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Abstract

We show that a directed graph E is a finite graph with no sinks if and only if, for each commutative
unital ring R, the Leavitt path algebra Lg(E) is isomorphic to an algebraic Cuntz—Krieger algebra if
and only if the C*-algebra C*(E) is unital and rank(Ky(C*(E))) = rank(K;(C*(E))). Let k be a field and
k* be the group of units of k. When rank(k*) < co, we show that the Leavitt path algebra Li(E) is
isomorphic to an algebraic Cuntz—Krieger algebra if and only if Ly(E) is unital and rank(K,(Lx(E))) =
(rank(k*) + Drank(Ko(Li(E))). We also show that any unital k-algebra which is Morita equivalent or
stably isomorphic to an algebraic Cuntz—Krieger algebra, is isomorphic to an algebraic Cuntz—Krieger
algebra. As a consequence, corners of algebraic Cuntz—Krieger algebras are algebraic Cuntz—Krieger
algebras.

2010 Mathematics subject classification: primary 16W99; secondary 16E20, 16D90.

Keywords and phrases: Leavitt path algebra, Cuntz—Krieger algebra, stably isomorphic, Morita
equivalence.

1. Introduction

Cuntz—Krieger algebras, introduced and first investigated by Cuntz and Krieger [11]
in 1980, are a prominent class of C*-algebras arising from dynamical systems. The
Cuntz—Krieger algebra O, was originally associated to a finite square {0, 1} matrix
A [11], but it can also be viewed as the graph C*-algebra of a finite directed graph
with no sinks and no sources [22]. Graph C*-algebras and their generalizations have
been intensively investigated by analysts for more than two decades (see [19] for an
overview of the subject).

The algebraic Cuntz—Krieger algebras arose as specific examples of fractional skew
monoid rings [5]. Leavitt path algebras are the algebraic version of graph C*-algebras.
Leavitt path algebras Li(E) are quotients of path algebras associated to an extended
graph E and a field k, modulo additional relations. An algebraic Cuntz—Krieger algebra
CK(E)is a Leavitt path algebra Ly (E) of a finite graph £ with no sinks and no sources.
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Initially, Leavitt path algebras were introduced by Ara ef al. in [6] and by Abrams
and Aranda Pino in [1]. Tomforde in [21] generalizes the construction of Leavitt
path algebras by replacing the field £ with a commutative unital ring R. Leavitt
path algebras are also a generalization of the algebras constructed by Leavitt in [16]
to produce rings without the invariant basis number property (i.e., Ry = R}, as left
R-modules with m # n). Leavitt path algebras include many well-known algebras
such as matrix algebras M, (R) for n > 1, the Laurent polynomial ring R[x, x™'], or
the Leavitt algebras L(1, n) for n > 2.

Many times in the literature, the conditions characterizing some analytic properties
of the graph C*-algebra turned out to be exactly the same conditions characterizing
the corresponding algebraic version of these properties. In this sense the Leavitt path
algebra theory, being more recent, has benefited from the inspiration that the graph
C*-algebra world provided. This is the case once more for the topic discussed in the
current paper: the analytic results were given in [9] for the Cuntz—Krieger algebras,
and we give here the algebraic analogue for algebraic Cuntz—Krieger algebras. Some
of the ideas in this paper are contained in [9]. Theorem 3.12 of [9] says that the graph
C*-algebra C*(E) is isomorphic to a Cuntz—Krieger algebra if and only if C*(E) is
unital and rank(Ky(C*(E))) = rank(K;(C*(E))). In the algebraic setting we prove a
slightly different result (Theorem 3.10). Let k be a field such that rank(k*) < co. Then
the Leavitt path algebra L;(E) is isomorphic to an algebraic Cuntz—Krieger algebra if
and only if L;(E) is unital and rank(K;(Li(E))) = (rank(k*) + Drank(Ko(Li(E))). We
also show that the assumption rank(k*) < oo is necessary.

The paper is organized as follows. In Section 2 we give all the background
information, definitions and basic properties of Leavitt path algebras that we need
in this paper.

In Section 3 we give a characterization of algebraic Cuntz—Krieger algebras. In
the first step of this process, we provide a class of operations on graphs that preserve
isomorphism of associated Leavitt path algebras. With this useful result, we show
that algebraic Cuntz—Krieger algebras are Leavitt path algebras of finite graphs with
no sinks. Finally, in Corollary 3.9 and Theorem 3.10 we derive further conditions
for Lr(E) to be isomorphic to an algebraic Cuntz—Krieger R-algebra when R is a
commutative unital ring or a field.

In Section 4 we first show that the corner PxLg(E)Px, where X is a finite subset
of E®, is isomorphic to a Leavitt path algebra Lg(E(T)). Also we show that if Lg(E)
is an algebraic Cuntz—Krieger algebra, then Lg(E(T)) is an algebraic Cuntz—Krieger
algebra. Finally, after proving similar results for M,,(Lg(E)) and M, (Lg(E)), we show
that if A is an algebraic Cuntz—Krieger R-algebra then, for each positive integer n,
M,,(A) is isomorphic to an algebraic Cuntz—Krieger algebra.

In the last section, we show that if a unital k-algebra A is Morita equivalent or stably
isomorphic to an algebraic Cuntz—Krieger algebra, then it is isomorphic to an algebraic
Cuntz—Krieger algebra. As a consequence, A is an algebraic Cuntz—Krieger algebra if
and only if the full n X n matrix algebra over A is an algebraic Cuntz—Krieger algebra.
Also we show that if A is an algebraic Cuntz—Krieger algebra, then the corners eAe
and ¢’'M,(A)e’ are isomorphic to algebraic Cuntz—Krieger algebras.
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2. Preliminaries

A directed graph E = (E°, E', rg, sg) consists of two sets E® and E! together with
maps 7z, S : E' — E°, identifying the range and source of each edge. The elements
of E? are called vertices and the elements of E' edges. If a vertex v emits no edges,
that is, if sg'(v) is empty, then v is called a sink. A vertex v is called a regular vertex
if 5! (v) is a finite nonempty set. The set of regular vertices is denoted by E| cg- We let
E?m = EO\Ereg and refer to an element of EO  asa singular vertex.

