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Abstract

We show that a directed graph E is a finite graph with no sinks if and only if, for each commutative
unital ring R, the Leavitt path algebra LR(E) is isomorphic to an algebraic Cuntz–Krieger algebra if
and only if the C∗-algebra C∗(E) is unital and rank(K0(C∗(E))) = rank(K1(C∗(E))). Let k be a field and
k× be the group of units of k. When rank(k×) < ∞, we show that the Leavitt path algebra Lk(E) is
isomorphic to an algebraic Cuntz–Krieger algebra if and only if Lk(E) is unital and rank(K1(Lk(E))) =

(rank(k×) + 1)rank(K0(Lk(E))). We also show that any unital k-algebra which is Morita equivalent or
stably isomorphic to an algebraic Cuntz–Krieger algebra, is isomorphic to an algebraic Cuntz–Krieger
algebra. As a consequence, corners of algebraic Cuntz–Krieger algebras are algebraic Cuntz–Krieger
algebras.

2010 Mathematics subject classification: primary 16W99; secondary 16E20, 16D90.

Keywords and phrases: Leavitt path algebra, Cuntz–Krieger algebra, stably isomorphic, Morita
equivalence.

1. Introduction

Cuntz–Krieger algebras, introduced and first investigated by Cuntz and Krieger [11]
in 1980, are a prominent class of C∗-algebras arising from dynamical systems. The
Cuntz–Krieger algebra OA was originally associated to a finite square {0, 1} matrix
A [11], but it can also be viewed as the graph C∗-algebra of a finite directed graph
with no sinks and no sources [22]. Graph C∗-algebras and their generalizations have
been intensively investigated by analysts for more than two decades (see [19] for an
overview of the subject).

The algebraic Cuntz–Krieger algebras arose as specific examples of fractional skew
monoid rings [5]. Leavitt path algebras are the algebraic version of graph C∗-algebras.
Leavitt path algebras Lk(E) are quotients of path algebras associated to an extended
graph Ê and a field k, modulo additional relations. An algebraic Cuntz–Krieger algebra
CK k(E) is a Leavitt path algebra Lk(E) of a finite graph E with no sinks and no sources.
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Initially, Leavitt path algebras were introduced by Ara et al. in [6] and by Abrams
and Aranda Pino in [1]. Tomforde in [21] generalizes the construction of Leavitt
path algebras by replacing the field k with a commutative unital ring R. Leavitt
path algebras are also a generalization of the algebras constructed by Leavitt in [16]
to produce rings without the invariant basis number property (i.e., Rm

R � Rn
R as left

R-modules with m , n). Leavitt path algebras include many well-known algebras
such as matrix algebras Mn(R) for n ≥ 1, the Laurent polynomial ring R[x, x−1], or
the Leavitt algebras L(1, n) for n ≥ 2.

Many times in the literature, the conditions characterizing some analytic properties
of the graph C∗-algebra turned out to be exactly the same conditions characterizing
the corresponding algebraic version of these properties. In this sense the Leavitt path
algebra theory, being more recent, has benefited from the inspiration that the graph
C∗-algebra world provided. This is the case once more for the topic discussed in the
current paper: the analytic results were given in [9] for the Cuntz–Krieger algebras,
and we give here the algebraic analogue for algebraic Cuntz–Krieger algebras. Some
of the ideas in this paper are contained in [9]. Theorem 3.12 of [9] says that the graph
C∗-algebra C∗(E) is isomorphic to a Cuntz–Krieger algebra if and only if C∗(E) is
unital and rank(K0(C∗(E))) = rank(K1(C∗(E))). In the algebraic setting we prove a
slightly different result (Theorem 3.10). Let k be a field such that rank(k×) <∞. Then
the Leavitt path algebra Lk(E) is isomorphic to an algebraic Cuntz–Krieger algebra if
and only if Lk(E) is unital and rank(K1(Lk(E))) = (rank(k×) + 1)rank(K0(Lk(E))). We
also show that the assumption rank(k×) <∞ is necessary.

The paper is organized as follows. In Section 2 we give all the background
information, definitions and basic properties of Leavitt path algebras that we need
in this paper.

In Section 3 we give a characterization of algebraic Cuntz–Krieger algebras. In
the first step of this process, we provide a class of operations on graphs that preserve
isomorphism of associated Leavitt path algebras. With this useful result, we show
that algebraic Cuntz–Krieger algebras are Leavitt path algebras of finite graphs with
no sinks. Finally, in Corollary 3.9 and Theorem 3.10 we derive further conditions
for LR(E) to be isomorphic to an algebraic Cuntz–Krieger R-algebra when R is a
commutative unital ring or a field.

In Section 4 we first show that the corner PXLR(E)PX , where X is a finite subset
of E0, is isomorphic to a Leavitt path algebra LR(E(T )). Also we show that if LR(E)
is an algebraic Cuntz–Krieger algebra, then LR(E(T )) is an algebraic Cuntz–Krieger
algebra. Finally, after proving similar results forMn(LR(E)) andM∞(LR(E)), we show
that if A is an algebraic Cuntz–Krieger R-algebra then, for each positive integer n,
Mn(A) is isomorphic to an algebraic Cuntz–Krieger algebra.

In the last section, we show that if a unital k-algebra A is Morita equivalent or stably
isomorphic to an algebraic Cuntz–Krieger algebra, then it is isomorphic to an algebraic
Cuntz–Krieger algebra. As a consequence, A is an algebraic Cuntz–Krieger algebra if
and only if the full n × n matrix algebra over A is an algebraic Cuntz–Krieger algebra.
Also we show that if A is an algebraic Cuntz–Krieger algebra, then the corners eAe
and e′M∞(A)e′ are isomorphic to algebraic Cuntz–Krieger algebras.
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2. Preliminaries

A directed graph E = (E0, E1, rE , sE) consists of two sets E0 and E1 together with
maps rE , sE : E1 → E0, identifying the range and source of each edge. The elements
of E0 are called vertices and the elements of E1 edges. If a vertex v emits no edges,
that is, if s−1

E (v) is empty, then v is called a sink. A vertex v is called a regular vertex
if s−1

E (v) is a finite nonempty set. The set of regular vertices is denoted by E0
reg. We let

E0
sing := E0\E0

reg and refer to an element of E0
sing as a singular vertex.

A finite path µ in a graph E is a finite sequence of edges µ = e1 · · · en such that
rE(ei) = sE(ei+1) for i = 1, . . . , n − 1. In this case, n = l( µ) is the length of µ. We
view the elements of E0 as paths of length 0. For any n ∈ N the set of paths of
length n is denoted by En. Also, Path(E) stands for the set of all finite paths, that
is, Path(E) =

⋃∞
n=0 En. We denote by µ0 the set of the vertices of the path µ, that is, the

set {s(e1), r(e1), . . . , r(en)}.
A path µ = e1 · · · en is closed if r(en) = s(e1), in which case µ is said to be based at

the vertex s(e1). The closed path µ is called a cycle if it does not pass through any of
its vertices twice, that is, if s(ei) , s(e j) for every i , j. A cycle of length one is called
a loop. An exit for a path µ = e1 · · · en is an edge e such that sE(e) = sE(ei) for some i
and e , ei.

