suppose κ is a sucessor cardinal ξ + 1. Without loss of generality, assume PROP
is composed of double indexed propositional variables pλγ (λ < ξ+1, γ < ξ ). Consider
the set of formulas

� = {∨
γ < ξ pλγ : λ < ξ + 1

} ∪ {pλγ ∧ pμγ → ⊥ : μ �= λ,μ, λ < ξ + 1, γ < ξ}.
Take any �0 ⊂ � such that |�0| � ξ . By the axiom of choice, there is a one-to-one
mapping f from the set of all λ such that pλγ for some γ appears in a formula of�0 into ξ .
We build the model where W = {t}, R = {〈t, t, t〉}, ∗ = {〈t, t〉}, and we define V as
follows: V (pλ f (λ)) = W , and V (pλγ ) = ∅ if γ �= f (λ). It is clear that M, t �

∨
γ < ξ pλγ

for all disjunctions in �0 with γ < ξ + 1. Now take any pλγ ∧ pμγ → ⊥ ∈ �0 such that
μ �= λ,μ, λ < ξ + 1, and γ < ξ . Since f is an injection we have that f (μ) �= f (λ),
so pλγ and pμγ will never hold simultaneously at any world in W by our definition of V .
Hence, M, t � pλγ ∧ pμγ → ⊥ by antecedent failure. However, � itself has no model,
contradicting κ-compactness.

Suppose on the other hand that κ is singular. In [12] (p. 85) it is noted that the infinitary
languages Lκω where κ is singular are exactly as expressive as languages Lκ+ω. The
argument holds for L→

κω as well. Hence, without loss of generality, we can take

� = {∨
γ < κ pλγ : λ � κ

} ∪ {pλγ ∧ pμγ → ⊥ : μ �= λ,μ, λ � κ, γ < κ}
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to be a perfectly good collection of formulas of L→
κω. As before every subset �0 ⊂ � such

that |�0| < κ has a model in VS but � does not. �
A Hilbert-style formal system H for a language L→

κω with respect to the class of models
for a standard system for relevant logic will be formed by a set of formulas of L→

κω taken
as the collection of axioms and a collection of rules of inference each with less than κ
premises. If � is a collection of formulas of L→

κω and φ a formula of L→
κω, we will write

� �H φ if there is a sequence of formulas S of length less than κ such that every formula
in S is either an axiom, one of the formulas in � or it follows from previous formulas in S
using one of the inference rules.

PROPOSITION 3.3. Let |PROP| � κ+. Let H be a formal system for L→
κ+ω sound with

respect to some VS. Then H is not strongly complete.

Proof. Take � in the proof of Proposition 3.2. Since every �0 ⊆ � with |�0| < κ has
a model in VS, by the soundness of H , we see that�0 �H ⊥, but that means that� �H ⊥.
However � semantically implies ⊥ over VS, since it has no model. �

§4. Relevant directed bisimulations and Karp’s Theorem. In this section, we in-
troduce relevant directed bisimulations, establish some basic facts that will be needed in
§6 and prove the relevant analogue of Karp’s theorem. The present section as well as §6
focuses on the infinitary relevant language with absurdity L→∞ω.

DEFINITION 4.1. The degree of an infinitary relevant formula φ, in symbols, dg(φ), is
defined inductively in the following way:

dg(⊥) = 0,
dg(p) = 0,

dg(
∧

i∈I φi ) = sup{dg(φi ) : i ∈ I },
dg(

∨
i∈I φi ) = sup{dg(φi ) : i ∈ I },

dg(∼ φ) = dg(φ),
dg(φ → ψ) = sup{dg(φ), dg(ψ)} + 1.

We will say that two formulas φ and ψ are equivalent if for any model (M, w), M, w �
φ iff M, w � ψ .

PROPOSITION 4.2. For each ordinal α, there are only set-many nonequivalent formulas
of L→∞ω with degree � α.

Proof. Consider first Lcorr∞ω . Define the quantifier rank of a formula of Lcorr∞ω following [4]
(Definition 10. 4) which deals appropriately with the presence of functions in the language.
According to Corollary 10.9 in [4], for κ some fixed point of the function � with cardinality
bigger than the cardinality of the signature of Lcorr∞ω (there is always some such κ given that
� is normal), every formula of Lcorr∞ω with quantifier rank � α is equivalent to a disjunction
of size smaller than κ of formulas of a certain class � with fewer than κ nonequivalent
members. Clearly, there are only set-many nonequivalent such disjunctions. Hence, there
are only set-many nonequivalent formulas of Lcorr∞ω with quantifier rank � α.

Finally since relevant formulas of degree � α can be seen via the translation as formulas
of Lcorr∞ω with quantifier rank � β for sufficiently big β, we have established the result. �

Relevant directed bisimulations—as bisimulations in modal logic—are “nonclassical”
analogues of back and forth games from classical model theory. In this sense, the next
definition introduces the analogue of Definition 5.3.3 from [12].
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DEFINITION 4.3. Let M1 = 〈W1, R1, ∗1, V1〉 and M2 = 〈W2, R2, ∗2, V2〉 be two models.
A relevant directed α-bisimulation for PROP between M1 and M2 is a system of pairs of
nonempty relations 〈Z01, Z02〉, . . . , 〈Zα1, Zα2〉 where

Zβ1 ⊆ W1 × W2 and Zβ2 ⊆ W2 × W1 (0 � β � α)

such that
Zα1 ⊆ · · · ⊆ Z01

Zα2 ⊆ · · · ⊆ Z02

and when i, j ∈ {1, 2}, 0 � β < α and 0 � γ � α,

(1) x Zγ i y only if y∗ j Zγ j x∗i

(2) If x Z(β+1)i y and R j ybc for some b, c ∈ W j , there are b′, c′ ∈ Wi such that Ri xb′c′,
bZβ j b′ and c′Zβi c.