A finite path p in a graph E is a finite sequence of edges u = e; - - e, such that
rg(e;) = sg(ejy1) fori=1,...,n— 1. In this case, n = [(u) is the length of u. We
view the elements of E® as paths of length 0. For any n € N the set of paths of
length n is denoted by E". Also, Path(E) stands for the set of all finite paths, that
is, Path(E) = |, E". We denote by 10 the set of the vertices of the path y, that is, the
set {s(ey1), r(er),...,r(e,)}.

Apathu=e---e,is closed if r(e,) = s(ey), in which case u is said to be based at
the vertex s(e1). The closed path u is called a cycle if it does not pass through any of
its vertices twice, that is, if s(e;) # s(e;) for every i # j. A cycle of length one is called
a loop. An exit for a path u = e - - - ¢, is an edge e such that sg(e) = sg(e;) for some i
and e # e;.

A right-infinite path u in a graph E is an infinite sequence of edges u = ejezes ...
such that rg(e;) = sg(e;+1) for each i. A left-infinite path y in a graph E is an infinite
sequence of edges y = - - - e_ze_pe_; such that rg(e;) = sg(e;;1) for each i. A bi-infinite
path y in a graph E is an infinite sequence of edges u = - - - e_ze_pe_jegpejezes - - - such
that rg(e;) = sp(e;y1) for each i. We denote by E™ the set of all (right-, left-, bi-)infinite
paths in E.

A path u = ejezes - - is called vertex-simple if the sequence s(ey), r(ey), r(ez), . ..
contains no repeated vertices. A graph E is called path-finite if E* contains no vertex-
simple paths. A graph E is called row-finite if, for each v € E°, 5;'(v) is a finite set.
For each e € E!, we call e* a ghost edge. We let rg(e*) denote sg(e), and we let sg(e*)
denote rg(e).

r

DeriniTionN 2.1. Let E be a graph. The graph C*-algebra C*(E) is the universal
C*-algebra generated by mutually orthogonal projections {p, : v € E°} together with
partial isometries with mutually orthogonal ranges {s, : e € E'} which satisfy the
following conditions.

(1) (The ‘CK-1 relations’) for all e € E', 558¢ = Prey And S¢85 < Pye)-
(2) (The ‘CK-2 relations’) for every regular vertex v € E°,
Dy = Z SeS,.
{e€E!| sp(e)=v}
DeriniTION 2.2. Let E be an arbitrary graph and R be a commutative ring with unit. The
Leavitt path algebra Lg(E) with coefficients in R is the universal R-algebra generated

by aset {v : v € E%} of pairwise orthogonal idempotents together with a set of variables
{e, e : e € E'} which satisfy the following conditions.
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(1) sg(e)e=e =erg(e)forallec E'.

(2) re(e)e* =e* =e*sp(e) foralle € E'.

(3) (The ‘CK-1 relations’) for all e, f € E', e*e = rg(e) and e* f = 0 if e # f.
(4) (The ‘CK-2 relations’) for every regular vertex v € E°,

*
V= Z ee .

{e€E"| sg(e)=v}

Another definition for Lg(E) can be given using the extended graph E. This graph
has the same set of vertices E” and the same set of edges E! together with the so-
called ghost edges e* for each e € E', whose directions are opposite to those of
the corresponding e € E!. Lg(E) can be defined as the usual path algebra RE with
coeflicients in R subject to Cuntz—Krieger relations (3) and (4) above.

Derinition 2.3. Let E be a graph and A be an R-algebra with involution *. A Cuntz—
Krieger E-family in Ais a collection X = (S ) epoupt € A which satisfies the following
relations.

(1) Forallv,weE®, S,S,=S,andS,S, =0ifv#w.
(2 S:=8, forallvekE°,

(3) Ss(e)Se=Se=SeSr(e)fOI'aH€€El.

(4) Foralle,feE', S:S, =S, and S;S;=0ife# f.
(5) For every regular vertex v € E,

Sv= > 8.8

{ecE!, s(e)=v}

Let A be an R-algebra with a Cuntz—Krieger E-family; thus by the universal
homomorphism property of Lg(E), there is a unique R-algebra homomorphism from
Lg(E) to A mapping the generators of Lg(E) to their appropriate counterparts in A. We
will refer to this property as the universal homomorphism property of Lg(E).

DeriniTiON 2.4. Let E be a finite graph with no sinks and no sources and R a
commutative ring with unit. The Leavitt path algebra Lg(F) is called their algebraic
Cuntz—Krieger algebra, which is denoted by CK(E).

If E has a finite number of vertices, then Lg(E) is unital with ) cpo v = 11,(£);
otherwise, Lg(E) is a ring with a set of local units (that is, a set of elements X such that,
for every finite collection ay, .. ., a, € Lg(E), there exists x € X such that a;x = a; = xa;)
consisting of sums of distinct vertices of the graph.

If u=e;---e,is apath in E, we write u* for the element e}, - - - €] of Lg(E). With
this notation it can be shown that the Leavitt path algebra Lg(E) can be viewed as

Lg(E) = spang{af : a, € Path(E) and r(e) = r(B)}

and rv # 0 for all v € E® and all » € R\ {0} (see [21, Proposition 3.4]). Also Lg(E)
is a *-algebra with linear anti-multiplicative involution defined by (3, r,a;8))" =

Z,r'l=1 ri,Bia’;-
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Let G be a group. A ring A = @gEG A, is called a G-graded ring, if each A,
is an additive subgroup of A and AgA, C Ay, for all g, ¢’ € G. A G-graded ring
A= @gEG Ay is called a strongly graded ring if A;Ay = Ay, forall g,g" € G. Let
® : A — B be a ring homomorphism between G-graded rings. @ is a graded ring
homomorphism if ®(A,) C B,, for all g € G. Leavitt path algebras can be viewed as
graded algebras. Let G be a group with the identity element e and w : E! — G be
a weight map. Also let w(a®) = w(a)™! and w(v) = e, for each @ € E' and v € E°.
Thus the path algebra RE of the extended graph E is a G-graded R-algebra, and since
Cuntz—Krieger relations are homogeneous, Lg(E) is a G-graded R-algebra. The natural
grading given to a Leavitt path algebra is a Z-grading by setting w(@) = 1, w(a*) = —1
and w(v) = 0, for each a € E' and v € E°. In this case the Leavitt path algebra can
be decomposed as a direct sum of homogeneous components Lg(E) = EB Lr(E),
satisfying Lg(E)uLg(E)m € LR(E)psm. Actually,

Lr(E), = spang{pq” : p, q € Path(E), l(p) — I(g) = n}.