A right-infinite path µ in a graph E is an infinite sequence of edges µ = e1e2e3 . . .
such that rE(ei) = sE(ei+1) for each i. A left-infinite path µ in a graph E is an infinite
sequence of edges µ = · · · e−3e−2e−1 such that rE(ei) = sE(ei+1) for each i. A bi-infinite
path µ in a graph E is an infinite sequence of edges µ = · · · e−3e−2e−1e0e1e2e3 · · · such
that rE(ei) = sE(ei+1) for each i. We denote by E∞ the set of all (right-, left-, bi-)infinite
paths in E.

A path µ = e1e2e3 · · · is called vertex-simple if the sequence s(e1), r(e1), r(e2), . . .
contains no repeated vertices. A graph E is called path-finite if E∞ contains no vertex-
simple paths. A graph E is called row-finite if, for each v ∈ E0, s−1

E (v) is a finite set.
For each e ∈ E1, we call e∗ a ghost edge. We let rE(e∗) denote sE(e), and we let sE(e∗)
denote rE(e).

Definition 2.1. Let E be a graph. The graph C∗-algebra C∗(E) is the universal
C∗-algebra generated by mutually orthogonal projections {pv : v ∈ E0} together with
partial isometries with mutually orthogonal ranges {se : e ∈ E1} which satisfy the
following conditions.

(1) (The ‘CK-1 relations’) for all e ∈ E1, s∗e se = pr(e) and ses∗e ≤ ps(e).
(2) (The ‘CK-2 relations’) for every regular vertex v ∈ E0,

pv =
∑

{e∈E1 | sE (e)=v}

ses∗e.

Definition 2.2. Let E be an arbitrary graph and R be a commutative ring with unit. The
Leavitt path algebra LR(E) with coefficients in R is the universal R-algebra generated
by a set {v : v ∈ E0} of pairwise orthogonal idempotents together with a set of variables
{e, e∗ : e ∈ E1} which satisfy the following conditions.
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(1) sE(e)e = e = erE(e) for all e ∈ E1.
(2) rE(e)e∗ = e∗ = e∗sE(e) for all e ∈ E1.
(3) (The ‘CK-1 relations’) for all e, f ∈ E1, e∗e = rE(e) and e∗ f = 0 if e , f .
(4) (The ‘CK-2 relations’) for every regular vertex v ∈ E0,

v =
∑

{e∈E1 | sE (e)=v}

ee∗.

Another definition for LR(E) can be given using the extended graph Ê. This graph
has the same set of vertices E0 and the same set of edges E1 together with the so-
called ghost edges e∗ for each e ∈ E1, whose directions are opposite to those of
the corresponding e ∈ E1. LR(E) can be defined as the usual path algebra RÊ with
coefficients in R subject to Cuntz–Krieger relations (3) and (4) above.

Definition 2.3. Let E be a graph and A be an R-algebra with involution ∗. A Cuntz–
Krieger E-family inA is a collection Σ = (S µ)µ∈E0∪E1 ⊂Awhich satisfies the following
relations.

(1) For all v,w ∈ E0, S vS v = S v and S vS w = 0 if v , w.
(2) S ∗v = S v for all v ∈ E0.
(3) S s(e)S e = S e = S eS r(e) for all e ∈ E1.
(4) For all e, f ∈ E1, S ∗eS e = S r(e) and S ∗eS f = 0 if e , f .
(5) For every regular vertex v ∈ E0,

S v =
∑

{e∈E1, s(e)=v}

S eS ∗e.

Let A be an R-algebra with a Cuntz–Krieger E-family; thus by the universal
homomorphism property of LR(E), there is a unique R-algebra homomorphism from
LR(E) to A mapping the generators of LR(E) to their appropriate counterparts in A. We
will refer to this property as the universal homomorphism property of LR(E).

Definition 2.4. Let E be a finite graph with no sinks and no sources and R a
commutative ring with unit. The Leavitt path algebra LR(E) is called their algebraic
Cuntz–Krieger algebra, which is denoted by CKR(E).

If E has a finite number of vertices, then LR(E) is unital with
∑

v∈E0 v = 1LR(E);
otherwise, LR(E) is a ring with a set of local units (that is, a set of elements X such that,
for every finite collection a1, . . . ,an ∈ LR(E), there exists x ∈ X such that aix = ai = xai)
consisting of sums of distinct vertices of the graph.

If µ = e1 · · · en is a path in E, we write µ∗ for the element e∗n · · · e
∗
1 of LR(E). With

this notation it can be shown that the Leavitt path algebra LR(E) can be viewed as

LR(E) = spanR{αβ
∗ : α, β ∈ Path(E) and r(α) = r(β)}

and rv , 0 for all v ∈ E0 and all r ∈ R \ {0} (see [21, Proposition 3.4]). Also LR(E)
is a ∗-algebra with linear anti-multiplicative involution defined by (

∑n
i=1 riαiβ

∗
i )∗ =∑n

i=1 riβiα
∗
i .
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Let G be a group. A ring A =
⊕

g∈G Ag is called a G-graded ring, if each Ag

is an additive subgroup of A and AgAg′ ⊆ Ag+g′ for all g, g′ ∈ G. A G-graded ring
A =

⊕
g∈G Ag is called a strongly graded ring if AgAg′ = Ag+g′ for all g, g′ ∈ G. Let

Φ : A→ B be a ring homomorphism between G-graded rings. Φ is a graded ring
homomorphism if Φ(Ag) ⊆ Bg, for all g ∈ G. Leavitt path algebras can be viewed as
graded algebras. Let G be a group with the identity element e and w : E1 → G be
a weight map. Also let w(α∗) = w(α)−1 and w(v) = e, for each α ∈ E1 and v ∈ E0.
Thus the path algebra RÊ of the extended graph Ê is a G-graded R-algebra, and since
Cuntz–Krieger relations are homogeneous, LR(E) is a G-graded R-algebra. The natural
grading given to a Leavitt path algebra is a Z-grading by setting w(α) = 1, w(α∗) = −1
and w(v) = 0, for each α ∈ E1 and v ∈ E0. In this case the Leavitt path algebra can
be decomposed as a direct sum of homogeneous components LR(E) =

⊕
n∈Z LR(E)n

satisfying LR(E)nLR(E)m ⊆ LR(E)n+m. Actually,

LR(E)n = spanR{pq∗ : p, q ∈ Path(E), l(p) − l(q) = n}.