(3) If x Zγ i y and p ∈ PROP,

Mi , x � p only if M j , y � p.

PROPOSITION 4.4. Let (M1, w1) and (M2, w2) be two arbitrary Routley–Meyer models,
α an ordinal and i, j ∈ {1, 2}. Then, (i) for each relevant formula φ of L→∞ω with degree
� α, Mi , wi � φ only if M j , w j � φ iff (ii) there is a relevant directed α-bisimulation
(〈Zβi , Zβ j 〉)β�α such that wi Zβ jw j for each β � α.

Proof. (i i) ⇒ (i): Assume that (ii). We argue for (i) for all α simultaneously, by
induction on the complexity of φ.

The atomic cases as well as ⊥ are obvious from (3) in Definition 4.3 and the fact that
⊥ is never true. For negation, let φ = (∼ ψ) and suppose that Mi , wi � (∼ ψ), so
Mi , w

∗i
i � ψ . But w

∗ j
j Zα jw

∗i
i by (1) in Definition 4.3 since wi Zα jw j by assumption, and,

by inductive hypothesis, M j , w
∗ j
j � ψ , so M j , w j � (∼ ψ) as desired. Conjunction and

disjunction are routine exercises.
The only remaining case is when φ = ψ → χ . By Definition 4.1, say that dg(φ) =

β + 1 � α, where β = sup{dg(ψ), dg(χ)}. Suppose that Mi , wi � ψ → χ , which
means that if Riwi b′c′ for some b′, c′, and Mi , b′ � ψ , then Mi , c′ � χ . Now, let
R jw j bc for arbitrary b, c. We need to show that M j , b � ψ only if M j , c � χ . To get the
contrapositive, we will suppose that M j , c � χ . By the assumption (ii), wi Zβ+1iw j , so
using property (2) in Definition 4.3, there are b′, c′ such that Riwi b′c′, bZβ j b′, and c′Zβi c.
Note that 〈Z0i , Z0 j 〉, . . . , 〈Zβi , Zβ j 〉 is a directed β-bisimulation between Mi and M j .
This follows readily from our assumption that 〈Z0i , Z0 j 〉, . . . , 〈Zαi , Zα j 〉 is a relevant
directed α-bisimulation between Mi and M j by verifying (1)–(3) in Definition 4.3. By
inductive hypothesis, since M j , c � χ and dg(χ) � β, Mi , c′ � χ . Given that Mi , wi �
ψ → χ , it must be that Mi , b′ � ψ . But by inductive hypothesis again using the fact that
bZβ j b′ and dg(ψ) � β, M j , b � ψ . Hence, M j , w j � ψ → χ .
(i) ⇒ (i i): For a model S, and worldw from S, we denote by rel�γ -tpS(w) the relevant

type up to degree γ of w, i.e., the set of all infinitary relevant formulas such that S, w � φ
and dg(φ) � γ . We claim that, on the assumption that (i), the following system of relations
defines a relevant directed α-bisimulation between Mi and M j :

x Zβi y iff rel�β -tpMi (x) ⊆ rel�β -tpM j (y)(0 � β � α)(i �= j, i, j ∈ {1, 2}).
Let us first note that Zαm ⊆ · · · ⊆ Z0m (m ∈ {1, 2}). By the asumption (i), Zαi is

nonempty, since wi Z0iw j , but the latter also implies that w
∗ j
j Zα jw

∗i
i as we will see below,

so Zα j is nonempty. Hence, Zαm (m ∈ {1, 2}) has to be nonempty.
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Let 0 � β � α, i, j ∈ {1, 2}. If x Zβi y, i.e., rel�β -tpMi (x) ⊆ rel�β -tpM j (y), we
see that rel�β -tpM j (y

∗ j ) ⊆ rel�β -tpMi (x
∗i ), i.e., y∗ j Zβ j x∗i . It suffices to show that if

M j , y∗ j � φ then Mi , x∗i � φ for every φ with dg(φ) � β. We prove the contrapositive.
Suppose that Mi , x∗i � φ, so Mi , x � (∼ φ) and since dg(∼ φ) = dg(φ) and rel�β -

tpMi (x) ⊆ rel�β -tpM j (y), also M j , y � (∼ φ). Consequently, M j , y∗ j
� φ as we

wanted. This takes care of (1) in Definition 4.3.
For clause (2) in Definition 4.3, suppose that x Z(β+1)i y (β + 1 � α), i.e., rel�β+1-

tpMi (x) ⊆ rel�β+1-tpM j (y), and R j ybc for some worlds b, c from M j . Where
Fmla(L→∞ω) stands for the class of propositional relevant formulas of L→∞ω, consider

nrel�β -tpM j (c) = {φ : M j , c � φ, φ ∈ Fmla(L→∞ω), dg(φ) � β}.
By Proposition 4.2 we see that rel�β -tpM j (b) as well as nrel�β -tpM j (c) can be taken

as sets. It is clear that

M j , y �
∧

rel�β -tpM j (b) → ∨
nrel�β -tpM j (c)

since R j ybc, M j , b �
∧

rel�β -tpM j (b) but M j , c �
∨

nrel�β -tpM j (c). Observe that

dg(
∧

rel�β -tpM j (b) → ∨
nrel�β -tpM j (c))

= sup{dg(
∧

rel�β -tpM j (b)), dg(
∨

nrel�β -tpM j (c))} + 1,

but

dg(
∧

rel�β -tpM j (b)) = sup{dg(δ) : δ ∈ rel�β -tpM j (b)} � β

and

dg(
∨

nrel�β -tpM j (c)) = sup{dg(σ ) : σ ∈ nrel�β -tpM j (c)} � β,

so

dg(
∧

rel�β -tpM j (b) → ∨
nrel�β -tpM j (c)) � β + 1.

