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Abstract

We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degen-
eration setting. A one-parameter log smooth family X → B with singular fibre over
b0 ∈ B yields a family M (X/B, β) → B of moduli stacks of stable logarithmic maps.
We give a virtual decomposition of the fibre of this family over b0 in terms of rigid trop-
ical maps to the tropicalization of X/B. This generalizes one aspect of known results
in the case that the fibre Xb0 is a normal crossings union of two divisors. We exhibit
our formulas in explicit examples.
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1. Introduction

1.1 Statement of results
One of the main goals of logarithmic Gromov–Witten theory is to relate the Gromov–Witten
invariants of a smooth projective variety to invariants of a degenerate variety X0.

Consider a logarithmically smooth and projective morphism X → B, with B a logarith-
mically smooth curve having a single closed point b0 ∈ B where the logarithmic structure is
non-trivial. In the language of [KKMS73, AK00], this is the same as saying that the underlying
schemes X and B are provided with a toroidal structure such that X → B is a toroidal mor-
phism, and {b0} ⊂ B is the toroidal divisor. One defines as in [GS13], see also [Che14, AC14],
an algebraic stack M (X/B, β) parameterizing stable logarithmic maps f : C → X with discrete
data β = (g,A, up1 , . . . , upk

) from logarithmically smooth curves to X. Here:

• g is the genus of C;
• A is the homology class f∗[C], which we assume is supported on fibres of X → B; and
• up1 , . . . , upk

are the contact orders of the marked points with the logarithmic strata
of X.

Writing β = (g, k,A) for the non-logarithmic discrete data, there is a natural morphism
M (X/B, β) → M (X/B, β) ‘forgetting the logarithmic structures’, which is proper and repre-
sentable [ACMW17, Theorem 1.1.1]. The map M (X/B, β) → M (X/B, β) is in fact finite, see
[Wis19, Corollary 1.2]. There is also a natural morphism M (X/B, β) → B, and we denote its
fibre over b ∈ B by M (Xb/b, β).

Since X → B is logarithmically smooth there is a perfect relative obstruction theory
E• → LM (X/B,β)/LogB

in the sense of [BF97], hence defining a virtual fundamental class
[M (X/B, β)]virt and logarithmic Gromov–Witten invariants.

An immediate consequence of the formalism is the following (this is indicated after [GS13,
Theorem 0.3]).

Theorem 1.1 (Logarithmic deformation invariance). For any point {b} jb
↪→ B one has

j!b[M (X/B, β)]virt = [M (Xb/b, β)]virt.

This implies, in particular, that Gromov–Witten invariants of Xb agree with those of
X0 = Xb0 . Now holomorphic curves in X0 come in various families depending on the inter-
section pattern with the irreducible components of X0. Thus one may hope that logarithmic
Gromov–Witten invariants similarly group according to some discrete data reflecting such inter-
section patterns. The main result of this paper shows that this is indeed the case, with the
intersection patterns recorded in an interesting and very transparent fashion in terms of the
underlying tropical geometry.
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Theorem 1.2 (The logarithmic decomposition formula; Theorem 3.11 below). Suppose the

morphism X0 → b0 is logarithmically smooth and X0 is simple. Then we have the following

equality in the Chow group of M (X0/b0, β) with coefficients in Q:

[M (X0/b0, β)]virt =
∑

τ=(τ,A)

mτ

|Aut(τ )| jτ∗[M (X0, τ )]virt.

See Definition 2.1 for the notion of simple logarithmic structures. The notations M (X0, τ ),
mτ and jτ are briefly explained as follows. First, the tropicalization of X0 → b0 defines a
polyhedral complex Δ(X0) (§§ 2.1.4 and 2.5.4), and τ stands for a rigid tropical map to Δ(X)
(Definition 3.6). Each such rigid τ comes with a multiplicity mτ ∈ N, the smallest integer such
that scaling Δ(X) by mτ leads to a tropical curve with integral vertices and edge lengths.

The symbol A stands for a partition of the curve class A ∈ H2(X) into classes A(v), one for
each vertex v in the graph underlying τ .

The moduli stack M (X0, τ ) is the stack parameterizing basic stable logarithmic maps to X0

over b0 decorated by τ = (τ,A) (Definition 2.31). The marking exhibits τ as a degeneration of
the tropicalization of any stable logarithmic map in this moduli stack. The map jτ : M (X0, τ ) →
M (X0/b0, β) forgets the marking by τ . The sum runs over all isomorphism classes of decorated
rigid tropical maps τ = (τ,A).

Remark 1.3. In general, the sum over τ will be infinite, but because the moduli space
M (X0/b0, β) is of finite type, all but a finite number of the moduli spaces M (X0, τ ) will be
empty. In practice one uses the balancing condition [GS13, Proposition 1.15] to control how
curves can break up into strata of X0. This is carried out in some of the examples in § 5.

Theorems 1.1 and 1.2 form the first two steps toward a general logarithmic degeneration
formula. In many cases this is sufficient for meaningful computations, as we show in § 5. These
results have precise analogies with results in [Li02], as explained in § 5.1. Theorem 1.1 is a
generalization of [Li02, Lemma 3.10], while Theorem 1.2 is a generalization of part of [Li02,
Corollary 3.13], where the notation M(Yrel

1 ∪ Yrel
2 , η) describes an object playing the role of our

M (X0, τ ).
The current paper does not, however, include a description of the moduli stack M (X0, τ )

analogous to that given in the proof of [Li02, Lemma 3.14]. There, the moduli space is described
by gluing together relative stable maps to the individual components of X0. However, in general
this will not be the case: while a curve in M (X0, τ ) may be glued schematically from stable
maps to individual components of X0, it is not possible to do this at the logarithmic level, in
the sense that the maps to individual components of X0 may not be interpretable as relative
maps. We give an example in § 5.2 in which X0 has three components meeting normally, with
one triple point. Our example features a log curve contributing to the Gromov–Witten invariant
which has a component contracting to the triple point, and this curve cannot be interpreted as
a relative curve on any of the three irreducible components of X0.

In fact, a new theory is needed to give a more detailed description of the moduli spaces
M (X0, τ ) in terms of pieces of simpler curves. In the follow-up paper [ACGS20] we define stable
punctured maps admitting negative contact orders to replace the relative curves in Jun Li’s
gluing formula. Crucially, we will explain how punctured curves can be glued together to describe
the moduli spaces M (X0, τ ).

2022
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The results described here are analogous to results of Brett Parker proved in his cate-
gory of exploded manifolds. He defines Gromov–Witten invariants in this category in the series
of papers [Par15, Par19a, Par19b, Par19c]. The analogue of logarithmic deformation invari-
ance, Theorem 1.1 above, is proved in [Par19c, Theorems 5.20 and 5.22], while Theorem 1.2 is
analogous to parts of [Par19c, Theorem 5.22 and Lemma 7.3]. A gluing formula in terms of Gro-
mov–Witten invariants of individual irreducible components of X0 is given in [Par17, Theorems
4.7 and 5.2]. The aim in proving a general gluing formula is a full logarithmic analogue of these
theorems.

This paper has a somewhat long genesis, with the main ideas contained in draft versions
first presented in a talk by B.S. at the conference ‘Algebraic, Analytic, and Tropical Geometry’
in Ein Gedi, Israel, in Spring 2013. A first full version was posted on Q.C.’s website in October
2016. The follow-up paper [ACGS20] has furthermore been distributed via M.G.’s website since
March 2017.

Several related works have appeared during this long period of preparation. The 2016 version
has been used in [MR20]. Concerning the decomposition formula, the one closest to our point
of view is [KLR18], giving a formula of logarithmic Gromov–Witten invariants of the central
fiber X0 of a degeneration with smooth singular locus in terms of Gromov–Witten invariants
of the reducible components. This paper is a full logarithmic analogue of Jun Li’s formula in
[Li02], without using expanded degenerations. This case is considerably simpler than the case
with points of multiplicity greater than 2 and in particular does not require the introduction of
punctured Gromov–Witten invariants, see § 5.1 and [ACGS20].

A gluing formula for a special case has also been proved by Tony Yue Yu in his developing
theory of Gromov–Witten invariants in rigid analytic geometry [Yu20, Theorem 1.2].

Very recently, Ranganathan has suggested an alternative approach to fully general gluing
formulas for logarithmic Gromov–Witten invariants using expanded degenerations [Ran20].

The structure of the paper is as follows. In § 2, we review various aspects of logarithmic
Gromov–Witten theory, with a special emphasis on the relationship with tropical geometry.
We develop tropical geometry in the setup of generalized cone complexes, introduced in § 2.1.
While this point of view was present in [GS13], we make it more explicit here, and in particular
discuss tropicalization in a sufficient degree of generality as needed here. As an application, in
§ 2.6 we introduce the refined moduli spaces M(X0, τ ) appearing in the decomposition formula.
Section 2.2 reviews the notion of Artin fans, an algebraic stack associated to any generalized
cone complex. Our decomposition result is based on a decomposition of the fundamental class
in a moduli space of stable log maps to the Artin fan of X0 over b0.

Section 3 proves the main theorem, the decomposition formula. In § 3.1 we first prove a
general decomposition of the fundamental class for a space log smooth over the standard log
point. The main insight in § 3.2 is that replacing X0 with its relative Artin fan the moduli
space of stable log maps becomes unobstructed, and hence has a fundamental class that can be
decomposed. The main theorem then follows in § 3.3 by lifting this decomposition to the virtual
level.

The remainder of the paper is devoted to applications. As a preparation, § 4 closes a gap in
the literature, building on work of Nishinou and Siebert in [NS06]. This concerns the logarithmic
enhancement problem, the problem of constructing stable logarithmic maps with a given usual
stable map, previously considered only in special cases. We address the problem through a two-
step process. In the first step, we use the tropical geometry of the situation to identify a proper,
birational, logarithmically étale map, i.e. a logarithmic modification, which reduces the problem
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to a situation where no irreducible component of the domain curve maps into the singular locus
of X0 and maps no node into strata of X0 of codimension larger than 1. The second step is the
main result of § 4, Theorem 4.13, giving the number of logarithmic enhancements in fully general
situations, including non-reduced X0.

Section 5 employs these formulas in the discussion of a number of hopefully instructive
examples. Section 5.1 contains the already announced discussion of our decomposition formula
in the traditional situation of [Li02]. In § 5.2 we retrieve the classical number 12 of nodal plane
sections of a cubic surface passing through two points via a degeneration into three copies of
P2, blown up in zero, three and six points, respectively. The topic of § 5.3 is an interpretation of
the imposing of point conditions in tropical geometry via degenerating scheme-theoretic point
conditions in the trivial product Y × A1. The decomposition formula in this case (Theorem 5.4)
provides an alternative view on tropical map counting with point conditions as in [Mik05, NS06].
The final section § 5.4 features an example with two rigid tropical maps such that only one of
them arises as the tropicalization of a stable log map, but the contribution to the virtual count
comes from the other, non-realizable rigid tropical map.

1.2 Conventions
All logarithmic schemes and stacks we consider here are fine and saturated and defined over an
algebraically closed field k of characteristic 0. We will usually only consider toric monoids, i.e.
monoids of the form P = PR ∩M for M � Zn, PR ⊂MR = M ⊗Z R a rational polyhedral cone.
For P a toric monoid, we write

P∨ = Hom(P,N), P∨
R = Hom(P,R≥0), P ∗ = Hom(P,Z).

For Q a toric monoid and ϕ : Q→ R a homomorphism to the multiplicative monoid of the
k-algebra R, the notation Spec(Q→ R) denotes SpecR with the log structure induced by ϕ.
For our conventions concerning graphs see § 2.3.6.