Every element x ∈ LR(E)n is a homogeneous element of degree n.
An ideal I is graded if it inherits the grading of LR(E), that is, if I =

⊕
n∈Z(I ∩

LR(E)n). Tomforde in [21] (see also [7, Theorem 3.5]) proved the graded uniqueness
theorem. Let E be a graph and let LR(E) be the associated Leavitt path algebra with
the usual Z-grading. If A is a Z-graded ring, and π : LR(E)→ A is a graded ring
homomorphism with π(rv) , 0 for all v ∈ E0 and r ∈ R\{0}, then π is injective.

We define a relation ≥ on E0 by setting v ≥ w if there exists a path µ in E from v
to w, that is, v = s( µ) and w = r( µ). A subset X of E0 is called hereditary if, for each
v ∈ X, v ≥ w implies that w ∈ X. For any subset X ⊆ E0, the smallest hereditary subset
of E0 containing X is denoted by HE(X). A subset H ⊆ E0 is called saturated if, for
any regular vertex v, r(s−1(v)) ⊆ H implies that v ∈ H. An ideal I of LR(E) is called
basic if rv ∈ I for r ∈ R \ {0} implies that v ∈ I. Tomforde [21, Theorem 7.9] proved
that the map H −→ IH defines a lattice isomorphism between the saturated hereditary
subsets of E0 and the graded basic ideals of LR(E), where IH is a two-sided ideal in
LR(E) generated by a saturated hereditary subset H of E0.

A right-infinite path τ = e1e2 · · · in E is called periodic if there exist integers j, k ≥ 1,
such that en+k = en for every n ≥ j. In this case, it is clear that the path ρ = e j · · · e j+k−1
is closed. Take j and k such that j + k is the smallest possible value which satisfies
the condition en+k = en for every n ≥ j, and consider the paths α = e1 · · · e j−1 and
λ = e j · · · e j+k−1. The pair (α, λ) is called the seed of τ. Of course α may have zero
length. In any case, λ is a closed path, which is called the period of τ. A right-infinite
path τ which is periodic and whose period is a closed path without exits (which means
that it has to be a cycle without exits) is called an infinite discrete essentially aperiodic
trail. For any infinite discrete essentially aperiodic trail which is parameterized by the
seed (α, λα) of the trail (that is, α ∈ Path(E) is its essential head and r(α) is visited
by the cycle without exits λα), the path α is called a distinguished path. In the case
l(α) = 0, α is called a distinguished vertex. For any distinguished path α, αλαα∗ is
denoted by ωα.
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To finish this section we introduce a generalized uniqueness theorem which we will
use later.

Theorem 2.5 [13, Theorem 5.2]. Let E be a graph, R be a commutative ring with unit
and A be an R-algebra. Consider Φ : LR(E)→A a ring homomorphism. Then the
following conditions are equivalent.

(i) Φ is injective.
(ii) The restriction of Φ to MR(E) is injective.
(iii) Both the following conditions are satisfied:

(a) Φ(rv) , 0, for all v ∈ E0 and for all r ∈ R \ {0};
(b) for every distinguished path α, the ∗ R-algebra 〈Φ(ωα)〉 generated by

Φ(ωα) is ∗-isomorphic to R[x, x−1], that is, 〈Φ(ωα)〉 � R[x, x−1].

3. Characterization of algebraic Cuntz–Krieger algebras

In this section we give a characterization of algebraic Cuntz–Krieger algebras.

Definition 3.1. [9, Definition 3.6] Let E be a graph, H be a hereditary subset of E0

and F(H) = {α|α = e1e2 · · · en ∈ Path(E), sE(en) < H, rE(en) ∈ H}. Let F(H) be another
copy of F(H); for each α ∈ F(H), the copy of α in F(H) is denoted by α. Define a
graph E(H) as follows

E(H)0 = H ∪ F(H),

E(H)1 = s−1
E (H) ∪ F(H).

sE(H)(e) = sE(e) and rE(H)(e) = rE(e) for each e ∈ s−1
E (H). sE(H)(α) = α and rE(H)(α) =

rE(α) for each α ∈ F(H).

Example 3.2. Consider the graph E given by

•3

��
•5

g1 // •4

f1 //
f2
// •1

??

•2oo

Let H = {1, 2, 3}. Thus F(H) = { f1, f2, g1 f1, g1 f2} and E(H) is the graph
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•g1 f1

g1 f1

��

• f1

f1   

•3

��
•1

??

•2oo

• f2

f2
==

•g1 f2

g1 f2

FF

Theorem 3.3. Let R be a commutative unital ring, E be a graph and H be a hereditary
subset of E0. Suppose that (E0\H, r−1

E (E0\H), rE , sE) is a finite acyclic graph, v ≥ H
for all v ∈ E0\H and the set s−1

E (E0\H) ∩ r−1
E (H) is finite. Then LR(E) � LR(E(H)).

Proof. Let {e, v|e ∈ E1, v ∈ E0} be a universal Cuntz–Krieger E-family. For v ∈ E(H)0

define

Qv =

v if v ∈ H,
αα∗ if v = α ∈ F(H),

and for e ∈ E(H)1 define

Te =

e if e ∈ s−1
E (H),

α if e = α ∈ F(H).

The same argument as in [9, proof of the Theorem 3.8] (see also [17, Lemma 3.7])
shows that {Te,Qv|e ∈ E(H)1, v ∈ E(H)0} is a Cuntz–Krieger E(H)-family in LR(E).
Let {te, qv|e ∈ E(H)1, v ∈ E(H)0} be a universal Cuntz–Krieger E(H)-family. By
the universal homomorphism property of LR(E(H)) there exists a ∗-homomorphism
Ψ : LR(E(H))→ LR(E) with Ψ(qv) = Qv for each v ∈ E(H)0 and Ψ(te) = Te for each
e ∈ E(H)1. Since s−1

E (E0\H) ∩ r−1
E (H) is finite, the same argument as in [9, proof of

the Theorem 3.8] shows that Ψ is an epimorphism. Now let α be a distinguished path in
E(H) andωα = αλαα

∗, where λα is a cycle without exits that starts and ends at rE(H)(α).
The cycles in E(H) come from cycles in E all lying in the subgraph (H, s−1

E (H), sE , rE).
Hence λα is a cycle without exits in E that starts and ends at rE(H)(α). If α is a
distinguished vertex, then ωα = λα and Ψ(ωα) = ωα. If l(α) , 0, then α = µβ for
some µ = e1 · · · et ∈ Path(E)\F(H) and β ∈ F(H). Therefore Ψ(ωα) = µβλαβ

∗µ∗ and
so 〈Ψ(ωα)〉 � R[x, x−1]. Now let v ∈ E(H)0 and r ∈ R\{0}. If v ∈ H, then Ψ(rqv) = rv
and by [21, Proposition 3.4], rv , 0. Now assume that v = α for some α ∈ F(H).
Hence Ψ(rqv) = rαα∗ and by [21, Proposition 4.9], rαα∗ , 0. Thus by the generalized
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uniqueness theorem, Ψ is injective. Therefore Ψ is an isomorphism and the result
follows. �

Definition 3.4. [9, Definitions 3.2, 3.3 and 3.9] Let E be a graph and n be a positive
integer.