Thus, since rel�β+1-tpMi (x) ⊆ rel�β+1-tpM j (y), contraposing,

Mi , x �
∧

rel�β -tpM j (b) → ∨
nrel�β -tpM j (c),

which means that there are b′ and c′ such that Ri xb′c′, Mi , b′ �
∧

rel�β -tpM j (b),
and Mi , c′ �

∨
nrel�β -tpM j (c). Hence, rel�β -tpM j (b) ⊆ rel�β -tpMi (b

′), i.e., bZβ j b′.
On the other hand, we have that if M j , c � φ then Mi , c′ � φ whenever dg(φ) � β.
Contraposing, rel�β -tpMi (c

′) ⊆ rel�β -tpM j (c), i.e., c′Zβi c.
Condition (3) in Definition 4.3 follows given that atomic formulas have degree 0. �

DEFINITION 4.5. Let M1 = 〈W1, R1, ∗1, V1〉 and M2 = 〈W2, R2, ∗2, V2〉 be two models.
A relevant directed bisimulation for PROP between M1 and M2 is a pair of nonempty
relations 〈Z1, Z2〉 where

Z1 ⊆ W1 × W2 and Z2 ⊆ W2 × W1

such that when i, j ∈ {1, 2},
(1) x Zi y only if y∗ j Z j x∗i

(2) If x Zi y and R j ybc for some b, c ∈ W j , there are b′, c′ ∈ Wi such that Ri xb′c′,
bZ j b′ and c′Zi c.

(3) If x Zi y and p ∈ PROP,

Mi , x � p only if M j , y � p.
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Next we show an analogue of Karp’s celebrated theorem characterizing L∞ω-
equivalence in terms of partial isomorphisms. The corresponding result for modal logic
is regarded as a “folklore” theorem.

THEOREM 4.6 (Relevant Karp’s Theorem). Let (M1, w1) and (M2, w2) be two models and
i, j ∈ {1, 2}. Then the following are equivalent:

(i) for every formula φ of L→∞ω, Mi , wi � φ only if M j , w j � φ.

(ii) there is a relevant directed bisimulation 〈Zi , Z j 〉 between M1 and M2 such that
wi Ziw j .

Proof. (i i) ⇒ (i): This direction follows from Proposition 4.4, and the facts that
〈Zi , Z j 〉 can be taken to be a relevant directed α-bisimulation for any α and that every
formula of L→∞ω has some degree α.
(i) ⇒ (i i): We claim that

x Zi y iff rel-tpMi
(x) ⊆ rel-tpM j

(y)(i �= j, i, j ∈ {1, 2})
defines a relevant directed bisimulation where rel-tpMi

(x) (i = 1, 2) is the collection of all
formulas of L→∞ω holding at x in Mi .

For clause (1) in Definition 4.5, suppose x Zβi y, i.e., rel-tpMi
(x) ⊆ rel-tpM j

(y). We
have that that rel-tpM j

(y∗ j ) ⊆ rel-tpMi
(x∗i ), i.e., y∗ j Zβ j x∗i . It suffices to show that if

M j , y∗ j � φ then Mi , x∗i � φ for every φ. We prove the contrapositive. Suppose that
Mi , x∗i � φ, so Mi , x � (∼ φ) and since rel-tpMi

(x) ⊆ rel-tpM j
(y), also M j , y � (∼ φ).

Consequently, M j , y∗ j
� φ as we wanted.

Now we have to take care of clause (2) in Definition 4.5. Assume that x Zi y, i.e.,
rel-tpMi

(x) ⊆ rel-tpM j
(y), and R j ybc for some worlds b, c from M j . Suppose for reductio

that there are no b′, c′ ∈ Wi such that Ri xb′c′, bZ j b′ (i.e., rel-tpM j
(b) ⊆ rel-tpMi

(b′)) and
c′Zi c (i.e., rel-tpMi

(c′) ⊆ rel-tpM j
(c)). We first notice that {b′, c′ ∈ Wi : Ri xb′c′} �= ∅, for

otherwise Mi , x � � → ⊥, so M j , y � � → ⊥, which implies that M j , c � ⊥, which is
impossible. Now, for any b′, c′ ∈ Wi such that Ri xb′c′ there are formulas φb′ and φc′ such
that either (i) M j , b � φb′ and Mi , b′ � φb′ or (ii) Mi , c′ � φc′ and M j , c � φc′ . For any
b′, c′ ∈ Wi such that Ri xb′c′ define the transformation τ as follows:

τ (φb′) =
{

� if (i) does not hold,

φb′ otherwise.

τ (φc′) =
{

⊥ if (ii) does not hold,

φc′ otherwise.

Next, it suffices to consider the formula∧
∃vRxb′v
b′∈Wi

τ (φb′) → ∨
∃vRi xvc′

c′∈Wi

τ (φc′).

A moments reflection shows that

M j , y �
∧

∃vRi xb′v
b′∈Wi

τ (φb′) → ∨
∃vRi xvc′

c′∈Wi

τ (φc′)

but
Mi , x �

∧
∃vRi xb′v

b′∈Wi

τ (φb′) → ∨
∃vRi xvc′

c′∈Wi

τ (φc′),

contradicting the assumption that rel-tpMi
(x) ⊆ rel-tpM j

(y).
Finally, clause (3) in Definition 4.5 is immediate. �
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Theorem 4.6 is nothing but the infinitary version of Theorem 13.5 from [22]. Quite
frequently in infinitary logic we are able to obtain counterparts to results provable for
finitary languages with the restriction that the models under consideration be finite.