Every element x € Lg(E), is a homogeneous element of degree 7.

An ideal [ is graded if it inherits the grading of Lg(E), that is, if I = @nEZ(I N
Lg(E),). Tomforde in [21] (see also [7, Theorem 3.5]) proved the graded uniqueness
theorem. Let E be a graph and let Lg(E) be the associated Leavitt path algebra with
the usual Z-grading. If A is a Z-graded ring, and 7 : Lg(E) — A is a graded ring
homomorphism with 7(rv) # 0 for all v € E® and r € R\{0}, then 7 is injective.

We define a relation > on E° by setting v > w if there exists a path y in E from v
to w, that is, v = s(u) and w = r(u). A subset X of E? is called hereditary if, for each
v € X, v> wimplies that w € X. For any subset X C EY, the smallest hereditary subset
of E° containing X is denoted by Hz(X). A subset H C E° is called saturated if, for
any regular vertex v, r(s~'(v)) C H implies that v € H. An ideal I of Lg(E) is called
basic if rv € I for r € R\ {0} implies that v € I. Tomforde [21, Theorem 7.9] proved
that the map H — I defines a lattice isomorphism between the saturated hereditary
subsets of E® and the graded basic ideals of Lz(E), where Iy is a two-sided ideal in
Lz(E) generated by a saturated hereditary subset H of E°.

A right-infinite path 7 = eje; - - - in E is called periodic if there exist integers j, k > 1,
such that e, = e, for every n > j. In this case, it is clear that the pathp =¢; - - - €44
is closed. Take j and k such that j + k is the smallest possible value which satisfies
the condition e, = e, for every n > j, and consider the paths @ =e;---¢;_; and
A=ej---eju-1. The pair (@, 1) is called the seed of 7. Of course & may have zero
length. In any case, A is a closed path, which is called the period of 7. A right-infinite
path 7 which is periodic and whose period is a closed path without exits (which means
that it has to be a cycle without exits) is called an infinite discrete essentially aperiodic
trail. For any infinite discrete essentially aperiodic trail which is parameterized by the
seed (a, 4,) of the trail (that is, @ € Path(FE) is its essential head and r(«) is visited
by the cycle without exits A,), the path @ is called a distinguished path. In the case
l(@) =0, « is called a distinguished vertex. For any distinguished path @, ad,a* is
denoted by w,.

nez
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To finish this section we introduce a generalized uniqueness theorem which we will
use later.

TueEOREM 2.5 [13, Theorem 5.2]. Let E be a graph, R be a commutative ring with unit
and A be an R-algebra. Consider ® : Lg(E) — A a ring homomorphism. Then the
following conditions are equivalent.

(i) @ isinjective.
(i1)  The restriction of ® to Mg(E) is injective.
(iii) Both the following conditions are satisfied:
(@)  ®@v) £0, forall v e E® and for all r € R \ {0};

(b)  for every distinguished path «, the = R-algebra (®(w,)) generated by
®(wy) is *-isomorphic to R[x, x™ '], that is, (P(w,)) = R[x, x'].

3. Characterization of algebraic Cuntz—Krieger algebras

In this section we give a characterization of algebraic Cuntz—Krieger algebras.

DerviTion 3.1. [9, Definition 3.6] Let E be a graph, H be a hereditary subset of E°
and F(H) = {|a = eje; - - - e, € Path(E), sg(e,) € H, re(e,) € H). Let F(H) be another
copy of F(H); for each a € F(H), the copy of e in F(H) is denoted by @. Define a
graph E(H) as follows

EH) = HU F(H),
EH)' = s;'(H) U F(H).

sean(e) = se(e) and rpy(e) = re(e) for each ¢ € 53 (H). sg(@) = @ and rgan(@) =
rg(a) for each @ € F(H).

ExampLE 3.2. Consider the graph E given by

o —>e0, T 0

f

Let H ={1,2,3}. Thus F(H) ={f1, />, &1f1, &1 />} and E(H) is the graph
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TueOREM 3.3. Let R be a commutative unital ring, E be a graph and H be a hereditary
subset of E°. Suppose that (E°\H, rEl(EO\H), rg, Sg) is a finite acyclic graph, v > H
for all v e EO\H and the set sgl (EO\H) N rEI(H) is finite. Then Lg(E) = Lr(E(H)).

Proor. Let {e,vle € E',v € E°} be a universal Cuntz—Krieger E-family. For v € E(H)"

define
0, = v if veH,
" aet ifv=aeF(H),

and for e € E(H)' define
T = e if ees;:l(li),
" la if e=aeF(H).

The same argument as in [9, proof of the Theorem 3.8] (see also [17, Lemma 3.7])
shows that {T,, Q,le € E(H)',v € E(H)"} is a Cuntz—Krieger E(H)-family in Lg(E).
Let {t.,q.le € E(H)',v € E(H)} be a universal Cuntz—Krieger E(H)-family. By
the universal homomorphism property of Lg(E(H)) there exists a *-homomorphism
¥ : Ly(E(H)) — Lg(E) with ¥(gq,) = Q, for each v € E(H)? and ¥(z,) = T, for each
e € E(H)'. Since s;'(E°\H) N r;'(H) is finite, the same argument as in [9, proof of
the Theorem 3.8] shows that ¥ is an epimorphism. Now let & be a distinguished path in
E(H) and w, = ad,a”, where 4, is a cycle without exits that starts and ends at rg ) (@).
The cycles in E(H) come from cycles in E all lying in the subgraph (H, s;' (H), sg, rg).
Hence 4, is a cycle without exits in E that starts and ends at rgg(@). If a is a
distinguished vertex, then w, = 4, and Y(w,) = w,. If (@) #0, then @ = yﬁ for
some u = e ---e; € Path(E)\F(H) and 8 € F(H). Therefore Y(w,) = uB1,8 1" and
50 (P(w,)) = R[x, x™']. Now let v € E(H)" and r € R\{0}. If v € H, then ¥(rg,) = rv
and by [21, Proposition 3.4], rv # 0. Now assume that v = o for some « € F(H).
Hence ¥(rq,) = raa™ and by [21, Proposition 4.9], raa™ # 0. Thus by the generalized
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uniqueness theorem, ¥ is injective. Therefore W is an isomorphism and the result
follows. O