(i) For any vertex v0 ∈ E0 define a graph E(v0, n) as follows

E(v0, n)0 = E0 ∪ {v1, v2, . . . , vn},

E(v0, n)1 = E1 ∪ {e1, e2, . . . , en}.

sE(v0,n)(e) = sE(e) and rE(v0,n)(e) = rE(e) for each e ∈ E1. rE(v0,n)(ei) = vi−1 and
sE(v0,n)(ei) = vi for each i.

(ii) For each edge e0 ∈ E1 define a graph E(e0, n) as follows:

E(e0, n)0 = E0 ∪ {v1, v2, . . . , vn},

E(e0, n)1 = {e1, e2, . . . , en+1} ∪ E1\{e0}.

sE(e0,n)(e) = sE(e) and rE(e0,n)(e) = rE(e) for each e ∈ E1\{e0}. rE(e0,n)(ei) = vi−1
for each 2 ≤ i ≤ n + 1, sE(e0,n)(ei) = vi for each 1 ≤ i ≤ n, rE(e0,n)(e1) = rE(e0) and
sE(e0,n)(en+1) = sE(e0).

(iii) For any vertex v0 ∈ E0 define a graph E′(v0, n) as follows:

E′(v0, n)0 = E0 ∪ {v1, v2, . . . , vn},

E′(v0, n)1 = E1 ∪ {e1, e2, . . . , en}.

sE′(v0,n)(e) = sE(e) and rE′(v0,n)(e) = rE(e) for each e ∈ E1. rE′(v0,n)(ei) = v0 and
sE′(v0,n)(ei) = vi for each i.

Example 3.5. Consider the graph E given by

•u
β

  
•v

α
>>

•wγ
oo

Thus E(v, 3) is the graph

•u
β

  
•v3

e3 // •v2

e2 // •v1

e1 // •v

α
>>

•wγ
oo

E(α, 3) is the graph

•v2

e2 // •v1

e1 // •u
β

  
•v3

e3

OO

•ve4
oo •wγ

oo
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and E′(v, 3) is the graph

•v1

e1

  

•u
β

  
•v2

e2 // •v

α
>>

•wγ
oo

•v3

e3

>>

Corollary 3.6. Let R be a commutative unital ring, E be a graph, v0 ∈ E0 be a vertex
and n be a positive integer. Then LR(E(v0, n)) � LR(E′(v0, n)).

Proof. An argument similar to that in [9, proof of the Corollary 3.10] shows that the
result follows from Theorem 3.3. �

Proposition 3.7. Let R be a commutative unital ring, E be a graph, e0 ∈ E1 be an edge
and n be a positive integer. Then LR(E(rE(e0), n)) � LR(E(e0, n)).

Proof. Let rE(e0) = v0 and {e, v|e ∈ E(e0, n)1, v ∈ E(e0, n)0} be a universal Cuntz–
Krieger E(e0, n)-family. For v ∈ E(v0, n)0 define Qv = v, and for e ∈ E(v0, n)1 define

Te =

e if e , e0,

en+1en · · · e1 if e = e0.

The same argument as in [9, proof of the Proposition 3.5] shows that {Te, Qv|e ∈
E(v0, n)1, v ∈ E(v0, n)0} is a Cuntz–Krieger E(v0, n)-family in LR(E(e0, n)). Let
{te, qv|e ∈ E(v0, n)1, v ∈ E(v0, n)0} be a universal Cuntz–Krieger E(v0, n)-family. By
the universal homomorphism property of LR(E(v0, n)) there exists a ∗-homomorphism
Ψ : LR(E(v0, n))→ LR(E(e0, n)) that Ψ(qv) = Qv for each v ∈ E(v0, n)0 and Ψ(te) = Te

for each e ∈ E(v0, n)1. The same argument as in [9, proof of the Proposition 3.5] shows
that Ψ is an epimorphism.

Now let α be a distinguished path in E(v0, n) and ωα = αλαα
∗, where λα is a cycle

without exits that starts and ends at rE(v0,n)(α). Suppose λα = f1 f2 · · · fm. If sE(v0,n)( fi) ,
sE(v0,n)(e0) for each i, then λα is a cycle without exits in E(e0, n). Thus Ψ(tλα) = λα and
so 〈Ψ(ωα)〉 � R[x, x−1]. Now assume that sE(v0,n)( fi) = sE(v0,n)(e0), for some i. Since
λα is a cycle without exits, λα = e0 fi+1 fi+2 · · · fi−1. Ψ(tλα) = en+1en · · · e1 fi+1 fi+2 · · · fi−1
and en+1en · · · e1 fi+1 fi+2 · · · fi−1 is a cycle without exits in E(e0, n). Thus 〈Ψ(ωα)〉 �
R[x, x−1]. Also, for each v ∈ E(v0, n)0 and r ∈ R\{0}, Ψ(rqv) = rv , 0. It follows from
the generalized uniqueness theorem that Ψ is injective. Therefore Ψ is an isomorphism
and the result follows. �

When E is a row-finite graph with no sinks and k is a field, Proposition 3.1 of [2]
shows that, there exists a row-finite graph G with no sinks and no sources such that
the Leavitt path algebras Lk(E) and Lk(G) are Morita equivalent. Also when E is
a finite graph with no sinks and at least two vertices, Proposition 13 of [14] shows
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that, there exists a finite graph G with no sinks and no sources such that the Leavitt
path algebras Lk(E) and Lk(G) are graded Morita equivalent (see also [18, Corollary
3.18]). The following corollary improves these known (graded) Morita equivalences
to isomorphisms.

Corollary 3.8. Let R be a commutative unital ring and E be a finite graph with no
sinks. Then there exists a finite graph G with no sinks and no sources such that the
Leavitt path algebras LR(E) and LR(G) are isomorphic.

Proof. Let E0 = E. Removing the sources of E0, we get a subgraph E1 of E0.
Removing the sources of E1, we get a subgraph E2 of E1 (see [2, Definition 1.2]).
Since E is a finite graph with no sinks, after finitely many repetitions, we get a
subgraph F = En of E that has no sinks and no sources. By induction we see that
F0 is a hereditary subset of E0. We show that (E0\F0, r−1

E (E0\F0), rE , sE) is a finite
acyclic graph such that, for any v ∈ E0\F0, there exists a path from v to F0 in E. Since
E is a finite graph, (E0\F0, r−1

E (E0\F0), rE , sE) is finite. Let e1e2 · · · er be a cycle in
(E0\F0, r−1

E (E0\F0), rE , sE). Then e1e2 · · · er is a cycle in E and so it is a cycle in
E1. Inductively, e1e2 · · · er is a cycle in Ei for each 0 ≤ i ≤ n. Since sE(e1) ∈ E0\F0,
sE(e1) is a source in E j for some 0 ≤ j ≤ n, which is a contradiction. Therefore
(E0\F0, r−1