§5. Scott’s theorem. Next we establish a result implying a corollary analogous to
Scott’s isomorphism theorem in classical infinitary logic. The corresponding theorem for
modal logic was proven in [8].

Since finitary relevant logic is considerably weaker than first order logic and modal
logic in terms of expressive power, it only seems natural that to get a version of Scott’s
isomorphism theorem one has to go beyond the expressive power gained by merely adding
countable conjunctions. In fact, Corollary 5.2 requires us to add conjunctions of cardinality
at most |2ω|.

There is another difference between the following result and Scott’s isomorphism the-
orem or van Benthem’s modal version of it. Scott’s theorem gives a formula φM charac-
terizing up to isomorphism a given countable model M among the class of all countable
models, so Scott’s formula only depends on the model M . In contrast, we give a formula
that implies that there is a relevant directed bisimulation between two arbitrary countable
models but which depends on both. This difference is due to the nature of relevant directed
bisimulations. Contrary to isomorphism or bisimulation, a relevant directed bisimulation
between M1 and M2 demands things from both models. Recall that it is not a relation from
W1 × W2 but a pair of relations from W1 × W2 and W2 × W1 respectively.

THEOREM 5.1. Let (M1, w1) and (M2, w2) be two models in some K such that K ⊆ VB, κ
the least infinite cardinal � sup{|W1|, |W2|}, and λ = sup{|PROP|, 2κ }. Then, when i, j ∈
{1, 2}, there is a formula θwi of L→

λ+ω such that (1) Mi , wi � θwi , and (2) M j , w j � θwi iff
there is a relevant directed bisimulation (Zi , Z j ) between Mi and M j such that wi Ziw j .

Proof. We start by defining for each world a of Mi the formula φηa
M j

—simultaneously

with φηb
Mi

for b ∈ W j —by induction on the ordinal η < λ+ as follows:

φ0a
M j

= the set of all literals satisfied by (Mi , a),

φ
ηa
M j

= ∧
ξ < η φ

ξa
M j

if η is a limit ordinal,

φ
η+1 a
M j

= φ
ηa
M j

∧ ∧
b∈W j ,
X⊆Wi ,

Mi ,a�φ
ηb
Mi

→∨
d∈X φ

ηd
M j

φ
ηb
Mi

→ ∨
d∈X φ

ηd
M j

∧ ∧
b∈W j ,
X⊆Wi ,

Mi ,a�(∼(φηb
Mi

→∨
d∈X φ

ηd
M j

))

(∼ (φ
ηb
Mi

→ ∨
d∈X φ

ηd
M j
)).

Observe that when γ < β < λ+,

M j , a′ � φβa
M j

implies that M j , a′ � φγ a
M j
.

This can be seen by induction on β. The case when β = 0 is true by antecedent failure.
If β = η + 1, either η = γ or γ < η. If the first, since

M j , a′ � φγ a
M j

∧ ∧
b∈W j ,
X⊆Wi ,

Mi ,a�φ
γ b
Mi

→
∨

d∈X φ
γ d
M j

φ
γ b
Mi

→ ∨
d∈X φ

γ d
M j

implies that M j , a′ � φγ a
M j
,

we have that

M j , a′ � φβa
M j

implies that M j , a′ � φγ a
M j
.
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If the second, since

M j , a′ � φβa
M j

implies that M j , a′ � φηa
M j
,

and, by inductive hypothesis,

M j , a′ � φηa
M j

implies that M j , a′ � φγ a
M j
,

we get what we needed.
Now let us define a map f : W1 × W2 −→ λ+ in the following way:

f (a, a′) =
{

the least ordinal ξ < λ+ such that M2, a′ � φξa
M2

if there is some,

0 otherwise.

Given that |W1 × W2| = κ < cf(λ+) = λ+, we see that there must be ξ0 < λ+ such that
the range of f is a subset of ξ0. Consequently, for every β such that ξ0 < β < λ+,

M2, a′ � φξ0a
M2

implies that M2, a′ � φβa
M2
,

for otherwise we have that there is an ordinal γ with ξ0 < γ � β which is the smallest
ordinal such that M2, a′ � φγ a

M2
, contradicting the fact that the range of f is a subset of ξ0.

Similarly, we define g : W2 × W1 −→ λ+ as

f (a, a′) =
{

the least ordinal ξ < λ+ such that M1, a′ � φξa
M1

if there is some,

0 otherwise,

and obtain ξ1 < λ+ such that the range of g is a subset of ξ1. As before, for every β such
that ξ1 < β < λ+,

M1, a′ � φξ1a
M1

implies that M1, a′ � φβa
M1
.

Choose ξ to be sup{ξ0, ξ1}. By the above, when ξ < β < λ+,

M2, a′ � φξa
M2

implies that M2, a′ � φβa
M2
,

and

M1, a′ � φξa
M1

implies thatM1, a′ � φβa
M1
.

We claim that the relations u Z1v iff M2, v � φ
ξu
M2

and u Z2v iff M1, v � φ
ξu
M1

satisfy all
clauses in Definition 4.5.