2. Preliminaries

2.1 Cone complexes associated to logarithmic stacks
2.1.1 The category of cones. We consider the category of rational polyhedral cones, which

we denote by Cones. The objects of Cones are pairs σ = (σR, N) where N � Zn is a lattice and
σR ⊂ NR = N ⊗Z R is a top-dimensional strictly convex rational polyhedral cone. A morphism of
cones ϕ : σ1 → σ2 is a homomorphism ϕ : N1 → N2 which takes σ1R into σ2R. Such a morphism
is a face morphism if it identifies σ1R with a face of σ2R and N1 with a saturated sublattice
of N2. If we need to specify that N is associated to σ we write Nσ instead.

2.1.2 Generalized cone complexes. Recall from [KKMS73, II.1] and [ACP15] that a gener-
alized cone complex is a topological space with a presentation as the colimit of an arbitrary
finite diagram in the category Cones with all morphisms being face morphisms. If Σ denotes
a generalized cone complex, we write σ ∈ Σ if σ is a cone in the diagram yielding Σ, and write
|Σ| for the underlying topological space. A morphism of generalized cone complexes f : Σ → Σ′

is a continuous map f : |Σ| → |Σ′| such that for each σR ∈ Σ, the induced map σ → |Σ′| factors
through a morphism σ → σ′ ∈ Σ′. For a cone σ ∈ Cones, we use the same symbol σ to also
denote the cone complex of all its faces.
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Note that two generalized cone complexes can be isomorphic yet not have the same presenta-
tion. This phenomenon does not occur for so-called reduced presentations, which have the defining
property that every face of a cone in the diagram is in the diagram, and every isomorphism in
the diagram is a self-map. By [ACP15, Proposition 2.6.2] any generalized cone complex has such
a reduced presentation. In this paper we only work with reduced presentations of generalized
cone complexes.

2.1.3 Generalized polyhedral complexes. We can similarly define a generalized polyhedral com-
plex, where in the above set of definitions pairs (σR, N) live in the category Poly of rationally
defined polyhedra. This is more general than cones, as any cone σ is in particular a polyhedron
(usually unbounded). For example, an affine slice of a fan is a polyhedral complex.

2.1.4 The tropicalization of a logarithmic scheme. Now let X be a Zariski fine saturated (fs)
log scheme of finite type. For the generic point η of a stratum ofX, its characteristic monoid MX,η

defines a dual monoid (MX,η)∨ := Hom(MX,η,N) lying in the group (MX,η)∗ := Hom(MX,η,Z),
see § 1.2, and hence a dual cone

ση := ((MX,η)∨R, (MX,η)∗). (2.1)

If η is a specialization of η′, then there is a well-defined generization map MX,η → MX,η′

since we assumed X is a Zariski logarithmic scheme. Dualizing, we obtain a face morphism
ση′ → ση. This gives a diagram of cones indexed by strata of X with face morphisms, and hence
gives a generalized cone complex Σ(X). We call this the tropicalization of X, following [GS13,
Appendix B].1 For σ ∈ Σ(X) we denote by

Xσ ⊂ X

the closure of the corresponding stratum of X, endowed with the reduced induced scheme
structure. We refer to these subschemes with reduced induced structure as closed strata of X.

This construction is functorial: given a morphism of log schemes f : X → Y , the map f � :
f−1MY → MX induces a map of generalized cone complexes Σ(f) : Σ(X) → Σ(Y ).

Definition 2.1 [GS13, Definition B.2]. We sayX is monodromy free ifX is a Zariski log scheme
and for every σ ∈ Σ(X), the natural map σ → |Σ(X)| is injective on the interior of any face
of σ. We say X is simple if the map is injective on every σ.

Here is an example of a Zariski log structure that is monodromy free, but not simple. Take
X to be the Neron 2-gon, the fibred sum of two copies of P1 joined at two pairs of points. Thus
X has two irreducible components X1, X2 and two nodes q1, q2. Take a log structure MX on X
with MX constant with fibres N2 along X1, with fibers N on X2 \ {q1, q2} and with generization
maps MX,qi = N2 → N to the generic point of X2 the two projections. See also [GS13, Expl.
B.1] for another example.

Simplicity is, however, true in the Zariski log smooth case over a trivial log point. Such
log schemes can in fact be viewed as toroidal pairs without self-intersections and the following
statement follows readily from the classical treatment in [KKMS73, pp. 70–72].

1 This terminology differs slightly from that of [Uli17], where the tropicalization is a canonically defined map from
the Thuillier analytification X� of X to the compactified cone complex. Hopefully this will not cause confusion.
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Proposition 2.2. Let X be a Zariski log scheme, log smooth over Spec k with the trivial log

structure. Then X is simple.

As remarked in [GS13], more generally we can define the generalized cone complex associated
with a finite type logarithmic stack X, in particular allowing for logarithmic schemes X in the
étale topology. In fact, one can always find a cover X ′ → X in the smooth topology with X ′ a
union of simple log schemes, and with X ′′ = X ′ ×X X ′; then define Σ(X) to be the colimit of
Σ(X ′′) ⇒ Σ(X ′). The resulting generalized cone complex is independent of the choice of cover.
This process is explicitly carried out in [ACP15, Uli15].

Example 2.3. (1) If X is a toric variety with the canonical toric logarithmic structure, then Σ(X)
is abstractly the fan defining X. It is missing the embedding of |Σ(X)| as a fan in a vector space
NR, and should be viewed as a piecewise linear object.

(2) Let k be a field and X = Spec(N → k) the standard log point with MX = k× × N. Then
Σ(X) consists of the ray R≥0.

(3) Let C be a curve with an étale logarithmic structure with the property that MC has stalk
N2 at any geometric point, but has monodromy of the form (a, b) 	→ (b, a), so that the pull-back
of MC to an unramified double cover C ′ → C is constant but MC is only locally constant. Then
Σ(C) can be described as the quotient of R2

≥0 by the automorphism (a, b) 	→ (b, a). If we use the
reduced presentation, Σ(C) has three cones, one each of dimension 0, 1 and 2.

2.2 Artin fans
Let X be a fine and saturated algebraic log stack. We are quite permissive with algebraic stacks,
as delineated in [Ols03, (1.2.4)–(1.2.5)], since we need to work with stacks with non-separated
diagonal. An Artin stack logarithmically étale over Spec k is called an Artin fan.

The logarithmic structure of X is encoded by a morphism X → Log to Olsson’s stack Log
of fine log structures, see [Ols03]. One crucial idea developed in the context of the present paper
is a refinement of the stack Log by an Artin fan that takes into account the stratification of
X defined by MX . Following preliminary notes written by two of us (Chen and Gross), the
paper [AW18] introduces a canonical Artin fan AX associated to a logarithmically smooth fs log
scheme X. This was generalized in [ACMW17, Proposition 3.1.1] as follows.

Theorem 2.4. Let X be a logarithmic algebraic stack over Spec k which is locally connected

in the smooth topology. Then there is an initial strict étale morphism AX → Log over which

X → Log factors. Moreover, the morphism AX → Log is representable by algebraic spaces.

Note that AX in the theorem is indeed an Artin fan because Log is logarithmically étale over
Spec k.

If X is a Deligne–Mumford stack, AX can be constructed from the cone complex Σ(X) as
follows. For any cone σ ⊂ NR, let P = σ∨ ∩M be the corresponding monoid. We write

Aσ = AP := [Spec k[P ]/Spec k[P gp]]. (2.2)

This stack carries the standard toric logarithmic structure induced by descent from the global
chart P → k[P ]. Then AX is the colimit

AX = lim−→
σ∈Σ(X)

Aσ, (2.3)

in the category of sheaves over Log.
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Remark 2.5. Unlike Σ(X), the formation of AX is not functorial for all logarithmic morphisms
Y → X. This is a result of the fact that the morphism Y → Log is not the composition
Y → X → Log, unless Y → X is strict. Note also that not all Artin fans A are of the form
AX , since A → Log may fail to be representable.

Our next aim is to prove functoriality of the formation of Artin fans for maps with Zariski
log smooth domains, stated as Proposition 2.8 below. We need two lemmas.

Lemma 2.6. Suppose X is a log smooth scheme over the trivial log point Spec k and with Zariski

log structure. Then AX admits a Zariski open covering {Aσ ⊂ AX |σ ∈ Σ(X)}.

Proof. Since X has Zariski log structure, we may select a covering {U → X} by Zariski open sets
such that U → AσU is the Artin fan of U . By the log smoothness of X, the morphism X → AX

is smooth, and hence the image Ũ ⊂ AX of U is an open substack.
It remains to show that Ũ is the Artin fan of U . By [AW18, § 2.3 and Definition 2.3.2(2)], this

amounts to showing that Ũ parameterizes the connected components of the fibres of U → Log.
Since both X → Log and U → Log are smooth morphisms between reduced stacks, it suffices to
consider each geometric point T → Log. Since U ⊂ X is Zariski open, UT = T ×Log U ⊂ XT =
T ×Log X is also Zariski open. Thus, for each connected component V ⊂ UT , there is a unique
connected component V ′ ⊂ XT containing V as a Zariski open dense set. As the set of con-
nected components of XT is parameterized by T ×Log AX , we observe that the set of connected
components of UT is parameterized by the subscheme T ×Log Ũ ⊂ T ×Log AX . �

Lemma 2.7. Suppose X is a log smooth scheme with Zariski log structure and τ ∈ Cones. Then

any morphism X → Aτ has a canonical factorization through AX → Aτ .

Proof. By Lemma 2.6, we may select a Zariski covering C := {Aσ ⊂ AX} of AX , and hence a
Zariski covering {Uσ := Aσ ×AX

X ⊂ X} of X. We may assume that if σ′ ⊂ σ is a face, then
Aσ′ ⊂ Aσ ⊂ AX is also in C.

Locally, the morphism Uσ → Aτ induces a morphism τ∨ → Γ(Uσ,MUσ) = σ∨, and hence a
canonical φσ : Aσ → Aτ through which Uσ → Aτ factors.

To see the local construction glues, observe that the intersection Aσ1 ∩ Aσ2 of two Zariski
charts in C is again covered by elements in C. It suffices to verify that φσ1 , φσ2 agree on Aσ′ ∈ C if
Aσ′ ⊂ Aσ1 ∩ Aσ2 . Taking global sections, we observe that the composition τ∨ → Γ(Uσi ,MUσi

) →
Γ(Uσ′ ,MUσ′ ) = (σ′)∨ is independent of i = 1, 2 as they are determined by the restriction of
Uσi → Aτ to the common Zariski open Uσ′ . Hence φσ1 |Uσ′ = φσ2 |Uσ′ . �

Proposition 2.8. Let X → Y be a morphism of log schemes. Suppose X is log smooth with

Zariski log structure. Then there is a canonical morphism AX → AY such that the following

diagram commutes.

X ��

��

Y

��
AX

�� AY
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Proof. By the claimed uniqueness and étale descent, the statement can be checked étale locally
on AY . We may then assume AY = Aτ for some τ ∈ Cones, for which the statement is exactly
Lemma 2.7. �

Using Proposition 2.8 we can also define a relative notion of Artin fan for maps with log
smooth domains.

Definition 2.9. The relative Artin fan for a morphism X → B of log schemes with X log
smooth with Zariski log structure is defined as the fibre product

X = B ×AB
AX .

While not, strictly speaking, needed for this paper, we end this subsection with the instructive
result that giving a log morphism to the Artin fan AX of a log scheme X is combinatorial in
nature, captured entirely by the induced map of cone complexes.

Proposition 2.10. Let X be a Zariski fs log scheme log smooth over Spec k. Then for any fs

log scheme T there is a canonical bijection

Homfs(T,AX) −→ HomCones(Σ(T ),Σ(X)),

which is functorial in T .