E (E0\F0), rE , sE) is acyclic. Let v ∈ E0\F0. Then there exists 0 ≤ j ≤ n
such that v is a source in E j. Since E has no sinks, there exists an edge e1 ∈ E1 such
that sE(e1) = v and rE(e1) ∈ E0

j+1. If j + 1 = n, then e1 is a path from v to F0. Assume
that j + 1 < n. If rE(e1) is not a source in Ei for each i ≥ j + 1, then rE(e1) ∈ F0 and e1

is a path from v to F0. If rE(e1) is a source in Ei for some i ≥ j + 1, then there exists
an edge e2 ∈ E1 such that sE(e2) = rE(e1) and rE(e2) ∈ E0

i+1. Continuing in this way,
since E is a finite graph, we get a path from v to F0. Thus by Theorem 3.3, LR(E) �
LR(E(F0)). By definition, E(F0)0 = F0 ∪ F(F0). Since (E0\F0, r−1

E (E0\F0), rE , sE) is
a finite acyclic graph, F(F0) = {α|α = e1e2 · · · en ∈ Path(E), sE(en) < F0, rE(en) ∈ F0}

is a finite set. Assume that F(F0) = {α1, α2, . . . , αp} for some positive integer p.
E(F0)1 = s−1

E (F0) ∪ {α1, α2, . . . , αp}. Let rE(F0)(α1) = rE(α1) = v1 ∈ F0 and assume that
r−1

E(F0)(v1) = r−1
F (v1) ∪ {α11 , α12 , . . . , α1i} for some 1 ≤ i ≤ p, where α11 = α1. Removing

the vertices α11 , α12 , . . . , α1i of E(F0), we get a graph G1 such that G′1(v1, i) = E(F0).
By Corollary 3.6, LR(E(F0)) � LR(G1(v1, i)). F has no sources, then there exists an
edge e1 ∈ F1 such that rF(e1) = rE(e1) = v1, and so by Proposition 3.7, LR(G1(v1, i)) �
LR(G1(e1, i)). Therefore LR(E(F0)) � LR(G1(e1, i)). The above procedure shows that
G1(e1, i) is a finite graph with no sinks and with p − i sources. Continuing in this way,
after finitely many steps we get a finite graph G with no sinks and no sources that
LR(E) � LR(G). �

Corollary 3.9. Let E be a graph. Then the following statements are equivalent.

(1) E is a finite graph with no sinks.
(2) For every commutative unital ring R, LR(E) is isomorphic to an algebraic Cuntz–

Krieger algebra.
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(3) There exists a field k such that Lk(E) is isomorphic to an algebraic Cuntz–Krieger
algebra.

(4) E is a finite graph and, for every commutative unital ring R, LR(E) is strongly
Z-graded.

(5) C∗(E) is unital and rank(K0(C∗(E))) = rank(K1(C∗(E))).

Proof. (1)⇒ (2) follows from Corollary 3.8.
(2)⇒ (3) is obvious.
For (3)⇒ (1), suppose that there exist a field k and a finite graph E′ with no sinks

and no sources such that Lk(E) � CK k(E′). Hence Lk(E) is unital and so E has a
finite number of vertices. Then, by [20, Corollary 6.17], E has no singular vertices.
Therefore E is a finite graph with no sinks and the result follows.

(1)⇔ (4) follows from [15, Theorem 3.15].
(1)⇔ (5) follows from [9, Theorem 3.12]. �

Let (G,+) be an abelian group. A finite set of elements {g1, g2, . . . , gl} ⊆ G is called
linearly independent if whenever

∑l
i=1 nigi = 0 for n1, . . . , nl ∈ Z, then ni = 0 for each

1 ≤ i ≤ l. Any two maximal linearly independent sets in G have the same cardinality. If
there exits a maximal linearly independent set in G, the cardinality of this set is called
the rank rank(G) of G, and if there is no maximal linearly independent set in G, the
rank rank(G) of G is defined to be infinite.

We are now ready to prove the main result of this section.

Theorem 3.10. Let k be a field such that rank(k×) < ∞ and E be a graph. Then the
following statements are equivalent.

(1) E is a finite graph with no sinks.
(2) Lk(E) is isomorphic to an algebraic Cuntz–Krieger algebra.
(3) E is a finite graph and Lk(E) is strongly Z-graded.
(4) C∗(E) is unital and rank(K1(C∗(E))) = rank(K0(C∗(E))).
(5) Lk(E) is unital and rank(K1(Lk(E))) = (rank(k×) + 1)rank(K0(Lk(E))).

Proof. (1)⇔ (2)⇔ (3)⇔ (4) follows from Corollary 3.9.
For (2)⇒ (5), suppose that there exists a finite graph E′ with no sinks and no

sources such that Lk(E) � CK k(E′). Hence Lk(E) is unital, and since rank(k×) <
∞, by [12, Theorem 8.1] we have |E′0sing| = (rank(k×) + 1)rank(K0(Lk(E′))) −
rank(K1(Lk(E′))). Thus (rank(k×) + 1)rank(K0(Lk(E′))) = rank(K1(Lk(E′))) and so
(rank(k×) + 1)rank(K0(Lk(E))) = rank(K1(Lk(E))).

For (5)⇒ (1), suppose that Lk(E) is unital and rank(K1(Lk(E))) = (rank(k×) + 1)
rank(K0(Lk(E))). Thus E0 is a finite set, and by [12, Theorem 8.1] we
have |E0

sing| = (rank(k×) + 1)rank(K0(Lk(E))) − rank(K1(Lk(E))). Since rank(k×) < ∞,
rank(K1(Lk(E))) <∞ by [12, Theorem 8.1]. Thus |E0

sing| = 0 and so E has no singular
vertices. Therefore E is a finite graph with no sinks and the result follows. �

The following example shows that the assumption rank(k×) < ∞ in the
Theorem 3.10 is necessary.
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Example 3.11. Let E be the graph •1
α // •2 and Q be the field of rational numbers.

rank(Q×) = ∞ and K1(Q) � Q×. LQ(E) � M2(Q), and so K1(LQ(E)) � K1(Q) � Q×.
Thus rank(K1(LQ(E))) = (rank(Q×) + 1)rank(K0(LQ(E))) = ∞, LQ(E) is unital and E
is a finite graph but E has a sink.

4. Corners of Leavitt path algebras

In this section we show that there exists a graph E(T ) for the corner PXLR(E)PX of
a Leavitt path algebra LR(E) associated to a finite vertex set X, such that PXLR(E)PX �
LR(E(T )).

Let E be a graph. An acyclic subgraph T of E is called a directed forest in E if, for
each v ∈ T 0, |T 1 ∩ r−1

E (v)| 6 1. We denote by T r the subset of T 0 consisting of those
vertices v with |T 1 ∩ r−1

E (v)| = 0, and by T l the subset of T 0 consisting of those vertices
v with |T 1 ∩ s−1

E (v)| = 0.