For (1) in Definition 4.5, we will show by induction that when i, j ∈ {1, 2}, for all β,

if u is a world of Mi and M j , v � φ
βu
M j

then Mi , u∗i � φ
βv

∗ j

Mi
. In particular, if u Ziv , i.e.,

M j , v � φξu
M j

then Mi , u∗i � φξv
∗ j

Mi
, i.e., v∗ j Z j u∗i .

Let β = 0, and assume that M j , v � φ0u
M j

. We need to show that every literal satisfied
by v∗ j at M j is also satisfied by u∗i at Mi , that is: (a) M j , v

∗ j � p only if Mi , u∗i � p,
and (b) M j , v

∗ j � (∼ p) only if Mi , u∗i � (∼ p). To prove the contrapositive of (a)
assume that Mi , u∗i � p, so Mi , u � (∼ p), but M j , v � φ0u

M j
, hence M j , v � (∼ p),

i.e, M j , v
∗ j � p. Now, for the contrapositive of (b) assume that Mi , u∗i � (∼ p), so

Mi , u∗i ∗i � p but u∗i ∗i = u, so Mi , u � p. However, M j , v � φ0u
M j

, which implies that
M j , v � p, i.e., M j , v

∗ j ∗ j � p, hence M j , v
∗ j � (∼ p) as desired.

If β is a limit ordinal and M j , v � φ
βu
M j

, then M j , v � φ
γ u
M j

for all γ < β, and by

inductive hypothesis, Mi , u∗i � φγv
∗ j

Mi
for all γ < β, which implies that Mi , u∗i � φβv

∗ j

Mi
.
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If β = γ +1 and M j , v � φγ+1u
M j

, M j , v � φγ u
M j

, and by inductive hypothesis, Mi , u∗i �

φ
γv

∗ j

Mi
. Recall that

φ
γ+1 v∗ j

Mi
= φ

γ v
∗ j

Mi
∧ ∧

b∈Wi ,
X⊆W j ,

M j ,v
∗ j �φγ b

M j
→∨

d∈X φ
γ d
Mi

φ
γ b
M j

→ ∨
d∈X φ

γ d
Mi

∧ ∧
b∈Wi ,
X⊆W j ,

M j ,v
∗ j �(∼(φγ b

M j
→∨

d∈X φ
γ d
Mi
))

(∼ (φ
γ b
M j

→ ∨
d∈X φ

γ d
Mi
)).

Hence, it remains to show that (a) M j , v
∗ j � φ

γ b
M j

→ ∨
d∈X φ

γ d
Mi

for some world b of Mi

and X ⊆ W j only if Mi , u∗i � φ
γ b
M j

→ ∨
d∈X φ

γ d
Mi

, and (b) M j , v
∗ j � (∼ (φ

γ b
M j

→∨
d∈X φ

γ d
Mi
)) for some world b of Mi and X ⊆ W j only if Mi , u∗i � (∼ (φ

γ b
M j

→∨
d∈X φ

γ d
Mi
)). These two follow similarly to (a) and (b) in the case when β = 0.

The proof of (2) in Definition 4.5 requires us to notice first that for i ∈ {1, 2}, Mi , u �
φ
βu
M j

for all β. We argue by induction on β. The case β = 0 is trivial. If β is a limit ordinal

and, by inductive hypothesis, Mi , u � φ
γ u
M j

for all γ < β, then clearly Mi , u � φ
βu
M j

.

Finally let β = γ + 1. By inductive hypothesis, Mi , u � φ
γ u
M j

. But trivially both (a)

Mi , u � φ
γ b
Mi

→ ∨
d∈X φ

γ d
M j

for some world b of M j and X ⊆ Wi only if Mi , u �
φ
γ b
Mi

→ ∨
d∈X φ

γ d
M j

, and (b) Mi , u � (∼ (φ
γ b
Mi

→ ∨
d∈X φ

γ d
M j
)) for some world b of M j

and X ⊆ Wi only if Mi , u � (∼ (φ
γ b
Mi

→ ∨
d∈X φ

γ d
M j
)). Hence, Mi , u � φβu

M j
.

Now, suppose that u Ziv , i.e., M j , v � φ
ξu
M j

, which implies that M j , v � φ
ξ+1u
M j

by

choice of ξ . Assume further that R jvbc and consider the disjunction
∨

d∈X φ
ξd
M j

where

d ∈ Wi is such that M j , c � φ
ξd
M j

. By a previous observation, M j , b � φ
ξb
Mi

and clearly

M j , c �
∨

d∈X φ
ξd
M j

, so M j , v � φ
ξb
Mi

→ ∨
d∈X φ

ξd
M j

. Hence, given that M j , v � φ
ξ+1u
M j

,

Mi , u � φ
ξb
Mi

→ ∨
d∈X φ

ξd
M j

. Thus, there are b′, c′ ∈ Wi such that Ri ub′c′, Mi , b′ � φ
ξb
Mi

,

i.e., bZi b′ and Mi , c′ �
∨

d∈X φ
ξd
M j

. The latter means that if d ∈ Wi and M j , c � φ
ξd
M j

then

Mi , c′ � φξd
M j

. Again by a previous observation Mi , c′ � φξc′
M j

, so we see that M j , c � φξc′
M j

contraposing the previous sentence, i.e., c′Zi c.
Clause (3) in Definition 4.5 follows as if i, j ∈ {1, 2} and u Ziv , i.e., M j , v � φ

ξu
M j

then

M j , v � φ0u
M j

, so every propositional variable satisfied at u in Mi is also satisfied at v in M j .

The right to left direction of the theorem follows since if M j , w j � φ
ξwi
M j

then Z1 and
Z2 are both nonempty, so we have the required relevant directed bisimulation between Mi

and M j .