Proof. Step I. Description of AX . By Lemma 2.6, we may select a Zariski covering C :=
{Aσ ⊂ AX}, and hence a Zariski covering {Uσ := Aσ ×AX

X ⊂ X}. We may assume that if
σ′ ⊂ σ is a face, then Aσ′ ⊂ Aσ ⊂ AX is also in C. Thus Σ(X) can be presented by the collection
of cones {σ} glued along face maps σ′ → σ. In particular, this shows that Σ(X) = Σ(AX). Since
Σ is functorial, there is then a map Hom(T,AX) → Hom(Σ(T ),Σ(X)). We need to construct the
inverse.

Step II. T is atomic. Suppose T has unique closed stratum T0 and a global chart P → MT

inducing an isomorphism P � MT,t̄ at some point t̄ ∈ T0; in the language of [AW18, Definition
2.2.4] the logarithmic scheme T is atomic. Then with τ := Hom(P,R≥0), Σ(T ) = τ .

Using the presentation of Σ(X) described in Step I, a map α : Σ(T ) → Σ(X) has image
α(τ) ⊂ σi ∈ Σ(X) for some i. Observe that Hom(T,Aσi) = Hom(Qi,Γ(T,MT )) by [Ols03,
Proposition 5.17]. Now Γ(T,MT ) = P , and giving a homomorphism Qi → P is equivalent
to giving a morphism of cones τ → σi. Thus Hom(T,Aσi) = Hom(τ, σi). In particular, α
induces a composed map T → Aσi ⊂ AX , yielding the desired inverse map Hom(Σ(T ),Σ(X)) →
Hom(T,AX).

Step III. T general. In general T has an étale cover {Ti} by atomic logarithmic schemes,
and each Tij := Ti ×T Tj also has such a covering {T k

ij} by atomic logarithmic schemes. This
gives a presentation

∐
Σ(T k

ij) ⇒
∐

Σ(Ti) of Σ(T ). In particular, a morphism of cone com-
plexes Σ(T ) → Σ(X) induces morphisms Σ(Ti) → Σ(X) compatible with the maps Σ(T k

ij) →
Σ(Ti),Σ(Tj). Thus we obtain unique morphisms Ti → AX compatible with the morphisms
T k

ij → Ti, Tj , inducing a morphism T → AX . �

Example 2.11. Let X = A1 with the toric log structure. Then AX = AN = [A1/Gm]. Given an
ordinary scheme T , a morphism f : T → AX is equivalent to giving a strict log morphism
T → AX , by endowing T with the pull-back f∗MAN

of the log structure on AN. From this
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point of view, the universal Gm-torsor P on AN agrees with the Gm-torsor subsheaf of MAN

defined by the generating section of MAN
. Thus the pull-back log structure f∗MAN

is given by
a line bundle L on T , the line bundle with associated torsor L× = f∗P, and a homomorphism
L → OT of OT -modules defining the structure morphism, or its restriction to L×. Conversely,
the morphism f from T to the quotient stack AN = [A1/Gm] can be recovered from L → OT by
the associated Gm-equivariant morphism from the Gm-torsor SpecT

( ⊕
d∈Z

L⊗−d
)

to A1
T .

Thus for an arbitrary log structure MT on T , a log morphism f : (T ,MT ) → AN is the
same data as the restriction of MT → OT to a Gm-torsor subsheaf L× ⊂ MT . Indeed, such
an isomorphism yields the identification of f∗P with a Gm-torsor subsheaf L× ⊂ MT , and the
property of being a log morphism forces f to be associated to the restriction of the structure
morphism MT → OT to L×.

Now Proposition 2.10 assumes a log structure MT on T is already given and then says that
the set of log morphisms T = (T ,MT ) → AX equals the set of morphisms Σ(T ) → R≥0 = Σ(X)
of cone complexes. Indeed, such a morphism of cone complexes is equivalent to specifying m̄ ∈
Γ(T,MT ), and then the Gm-torsor subsheaf L× ⊂ MT is simply defined by the preimage of m̄
under MT → MT .

2.3 Stable logarithmic maps and their moduli
This section reviews the theory of stable logarithmic maps developed in [GS13, Che14, AC14],
emphasizing the tropical language from [GS13]. Most references in the following are therefore
to [GS13], but of course all results have analogues in [Che14, AC14] under the slightly stronger
assumption of global generatedness of MX . Note that the restriction on global generatedness
has been removed in [ACMW17] by base changing to a refinement of the Artin fan AX of X.

2.3.1 Definition. We fix a log morphism X → B with the logarithmic structure on X being
defined in the Zariski topology. Recall the following from [GS13, Definition 1.6].

Definition 2.12. A stable logarithmic map (C/S,p, f) is a commutative diagram

C
f

��

π

��

X

��
S �� B

(2.4)

where the following hold.

(i) π : C → S is a proper, logarithmically smooth and integral morphism of log schemes together
with a tuple of sections p = (p1, . . . , pk) of π such that every geometric fibre of π is a
reduced and connected curve, and if U ⊂ C is the non-critical locus of π then MC |U �
π∗MS ⊕ ⊕k

i=1 pi∗NS .
(ii) For every geometric point s̄→ S, the restriction of f to C s̄ together with p is an ordinary

stable map.

2.3.2 Basic maps. The crucial concept for defining moduli of stable logarithmic maps is
the notion of basic stable logarithmic maps. To explain this in tropical terms, we begin by
summarizing the discussion of [GS13, § 1] where more details are available. The terminology
used in [Che14, AC14] is minimal stable logarithmic maps.
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2.3.3 Induced maps of monoids. Suppose given (C/S,p, f) a stable logarithmic map with
S = Spec(Q′ → k), with Q′ an arbitrary sharp fs monoid and k an algebraically closed field. We
will use the convention that a point denoted p ∈ C is always a marked point, and a point denoted
q ∈ C is always a nodal point. Denoting Q′ = π−1Q′, the morphism π� of logarithmic structures
induces a homomorphism of sheaves of monoids ψ = π̄� : Q′ → MC . Similarly f � induces ϕ =
f̄ � : f−1MX → MC .

2.3.4 Structure of ψ. The homomorphism ψ is an isomorphism when restricted to the com-
plement of the special (nodal or marked) points of C. The sheaf MC has stalks Q′ ⊕ N and
Q′ ⊕N N2 at marked points and nodal points, respectively. The latter fibred sum is determined
by a map

N −→ Q′, 1 	−→ ρq (2.5)

and the diagonal map N → N2, see [GS13, Definition 1.5]. The map ψ at these special points is
given by the inclusion Q′ → Q′ ⊕ N and Q′ → Q′ ⊕N N2 into the first component for marked and
nodal points, respectively.

2.3.5 Structure of ϕ. For x̄ ∈ C a geometric point with underlying scheme-theoretic point x,
the map ϕ induces maps ϕx̄ : Px → MC,x̄ for

Px := MX,f(x̄).

Note that MX,f(x̄) is independent of the choice of x̄→ x since the logarithmic structure on X

is Zariski. Following Discussion 1.8 of [GS13], we have the following behaviour at three types of
points on C.

(i) x = η is a generic point, giving a local homomorphism2 of monoids

ϕη̄ : Pη −→ Q′. (2.6)

(ii) x = p is a marked point, giving the composition

up : Pp
ϕp̄−→ Q′ ⊕ N

pr2−→ N. (2.7)

The element up ∈ P∨
p is called the contact order at p.

(iii) x = q is a node contained in the closures of η1, η2. If χi : Pq → Pηi are the generization
maps there exists a homomorphism

uq : Pq −→ Z,

called contact order at q, such that

ϕη̄2(χ2(m)) − ϕη̄1(χ1(m)) = uq(m) · ρq, (2.8)

with ρq �= 0 given in (2.5), see [GS13, (1.8)]. The maps ϕη̄ ◦ χi and uq are equivalent to
providing the local homomorphism ϕq̄ : Pq → Q′ ⊕N N2.

2 A homomorphism of monoids ϕ : P → Q is local if ϕ−1(Q×) = P×.
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The choice of ordering η1, η2 for the branches of C containing a node is called an orientation
of the node. We note that reversing the orientation of a node q (by interchanging η1 and η2)
results in reversing the sign of uq.

2.3.6 Dual graphs and combinatorial type. In this paper, a graph G consists of a set of
vertices V (G), a set of edges E(G) and a separate set of legs or half-edges L(G), with appropriate
incidence relations between vertices and edges, and between vertices and half-edges. We admit
multiple edges, loops and legs. In order to obtain the correct notion of automorphisms, we also
implicitly use the convention that every edge E ∈ E(G) of G is a pair of orientations of E or a
pair of half-edges of E (disjoint from L(G)), so that the automorphism group of a graph with a
single loop is Z/2Z.

Given a stable logarithmic map (C/S,p, f) over a logarithmic point, let GC be the dual
intersection graph of C. This is the graph which has a vertex vη for each generic point η of C, an
edge Eq joining vη1 , vη2 for each node q contained in the closures of both η1 and η2, and where
Eq is a loop if q is a double point in an irreducible component of C. Note that an ordering of the
two branches of C at a node gives rise to an orientation on the corresponding edge. Finally, GC

has a leg Lp with endpoint vη for each marked point p contained in the closure of η. Occasionally
we view V (G), E(G) and L(G) as subsets of C and then write x ∈ C for a vertex, edge or leg of
G corresponding to a generic point, node or marked point of C respectively.

Definition 2.13. Let (C/S,p, f) be a stable logarithmic map over a logarithmic point S =
Spec(Q→ k). The combinatorial type of (C/S,p, f) consists of the following data:

(1) the dual intersection graph G = GC of C;
(2) the genus function3 g : V (G) → N associating to v ∈ V (G) the genus of the irreducible

component C(v) ⊂ C;
(3) the map σ : V (G) ∪ E(G) ∪ L(G) → Σ(X) mapping x ∈ C to

(MX,f(x)

)∨
R
∈ Σ(X);

(4) the contact data u = {up, uq} at marked points p and nodes q of C.

2.3.7 The basic monoid. Given a combinatorial type of a stable logarithmic map (C/S,p, f),
we define a monoid Q by first defining its dual

Q∨ =
{

((Vη)η, (eq)q) ∈
⊕

η

P∨
η ⊕

⊕
q

N | ∀q : Vη2 − Vη1 = equq

}
. (2.9)

Here the sum is over generic points η of C and nodes q of C. Readers with background in
tropical geometry should recognize this monoid as the moduli cone of tropical curves of fixed
combinatorial type, as will be discussed in § 2.5. We then set

Q := Hom(Q∨,N).

It is shown in [GS13, § 1.5], that Q is a sharp monoid, fine and saturated by construction as the
dual of a finitely generated submonoid of a free abelian group. Note also that Q indeed only
depends on the combinatorial type of (C/S,p, f).

3 This was not part of the combinatorial type as defined in [GS13], but is included here to agree with the type of
a tropical map below, where it is indispensable.
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Given a stable logarithmic map (C ′/S′,p′, f ′) over S′ = Spec(Q′ → k) of the same combina-
torial type, we obtain a canonically defined map

Q −→ Q′ (2.10)

which is most easily defined as the transpose of the map

(Q′)∨ −→ Q∨ ⊂
⊕

η

P∨
η ⊕

⊕
q

N, m 	−→ ((ϕt
η̄(m))η, (m(ρq))q),

with ϕη̄ and ρq defined in (2.6) and (2.5), respectively.

Definition 2.14 (Basic maps). Let (C/S,p, f) be a stable logarithmic map. We say f is basic
if at every geometric point s̄ of S, the map Q→ Q′ = MS,s̄ from (2.10) defined by the restriction
(Cs̄/s̄,ps̄, f |Cs̄) is an isomorphism.