Definition 4.1 [10, Definition 3.1]. Let E be a graph, X $ E0 be a finite set and T be
a row-finite, path-finite directed forest in E with T r = X and T 0 = HE(X). Define the
T -corner, E(T ) of E as follows:

E(T )0 = T 0\{v|v ∈ T 0,∅ , s−1
E (v) ⊆ T 1},

E(T )1 = {eu|e ∈ s−1
E (T 0)\T 1, u ∈ E(T )0, rE(e) ≥T u},

sE(T )(eu) = sE(e), rE(T )(eu) = u.

Let E be a graph, X $ E0 be a finite set. According to [10, Lemma 3.6] there is a
forest T in E which satisfies the conditions of Definition 4.1 if and only if HE(X) is
finite.

Example 4.2. Let

E : •v1

γ

!!
•v2

α

!!

δ

ee •v3

β

ee ,

X = {v2} and

T : •v1 •v2

α

!!

δ

ee •v3

T is a row-finite, path-finite directed forest in E with T r = {v2} and T 0 = HE({v2}).
Thus E(T ) is the following graph:

E(T ) : •v1
γv1

%%
γv3

!!
•v3

βv3

yy

βv1

ee
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Crisp in [10, Theorem 3.5] proved that C∗(E(T )) � PXC∗(E)PX , where
∑

v∈X Pv
converges strictly to a projection PX in the multiplier algebra M(C∗(E)). In the
following theorem we prove a similar result for Leavitt path algebras.

Theorem 4.3. Let E be a graph, X $ E0 be a finite set, T be a row-finite, path-finite
directed forest in E with T r = X and T 0 = HE(X), PX =

∑
x∈X x and R be a commutative

unital ring. Then LR(E(T )) � PXLR(E)PX . If in addition LR(E) is an algebraic Cuntz–
Krieger algebra, then LR(E(T )) is isomorphic to an algebraic Cuntz–Krieger algebra.

Proof. Let {e, v|e ∈ E1, v ∈ E0} be the universal Cuntz–Krieger E-family. By
[10, Lemma 2.1(i)], for any v ∈ T 0, there exists a unique path τ(v) in Path(T )
such that sT (τ(v)) ∈ T r and rT (τ(v)) = v. For each v ∈ T 0, let Qv = τ(v)τ(v)∗ −∑

e∈T 1∩s−1(v) τ(v)ee∗τ(v)∗. For each eu ∈ E(T )1, let Teu = τ(s(e))eτ(r(e))∗Qu. An
argument similar to that in [10, proof of the Proposition 3.8] shows that {Teu ,Qv|eu ∈

E(T )1, v ∈ E(T )0} is a Cuntz–Krieger E(T )-family in E. By the universal
homomorphism property of LR(E(T )) there exists a ∗-homomorphism Ψ : LR(E(T ))→
LR(E) with Ψ(v) = Qv for each v ∈ E(T )0 and Ψ(eu) = Teu for each eu ∈ E(T )1. Let
w : E1 → Z be a weight map given by

w(e) =

l(τ(r(e))) − l(τ(s(e))) + 1 if e < T 1; s(e), r(e) ∈ T 0,

1 otherwise.

Let w(e∗) = −w(e) and w(v) = 0 for each e ∈ E1 and v ∈ E0. Thus LR(E) is a Z-graded
algebra. Also LR(E(T )) is a Z-graded algebra with the usual Z-grading. We show that
Ψ is a Z-graded ring homomorphism. For each v ∈ E(T )0, Ψ(v) = Qv = τ(v)τ(v)∗ −∑

e∈T 1∩s−1(v) τ(v)ee∗τ(v)∗ and so the degree of Ψ(v) is zero. For each eu ∈ E(T )1,
Ψ(eu) = Teu = τ(s(e))eτ(r(e))∗Qu. τ(s(e)), τ(r(e)) ∈ Path(T ) and so τ(s(e))eτ(r(e))∗Qu
is homogeneous of degree l(τ(s(e))) + l(τ(r(e))) − l(τ(s(e))) + 1 − l(τ(r(e))) = 1. Thus
Ψ is a Z-graded ring homomorphism.

We now show that, for each v ∈ E(T )0 and each r ∈ R\{0}, Ψ(rv) , 0. Let
v ∈ E(T )0 and r ∈ R\{0}. Ψ(rv) = rQv = r(τ(v)τ(v)∗ −

∑
e∈T 1∩s−1(v) τ(v)ee∗τ(v)∗). By

Definition 4.1, either v is a sink in E or v emits an edge f ∈ E1\T 1. If v is a sink
in E, then Qv = τ(v)τ(v)∗ and, by [21, Proposition 4.9], for each r ∈ R\{0}, rQv , 0.
Now assume that v emits an edge f ∈ E1\T 1. If rQv = 0 for some r ∈ R\{0}, then
rτ(v)τ(v)∗ − r

∑
e∈T 1∩s−1(v) τ(v)ee∗τ(v)∗ = 0. Thus(
rτ(v)τ(v)∗ − r

∑
e∈T 1∩s−1(v)

τ(v)ee∗τ(v)∗
)
τ(v) f f ∗τ(v)∗ = 0.

Since e ∈ T 1 and f < T 1, e∗ f = 0. Hence rτ(v) f f ∗τ(v)∗ = 0 and so rτ(v) f = 0.
This leads to a contradiction with [21, Proposition 4.9]. Thus Ψ(rv) , 0 for each
v ∈ E(T )0 and each r ∈ R\{0}, and, by the graded uniqueness theorem, Ψ is injective.
An argument similar to that in [10, proof of the Proposition 3.11] shows that
Ψ(LR(E(T ))) = PXLR(E)PX and so LR(E(T )) � PXLR(E)PX .

Now suppose that LR(E) is an algebraic Cuntz–Krieger algebra. Thus E is a finite
graph with no sinks and no sources. Since E is a finite graph, any directed forest
in E is finite and so E(T ) is a finite graph. Assume, on the contrary, that v ∈ E(T )0
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and s−1
E(T )(v) = ∅. Since E has no sinks, s−1

E (v) , ∅. Thus by the definition of E(T ),
s−1

E (v) * T 1. Therefore there exists e ∈ E1\T 1 such that sE(e) = v. If rE(e) ∈ E(T )0,
then erE (e) ∈ E(T )1 and sE(T )(erE (e)) = v, which is a contradiction. Thus rE(e) < E(T )0.
Since T 0 = HE(X) and v ∈ T 0, rE(e) ∈ T 0. Also s−1

E (rE(e)) , ∅, then there exists e1 ∈ T 1

with sE(e1) = rE(e). Let rE(e1) = v1. If v1 ∈ E(T )0, then sE(T )(ev1 ) = v, which is a
contradiction. Thus v1 ∈ T 0\E(T )0. A similar argument shows that there exists e2 ∈ T 1

with sE(e2) = v1. Since T is an acyclic graph, by continuing in this way we get an
infinite path e1e2e3 · · · in T , which is a contradiction. Thus E(T ) is a finite graph with
no sinks, and, by Corollary 3.9, LR(E(T )) is isomorphic to an algebraic Cuntz–Krieger
algebra. �

Let E be a finite graph with no sinks and no sources. In the proof of the above
Theorem we show that E(T ) is a finite graph with no sinks. The following example
shows that there exists a finite graph E with no sinks and no sources such that E(T )
has a source.