DeriniTion 3.4. [9, Definitions 3.2, 3.3 and 3.9] Let E be a graph and n be a positive
integer.

i For any vertex vy € E° define a graph E(vy, n) as follows
y grap

E(o,n)’ = E* U {vi,va,...,va),

E(v()’n)l = El U {615629 e 96}’[}-

SE(VO,n)(e) = SE(E) and rE(vo,,,)(e) = rE(e) for each e € El. FE(VO,n)(E,') = Vi1 and
SE(w,m(ei) = v; for each i.
(i) For each edge ey € E' define a graph E(eg, n) as follows:
E(eo,n)’ = E°U (vi,va,..., v},
E(eg,n)' = fer,ea, ..., en1} U E'\{eg).
SEeom(€) = sp(€) and rgg,n(e) = rp(e) for each e € E'\{eg}. rgeegm(er) = viei
foreach2 <i<n+ 1, Sge,n(e;) =v;foreach 1 <i<n, rge,n(er) = re(ey) and
SE(eo,n)(en+1) = SE(EO)-
(iii) For any vertex vy € E° define a graph E’(vo, n) as follows:
E'(vo,n)" = E° U {vi,va,..., v,
E'(vo,n)! =E'Ufer,ea,...,e,).
sEI(VO,n)(e) = sE(e) and rE’(vo,n)(e) = rE(e) for each e € El. rE/(VO,,,)(el-) =V and
SE (vo.my(€;) = v; for each i.

ExawmpLE 3.5. Consider the graph E given by

.M
/ K
o\<~——F——e

Thus E(v, 3) is the graph
.M
e3 e el
.V3 .VZ .V] o, by o,
E(a,3) is the graph
[} el
o, —>9o, —>9o,
| X
€3
o, e o, y o,
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and E’(v, 3) is the graph

®, ®,
(%)
., o, 5 .,
/

.V3

COROLLARY 3.6. Let R be a commutative unital ring, E be a graph, vy € E° be a vertex
and n be a positive integer. Then Lr(E(vy,n)) = Lr(E’(vg, n)).

Proor. An argument similar to that in [9, proof of the Corollary 3.10] shows that the
result follows from Theorem 3.3. O

ProposiTioN 3.7. Let R be a commutative unital ring, E be a graph, e € E' be an edge
and n be a positive integer. Then Lg(E(rg(ey),n)) = Lr(E(eg, n)).

Proor. Let rg(ep) = vo and {e, vle € E(eg, n)',v € E(eg, n)°} be a universal Cuntz—
Krieger E(eg, n)-family. For v € E(vo, n)° define Q, = v, and for e € E(vy, n)! define

e if e # ey,
T, = .
enr16,---e1 ife=eg.

The same argument as in [9, proof of the Proposition 3.5] shows that {T,, Q,le €
E(vo,m)',v € E(vo,n)°} is a Cuntz—Krieger E(vy, n)-family in Lg(E(ep, n)). Let
{t.,q le € E(vo,n)!, v € E(vy,n)°} be a universal Cuntz—Krieger E(vg, n)-family. By
the universal homomorphism property of Lg(E(vy, 1)) there exists a s-homomorphism
¥ : Lr(E(vo, n)) — Lg(E(eo, n)) that ¥(g,) = Q, for each v € E(vy,n)° and ¥(t,) = T,
for each e € E(vg,n)'. The same argument as in [9, proof of the Proposition 3.5] shows
that ¥ is an epimorphism.

Now let a be a distinguished path in E(vy, n) and w, = ad,a”, where 4, is a cycle
without exits that starts and ends at rgq, ) (@). Suppose Ay = fifo -+ fin- I SE@em(fi) #
SEw.m(eo) for each i, then 4, is a cycle without exits in E(eg, n). Thus ¥(z,,) = 4, and
s0 (P(w,)) = R[x, x~']. Now assume that SEwem)(fi) = SEwem)(€0), for some i. Since
Aq 1s a cycle without exits, A, = eg fis1 firz - fi1. P(ta,) = env1€n - €1 fiv1 fira - fici
and e, 1€, -+ ey fir1 fira -+ - fi-1 1S a cycle without exits in E(eg, n). Thus (W(w,)) =
R[x, x']. Also, for each v € E(vy,n)° and r € R\{0}, ¥(rg,) = rv # 0. It follows from
the generalized uniqueness theorem that ¥ is injective. Therefore ¥ is an isomorphism
and the result follows. O

When E is a row-finite graph with no sinks and % is a field, Proposition 3.1 of [2]
shows that, there exists a row-finite graph G with no sinks and no sources such that
the Leavitt path algebras L;(E) and Ly(G) are Morita equivalent. Also when E is
a finite graph with no sinks and at least two vertices, Proposition 13 of [14] shows
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that, there exists a finite graph G with no sinks and no sources such that the Leavitt
path algebras L;(E) and L;(G) are graded Morita equivalent (see also [18, Corollary
3.18]). The following corollary improves these known (graded) Morita equivalences
to isomorphisms.

CoroLLARY 3.8. Let R be a commutative unital ring and E be a finite graph with no
sinks. Then there exists a finite graph G with no sinks and no sources such that the
Leavitt path algebras Lgr(E) and Lg(G) are isomorphic.