For the other direction if there is one such relevant directed bisimulation M j , w j � φβwi
M j

for all β, so in particular, M j , w j � φ
ξwi
M j

. This can be be seen by recalling that for any β,

Mi , wi � φ
βwi
M j

and since wi Ziw j by assumption, M j , w j � φ
βwi
M j

since all formulas of
L→
λ+ω are preserved under relevant directed bisimulations. �
COROLLARY 5.2 (Relevant Scott’s Theorem). Let (M1, w1) and (M2, w2) be two mod-

els in some K such that K ⊆ VB, and suppose L→
|2ω|+ω has at most |2ω| propositional
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variables. Then, when i, j ∈ {1, 2}, there is a formula θwi of L→
|2ω|+ω such that M j , w j �

θwi iff there is a relevant directed bisimulation (Zi , Z j ) between Mi and M j such that
wi Ziw j .

§6. Interpolation, preservation, and Beth definability. In this section, following the
analogous case for modal logic [5,7], we obtain a preservation theorem for relevant infini-
tary formulas as a corollary to a generalized interpolation result. Interpolation theorems
have a history of implying preservation results (some examples in infinitary logic can be
found in [19]).

Let M be a structure for a language L∞ω, if X ⊆ dom(M) and X is closed under all the
functions in the signature of M , then [X ]M is the submodel obtained by restricting all the
relations in the signature of M to X . Note that if X fails to be closed under the required
functions, then [X ]M is not defined.

LEMMA 6.1 (Relativization Lemma). Let L∞ω be a language with a unary predicate P.
Then for any formula φ(x) L∞ω not containing P there is a first order formula φP such
that if M is a structure where [P M ]M is defined then for every sequence a of elements from
[P M ]M ,

M � φP [a] iff [P M ]M � φ[a].

Proof. This is just Theorem 5.1.1 from [17]. �
Given a language L , by �1

1(L) and �1
1(L) we will mean the languages resulting from

admitting, respectively, second order existential quantifications in front of a formula of L
and second order universal quantifications in front of a formula of L .

LEMMA 6.2. If L∞ω has a signature containing a binary symbol <, φ(x) and ψ are
formulas of L∞ω and �1

1(L∞ω) respectively such that for each ordinal α there is a model
M such that <M is a linear ordering on φ(M) in order type � α, then ψ has a model N
such that <N is a linear ordering on φ(N ) which is not well-ordered.

Proof. This is essentially Theorem 11.5.4 in [17] or Theorem 1. 8 in [6]. �
Lemma 6.2 is known as the property of the model-theoretic language L∞ω of being

bounded, a substitute for compactness when establishing that a property is not expressible
in L∞ω ([17], p. 581). It is a useful property that can be seen to characterize L∞ω in terms
of expressive power via a Lindström theorem (cf. [4]).

Let 〈R, S〉 be a pair of binary relations between two structures M1 and M2, while φ
and ψ are formulas of Lcorr∞ω . Following [5, 7] we say that φ implies ψ along 〈R, S〉 if
whenever M1 RM2, M1 � φ only if M2 � ψ and if M2SM1, M2 � φ only if M1 � ψ .
This can be seen as a generalization of the usual notion of consequence (note that standard
consequence is the case when R and S are the identity). When the relation in question is
relevant directed bisimulations, φ implies ψ along relevant directed bisimulations if when
〈Z1, Z2〉 is a relevant directed bisimulation between two models M1 and M2, and aZi b
(i, j ∈ {1, 2}) for elements a, b of the domains of Mi and M j respectively, then Mi � φ[a]
only if M j � φ[b].

If φ is a formula of Lcorr∞ω , we will write PROPφ for the collection of predicates appearing
in φ corresponding to propositional variables in PROP.

LEMMA 6.3. Let φ,ψ be formulas of �1
1(L

corr∞ω ),�
1
1(L

corr∞ω ) respectively. Suppose φ
implies ψ along relevant directed bisimulations for PROPφ ∩ PROPψ over some class of
Routley–Meyer structures K defined by some formula σ of Lcorr∞ω . Then there is an ordinal
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α such that for every M, N ∈ K if M � φ[w] and u satisfies in N all the infinitary relevant
formulas of degree � α satisfied by w in M, then N � ψ[u].

Proof. Suppose for reductio that for each α there are (M1, w1) and (M2, w2) such that
M1 � φ[w1] and M2 � ψ[w2] while w2 satisfies in M2 all the infinitary relevant formulas
of degree � α satisfied by w1 in M1. Hence, by Proposition 4.4, there is a relevant directed
α-bisimulation (〈Zβ1, Zβ2〉)β�α such that w1 Zβ1w2 for each β � α.

Suppose for simplicity that PROPφ ∩ PROPψ has a single nonlogical symbol p. So
the correspondence language Lcorr∞ω has signature K = {∗, R, P, Q0, Q1, . . . } where Qi

(i = 0, 1, . . . ) are the predicates corresponding the propositional variables not in PROPφ ∩
PROPψ . Expand this signature by adding the set of symbols {U1,U2, <, O, B1, B2, I,G},
where U1,U2, , B1, B2 and O are unary predicates, < and I are binary predicates, while
G is a ternary predicate.