Example 4.4. Let E be the graph

•3

β

  
•1
%% // •2

α

>>

δ // •4 γ
yy

X = {2} and T be the directed forest

•3

β

  
•2

α

>>

•4

Thus E(T ) is the following graph:

•2
δ4 // •4 γ4

yy

Definition 4.5 [3, Definitions 9.1 and 9.4]. Let E be a graph.

(1) Define MnE to be the graph formed from E by taking each v ∈ E0 and attaching
a head of length n − 1 of the form

•vn−1

ev
n−1 // •vn−2

ev
n−2 // •vn−3

// •v2

ev
2 // •v1

ev
1 // •v

to E.
(2) Define SE to be the graph formed from E by taking each v ∈ E0 and attaching an

infinite head of the form

· · · // •v3

ev
3 // •v2

ev
2 // •v1

ev
1 // •v

to E. SE is called the stabilization of E.
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Let R be a ring. The ring of finitely supported, countably infinite square matrices
with coefficients in R is denoted by M∞(R) [3, Definition 9.6]. Note that if R is an
algebra (respectively, a ∗-algebra), then M∞(R) inherits an algebra (respectively, a ∗-
algebra) structure. Algebras A and B are called stably isomorphic ifM∞(A) �M∞(B).
Abrams and Tomforde in [3, Propositions 9.3 and 9.8] proved that, for any graph E
and field k, Lk(MnE) �Mn(Lk(E)) and Lk(SE) �M∞(Lk(E)). An argument similar to
that in [3, proof of Propositions 9.3 and 9.8], with a commutative unital ring R in place
of field k, shows that LR(MnE) �Mn(LR(E)) and LR(SE) �M∞(LR(E)).

Corollary 4.6. Let E be a graph and R be a commutative unital ring.

(1) Let X be a finite subset of (SE)0 such that HSE(X) is a finite set and eX =
∑

x∈X x.
Then there exists a row-finite, path-finite directed forest T in SE such that
LR(SE(T )) � eXLR(SE)eX . If in addition LR(SE) is an algebraic Cuntz–Krieger
algebra, then eXLR(SE)eX is isomorphic to an algebraic Cuntz–Krieger algebra.

(2) Let n be a positive integer, X be a finite subset of (MnE)0 such that HMnE(X) is
a finite set and eX =

∑
x∈X x. Then there exists a row-finite, path-finite directed

forest T in MnE such that LR(MnE(T )) � eXLR(MnE)eX . If in addition LR(MnE)
is an algebraic Cuntz–Krieger algebra, then eXLR(MnE)eX is isomorphic to an
algebraic Cuntz–Krieger algebra.

Proof. Since HSE(X)\X (respectively, HMnE(X)\X) is a finite set, by [10, Lemma 3.6]
there is a row-finite, path-finite directed forest T in SE (respectively, MnE) which
satisfies the conditions of Theorem 4.3. Thus the result follows from Theorem 4.3. �

An idempotent e of an algebra A is called full idempotent if AeA = A.

Remark 4.7. In Corollary 4.6, if in addition we assume that E is a graph with finitely
many vertices and E0 ⊆ X, then the smallest saturated subset of (SE)0 (respectively,
(MnE)0) containing X is (SE)0 (respectively, (MnE)0), and so eX is a full idempotent.

Proposition 4.8. Let R be a commutative unital ring and A be an algebraic Cuntz–
Krieger R-algebra. ThenMn(A) is isomorphic to an algebraic Cuntz–Krieger algebra
for each positive integer n.

Proof. Let E be a finite graph with no sinks and no sources such that A = LR(E),
and let n be a positive integer. MnE is a finite graph with no sinks and so, by
Corollary 3.9, LR(MnE) is isomorphic to an algebraic Cuntz–Krieger algebra. Thus
Mn(LR(E)) � LR(MnE) is isomorphic to an algebraic Cuntz–Krieger algebra. �

5. Algebras that are Morita equivalent to algebraic Cuntz–Krieger algebras

In this section we show that if a unital algebra A is stably isomorphic to an algebraic
Cuntz–Krieger algebra, then A is isomorphic to an algebraic Cuntz–Krieger algebra.
Also we show that if A is Morita equivalent to an algebraic Cuntz–Krieger algebra,
then A is isomorphic to an algebraic Cuntz–Krieger algebra.
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Definition 5.1. Let R be a commutative unital ring, A be an R-algebra, e2 = e ∈Mn(A)
and f 2 = f ∈Mm(A). e is called Murray–von Neumann equivalent to f , denoted e ∼ f ,
if there exist x ∈Mm,n(A) and y ∈Mn,m(A) such that e = yx and f = xy.

Example 5.2. Let R be a commutative unital ring and E be a graph. Let v ∈ E0 be a
regular vertex. Thus, by the Cuntz–Krieger relations, we have v ∼

∑
e∈s−1

E (v) rE(v).

For an idempotent e ∈ A and a positive integer n, ne denotes the idempotent
M ∈Mn(A) such that M = (mi j), mii = e for each i and mi j = 0 for each i , j.

The proof of the following lemma is similar to the proof of [9, Lemma 4.6], and we
give the proof for the reader’s convenience.

Lemma 5.3. Let k be a field, E be a finite graph with no sinks and no sources such that
every vertex of E is a base point of at least one cycle of length one, {v, e|v ∈ E0, e ∈ E1}

be a Cuntz–Krieger E-family and f be a full idempotent of Mn(Lk(E)). Then there
exists a set {mv|v ∈ E0,mv ≥ 1} of positive integers such that f ∼

∑
v∈E0 mvv.

Proof. By [6, Theorem 3.5], there exists a set {nv|v ∈ E0, nv ≥ 0} of nonnegative
integers such that f ∼

∑
v∈E0 nvv. Let H0 be the smallest hereditary subset of E0

which contains S 0 = {v|v ∈ E0, nv , 0}. By [9, Lemma 4.5], H0 is saturated. Put
g =

∑
v∈S 0

v ∈ IH0 . Since f ∼
∑

v∈E0 nvv, the ideal generated by f is equal to the ideal
generated by e11 ⊗ g, where {ei j}i, j is a system of matrix units. Thus e11 ⊗ g is a full
idempotent in Mn(Lk(E)) and so g is a full idempotent of Lk(E). Thus IH0 = Lk(E)
and hence H0 = E0. Thus, for each w ∈ E0, there exists v ∈ S 0 such that v ≥ w. Put
E0\S 0 = {w0,w1, . . . ,wm}. Let v ∈ S 0 such that v ≥ w0. An argument similar to that
in [9, proof of Lemma 4.3] shows that v ∼ w0 +

∑
u∈E0 mu(v,w0)u, where mu(v,w0) ≥ 0

and mv(v,w0) ≥ |{e ∈ E1|sE(e)rE(e) = v}| ≥ 1. Hence, by using such equations for all
w0, . . . ,wm, we obtain f ∼

∑
v∈E0 n′vv, where n′v ≥ 1 for all v ∈ E0. �

Proposition 5.4. Let k be a field, E be a finite graph with no sinks and no sources, n
be a positive integer and e be a full idempotent ofMn(Lk(E)). Then there exists a finite
graph F that has no sinks and no sources such that Lk(F) � eMn(Lk(E))e.