Proor. Let Ey = E. Removing the sources of Ej, we get a subgraph E; of Ej.
Removing the sources of E;, we get a subgraph E, of E; (see [2, Definition 1.2]).
Since E is a finite graph with no sinks, after finitely many repetitions, we get a
subgraph F = E, of E that has no sinks and no sources. By induction we see that
FY is a hereditary subset of E°. We show that (EO\F*, r;!(E°\F°), rg, sg) is a finite
acyclic graph such that, for any v € E°\ F°, there exists a path from v to F° in E. Since
E is a finite graph, (EO\FO, r;:l(EO\FO), rg, sg) is finite. Let eje; - - e, be a cycle in
(EO\F°, r;'(EO\F®), rg, sg). Then eje;---e, is a cycle in E and so it is a cycle in
E,. Inductively, eje; - - - e, is a cycle in E; for each 0 < i < n. Since sg(e;) € E°\F°,
sp(eq) is a source in E; for some 0 < j < n, which is a contradiction. Therefore
(EO\FO, rEI(EO\FO), re, sg) is acyclic. Let v € EC\F°. Then there exists 0 < j<n
such that v is a source in E;. Since E has no sinks, there exists an edge e; € E I such
that sg(e;) = v and rg(e;) € E?H. If j+ 1 =n, then ¢; is a path from v to F°. Assume
that j + 1 < n. If rg(e;) is not a source in E; for each i > j + 1, then rg(e;) € F° and e,
is a path from v to F°. If rz(e;) is a source in E; for some i > j + 1, then there exists
an edge e, € E' such that sg(e;) = rg(e;) and re(es) € E?+1' Continuing in this way,
since E is a finite graph, we get a path from v to F°. Thus by Theorem 3.3, Lg(E) =
Lr(E(F?)). By definition, E(F%)° = FO U F(F°). Since (EO\F°, r;!(E°\F°), rg, sg) is
a finite acyclic graph, F(F°) = {ala = ejes - - - ¢, € Path(E), sg(e,) ¢ F°, rp(e,) € FO)
is a finite set. Assume that F(F°) = {a}, s, ..., a,} for some positive integer p.
E(F)' = s ' (FY) Ul{ar, @z, ..., @,). Let rggoy(@r) = re(a) = vi € FO and assume that
rE(IFO)(vl) =r;'(v1) U{ay,, @,,..., @) for some 1 <i < p, where @y, = @7. Removing
the vertices @1, @1,, ..., a1, of E(F°), we get a graph Gy such that G/ (vy,i) = E(F").
By Corollary 3.6, Lg(E(F%)) = Lr(G(v1,1)). F has no sources, then there exists an
edge e; € F' such that rz(e;) = rg(e;) = vy, and so by Proposition 3.7, Lg(G1(vy,1)) =
Lz(G(ey,i)). Therefore Lg(E(F")) = Lg(G,(ey,i)). The above procedure shows that
Gi(ey, i) is a finite graph with no sinks and with p — i sources. Continuing in this way,
after finitely many steps we get a finite graph G with no sinks and no sources that
LR(E) = LR(G) [m]

CoroLLARY 3.9. Let E be a graph. Then the following statements are equivalent.

(1)  E is a finite graph with no sinks.
(2)  For every commutative unital ring R, Lg(E) is isomorphic to an algebraic Cuntz—
Krieger algebra.
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(3) There exists afield k such that Li(E) is isomorphic to an algebraic Cuntz—Krieger
algebra.

(4) E is a finite graph and, for every commutative unital ring R, Lgr(E) is strongly
Z-graded.

(5) C*(E) is unital and rank(Ky(C*(E))) = rank(K;(C*(E))).

Proor. (1) = (2) follows from Corollary 3.8.

(2) = (3) is obvious.

For (3) = (1), suppose that there exist a field k and a finite graph E’ with no sinks
and no sources such that L;(E) = CKi(E"). Hence L;(F) is unital and so E has a
finite number of vertices. Then, by [20, Corollary 6.17], E has no singular vertices.
Therefore E is a finite graph with no sinks and the result follows.

(1) © (4) follows from [15, Theorem 3.15].

(1) © (5) follows from [9, Theorem 3.12]. O
Let (G, +) be an abelian group. A finite set of elements {g1, g2, ..., g/} € G is called
linearly independent if whenever Zi:l n;g; = 0 for ny,...,n; € Z, then n; = 0 for each

1 <i <. Any two maximal linearly independent sets in G have the same cardinality. If
there exits a maximal linearly independent set in G, the cardinality of this set is called
the rank rank(G) of G, and if there is no maximal linearly independent set in G, the
rank rank(G) of G is defined to be infinite.

We are now ready to prove the main result of this section.

TueoreM 3.10. Let k be a field such that rank(k*) < oo and E be a graph. Then the
following statements are equivalent.

(1) E is a finite graph with no sinks.

(2) Li(E) is isomorphic to an algebraic Cuntz—Krieger algebra.

(3) E is a finite graph and Ly(E) is strongly Z-graded.

4) C*(E) is unital and rank(K(C*(E))) = rank(Ko(C*(E))).

(5) Li(E) is unital and rank(K;(L(E))) = (rank(k*) + D)rank(Ky(Li(E))).

Proor. (1) & (2) & (3) & (4) follows from Corollary 3.9.

For (2) = (5), suppose that there exists a finite graph E’ with no sinks and no
sources such that Li(E) = CKi(E’). Hence Li(E) is unital, and since rank(k*) <
oo, by [12, Theorem 8.1] we have |E;?ng| = (rank(k*) + Drank(Ky(Li(E"))) —
rank(K;(Li(E"))). Thus (rank(k*) + 1)rank(Ky(Li(E"))) = rank(K;(L(E’))) and so
(rank(k*) + Drank(Ko(Li(E))) = rank(K;(Li(E))).

For (5) = (1), suppose that Li(E) is unital and rank(K;(Li(E))) = (rank(k*) + 1)
rank(Ko(Ly(E))). Thus E° is a finite set, and by [12, Theorem 8.1] we
have IEgingI = (rank(k*) + Drank(Ko(Ly(E))) — rank(K; (Ly(E))). Since rank(k*) < oo,
rank(K; (Li(E))) < oo by [12, Theorem 8.1]. Thus IESin | = 0 and so E has no singular
vertices. Therefore F is a finite graph with no sinks and the result follows. O

The following example shows that the assumption rank(k*) < oo in the

Theorem 3.10 is necessary.
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ExampLE 3.11. Let E be the graph ¢; —* > e, and Q be the field of rational numbers.
rank(Q*) = co and K1(Q) = Q". Lg(E) = M>(Q), and so K;(Lg(E)) = K1(Q) = Q™.
Thus rank(K;(Lg(E))) = (rank(Q*) + 1rank(Ko(Lg(E))) = o0, Lo(E) is unital and E
is a finite graph but E has a sink.

4. Corners of Leavitt path algebras

In this section we show that there exists a graph E(T) for the corner PxLg(E)Py of
a Leavitt path algebra Lg(FE) associated to a finite vertex set X, such that Py Lg(E)Px =
Lg(E(T)).

Let E be a graph. An acyclic subgraph T of E is called a directed forest in E if, for
each v e T, |T' N rz!(v)| < 1. We denote by T the subset of T consisting of those
vertices v with [T' N r;' (v)| = 0, and by T" the subset of T consisting of those vertices
vwith |[T' N s (n)] = 0.