2.3.8 Degree data and class. In what follows, H+
2 (X) denotes a semigroup carrying degree

data for curves in X, which are locally constant in flat families, such as effective 1-cycles on
X modulo algebraic or numerical equivalence or, working over C, classes in singular homology
H2(X,Z) pairing non-negatively with a Kähler form. We require that the moduli spaces of
ordinary stable maps of fixed curve class, genus and number of marked points are of finite type.

Definition 2.15. A class β of stable logarithmic maps to X consists of the following:

(i) the data β of an underlying ordinary stable map, i.e. the genus g, a curve class A ∈ H+
2 (X),

and the number of marked points k;
(ii) integral elements up1 , . . . , upk

∈ |Σ(X)|.4

We say a stable logarithmic map (C/S,p, f) is of class β if two conditions are satisfied.
First, the underlying ordinary stable map must be of type β = (g,A, k). Second, define the closed
subset Zi ⊂ X to be the union of strata with generic points η such that upi lies in the image of
ση → |Σ(X)|. Then for any i we have im(f ◦ pi) ⊂ Zi and for any geometric point s̄→ S such
that pi(s̄) lies in the stratum of X with generic point η, there exists u ∈ ση = Hom(MX,η̄,N)
mapping to upi ∈ |Σ(X)| making the following diagram commute.

MX,f(pi(s̄))

f̄�

��

χ

��

MC,pi(s̄) = MS,s̄ ⊕ N

pr2

��
MX,η̄

u �� N

Here χ is the generization map. In particular, si specifies the contact order upi at the marked
point pi(s̄) as defined in (2.7).

We emphasize that the class β does not specify the contact orders uq at nodes.

4 We remark that this definition of contact orders is different from that given in [GS13, Definition 3.1]. Indeed,
the definition given there does not work when X is not monodromy free, and [GS13, Remark 3.2] is not correct
in that case. However, [GS13, Definition 3.1] may be used in the monodromy free case.
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Definition 2.16. Let M (X/B, β) denote the stack of basic stable logarithmic maps of class β.
This is the category whose objects are basic stable logarithmic maps (C/S,p, f) of class β, and
whose morphisms (C/S,p, f) → (C ′/S′,p′, f ′) are commutative diagrams

C
g

��

��

C ′ f ′
��

��

X

��
S

h �� S′ �� B

with the left-hand square cartesian, S → S′ strict, and f = f ′ ◦ g, g ◦ p = p′ ◦ h.

Theorem 2.17. If X → B is proper, then M (X/B, β) is a proper Deligne–Mumford stack. If

furthermore X → B is logarithmically smooth, then M (X/B, β) carries a perfect obstruction

theory, defining a virtual fundamental class [M (X/B, β)]virt in the rational Chow group of

M (X/B, β).

Proof. Under the given assumption that X is a Zariski log scheme, [GS13, Theorem 2.4] proves
that M (X/B, β) is a Deligne–Mumford stack. Properness was shown in [GS13, Theorem 2.4]
under a technical assumption, and in general in [ACMW17].

The existence of a perfect obstruction theory when X → B is logarithmically smooth was
proved in [GS13, § 5]. �

2.4 Stacks of pre-stable logarithmic curves
For the obstruction theory in Theorem 2.17 one works over the Artin stack MB of pre-stable
logarithmically smooth curves defined over B. Since this stack will be important later on, let us
briefly recall its construction. First, working over a field k, there is a stack M of pre-stable basic
logarithmic curves over Spec k, essentially constructed by Kato in [Kat00]. Endowing M with its
basic log structure, the fibre product M ×Spec k B in the category of log stacks is a fs log stack.
We can then define MB using Olsson’s stack over M ×B:

MB := LogM×B.

Indeed, an object in this stack is a log scheme T with two morphisms T → M and T → B.
The corresponding pre-stable log smooth curve over T is the logarithmic pull-back to T of the
universal pre-stable curve over M.

We also consider the following refinements of M introduced in [BM96, Definition 2.6] and
further discussed in [Beh97, p. 603]. Let G be a graph decorated by a map

g : V (G) −→ N,

associating to each vertex its genus. Then there is an algebraic stack

M(G,g) of (G,g)-marked pre-stable curves (2.11)

with objects over a B-scheme S given by:

(1) for each v ∈ V (G), a family of pre-stable curves Cv → S of genus g(v), together with marked
sections xL : S → Cv defined by the legs L ∈ L(G) with v ∈ L;
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(2) for each edge E ∈ E(G) with vertices v, w, a pair of marked sections yv, yw of Cv → S,
Cw → S, respectively.

All marked sections are required to be mutually disjoint and to have image in the non-critical
locus of

∐
v Cv → S. Taking the fibred sum of

∐
v Cv along the pairs of marked sections associated

to the edges, we may as well view the objects of M(G,g) as families of marked nodal curves

(C −→ S, x); (2.12)

from this point of view, each edge E defines a nodal section yE : S → C and each vertex a closed
embedding Cv → C of a family of pre-stable curves of genus g(v) and with image a union of
irreducible components. Thus we have a morphism of algebraic stacks

M(G,g) −→ M, (2.13)

turning M(G,g) into a logarithmic algebraic stack by pulling back the log structure from M.
Note that on the level of the underlying stacks, (2.13) induces the identification of the stack
quotient [M(G,g)/Aut(G,g)] with the normalization of a closed substack of M, defining the
well-known stratified structure of M. See [ACG11, XII, § 10] for a detailed discussion. Now define

MB(G,g) := LogM(G,g)×B, CB(G,g) := MB(G,g) ×M(G,g) C(G,g). (2.14)

An important feature of the collection of stacks M(G,g) and in turn of MB(G,g) is their
functorial behaviour under contraction morphisms of decorated graphs

φ : (G,g) −→ (G′,g′), (2.15)

that is, an isomorphism of G′ with the graph G/Eφ contracting a subset of edges Eφ ⊂ E(G)
such that5

g′(v′) = b1(φ−1(v′)) +
∑

v∈V (φ)−1(v′)

g(v)

holds for all v′ ∈ V (G′) [BM96, Definition 1.3]. Here V (φ) : V (G) → V (G′) is the surjec-
tion on the set of vertices defined by φ, and we have in addition a compatible inclusion
E(φ) : E(G′) �−→E(G) \ Eφ ⊂ E(G) of the sets of edges and a bijection L(φ) : L(G′) → L(G)
on the sets of legs. This notion of morphism captures the behaviour of the combinatorial type of
pre-stable curves under generization and is indeed compatible with the finite maps (2.13) to M.

Proposition 2.18. For any contraction morphism (G,g) → (G′,g′) of genus-decorated graphs,

there are finite unramified morphisms of ordinary stacks M(G,g) → M(G′,g′) and

MB(G,g) −→ MB(G′,g′).

Proof. By base change and the definition of the log structures it is enough to prove the statement
for the morphism of stacks underlying M(G,g) → M(G′,g′). In this case the statement follows
by iterated application of the clutching morphisms of [Knu83, Corollary 3.9]. �

5 The right-hand side is identified in (2.17) below as the genus of φ−1(v′).
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We emphasize that Proposition 2.18 is purely on the level of stacks with no log structures
involved. Incorporating log structures in the picture is more subtle and is part of the gluing
formalism developed in [ACGS20].

2.5 The tropical interpretation
The basic monoid Q was originally derived from its tropical interpretation, which will play an
important role here. We review this in our general setting. Given a stable logarithmic map
(C/S,p, f), we obtain an associated diagram of cone complexes.

Σ(C)
Σ(f)

��

Σ(π)
��

Σ(X)

��
Σ(S) �� Σ(B)

(2.16)

This diagram can be viewed as giving a family of tropical curves mapping to Σ(X), parameterized
by the cone complex Σ(S). Indeed, a fibre of Σ(π) is a graph and the restriction of Σ(f) to such
a fibre can be viewed as a tropical curve mapping to Σ(X). We make this precise.

To avoid difficulties in notation, we shall assume that X is simple (Definition 2.1). This is
not a restrictive assumption in this paper since we assume X to be log smooth over the trivial
log point Spec k, and as X is assumed to be Zariski in any event, it follows that X is simple
(Proposition 2.2). We use the reduced presentation of Σ(X) from 2.1.2. Then simplicity implies
that if τ, σ ∈ Σ(X) and the image of τ in |Σ(X)| is a face of the image of σ, then there is a
unique face map τ → σ in the diagram.

The left-hand vertical arrow of (2.16) is a family of abstract tropical curves according to the
following definition, cf. also [CCUW20, Definition 3.2].

Definition 2.19. A (family of) tropical curves (G,g, �) over a cone ω ∈ Cones is a connected
graph G together with a bijection L(G) → {1, . . . , k} (leg ordering) and two maps

g : V (G) −→ N, � : E(G) −→ Hom(ω ∩Nω,N) \ {0}.
For v ∈ V (G) and E ∈ E(G) we call g(v) the genus of v and �(E) the length function of E.

The genus of a family of tropical curves (G,g, �) is defined by

|g| = b1(G) +
∑

v∈V (G)

g(v). (2.17)

Note that given a tropical curve (G,g, �) over a cone ω and s ∈ ω not contained in any proper face,
then s ◦ � assigns a strictly positive real number to each edge. Together with the convention that
legs are infinite length, (G, s ◦ �) therefore specifies a metric graph, reproducing the traditional
definition of an abstract tropical curve. Hence our definition makes precise the notion of a family
of abstract tropical curves parameterized by ω ∈ Cones.

Construction 2.20. We suppress the genus decoration in the notation (G,g, �) and conflate
(G,g, �) with its associated morphism of cone complexes

Γ = Γ(G, �) πΓ−→ ω, (2.18)

2035

https://doi.org/10.1112/S0010437X20007393 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007393


D. Abramovich et al.

constructed as follows. For each v ∈ V (G) take one copy ωv of ω, while for each E ∈ E(G) take
the cone

ωE = {(s, λ) ∈ ω × R≥0 |λ ≤ �(E)(s)}. (2.19)

The cone ωE has two facets, each isomorphic to ω via projection to the first factor. The
corresponding inclusions,

s 	−→ (s, 0), s 	−→ (s, �(s)),

define face morphisms ωv, ωv′ → ωE for the two vertices v, v′ adjacent to E. Note this definition
is independent of the chosen labellings v, v′ and works also for graphs with loops. Finally, for each
L ∈ L(G) with adjacent vertex v take ωL = ω × R≥0 with face morphism ωv → ωL defined by
the facet ω × {0} ⊂ ωL. Then Γ is the generalized cone complex defined by this directed system
in Cones. The morphism to ω is defined on each ωE by the projection to the first factor.

By construction, each vertex v ∈ V (G) defines a section of πΓ : Γ → ω denoted as follows:

ω −→ Γ, s 	−→ v(s) ∈ ωv. (2.20)

Then for s ∈ ω not contained in a proper face, the fibre πΓ
−1(s) is the metric graph (G, s ◦ �)

previously defined.

It is also not hard to replace individual cones as base spaces for families of tropical curves
by cone complexes. See [CCUW20, § 3] for an elaboration of such ideas.

Definition 2.21. A (family of) tropical maps (from a tropical curve) to Σ(X) over a cone
ω ∈ Cones is a tropical curve (G,g, �) over ω (Definition 2.19) with associated cone complex
Γ = Γ(G, �) (Construction 2.20), together with a morphism of cone complexes

h : Γ −→ Σ(X).

Remark 2.22. There are a number of discrete data that we can extract from a tropical map
h : Γ → Σ(X) over ω ∈ Cones which are of importance in the sequel.