Consider the infinitary formula
∧

, where 
 is the theory containing the following

formulas:

σU1 , σU2

“There are x, y such that U1x,U2 y, φU1 x,¬ψU2 y and for all z, u such that Oz, B1u
and I zu, we have that Guxy”

“< is a discrete total ordering with first and last elements”

“O is the field of < ”

“If Ui x , then Ui x∗” (i ∈ {1, 2})
“If Ui x and Rxyz, then Ui y and Ui z” (i ∈ {1, 2})
“If Bi z, Ou, I uz and Gzxy, then Ui x and U j y” (i ∈ {1, 2})
“For all z such that Oz, there is u with Bi u and I zu” (i ∈ {1, 2})
“If Bi z, Ou, I uz and Gzxy, then there is v such that B jv, I uv , and Gvy∗x∗”
(i ∈ {1, 2})
“If Bi z, Ou, I uz and Gzxy, then Px only if Py” (i ∈ {1, 2})
“If Ui x,U j y,U j b,U j c, Oz, I uz, Bi z,Gzxy, Rybc, Ov and v < u, then there are
w,w′ such that Ivw, Ivw′, B jw, Biw

′ and there are b′c′ such that Ui b′,Ui c′,
Rxb′c′,Gwbb′ and Gw′c′c” (i ∈ {1, 2}).

The last three classes of sentences described in our presentation of
 are simply restate-
ments in first order logic of conditions appearing in the definition of a directed
α-bisimulation.

For each ordinal α,
∧

 has a model Mα such that the ordering <Mα on O Mα has order

type � α. To see this consider (M1, w1) and (M2, w2) as given by our reductio assumption,
that is, M1 � φ[w1] and M2 � ψ[w2] while there is a relevant directed α-bisimulation
(〈Zβ1, Zβ2〉)β�α such that w1 Zβ1w2 for each β � α.

We can suppose without loss of generality that W1 ∩ W2 = ∅ (if this is not the case
already simply take isomorphic copies of M1 and M2 satisfying the proviso). Let Mα be
any model M3 such that:

W3 = W1 ∪ W2 ∪ α + 1 ∪ {Zβi : β � α, i ∈ {1, 2}},
R3 = R1 ∪ R2,

∗3 = ∗1 ∪ ∗2,

U M3
i = Wi (i ∈ {1, 2}),

P M3 = P M1 ∪ P M2 ,
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QM3
i = QM1

i ∪ QM2
i (i = 0, 1, . . . ),

B M3
i = {Zβi : β � α} (i ∈ {1, 2}),

O M3 = α + 1,

<M3 is the natural ordering on α + 1,

I M3βy iff β � α and y = Zβi for some i ∈ {1, 2},
G M3 xab iff x = Z ∈ {Zβi : β � α, i ∈ {1, 2}} and aZb.

It follows that M3 �
∧

. The sentences σU1 , σU2 hold in M3 by Lemma 6.1, the fact that

both M1 and M2 make ψ true, and that [U M3
1 ]M3 = M1 and [U M3

2 ]M3 = M2.
Since for each ordinal α,

∧

 has a model Mα such that the ordering <Mα on O Mα has

order type � α, by Lemma 6.2,
∧

 has a model M4 such that <M4 is a linear ordering

which is not well ordered. This means that O M4 being the field of <M4 contains an infinite
descending sequence:

(∗) . . . e3 <M4 e2 <M4 e1 <M4 e0.

Let M4|K be the restriction of M4 to the signature K . Now, since M4 makes
∧

 hold,

there are a ∈ U M4
1 and b ∈ U M4

2 such that M4 � φU1 [a] (i.e., [U M4
1 ]M4|K � φ[a]),

M4 � ψU2 [b] (i.e., [U M4
2 ]M4|K � ψ[b]) and for all z, u such that z ∈ O M4, u ∈ B M4

1 and
M4 � I [zu], we have that M4 � G[uab].

The pair 〈Z1, Z2〉 defines a relevant directed bisimulation for PROPφ ∩PROPψ between

[U M4
1 ]M4|K and [U M4

2 ]M4|K where

x Z1 y iff there is en (n ∈ ω) in the sequence (∗) such that there is u ∈ B M4
1 ,M4 �

I [enu] and M4 � G[uxy],

x Z2 y iff there is en (n ∈ ω) in the sequence (∗) such that there is u ∈ B M4
2 ,M4 �

I [enu] and M4 � G[uxy].

First note that Z1 �= ∅ �= Z2. For all u and arbitrary en such that u ∈ B M4
1 and M4 �

I [enu], we have that M4 � G[uab], and given that there is such a u, we have that aZ1b.
But one of the formulas in 
 implies that there is also v ∈ B M4

2 such M4 � I [env] and

M4 � G[vb∗4a∗4 ]. Hence, aZ1b and b∗4 Z2a∗4 , i.e., b
∗

[U
M4
2 ]M4|K

Z2a
∗

[U
M4
1 ]M4|K

.
To show (1) in Definition 4.5 suppose that i ∈ {1, 2} and x Zi y. By essentially the

argument in the above paragraph it follows that y
∗

[U
M4
j ]M4|K

Z j x
∗

[U
M4
i ]M4|K

.
For clause (2) in Definition 4.5, suppose that i ∈ {1, 2} and x Zi y, so there is en (n ∈ ω)

in the sequence (∗) such that there is u ∈ B M4
i ,M4 � I [enu] and M4 � G[uxy]. Now

let R
[U

M4
j ]M4 |K ybc for some b, c ∈ U M4

j , i.e., R4 ybc by Lemma 6.1. But since en+1 < en ,

there is formula in 
 which implies that there are w,w′ such that M4 � I [en+1w],M4 �
I [en+1w

′], w ∈ B M4
j , w′ ∈ B M4

i and there are b′c′ such that b′, c′ ∈ U M4
i , R4xb′c′(so, by

Lemma 6.1, R
[U

M4
i ]M4 |K xb′c′),M4 � G[wbb′] and M4 � G[w′c′c] (hence bZ j b′ and

c′Zi c).
Condition (3) in Definition 4.5 follows as if i ∈ {1, 2} and aZi b, there is formula in 


implying that M4 � P[a] only if M4 � P[b], and, by the Lemma 6.1, [U M4
i ]M4|K P[a]

only if [U M4
j ]M4|K P[b].