DeriNiTioN 4.1 [10, Definition 3.1]. Let E be a graph, X & E° be a finite set and T be
a row-finite, path-finite directed forest in E with 77 = X and T° = Hg(X). Define the
T-corner, E(T) of E as follows:
ET° =T\(veT’ @ #s;'(v)c T,
E(T) = {eue € s (TONT',u € E(T)°, ri(e) 27 u),
secry(ew) = se(e),  reery(e) = u.
Let E be a graph, X ¢ E° be a finite set. According to [10, Lemma 3.6] there is a

forest T in E which satisfies the conditions of Definition 4.1 if and only if Hg(X) is
finite.

ExampLE 4.2. Let

X ={v,} and

T is a row-finite, path-finite directed forest in E with 7" = {1,} and T° = Hg({»,}).
Thus E(T) is the following graph:

Yoy
7N
E(T): m C.Vl 'ij By
~———
By
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Crisp in [10, Theorem 3.5] proved that C*(E(T)) = PxC*(E)Px, where ) ,cx P,
converges strictly to a projection Py in the multiplier algebra M(C*(E)). In the
following theorem we prove a similar result for Leavitt path algebras.

Tureorem 4.3. Let E be a graph, X S E° be a finite set, T be a row-finite, path-finite
directed forest in E with T" = X and T® = Hg(X), Px = 3. .cx X and R be a commutative
unital ring. Then Lr(E(T)) = PxLgr(E)Px. If in addition Lg(E) is an algebraic Cuntz—
Krieger algebra, then Lg(E(T)) is isomorphic to an algebraic Cuntz—Krieger algebra.

Proor. Let {e,vle € E',v € E°} be the universal Cuntz—Krieger E-family. By
[10, Lemma 2.1()], for any v € T°, there exists a unique path 7(v) in Path(T)
such that sy(t(v)) € T" and rp(t(v)) =v. For each ve T°, let Q, = T(v)T(v)* —
DeeT'ns () T(V)ee*T(v)*.  For each e, € E(T)', let T,, = t(s(e))er(r(e))"Qy. An
argument similar to that in [10, proof of the Proposition 3.8] shows that {T, , O,le, €
E(T)',v e E(T)° is a Cuntz—Krieger E(T)-family in E. By the universal
homomorphism property of Lg(E(T)) there exists a s-homomorphism ¥ : Lg(E(T)) —
Lg(E) with ¥(v) = Q, for each v € E(T)° and ¥(e,) = T,, for each e, € E(T)'. Let
w: E! — Z be a weight map given by

{I(T(r(e))) —lt(s(e)) +1 if e¢T';s(e),r(e) eTO,
w(e) =

1 otherwise.

Let w(e*) = —w(e) and w(v) = 0 for each e € E' and v € E°. Thus Lg(E) is a Z-graded
algebra. Also Lgr(E(T)) is a Z-graded algebra with the usual Z-grading. We show that
W is a Z-graded ring homomorphism. For each v € E(T)°, ¥(v) = Q, = t(")1(v)* —
DeeTins1(v) T(Wee*(v)" and so the degree of W¥(v) is zero. For each e, € ET)',
Y(e,) =T,, = 1(s(e))et(r(e))* Q. 1(s(e)), T(r(e)) € Path(T) and so t(s(e))et(r(e))* Oy
is homogeneous of degree I(7(s(e))) + I(1(r(e))) — l(1(s(e))) + 1 — I(r(r(e))) = 1. Thus
Y is a Z-graded ring homomorphism.

We now show that, for each v € E(T)° and each r € R\{0}, W(rv) #0. Let
ve E(T)? and r € R\{0}). ¥(rv) = rQ, = r(t(v)t(v)* — DeeT'ns () TWee* T(v)*). By
Definition 4.1, either v is a sink in E or v emits an edge f € E'\T!. If v is a sink
in E, then Q, = 7(v)7(v)* and, by [21, Proposition 4.9], for each r € R\{0}, rQ, # 0.
Now assume that v emits an edge f € E'\T'. If rQ, = 0 for some r € R\{0}, then
rTWMTV)" =1 Yeerins1n) T(Wee (v)* = 0. Thus

(rT(v)T(v)* -r Z T(v)ee*‘r(v)*)‘r(v) ffr(v)* = 0.
eeT'ns~1(v)

Since e€ T! and f¢ T', e*f =0. Hence rt(v)ff*r(v)" =0 and so rr(v)f = 0.
This leads to a contradiction with [21, Proposition 4.9]. Thus ¥(rv) # 0 for each
v € E(T)? and each r € R\{0}, and, by the graded uniqueness theorem, ¥ is injective.
An argument similar to that in [10, proof of the Proposition 3.11] shows that
W(Lr(E(T))) = PxLr(E)Px and so Lg(E(T)) = PxLg(E)Px.

Now suppose that Lg(E) is an algebraic Cuntz—Krieger algebra. Thus E is a finite
graph with no sinks and no sources. Since E is a finite graph, any directed forest
in E is finite and so E(T) is a finite graph. Assume, on the contrary, that v € E(T)°
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and S;:%T)(v) = (. Since E has no sinks, s;jl(v) # (. Thus by the definition of E(T),
sz (v) ¢ T'. Therefore there exists e € E'\T" such that sg(e) = v. If rg(e) € E(T)°,
then e, () € E(T)" and SEr)(€rg(e)) = v, which is a contradiction. Thus rg(e) ¢ E (1)°.
Since T° = Hp(X) and v € T, rg(e) € TO. Also s3!(rg(e)) # 0, then there exists ¢) € T'!
with sg(e)) = re(e). Let rg(e)) =v,. If v € E(T)?, then sg(ry(ey,) = v, which is a
contradiction. Thus v; € T°\E(T)°. A similar argument shows that there exists e; € T
with sg(ey) = vi. Since T is an acyclic graph, by continuing in this way we get an
infinite path ejezes - - - in T, which is a contradiction. Thus E(T) is a finite graph with
no sinks, and, by Corollary 3.9, Lg(E(T)) is isomorphic to an algebraic Cuntz—Krieger
algebra. O

Let E be a finite graph with no sinks and no sources. In the proof of the above
Theorem we show that E(T) is a finite graph with no sinks. The following example
shows that there exists a finite graph E with no sinks and no sources such that E(T)
has a source.