(1) Image cones. For a vertex, edge, or leg x of G, let ωx ∈ Γ be the cone associated to x.
Define

σ : V (G) ∪ E(G) ∪ L(G) −→ Σ(X) (2.21)

by mapping x to the minimal cone τ ∈ Σ(X) containing h(ωx). Note that if E is a leg or edge inci-
dent to a vertex v, then there is an inclusion of faces σ(v) ⊂ σ(E) in the (reduced) presentation
of Σ(X).

(2) Contact orders at edges. Let Eq ∈ E(G) be an edge with a chosen order of vertices v, v′

(orientation). Then by the definition of the cone ωEq of Γ associated to Eq in (2.19), the image
of (0, 1) ∈ NωEq

= Nω × R under h defines uq ∈ Nσ(Eq) such that in Nσ(Eq),

h(v(s)) − h(v′(s)) = �(Eq)(s) · uq (2.22)

holds for any s ∈ ωEq . Here v(s) ∈ Γ is the section of Γ → ω defined in (2.20). Reversing the
orientation of Eq results in replacing uq by −uq.

(3) Contact orders at marked points. Similarly, for a leg Lp ∈ L(G), the image of (0, 1) ∈
NωLp

= Nω × R defines up ∈ Nσ(Lp) ∩ σ(Lp) with h(Int(ωLp)) ⊂ Int(σ(Lp)).
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Definition 2.23. (1) The type of a family of tropical maps h : Γ → Σ(X) over Q∨
R
∈ Cones

is the quadruple τ = (G,g,σ,u) consisting of the associated genus decorated graph (G,g), the
map σ from (2.21) recording the strata and the contact orders u = {up, uq} as defined in Remark
2.22. Note that we are suppressing the leg numbering, viewing the set L(G) as identical with
{1, . . . , k}.

(2) For a type τ of a family of tropical maps, Aut(τ) denotes the subset of automorphisms
of G commuting with the maps g,σ,u.

(3) Given a type τ of a family of tropical maps, the associated basic monoid Q(τ) is the dual
of the monoid Q∨ defined in (2.9), depending only on G,σ and u.

(4) If in addition we have given a map

A : V (G) −→ H+
2 (X),

we call τ = (τ,A) the decorated type of a family of tropical maps, the pair (h,A) a decorated
family of tropical maps and

|A| =
∑

v∈V (G)

A(v)

the total curve class of A.

Generalizing (2.15) we have a notion of contraction morphism for (decorated) types of families
of tropical maps needed below.

Definition 2.24. Let τ = (G,g,σ,u) and τ ′ = (G′,g′,σ′,u′) be types of families of tropi-
cal maps. A contraction morphism τ → τ ′ is a contraction morphism φ : (G,g) → (G′,g′) of
decorated graphs (2.15) with the following additional properties.

(i) For all x ∈ V (G) ∪ E(G) ∪ L(G) the cone σ′(φ(x)) ∈ Σ(X) is a face of σ(x).
(ii) For all x ∈ E(G′) ∪ L(G′) it holds that u′(x) = u((E(φ) ∪ L(φ))(x)).

Similarly, a contraction morphism τ = (τ,A) → τ ′ = (τ ′,A′) of decorated types of families of
tropical maps is a contraction morphism τ → τ ′ such that A′(v′) =

∑
v∈V (φ)−1(v′) A(v) holds for

all v′ ∈ V (G′).

2.5.1 Families of tropical curves from logarithmically smooth curves. Now suppose

S = Spec(Q −→ k)

for some monoid Q and (C/S,p) is a family of marked log smooth curves, as in Definition 2.12(i).

Proposition 2.25. The tropicalization

Σ(π) : Σ(C) −→ Σ(S) = Q∨
R (2.23)

of (C/S,p) naturally has the structure of a family of tropical curves (G,g, �) over Q∨
R
.

Proof. Take for G the dual intersection graph of C. If η is a generic point of C, then ωη = Q∨
R

and
Σ(π)|ωη is the identity. Thus each fibre of Σ(π)|ωη is a point v. We take the weight g(v) = g(C(v)),
the geometric genus of the component C(v) with generic point η. The cone of Σ(C) defined by
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a node q of C is

ωq = Hom(Q⊕N N2,R≥0) = Q∨
R ×R≥0

R2
≥0,

where the maps Q∨
R
→ R≥0 and R2

≥0 → R≥0 are given by evaluation at ρq ∈ Q \ {0} and by
(a, b) 	→ a+ b, respectively. The projection R2

≥0 → R≥0 to, say, the first factor, defines an
isomorphism

Q∨
R ×R≥0

R2
≥0 −→ {(m,λ) ∈ Q∨

R × R≥0 |λ ≤ m(ρq)}.
Thus defining �(Eq) = ρq, we have a canonical isomorphism ωq � ωEq with ωEq defined in (2.19).
For a marked point pi ∈ C, we have ωpi = Q∨

R
× R≥0, and Σ(π)|ωpi

is the projection onto the
first component, again compatible with the definition of Γ = Γ(G, �) in Construction 2.20. �

2.5.2 Families of tropical maps to Σ(X) from stable logarithmic maps. We continue working
over a logarithmic point S = Spec(Q→ k) and assume in addition given an fs log scheme X,
which is simple in the sense of Definition 2.1.

Proposition 2.26. The tropicalization of a stable logarithmic map (C/S,p, f) over the

logarithmic point S = Spec(Q→ k) defines a family of tropical maps to Σ(X) over Q∨
R
.

Proof. In view of Proposition 2.25 the statement follows readily from the definitions. �

Remark 2.27. An element x ∈ V (G) ∪ E(G) ∪ L(G) corresponds to a point x ∈ C – either a
generic point, a double point, or a marked point. The cone σ(x) introduced in Remark 2.22 is

σ(x) = (Px)∨R = Hom(MX,f(x̄),R≥0) ∈ Σ(X),

for any geometric point x̄ mapping to x. With this identification of cones understood, it is a
matter of unravelling the definitions that the other discrete data introduced in Remark 2.22,
the contact orders uLp , uEq , agree with up, uq defined in § 2.3.5. Note in particular how (2.22)
appears as the tropical manifestation of (2.8). Thus the type of the tropicalization of a stable
logarithmic map, as a family of tropical maps (Definition 2.23), agrees with its combinatorial
type from Definition 2.13.

2.5.3 Traditional tropical maps: the relative situation. A situation of particular interest arises
when working over the standard log point b0 = Spec(N → k[N])). Then all generalized cone com-
plexes come with a morphism π to Σ(b0) = R≥0. Taking the fiber of π over 1 ∈ R≥0 then produces
a generalized polyhedral complex as introduced in § 2.1.3. Conversely, let π : Σ → R≥0 be a map
of generalized cone complexes such that no maximal cone of Σ maps to 0 ∈ R≥0. Then Σ and π
can be recovered from the generalized polyhedral complex π−1(1) by replacing each polyhedron
σ = (σR, N) by the closure of R≥0(σ × {1}) in NR × R.

If X is a finite type logarithmic stack over the standard log point b0 with associated
tropicalization π : Σ(X) → Σ(B0) = R≥0, we now write

Δ(X) = π−1(1) ⊂ Σ(X)

for the associated polyhedral complex.
In particular, this discussion applies to the logarithmic schemeX0 and logarithmically smooth

morphism X0 → b0 from the main theorem in this paper, Theorem 1.2. Let (C/S,p, f) be a
stable log map to X0 with S = Spec(Q→ k) a log point as in § 2.5.2, but now coming with a
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map to b0. Let πS : Q∨ → N be the tropicalization of S → b0. Then the family of tropical maps
Σ(C) → Σ(X0) over Q∨ carries the same information as its restriction to the fiber over 1 ∈ R≥0,
a family of maps from metric graphs to Δ(X) parameterized by the polyhedron π−1

S (1) ⊂ Q∨.
The transition from cone complexes to polyhedral complexes provides the link to more tra-

ditional tropical language. In the remainder of this paper we use cone complexes for most of the
general results and polyhedral complexes for explicit computations. With regards to using both
cones and polyhedra as parameter spaces for families of tropical maps, note that there is no
conflict of language: a family of tropical maps to Σ(X0) over a cone σ can be viewed as a family
of maps of metric graphs to Σ(X0) interpreted as a polyhedral complex, now parameterized by
σ as a polyhedron.6

As a matter of notation, we indicate the transition from cone complexes to polyhedral com-
plexes by overlining. Thus a family of tropical maps h : Γ → Σ(X0) over a cone σ with a map
πS : σ → R≥0 induces the family of tropical maps

h̄ : Γ̄ −→ Σ̄(X) = Δ(X) (2.24)

over the polyhedron σ̄ = π−1
S (1).

2.5.4 Basic maps and tropical universal families. Basicness of a stable logarithmic map
(C/S,p, f) over a logarithmic point can then be recast as follows.

Proposition 2.28. Let (C/S,p, f) be a stable logarithmic map over a logarithmic point S =
Spec(Q→ k) and τ its combinatorial type (Definition 2.13). Then (C/S,p, f) is basic if and only

if the family of tropical maps in Proposition 2.26 is universal among families of tropical maps to

Σ(X) of type τ .

Proof. The definition of the dual of the basic monoid Q∨ precisely encodes the data of a family
of tropical maps to Σ(X) over σ = R≥0 of type τ (Definition 2.23). Indeed, let GC be the
dual intersection graph of C from § 2.3.6, with vertices vη, edges Eq and legs Lp. Then a tuple
((Vη)η, (eq)q) ∈ Int(Q∨

R
) specifies a family of tropical maps

h : Γ(G, �) −→ Σ(X)

over R≥0 of the given type, by defining �(Eq) = eq and h|ωv by mapping 1 ∈ R≥0 = ωvη to Vη ∈
Σ(X). The type also determines h on each leg Lp. It is shown in [GS13, Proposition 1.9] that if
one such tropical map to Σ(X) of a certain type exists then there exists one over Q∨

R
; moreover,

any other tropical map of the same type, say over σ ∈ Cones, is obtained from this one by
pull-back via a homomorphism σ → Q∨

R
. �

Remark 2.29. Note that if S is not a log point, the diagram (2.16) still exists, but the fibres
of Σ(π) may not be the expected ones. In particular, if s̄ is a geometric point of S, there is a
functorial diagram

Σ(Cs̄) ��

��

Σ(C)

��
Σ(s̄) �� Σ(S)

6 It is worthwhile pointing out that the transition from polyhedral complexes to cone complexes can be subtle
[BS11]. This is not an issue here since we always have an underlying description in terms of cone complexes.
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but this diagram need not be Cartesian due to monodromy in the family S. For example, it
is easy to imagine a situation where Cs̄ has two irreducible components and two nodes for
every geometric point s̄, but the nodal locus of C → S is irreducible, as there is monodromy
interchanging the two nodes. Then a fibre of Σ(C) → Σ(S) may consist of two vertices joined
by a single edge, while a fibre of Σ(Cs̄) → Σ(s̄) will have two vertices joined by two edges.
Similarly, there may be monodromy interchanging irreducible components, and hence a fibre of
Σ(C) → Σ(S) may have fewer vertices than Cw̄ has irreducible components. This issue can be
resolved by redefining moduli of tropical curves as stacks, following [CCUW20].

2.5.5 Decorated tropical maps from stable logarithmic maps. In the situation of Proposition
2.26, the tropical map h : Σ(C) → Σ(X) comes with the natural decoration

A : V (G) −→ H+
2 (X), v 	−→ [f(C(v))]. (2.25)

Here C(v) ⊂ C is the irreducible component corresponding to the vertex v and [f(C(v))] is the
class of f(C(v)) in H+

2 (X). The decoration by curve classes is compatible with the contraction
morphisms of decorated graphs (Definition 2.24) defined by generization.