Finally, since the pair 〈Z1, Z2〉 defines a relevant directed bisimulation for PROPφ ∩
PROPψ between [U M4

1 ]M4|K and [U M4
2 ]M4|K with aZ1b, [U M4

2 ]M4|K � ψ[b] and

[U M4
1 ]M4|K � φ[a] we have a contradiction with the assumption that φ implies ψ along
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relevant directed bisimulations. Also, [U M4
1 ]M4|K and [U M4

2 ]M4|K are in the class of models
K since ψ holds in both by Lemma 6.1. �
THEOREM 6.4 (Interpolation). Let φ,ψ be formulas of�1

1(L
corr∞ω ),�

1
1(L

corr∞ω ) respectively
and K a class of Routley–Meyer structures axiomatizable by some formula σ of Lcorr∞ω .
Then, φ implies ψ along relevant directed bisimulations for PROPφ ∩ PROPψ over K iff
there is a relevant interpolant θ for φ andψ over K according to the standard consequence
relation, with propositional variables in PROPφ ∩ PROPψ .

Proof. For the right to left direction of the theorem suppose that there is a relevant
infinitary interpolant θ for φ andψ over K with propositional variables in PROPφ∩PROPψ .
That φ impliesψ along relevant directed bisimulations for PROPφ∩PROPψ over K follows
from Theorem 4.6 and the fact that θ is an interpolant for φ and ψ according to the usual
consequence relation.

For the converse, by Lemma 6.3, we know that there is an ordinal α such that for every
M, N ∈ K if M � φ[w] and u satisfies in N all the infinitary relevant formulas of degree
� α satisfied by w in M , then N � ψ[u]. Consider the disjunction

∨
M�φ[w]

(
∧

rel�α(M, w)), where rel�α is the set of all translations of formulas of L→∞ω of degree
� α with propositional variables in PROPφ ∩ PROPψ . The class of all nonequivalent
formulas of L→∞ω of degree � α is a set according to Proposition 4.2. Thus,

∨
M�φ[w]

(
∧

rel�α(M, w)) is a perfectly good formula of Lcorr∞ω . This formula is the desired inter-
polant of φ and ψ . It is easy to see that φ implies

∨
M�φ[w](

∧
rel�α(M, w)), while the

latter implies ψ by choice of α. �
COROLLARY 6.5 (Preservation). Let φ be a formula of Lcorr∞ω and K a class of Routley–

Meyer structures defined by some formula ψ of Lcorr∞ω . Then, φ is preserved under directed
bisimulations in K iff φ is equivalent to an infinitary relevant formula over K .

Proof. Right to left follows from Theorem 4.6. For the converse, just set φ = ψ in
Theorem 6.4. �

COROLLARY 6.6 (Beth definability). Let P be a unary predicate not in Lcorr∞ω , φ(P) a
formula of Lcorr∞ω ∪{P} and K a class of Routley–Meyer structures defined by some formula
ψ of Lcorr∞ω ∪ {P}. Then the following are equivalent:

(i) There is a relevant formula θ(x) of Lcorr∞ω such that θ(x) ≡ Px is a logical conse-
quence of φ(P) in the standard classical sense.

(ii) If (M1, w1, P M1) and (M2, w2, P M2) are models of φ(P) such that 〈Z1, Z2〉 is a
relevant directed bisimulation between the restrictions (M1, w1) and (M2, w2) of
(M1, w1, P M1) and (M2, w2, P M2) to Lcorr∞ω , then 〈Z1, Z2〉 is a relevant directed
bisimulation between(M1, w1, P M1) and (M2, w2, P M2).

Proof. (i) ⇒ (ii): It suffices to show that when (M1, w1, P M1) and (M2, w2, P M2)
are models of φ(P) such that 〈Z1, Z2〉 is a relevant directed bisimulation between the
restrictions (M1, w1) and (M2, w2) of (M1, w1, P M1) and (M2, w2, P M2) to Lcorr∞ω , if
x ∈ P Mi and x Zi y then y ∈ P M j . The result follows by the assumption (i) and the
easy direction of Proposition 4.4.

(ii) ⇒ (i): It is enough to establish that ∃P(φ(P)∧ Px) implies ∀P(φ(P) ⊃ Px) along
relevant directed bisimulations for PROP∃P(φ(P)∧Px) ∩ PROP∀P(φ(P)⊃Px) over K , since
then, by Theorem 6.4, it follows that there is a relevant formula θ(x) of Lcorr∞ω which is an
interpolant for ∃P(φ(P) ∧ Px) and ∀P(φ(P) ⊃ Px) over K according to the standard
consequence relation. Consequently, (i) holds. �
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§7. Conclusion. We have shown that many facts from the model theory of classical
infinitary logic have analogues in the context of relevant logic and the Routley–Meyer
semantics. In particular, versions of Karp’s theorem and Scott’s isomorphism theorem can
be obtained. Also, most infinitary relevant languages with absurdity are incompact, from
which we can derive incompleteness of most Hilbert systems based on them (in the sense of
there being a semantic consequence of a certain set of formulas which cannot be deduced
from the set in the formal system).

We have also showed that the formulas of classical infinitary relevant logic correspond-
ing to infinitary relevant formulas are exactly those preserved under relevant directed
bisimulations. This was obtained as a consequence of a certain interpolation result, from
which a Beth definability theorem followed as well.
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