Proof. First, we assume that every vertex of E is a base point of at least one cycle
of length one. By [3, Proposition 9.3] and its proof, there exists an isomorphism
Φ :Mn(Lk(E))→ Lk(MnE) such that, for each v ∈ E0, K0(Φ)([e11 ⊗ v]) = [v]. Let e be
a full idempotent ofMn(Lk(E)); thus, by Lemma 5.3, e ∼

∑
v∈E0 mvv with mv ≥ 1 for all

v ∈ E0. Since Lk(MnE) is separative by [4, Theorem 6.3], Φ(e) is Murray–von
Neumann equivalent to eX ∈ Lk(MnE) such that X is a finite, hereditary subset of
(MnE)0 with E0 ⊆ X. By Corollary 4.6, eXLk(MnE)eX � Lk(F) for some finite
graph F with no sinks and no sources. Thus eMn(Lk(E))e � Φ(e)Lk(MnE)Φ(e) �
eXLk(MnE)eX � Lk(F) and the result follows. Now let E be a finite graph with no
sinks and no sources. Since MnE is a finite graph with no sinks, we can apply
[18, Theorem 3.1] to get a finite graph G with no sinks and no sources, and every
vertex of G is a base point of at least one cycle of length one, such that Lk(MnE)
and Lk(G) are Morita equivalent. Therefore there exist a positive integer m and
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full idempotent f of Mm(Lk(G)) such that Lk(MnE) � fMm(Lk(G)) f . Therefore
eMn(Lk(E))e � f ′Mm(Lk(G)) f ′ for some full idempotent f ′ of Mm(Lk(G)). Thus by
the first case there exists a finite graph F that has no sinks and no sources such that
Lk(F) � f ′Mm(Lk(G)) f ′ � eMn(Lk(E))e, and the result follows. �

Corollary 5.5. Let k be a field and A be a unital k-algebra which is Morita equivalent
to an algebraic Cuntz–Krieger k-algebra. Then A is isomorphic to an algebraic Cuntz–
Krieger algebra.

Proof. Let E be a finite graph with no sinks and no sources such that A is Morita
equivalent to the algebraic Cuntz–Krieger algebra Lk(E). Therefore there exist a
positive integer n and full idempotent e of Mn(Lk(E)) such that A � eMn(Lk(E))e.
Therefore, by Proposition 5.4, there exists a finite graph F that has no sinks and no
sources such that Lk(F) � eMn(Lk(E))e � A. �

Corollary 5.6. Let k be a field and A be a unital k-algebra which is stably isomorphic
to an algebraic Cuntz–Krieger k-algebra. Then A is isomorphic to an algebraic Cuntz–
Krieger algebra.

Proof. By [3, Proposition 9.10], A is Morita equivalent to an algebraic Cuntz–Krieger
k-algebra. Therefore the result follows by Corollary 5.5. �

Corollary 5.7. Let k be a field and A be a k-algebra. Then the following statements
are equivalent.

(1) A is an algebraic Cuntz–Krieger algebra.
(2) Mn(A) is isomorphic to an algebraic Cuntz–Krieger algebra for each n ∈ N.
(3) Mn(A) is isomorphic to an algebraic Cuntz–Krieger algebra for some n ∈ N.

Proof. (1)⇒ (2) follows from Proposition 4.8.
(2)⇒ (3) is obvious.
(3)⇒ (1) Assume thatMn(A) is isomorphic to an algebraic Cuntz–Krieger algebra

for some n ∈ N. ThusMn(A) is unital and so A is a unital k-algebra. Since A is stably
isomorphic toMn(A), the result follows from Corollary 5.6. �

Corollary 5.8. Let k be a field, A be an algebraic Cuntz–Krieger k-algebra and e be
a nonzero idempotent of A. Then eAe is isomorphic to an algebraic Cuntz–Krieger
algebra.

Proof. Let A = Lk(E) where E is a finite graph with no sinks and no sources. Let e be
a nonzero idempotent of A and I be the ideal in Lk(E) generated by e. As eAe ⊆ I we
have eAe ⊆ eIe and so eIe = eAe. Since I is generated by an idempotent e, I is a graded
ideal of Lk(E) by [6, proof of Proposition 5.2 and Theorem 5.3]. Therefore there exists
a hereditary saturated subset H of E0 such that I = IH . Let EH = (H, s−1

E (H), rE , sE). EH

is a finite graph with no sinks, and, by [8, Lemma 2.4], Lk(EH) is Morita equivalent to
IH . Thus, by Corollaries 3.9 and 5.5, IH is isomorphic to the algebraic Cuntz–Krieger
algebra B. Hence eAe = eIHe is isomorphic to f B f for some full idempotent f of B.
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By Proposition 5.4, there exists a finite graph F that has no sinks and no sources such
that Lk(F) � f B f . Thus eAe � Lk(F) and the result follows. �

Corollary 5.9. Let k be a field, A be an algebraic Cuntz–Krieger k-algebra and e be
a nonzero idempotent ofM∞(A). Then eM∞(A)e is isomorphic to an algebraic Cuntz–
Krieger algebra.

Proof. We use the same argument as in [9, proof of Corollary 4.10]. Let A = Lk(E)
where E is a finite graph with no sinks and no sources. By [6, Theorem 3.5],
there exists a set {nv|v ∈ E0, nv ≥ 0} of nonnegative integers such that e ∼

∑
v∈E0 nvv.

Let X = {v ∈ E0|nv , 0} and f =
∑

v∈X v. Thus f is a nonzero idempotent of Lk(E),
and, by Corollary 5.8, there exists a finite graph F that has no sinks and no
sources such that Lk(F) � f Lk(E) f . By [6, Theorem 5.3], the ideal of M∞(A)
generated by e and the ideal of M∞(A) generated by e11 ⊗ f coincide. Thus f A f ⊗
M∞(k) � (e11 ⊗ f )M∞(A)(e11 ⊗ f ) ⊗M∞(k) � eM∞(A)e ⊗M∞(k). Therefore eM∞(A)e
is stably isomorphic to an algebraic Cuntz–Krieger algebra and the result follows from
Corollary 5.6. �
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