Lemma 2.30. Let (C/S,p, f) be a stable logarithmic map to X over some logarithmic scheme S

and (τs̄,As̄) with τs̄ = (Gs̄,gs̄,σs̄,us̄) its decorated type at the geometric point s̄→ S according

to Definition 2.23 and (2.25). Then if s̄, s̄′ → S are two geometric points with s̄ a generization

of s̄′, the induced map

(τs̄′ ,As̄′) −→ (τs̄,As̄)

is a contraction morphism (Definition 2.24).

Proof. [GS13, Lemma 1.11] says that τs̄′ → τs̄ is a contraction morphism. To check the statement
on the curve classes, recall that the preimage of v ∈ Gs̄ in G′̄

s consists of those vertices v′ ∈ Gs̄′

with Cs̄′(v′) contained in the closure of Cs̄(v). Since this closure defines a flat family of curves,
invariance of classes in H+

2 (X) in flat families then implies

[f(Cs̄(v))] =
∑
v′ 	→v

[f(Cs̄′(v′))],

as claimed. �

2.6 Stacks of stable logarithmic maps marked by tropical types
We now put ourselves in the situation of the main result in this paper, Theorem 1.2, and assume
X0 → b0 is logarithmically smooth and X0 is simple. In particular, curve classes are understood
to take values in H+

2 (X0).
Similar to M(G,g), we can now define stacks of stable logarithmic maps to X0 over b0 with

restricted decorated types of tropicalizations.

Definition 2.31. Let τ = (G,g,σ,u,A) = (τ,A) be the decorated type of a tropical map as
defined in Definition 2.23. A marking by τ of a stable logarithmic map (C/S,p, f) to X0 over a
logarithmic base scheme S over b0 is the following data:

(1) an isomorphism of C/S with a (G,g)-marked pre-stable curve (2.12);
(2) the restriction of f to the closed subscheme Z ⊂ C (a subcurve or nodal or punctured section

of C) defined by x ∈ V (G) ∪ E(G) ∪ L(G) factors through Xσ(x) ⊂ X0;
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(3) for each geometric point s̄→ S with decorated type τ s̄ = (Gs̄,gs̄,σs̄,us̄,As̄) of (C/S,p, f),
the morphism (Gs̄,gs̄) → (G,g) of decorated graphs from (1) defines a morphism

τ s̄ = (τs̄,As̄) −→ τ = (τ,A)

of decorated types of tropical maps; in particular, there is an associated localization map

χττs̄ : Qτs̄ −→ Qτ

of the corresponding basic monoids;
(4) in the situation of (3), the preimage Kτ ,s̄ ⊂ MS,s̄ of Qτ \ {0} under the composition

MS,s̄ −→ MS,s̄ = Qτs̄

χττs̄→ Qτ

maps to 0 under the structure morphism MS,s̄ → OS,s̄.

Remark 2.32. Definition 2.31 calls for some explanations. The isomorphism in (1) just identifies
a contraction of the dual intersection graph of each geometric fiber of C → S with a fixed genus-
decorated graph (G,g), in a way compatible with generization. Then (2) and (3) ask that the
decorated graphs associated to geometric fibers of the stable log map (C/S,p, f) are refinements
of the decorated type (τ,A). Condition (4) is maybe the least obvious, but is necessary to restrict
the decorated type on a schematic level. It effectively takes the reduction of the moduli space in
unobstructed situations, or on a virtual level later on. We could, in fact, omit Condition (4) at
the expense of taking reductions in some formulas below, e.g. in M(X0, τ) in Corollary 3.8.

Given a decorated type τ = (τ,A) of tropical maps, we define

M (X0, τ ) (2.26)

as the stack with objects over a scheme S basic stable logarithmic maps (C/S,p, f) over b0
marked by the decorated type τ . We emphasize M (X0, τ ) is a moduli space of stable maps over
b0, but we suppress /b0 in the notation for simplicity. Similarly, we henceforth write M (X0, β)
instead of M (X0/b0, β).

For later use let us also show here that the monoid ideals in Definition 2.31(4) define a
coherent sheaf of ideals [Ogu18, Proposition II.2.6.1] in MM (X0,τ).

Lemma 2.33. For each decorated type τ of tropical maps, there exists a unique coherent sheaf

of ideals Kτ ⊂ MM (X0,τ) with stalks Kτ ,s̄ as defined in Definition 2.31(4).

Proof. The statement follows by [Ogu18, Proposition II.2.6.1(2)] since Ks̄ is defined by a monoid
ideal in a chart. �

Let β = (g,A, up1 , . . . , upk
) with g = |g|, A = |A|, k = |L(G)|.

Proposition 2.34.

(1) The stack M (X0, τ ) is a proper Deligne–Mumford stack.

(2) The morphism M (X0, τ ) → M (X0, β) is finite and unramified.
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Proof. By condition (1) in Definition 2.31, we have a morphism of stacks

M (X0, τ ) −→ M (X0, β) ×M M(G,g) = M (X0, β) ×M M(G,g).

Conditions (2) and (4) in Definition 2.31 defines a closed substack of the fibre product on the
right-hand side. Prescribing the contact orders up, uq at p ∈ L(G), q ∈ E(G) and the curve classes
for the subcurves of C defined by each v ∈ V (G) imposes locally constant conditions, and hence
select a union of connected components of this closed substack. Thus M (X0, τ ) is isomorphic to a
closed substack of the algebraic stack M (X0, β) ×M M(G,g), proving (1). The second statement
follows since M(G,g) → M is finite and unramified (Proposition 2.18). �

3. From toric decomposition to virtual decomposition

Throughout this section, denote by b0 = (Spec k,k× ⊕ N) the standard log point over k. We also
fix a logarithmically smooth and projective morphism X0 → b0 of log schemes.

3.1 Decomposition in the log smooth case
The decomposition formula is based on the following simple fact in toric geometry. Let π :
W → A1 be a morphism of toric varieties with Σπ : ΣW → ΣA1 the corresponding morphism of
fans, defined by a homomorphism N → NA1 of co-character lattices. We identify ΣW with the
cone complex Σ(W ) associated to W with its toric log structure, by forgetting the embedding
of |ΣW | into NR, and similarly for ΣA1 . For a ray γ ∈ ΣW denote by Dγ ⊂W the corresponding
toric divisor and by mγ ∈ N the generator of the image of

Z � Nγ
Σ(π)−→ NA1 � Z.

Proposition 3.1. We have the following equality of Weil divisors on W :

π∗({0}) =
∑

γ

mγDγ .

Proof. The map Σ(π) : N → Z defines a monomial function zm, m ∈ Hom(N,Z) on W . It is
standard that the order of vanishing of zm on the divisor Dγ is the value of m on the generator
of γ ∩Nγ . But this value is precisely mγ , giving the result. �

Proposition 3.1 can equivalently be stated as a decomposition of the fundamental class of
W0 = π−1(0). Our decomposition theorem is based on the generalization of this statement to a
log smooth morphism W0 → b0 of logarithmic algebraic stacks locally of finite type. Note first
that in this situation, W0 is locally pure-dimensional by log smoothness over b0. Thus it makes
sense to define the fundamental cycle [W0] as locally finite formal linear combination of locally
top-dimensional integral substacks.

Next, to define the multiplicities mγ , consider the morphism of generalized cone complexes
Σ(W0) → Σ(b0) associated to W0 → b0 as defined after Proposition 2.2. We have Σ(b0) � R≥0

with the lattice Nb0 � Z. Working in charts, there is still a correspondence between rays γ ∈
Σ(W0) and integral substacks Wγ ⊂W0, now locally of top dimension. Note that if σ ∈ Σ(W0)
and γ → σ is a morphism in Σ(X), then the pull-back ofWγ to a chart forW0 at a geometric point
of the stratum W0(σ) is contained in the union of all toric divisors for rays γ′ ⊂ σ with γ � γ′ in
Σ(W0). Hence Wγ may not be locally irreducible if Σ(W0) has cones with self-identifications. But
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since we work with cone complexes with reduced presentations, such rays γ, γ′ ⊂ σ define the
same one-dimensional cone in Σ(W0). These rays may be identified by self-maps of σ or simply
correspond to several maps σ∨ → γ∨ defined by generization in MW0 .

For a ray γ with integral lattice Nγ , we have γ ∩Nγ � N, and the homomorphism Z � Nγ →
Nb0 � Z is multiplication by an integer mγ .

For the following statement recall also the notion of idealized log structures and idealized log
smoothness from [Ogu18, III.1.3 and IV.3]. In a nutshell, this notion is designed to treat strata
of logarithmic spaces, by adding sheaves of ideals K ⊂ MX defining these strata as part of the
data.

Corollary 3.2. Let π : W0 → b0 be a log smooth morphism locally of finite type from a

logarithmic algebraic stack to the standard log point b0. Denote by [W0] the fundamental

cycle of W0, well-defined since W0 is locally pure-dimensional. Then the following formula

holds

[W0] =
∑

γ

mγ [Wγ ]

in the group of locally top-dimensional algebraic cycles on W0 [Kre99]. The sum runs over the

one-dimensional cones in the generalized cone complex Σ(W0) of W0.

Moreover, Wγ is idealized log smooth over b0 for some sheaf of ideals Kγ ⊂ MWγ .

Proof. The claimed equality of cycles can be checked on a cover by smooth charts. We may thus
assume that W0 is covered by a neat chart, that is, that we have a commutative diagram

V

πV

��

U

��

h ���� W0

π

��

A1 Spec k�� b0

where (i) h is an étale surjection, (ii) Spec k → A1 is the inclusion of the origin and g : U →
Spec k ×A1 V = π−1

V (0) is smooth, (iii) V is the affine toric variety Spec k[σ∨ ∩N∗] defined by
(σR, N) ∈ Σ(W0) and πV : V → A1 is a toric morphism. Thus we have

h∗[W0] = [U ] = g∗([V0])

via flat pull-back, where V0 = π−1(0). Now Proposition 3.1 describes [V0] in terms of the toric
divisors Dγ′ ⊂ V defined by the rays γ′ ⊂ σ. Thus

h∗[W0] =
∑
γ′⊂σ

mγ′g∗(Dγ′), (3.1)

with mγ′ the generator of the image of Z � Nγ′ → NA1 = Z. Each such γ′ defines a one-
dimensional cone γ ∈ Σ(W0) with mγ = mγ′ . Moreover, for two different rays γ′, γ′′ ⊂ σ, the
geometric generic points of Dγ′ , Dγ′′ map to the same geometric generic point of W0 if and only
if there exists a one-dimensional cone γ ∈ Σ(W0) and morphisms γ → γ′ and γ → γ′′. Since Σ(x)
is the colimit of such σ appearing in neat charts of W0, the equality (3.1) in a chart verifies the
claimed equation of cycles.
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The claim on idealized log smoothness of Wγ follows from the local description as a union of
toric strata and the criteria in [Ogu18, IV.3.1.21 and IV.3.1.22]. �

3.2 Logarithmic maps to the relative Artin fan X0

To lift the decomposition result Corollary 3.2 to the moduli space M (X0, β) = M (X0/b0, β)
of stable logarithmic maps in Theorem 1.2, we factor the map M (X0, β) → Mb0 forgetting the
logarithmic map to X0 via an intermediate log stack that is log étale over Mb0 = MB ×B b0. This
intermediate log stack is the stack M(X0, β

′) of basic logarithmic maps to the relative Artin fan
X0 = b0 ×B X of X0 over b0 (Definition 2.9). Since curve classes do not make sense on X0, we
have no stability in M(X0, β

′) and

β′ = (g, up1 , . . . , upk
)

only keeps the genus and the contact orders at the marked points from β = (g,A, up1 , . . . , upk
).