ExawmpLE 4.4. Let E be the graph

oS

X = {2} and T be the directed forest
o3
/ Y«
.2 .4

04
o) — > 0y iz

Thus E(T) is the following graph:

DeriniTioN 4.5 [3, Definitions 9.1 and 9.4]. Let E be a graph.

(1) Define M,E to be the graph formed from E by taking each v € E° and attaching
a head of length n — 1 of the form

v
€, e

1
> 0y, > o,

Vv Vv Vv
n-1 L)

°
Vn-2

e

@, e > @

Vn-1 Vn-3 V2

to E.
(2) Define SE to be the graph formed from E by taking each v € E? and attaching an
infinite head of the form

v V Vv
] € €

V3 V2 Vi

to E. SE is called the stabilization of E.
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Let R be a ring. The ring of finitely supported, countably infinite square matrices
with coefficients in R is denoted by M (R) [3, Definition 9.6]. Note that if R is an
algebra (respectively, a *-algebra), then M (R) inherits an algebra (respectively, a -
algebra) structure. Algebras A and B are called stably isomorphic if M, (A) = M (B).
Abrams and Tomforde in [3, Propositions 9.3 and 9.8] proved that, for any graph E
and field k, Ly(M,E) = M,,(Lx(E)) and Ly(SE) = My (Ly(E)). An argument similar to
that in [3, proof of Propositions 9.3 and 9.8], with a commutative unital ring R in place
of field k, shows that Lgx(M,E) = M,,(Lg(E)) and Lg(SE) = M, (Lg(E)).

CoroLLARY 4.0. Let E be a graph and R be a commutative unital ring.

(1) Let X be a finite subset of (SE)° such that Hgz(X) is a finite set and ex = 3 .cx X.
Then there exists a row-finite, path-finite directed forest T in SE such that
Lr(SE(T)) = exLr(SE)ex. If in addition Lg(SE) is an algebraic Cuntz—Krieger
algebra, then ex Lg(SE)ex is isomorphic to an algebraic Cuntz—Krieger algebra.

(2) Let n be a positive integer, X be a finite subset of (M,E)° such that H m,e(X) is
a finite set and ex = ), ,cx X. Then there exists a row-finite, path-finite directed
forest T in M,E such that Lg(M,E(T)) = exLgr(M,E)ex. If in addition Lg(M,E)
is an algebraic Cuntz—Krieger algebra, then exLg(M,E)ex is isomorphic to an
algebraic Cuntz—Krieger algebra.

Proor. Since Hsp(X)\X (respectively, Hy, r(X)\X) is a finite set, by [10, Lemma 3.6]
there is a row-finite, path-finite directed forest 7 in SE (respectively, M,E) which
satisfies the conditions of Theorem 4.3. Thus the result follows from Theorem 4.3. O

An idempotent e of an algebra A is called full idempotent if AeA = A.

RemARrk 4.7. In Corollary 4.6, if in addition we assume that E is a graph with finitely
many vertices and E° C X, then the smallest saturated subset of (SE)° (respectively,
(M,E)®) containing X is (SE)° (respectively, (M,E)), and so ey is a full idempotent.

Prorosition 4.8. Let R be a commutative unital ring and A be an algebraic Cuntz—
Krieger R-algebra. Then M,,(A) is isomorphic to an algebraic Cuntz—Krieger algebra
for each positive integer n.

Proor. Let E be a finite graph with no sinks and no sources such that A = Lg(E),
and let n be a positive integer. M,E is a finite graph with no sinks and so, by
Corollary 3.9, Lg(M,E) is isomorphic to an algebraic Cuntz—Krieger algebra. Thus
M, (Lg(E)) = Lg(M,E) is isomorphic to an algebraic Cuntz—Krieger algebra. O

5. Algebras that are Morita equivalent to algebraic Cuntz—Krieger algebras

In this section we show that if a unital algebra A is stably isomorphic to an algebraic
Cuntz—Krieger algebra, then A is isomorphic to an algebraic Cuntz—Krieger algebra.
Also we show that if A is Morita equivalent to an algebraic Cuntz—Krieger algebra,
then A is isomorphic to an algebraic Cuntz—Krieger algebra.
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DeriniTion 5.1. Let R be a commutative unital ring, A be an R-algebra, e? =e e M,(A)
and f? = f € M,,(A). e is called Murray—von Neumann equivalent to f, denoted e ~ f,
if there exist x € M, ,(A) and y € M, ,,(A) such that e = yx and f = xy.

ExampLE 5.2. Let R be a commutative unital ring and E be a graph. Let v € E® be a
regular vertex. Thus, by the Cuntz—Krieger relations, we have v ~ Zeesil(v) re(v).

For an idempotent e € A and a positive integer n, ne denotes the idempotent
M € M, (A) such that M = (m;;), m;; = e for each i and m;; = 0 for each i # j.

The proof of the following lemma is similar to the proof of [9, Lemma 4.6], and we
give the proof for the reader’s convenience.

Lemma 5.3. Let k be a field, E be a finite graph with no sinks and no sources such that
every vertex of E is a base point of at least one cycle of length one, {v,elv € E°,e € E'}
be a Cuntz—Krieger E-family and f be a full idempotent of M,,(Ly(E)). Then there
exists a set {m,|v € E°, m, > 1} of positive integers such that f ~ ¥ ,cpo m,v.

Proor. By [6, Theorem 3.5], there exists a set {n,|v € E°, n, > 0} of nonnegative
integers such that f ~ 3 czon,v. Let Hy be the smallest hereditary subset of E°
which contains S = {v[v € E°, n, # 0}. By [9, Lemma 4.5], Hy is saturated. Put
8= Dyes, V € In,. Since f ~ 3, cpo myv, the ideal generated by f is equal to the ideal
generated by e;; ® g, where {¢;;}; ; is a system of matrix units. Thus e;; ® g is a full
idempotent in M,,(Ly(E)) and so g is a full idempotent of Li(E). Thus Iy, = Li(E)
and hence Hy = E°. Thus, for each w € E°, there exists v € S such that v > w. Put
EO\So = {wo,w1,...,wn}. Let v € Sq such that v > wy. An argument similar to that
in [9, proof of Lemma 4.3] shows that v ~ wg + 3 ,,cgo m,, (v, wo)u, where m,, (v, wg) > 0
and m, (v, wg) > |{e € E'|sg(e)rg(e) = v}| > 1. Hence, by using such equations for all
W05+ + s W, We Obtain f ~ ¥ g0 n’v, where n/, > 1 for all v € E°. m]

ProrosiTioN 5.4. Let k be a field, E be a finite graph with no sinks and no sources, n
be a positive integer and e be a full idempotent of M,(Li(E)). Then there exists a finite
graph F that has no sinks and no sources such that Li(F) = eM,,(Li(E))e.