The point is that M(X0, β
′) is pure-dimensional, has unobstructed deformations and captures

the tropical geometry of the situation, while the decomposition according to Corollary 3.2 has a
simple tropical interpretation on this stack.

Proposition 3.3.

(1) The stack of basic logarithmic maps M(X0, β
′) to X0 over b0 is algebraic.

(2) The morphism M(X0, β) → Mb0 forgetting the logarithmic map to X0 is strict and étale.

Proof. Let Cb0 denote the universal curve over Mb0 . By openness of basicness, M(X0, β
′) is an

open substack of HomMb0
(Cb0 ,Mb0 ×b0 X0). This Hom-stack is algebraic by [Wis16, Corollary

1.1.1], proving (1).
For (2), the morphism M(X0, β

′) → Mb0 is strict by definition. Since AX → AB is logarith-
mically étale, it follows that X0 is logarithmically étale over b0. Now [AW18, Propostion 3.2]
implies that M(X0, β

′) → Mb0 is logarithmically étale. �

Note that Proposition 3.3(2) also shows that M(X0, β
′) is log smooth over b0, because Mb0

is, and that the obstruction theory of M (X0, β) over Mb0 induces an obstruction theory for
M (X0, β) over M(X0, β

′).

Remark 3.4. Implicit in the discussion in Proposition 2.28 applied with X = Spec k and in
Remark 2.29 is the fact that log-smoothness of M can be used to relate the moduli space of
abstract tropical curves to the tropicalization of M, properly interpreted as a stacky cone com-
plex [CCUW20]; see the precise statement in [Theorem 3.14, Uli20]. In view of Proposition 3.3(2)
we can now similarly relate the moduli space of tropical maps to Σ(X0) = Σ(X0) of class β′ to
the stacky cone complex associated to M(X0, β

′). While we do not develop the details of this
picture here, it should be clear that this interpretation is at the basis of many arguments in this
paper.

We also need the τ -marked refinements M(X0, τ) of M(X0, β
′), similar to M (X0, τ ) for

M (X0, β). Omitting the curve class, τ is now a type of tropical map to Σ(X0) of total genus g
and with k legs (Definition 2.23(1)). Then

M(X0, τ)
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is defined as in Definition 2.31 with X0 replacing X0 and disregarding the curve classes in
Definition 2.31(3). Analogous to Kτ for M (X0, τ ) constructed in Lemma 2.33, we have a sheaf
of ideals

Kτ ⊂ MM(X0,τ). (3.2)

We first observe the following analogue of Proposition 2.34.

Proposition 3.5.

(1) The stack M(X0, τ) is algebraic.

(2) The morphism ιτ : M(X0, τ) → M(X0, β
′) forgetting the marking by τ is finite and

unramified.

Proof. The proof is identical to the proof of Proposition 2.34. �

We are now in position to apply Corollary 3.2 to M(X0, β
′) → b0. The key is the description

of the components Wγ in this corollary in terms of rigid tropical maps.

Definition 3.6. A family of tropical maps h : Γ → Σ(X0) of type τ is rigid if the corresponding
basic monoid Q(τ) from Definition 2.23(3) is isomorphic to N.

In the language of polyhedral complexes, being rigid is equivalent to saying that the restric-
tion h̄ : Γ̄ → Δ(X) of h to the fiber over 1 ∈ R≥0 = Σ(b0) cannot be deformed as a map of
generalized polyhedral complexes. In other words, as a traditional tropical map, any deformation
of h̄ keeping the combinatorial data (i.e. of constant type) is trivial.

The following decomposition of the Artin stack M(X0, β
′) according to rigid tropical curves

is the main result of this section.

Theorem 3.7 (Virtual decomposition). For each irreducible component Wγ of M(X0, β
′)

according to Corollary 3.2 there exists a unique type τ of a rigid tropical map such that

Wγ is an irreducible component of the image of the finite map ιτ : M(X0, τ) → M(X0, β
′) from

Proposition 3.5.

In particular, M(X0, τ) with the sheaf of ideals Kτ ⊂ MM(X0,τ) from (3.2) is idealized.

Proof. The logarithmic stack M(X0, β
′) is logarithmically smooth over b0 by Proposition 3.3 and

since Mb0/b0 is logarithmically smooth. Up to a smooth factor, the map

M(X0, β
′) −→ b0

is locally given by base change to the central fibre of the map of toric varieties Spec k[Q] →
Spec k[N] with Q the basic monoid of a tropical map to Σ(X) of some type τ ′ and N → Q

induced by the structure map

Σ(π) : Σ(X) −→ Σ(B) = R≥0.

Locally the subschemes Wγ are defined by the toric divisors in Spec k[Q], which are in bijection
to extremal rays in Q∨

R
. Each extremal ray defines a rigid tropical map, say of type τ . Any local-

ization map of the associated basic monoids Qτ ′ → Qτ = N is the contraction of the codimension
one face dual to the one-dimensional cone in Q∨

τ ′ defined by τ . By the definition of Kτ , the monoid
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ideal defining the corresponding toric prime divisor agrees with the ideal in Qτ ′ given by Kτ .
Since this description is compatible with the restriction of charts, the first statement follows.

Corollary 3.2 also shows that Wγ → b0 is idealized log-smooth. The corresponding sheaf of
ideals has just been checked to agree with Kτ locally along Wγ . �

Corollary 3.8. We have the following equality of top-dimensional algebraic cycles in the pure-

dimensional algebraic stack M(X0, β
′):

[M(X0, β
′)] =

∑
τ

mτ · [ιτ (M(X0, τ))].

The sum is over all types τ of rigid tropical maps to Σ(X) and mτ ∈ N \ {0} is the projection

of the generator of the dual basic monoid Q∨
τ � N to Σ(b0) = R≥0.

Proof. The statement merely spells out the definition of the multiplicities mτ in Corollary 3.2.
�

3.3 Proof of the decomposition theorem
To prove the main theorem, Theorem 1.2, it remains to apply the virtual bivariant machinery
developed by Costello [Cos06] and Manolache [Man12]. We need two lemmas.

Lemma 3.9. The degree of the finite map

ιτ : M(X0, τ) −→ ιτ (M(X0, τ)) ⊂ M(X0, β
′)

from Proposition 3.5(2) over any irreducible component of the image is |Aut(τ)|.

Proof. The description of the smooth cover of M(X0, β
′) given in the proof of Theorem 3.7 shows

that each geometric generic point SpecK → M(X0, β
′) of ιτ (M(X0, τ)) is a basic logarithmic map

to X0 over b0, defined over K and with basic monoid Q(τ) = N and tropical type isomorphic
to τ . Thus a geometric generic point of M(X0, τ) is a basic logarithmic map (C/S,p, f) to X0

over a standard logarithmic point S = Spec(N → K). Writing τ = (G,g,σ,u), the fibre of ιτ over
(C/S,p, f) is an isomorphism of the dual intersection graph of C with G identifying g,σ,u with
the genera, strata and contact orders of (C/S,p, f). The statement now follows by observing
that the automorphism group Aut(τ) of the decorated graph τ acts simply transitively on this
set of isomorphisms of graphs. �

As an intermediate object we define the stack of basic stable logarithmic maps marked by a
tropical type τ by

Mτ (X0, β) := M(X0, τ) ×M(X0,β′) M (X0, β). (3.3)

Compared to M (X0, τ ), this stack keeps the total curve class A from β = (g,A, up1 , . . . , upk
),

but drops the restriction on the distribution of A to the subcurves given by the vertices.
For the following statement recall that M (X0, τ ) is the stack defined in (2.26) of basic stable

log maps over b0 marked by the decorated type τ and

jτ : M (X0, τ ) −→ M (X0, β)

is the morphism forgetting the marking.
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Lemma 3.10. Let τ = (G,g,σ,u) be the type of a tropical map to Σ(X0) and β =
(g,A, up1 , . . . , upk

). Then we have the decomposition

Mτ (X0, β) =
∐
A

M
(
X0, τ

)
,

where the sum is over all A : V (G) → H+
2 (X0) with |A| = A and τ = (τ,A).

Proof. The result follows since the map A : V (G) → H+
2 (X0) of curve classes is locally constant

on Mτ (X0, β). �

Before stating the main theorem, we note that Mτ (X0, β) inherits a perfect obstruction the-
ory7 Eτ over M(X0, τ) from the perfect obstruction theory E of M (X0, β) over M(X0, β

′) by base
change by ιτ : M(X0, τ) → M(X0, β

′). Restricting to the open substacks M (X0, τ ) ⊂ Mτ (X0, β)
in Lemma 3.10, we also have an obstruction theory Eτ on M (X0, τ ). If τ is rigid, M(X0, τ) is
pure-dimensional of the same dimension as M(X0, β

′). Thus we have virtual fundamental classes

[M (X0, β)]virt, [Mτ (X0, β)]virt, [M (X0, τ )]virt

on the moduli spaces M (X0, β), Mτ (X0, β) and M (X0, τ ).
Here is our main theorem, stated as Theorem 1.2 in the introduction.

Theorem 3.11. For any β = (g,A, up1 , . . . , upk
) we have the equality

[M (X0, β)]virt =
∑

τ=(τ,A)

mτ

|Aut(τ )| jτ∗[M (X0, τ )]virt

in the Chow group of the underlying stack M (X0, β) with coefficients in Q. The sum is over

all isomorphism classes of decorated types of rigid tropical maps τ = (G,g,σ,u,A) = (τ,A) of

total genus |g| = g, total curve class |A| = A and |L(G)| = k.

Proof. By Corollary 3.8 and Lemma 3.9 we can write the fundamental class of M(X0, β
′) as

[M(X0, β
′)] =

∑
τ

mτ

|Aut(τ)| ιτ ∗[M(X0, τ)]. (3.4)

For each τ , compatibility of virtual pull-back with push-forward [Man12, Theorem 4.1(3)] applied
to the cartesian square

Mτ (X0, β)

q

��

=
∐
A

M (X0, (τ,A)) jτ
�� M (X0, β)

p

��
M(X0, τ)

ιτ �� M(X0, β
′)

yields

p!
Eιτ ∗[M(X0, τ)] = jτ ∗q

!
Eτ

[M(X0, τ)] = jτ ∗[Mτ (X0, β)]virt.

7 Note that E is the gothic letter ‘E’.
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Moreover, from Lemma 3.10 and the definition of Eτ by restriction of Eτ , we have

[Mτ (X0, β)]virt =
∑
A

[M (X0, (τ,A))]virt.

Plugging the last two equalities into (3.4) now gives the desired result:

[M (X0, β)]virt = p!
E[M(X0, β

′)] =
∑

τ

mτ

|Aut(τ)| p
!
Eιτ ∗[M(X0, τ)]

=
∑

τ

mτ

|Aut(τ)| jτ ∗[Mτ (X0, β)]virt

=
∑

τ=(τ,A)

mτ

|Aut(τ )| jτ∗[M (X0, τ )]virt. �

4. Logarithmic modifications and transversal maps

There is a general strategy which is often useful for constructing stable logarithmic maps. This
is the most powerful tool we have at our disposal at the moment; eventually, the hope is that
gluing technology will replace this construction. However, we expect it to be generally useful, as
illustrated by the examples in the next section.

Suppose we wish to construct a stable logarithmic map to X/B, with, as usual, X logarith-
mically smooth with a Zariski logarithmic structure over one-dimensional B with logarithmic
structure induced by b0 ∈ B. Suppose further we wish the stable logarithmic map to map into
the fibre X0 over b0. Generalizing a method introduced in [NS06], this construction is accom-
plished by the following two-step process: (i) apply a logarithmic modification8 of X to reduce
to a transverse situation; (ii) study logarithmic enhancements in the transverse case.