Proor. First, we assume that every vertex of E is a base point of at least one cycle
of length one. By [3, Proposition 9.3] and its proof, there exists an isomorphism
@ : M, (Ly(E)) = Ly(M,E) such that, for each v € E°, Ko(®)([e;; ® v]) = [v]. Let e be
a full idempotent of M,,(Ly(E)); thus, by Lemma 5.3, ¢ ~ ', cpo m,v with m,, > 1 for all
ve E?. Since Liy(M,E) is separative by [4, Theorem 6.3], ®(e) is Murray—von
Neumann equivalent to ey € Ly(M,E) such that X is a finite, hereditary subset of
(M,E)° with E° C X. By Corollary 4.6, exLy(M,E)ex = Li(F) for some finite
graph F with no sinks and no sources. Thus eM,(Li(E))e = ®(e)Ly(M,E)D(e) =
exLy(M,E)ex = Li(F) and the result follows. Now let E be a finite graph with no
sinks and no sources. Since M,E is a finite graph with no sinks, we can apply
[18, Theorem 3.1] to get a finite graph G with no sinks and no sources, and every
vertex of G is a base point of at least one cycle of length one, such that Li(M,E)
and L;(G) are Morita equivalent. Therefore there exist a positive integer m and
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full idempotent f of M,,(L(G)) such that Ly(M,E) = fM,,(Ly(G))f. Therefore
eM,,(Li(E))e = f'M,,(L(G))f’ for some full idempotent f’ of M,,(Ly(G)). Thus by
the first case there exists a finite graph F that has no sinks and no sources such that
Li(F) = f'M,,(Li(G)) f" = eM,,(Ly(E))e, and the result follows. O

COROLLARY 5.5. Let k be a field and A be a unital k-algebra which is Morita equivalent
to an algebraic Cuntz—Krieger k-algebra. Then A is isomorphic to an algebraic Cuntz—
Krieger algebra.

Proor. Let E be a finite graph with no sinks and no sources such that A is Morita
equivalent to the algebraic Cuntz—Krieger algebra L;(E). Therefore there exist a
positive integer n and full idempotent e of M,(Li(E)) such that A = eM,,(Li(E))e.
Therefore, by Proposition 5.4, there exists a finite graph F that has no sinks and no
sources such that Ly (F) = eM,(L(E))e = A. O

COROLLARY 5.6. Let k be a field and A be a unital k-algebra which is stably isomorphic
to an algebraic Cuntz—Krieger k-algebra. Then A is isomorphic to an algebraic Cuntz—
Krieger algebra.

Proor. By [3, Proposition 9.10], A is Morita equivalent to an algebraic Cuntz—Krieger
k-algebra. Therefore the result follows by Corollary 5.5. O

CoROLLARY 5.7. Let k be a field and A be a k-algebra. Then the following statements
are equivalent.

(1) Aisan algebraic Cuntz—Krieger algebra.
(2) M, (A) is isomorphic to an algebraic Cuntz—Krieger algebra for each n € N.
(3) M,(A) is isomorphic to an algebraic Cuntz—Krieger algebra for some n € N.

Proor. (1) = (2) follows from Proposition 4.8.

(2) = (3) is obvious.

(3) = (1) Assume that M,,(A) is isomorphic to an algebraic Cuntz—Krieger algebra
for some n € N. Thus M,,(A) is unital and so A is a unital k-algebra. Since A is stably
isomorphic to M,,(A), the result follows from Corollary 5.6. O

CoROLLARY 5.8. Let k be a field, A be an algebraic Cuntz—Krieger k-algebra and e be
a nonzero idempotent of A. Then eAe is isomorphic to an algebraic Cuntz—Krieger
algebra.

Proor. Let A = Li(E) where E is a finite graph with no sinks and no sources. Let e be
a nonzero idempotent of A and / be the ideal in L;(E) generated by e. As eAe €1 we
have eAe C ele and so ele = eAe. Since [ is generated by an idempotent e, [ is a graded
ideal of Ly(E) by [6, proof of Proposition 5.2 and Theorem 5.3]. Therefore there exists
a hereditary saturated subset H of E® such that I = Iy. Let Ey = (H, sgl(H), re,Sg). Eg
is a finite graph with no sinks, and, by [8, Lemma 2.4], L;(Ey) is Morita equivalent to
Iy. Thus, by Corollaries 3.9 and 5.5, Iy is isomorphic to the algebraic Cuntz—Krieger
algebra B. Hence eAe = elye is isomorphic to fBf for some full idempotent f of B.
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By Proposition 5.4, there exists a finite graph F that has no sinks and no sources such
that Ly(F) = fBf. Thus eAe = L;(F) and the result follows. O

COROLLARY 5.9. Let k be a field, A be an algebraic Cuntz—Krieger k-algebra and e be
a nonzero idempotent of M (A). Then eM(A)e is isomorphic to an algebraic Cuntz—
Krieger algebra.

Proor. We use the same argument as in [9, proof of Corollary 4.10]. Let A = Ly(E)
where E is a finite graph with no sinks and no sources. By [6, Theorem 3.5],
there exists a set {n,|v € E°, n, > 0} of nonnegative integers such that e ~ 3, o n,v.
Let X ={ve E%n, # 0} and f = X,y v. Thus f is a nonzero idempotent of Li(E),
and, by Corollary 5.8, there exists a finite graph F that has no sinks and no
sources such that Ly(F) = fLy(E)f. By [6, Theorem 5.3], the ideal of M (A)
generated by e and the ideal of M,(A) generated by e;; ® f coincide. Thus fAf ®
Moo (k) = (11 @ /)Mw(A)(e11 ® f) @ Moo (k) = eM(A)e ® My (k). Therefore eM,(A)e
is stably isomorphic to an algebraic Cuntz—Krieger algebra and the result follows from
Corollary 5.6. O
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