4.1 Logarithmic modifications
First, we will choose a logarithmic modification h : X̃ → X. The modification h is chosen to
accommodate a situation at hand, in our applications the datum of a rigid tropical map.

Given a modification h, [AW18] constructed a morphism M (h) : M (X̃/B) → M (X/B) of
moduli stacks of basic stable logarithmic maps, satisfying

M (h)∗([M (X̃/B)]virt) = [M (X/B)]virt.

The construction of M (h) is as follows. Given a stable logarithmic map f̃ : C̃/S → X̃/B, one
obtains on the level of schemes the stabilization of h ◦ f̃ , i.e. a factorization of h ◦ f̃ given by

C̃/S
g−→ C/S −→ X

such that C/S → X is a stable map. One gives C the logarithmic structure MC := g∗MC̃ , and
with this logarithmic structure one obtains a factorization of h ◦ f̃ through C at the level of log
schemes, giving f : C/S → X/B. Note that this is one of the rare occasions where push-forward
of logarithmic structures behaves well. If f̃ was basic, there is no expectation that f is basic, but
by [GS13, Proposition 1.22] there is a unique basic map with the same underlying stable map of

8 A logarithmic modification is a proper, birational and log étale morphism [Kat99].
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schemes such that the above constructed f is obtained by pull-back from the basic map. This
yields the map M (h).

4.2 Transverse maps, logarithmic enhancements, and strata
Second, if we have a stable map to X0 which interacts sufficiently well with the strata, we will
compute in Theorem 4.13 the number of log enhancements of this curve. This generalizes a key
argument of Nishinou and Siebert in [NS06]. There are two differences: our degeneration X → B

is only logarithmically smooth and not necessarily toric; and the fibre X0 is not required to be
reduced. Not requiring X0 to be reduced makes the situation more complex and perhaps explains
why it was avoided in the past; we hope our treatment here will find further uses. The precise
meaning of ‘interacting well with logarithmic strata’ is as follows.

Definition 4.1 (Transverse maps and constrained points). Let X → B be a logarithmically
smooth morphism over B one-dimensional carrying the divisorial logarithmic structure b0 ∈ B

as usual. Let X [d]
0 denote the union of the codimension d logarithmic strata of X0. Suppose

f : C/Spec k → X0 is a stable map. We say that f is a transverse map if the image of f is

contained in X [0]
0 ∪X [1]

0 , and f−1(X [1]
0 ) is a finite set.

We call a node q ∈ C a constrained node if f(q) ∈ X
[1]
0 , otherwise it is a free node. Similarly

a marked point x ∈ C with f(x) ∈ X
[1]
0 is a constrained marking, otherwise it is a free marking.

The term ‘transverse map’ is shorthand for ‘a map meeting strata in a logarithmically
transverse way’.

4.2.1 Cones and strata in the transverse setting. For the rest of this section strata of higher
codimension are irrelevant and we henceforth assume X0 = X

[0]
0 ∪X [1]

0 . Then Σ(X0) is a purely
two-dimensional cone complex, with rays in bijection with the irreducible components of X0.
There are two types of two-dimensional cones: first, there is one cone for each component of the
double locus X [1]

0 ; second, there is one cone for each other component of X [1]
0 , forming a smooth

divisor in the regular locus of X0.

4.2.2 Logarithmic enhancement of a map. We codify what it means to take a stable map
and endow it with a logarithmic structure.

Definition 4.2. Let X → B be as above and f : C → X0 a stable map. A logarithmic enhance-
ment f : C → X is a stable logarithmic map whose underlying map is f . Two logarithmic
enhancements f1, f2 are isomorphic enhancements if there is an isomorphism between f1 and f2

which is the identity on the underlying f . Otherwise we say they are non-isomorphic or distinct
enhancements.

4.2.3 Discrete invariants in the transverse case.

Notation 4.3. Let f : C/Spec k → X0 be a transverse map and x ∈ C a closed point with f(x)

contained in a stratum S ⊂ X
[1]
0 and let η ∈ C be a generic point with x ∈ cl(η). We now associate

a number of invariants to the pair (η, x), all related to the rank two toric monoid Px = MX,f(x).
Denote by mη,x ∈ Px the generator of the kernel of the localization map Px → MX,f(η) � N

and by m′
η,x ∈ Px the generator of the other extremal ray. Denote by nη,x, n

′
η,x ∈ P∨

x the dual
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generators of the extremal rays of P∨
x , satisfying 〈nη,x,mη,x〉 = 0. A third distinguished element

ρx ∈ Px is defined by pulling back the generator of Γ(B,MB) = N under the log morphism
X → B.

For the following discussion denote by �(m) the integral length of an element m ∈M ⊗Z Q,
that is, for m �= 0 the maximum of α ∈ Q>0 with α−1 ·m ∈M , while �(0) = 0.

Definition 4.4.

(1) The index of x ∈ C or of the stratum S ⊂ X
[1]
0 containing f(x) is the index of the sublattices

in P gp
x or in P ∗

x generated by mη,x,m
′
η,x and nη,x, n

′
η,x, respectively, that is,

Ind(S) = Indx = 〈nη,x,m
′
η,x〉 = 〈n′η,x,mη,x〉.

For a constrained node x = q, the length λ(q) = λ(S) ∈ Q is the integral length of the
interval ρ−1

q (1) when viewing ρq as a map P ∗
q ⊗Z Q → Q.

(2) If η ∈ C is a generic point with x ∈ cl(η), denote by wη,x ∈ N \ {0} the local intersection
number of f |cl(η) at x with S inside the irreducible component of X0 containing f(η).

When the choice of x and η is understood we write m1 = mη,x, m2 = m′
η,x, n1 = nη,x,

n2 = n′η,x, ρx ∈ Px and w1 = wη,x.

4.2.4 Relations between discrete invariants.

Lemma 4.5. In the situation of Definition 4.4 denote by μ1 the multiplicity of the irreducible

component of X0 containing f(η). If the stratum S ⊂ X
[1]
0 is contained in two irreducible com-

ponents of X0, denote by μ2 the multiplicity of the other component and otherwise define

μ2 = 0.

(1) μi = 〈ni, ρx〉;
(2) Indx ·ρx = μ2m1 + μ1m2;

(3) λ(q) = �(ρq)·Indq

μ1μ2
.

In particular, if X0 is reduced then μi ∈ {0, 1} for all i and

Indx ·ρx = m1 +m2, λ(q) = �(ρq) · Indq .

Proof. For (1) note that since ni ∈ P∨
x is a primitive vector with 〈ni,mi〉 = 0, the pairing with

ni computes the integral distance from the face N ·mi of Px. Now étale locally, the log smooth
morphism X → B is the composition of a smooth map with Spec k[Px] → Spec k[t] defined by
sending t to zρx ∈ k[Px]. Hence the multiplicity μi equals the integral distance of ρx to N ·mi,
that is, the image of ρx under the quotient map Px → Px/Nmi � N.

For (2), since the sublattice of P gp generated by m1,m2 is of index Indx, there are a1, a2 ∈ Z

with Indx ·ρx = a1m1 + a2m2. Pairing with n1 and using (1) and the definition of Indx yields

Indx ·μ1 = Indx ·〈n1, ρx〉 = a2〈n1,m2〉 = a2 · Indx .

This shows a2 = μ1, and similarly a1 = μ2, yielding the claim.
To prove (3) note that (1) implies

〈μ2n1, ρq〉 = μ1μ2 = 〈μ1n2, ρq〉.
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Hence ρq : P ∗
q → N maps both μ2n1 and μ1n2 to μ1μ2. Since λ(q) is defined as the integral

length of ρ−1
q (1), we see that μ1μ2 · λ(q) equals the integral length of μ2n1 − μ1n2. Choosing an

isomorphism of Pq with
Z2 ∩ (R≥0 · (1, 0) + R≥0 · (r, s))

with r, s > 0 pairwise prime and ρq mapping to (a, c), then

m1 = (1, 0), m2 = (r, s), μ1 = c, μ2 = as− cr, Indq = s.

In the dual lattice P ∗
q � Z2 we have n1 = (0, 1), n2 = (s,−r) and μ2n1 − μ1n2 = s · (−c, a) has

integral length Indq �(ρq). Thus λ(q) = Indq �(ρq)/μ1μ2 as claimed. �

4.2.5 Necessary conditions for enhancement. As we now show, the data listed in Definition
4.4 determine the discrete invariant ux ∈ P∨

x at each special point x ∈ C. Recall that (2.8)
characterizing uq implies 〈uq, ρx〉 = 0. To fix the sign of uq we use the convention that χ1 in
the defining equation is the generization map to η. Similarly, for each marked point p, it holds
that 〈up, ρp〉 = 0 by definition of up. We now deduce a number of necessary conditions for a
logarithmic enhancement of a transverse stable map to exist.

Proposition 4.6. Let f : C → X be a logarithmic enhancement of a transverse stable map

f : C → X0. Let η ∈ C be a generic point and x ∈ cl(η). If f(x) ∈ X
[1]
0 then following Definition

4.4 write m1 = mη,x, m2 = m′
η,x, n1 = nη,x, n2 = n′η,x, ρx ∈ Px and w1 = wη,x.

(I) Node. If x = q is a constrained nodal point of C, then the second generic point η′ of C with

x ∈ cl(η′) maps to a different irreducible component of X0 than η. Moreover, with w2 = wη′,x
the following hold:

(1) uq = 1/Indq · (w1n2 − w2n1);
(2) uq(m1) = w1, uq(m2) = −w2;

(3) μ1w2 = μ2w1;

(4) the integral length of uq equals �(uq) = μ2w1λ(q)/Indq = (w1/μ1)�(ρq).

If x = q is a free node then uq = 0.

(II) Marked point. If x is a smooth point of C, then f(x) is contained in only one irreducible

component of X0. Moreover, if x = p is a marked point then up = 0 in the free case, while in the

constrained case the following hold:

(1) w1 is a multiple of Indp;

(2) up = (w1/Indp)n2.

Proof. Setup for (I). Let C be defined over the log point S = Spec(Q→ k). For any generic point
η ∈ C, there is a commutative square as follows.

N � Pη = MX0,f(η)

f̄�
η−−−−→ MC,η�⏐⏐

�⏐⏐
N � MB,b0 −−−−→ Q

Free node. In the case of a free node, both generic points η, η′ ∈ C containing q in their
closure map to the same irreducible component of X0. Thus uq = 0 by the defining equation
(2.8).
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Image components of constrained node. Let now x = q be a constrained node. Since the
generization map χη : Pq → Pη is a localization of fine monoids there exists m ∈ Pq \ {0} with
χη(m) = 0. Then also f̄ �

q(m) is a non-zero element in MC,q with vanishing generization at η.
But MC has no local section with isolated support at q. Hence χη′(m) �= 0, which implies that
the two branches of C at q map to different irreducible components of X0.

Computations for a constrained node. (1) follows from (2) by pairing both sides with m1,
m2 since these elements generate Pq ⊗Z Q. We now prove (2). Since uq is preserved under base-
change, we may assume C is defined over the standard log point Spec(N → k). Then MC,q � Se

for some e ∈ N \ {0} with Se the submonoid of Z2 generated by (e, 0), (0, e), (1, 1), see e.g. [GS13,
§ 1.3]. The generator 1 ∈ N of the standard log point maps to (1, 1), while a chart at q maps (e, 0)
to a function restricting to a coordinate on one of the two branches of C, say on cl(η), while
vanishing on the other. Similarly, (0, e) restricts to a coordinate on cl(η′). By transversality we
conclude

f̄ �
q(m1) = w1 · (e, 0), f̄ �

q(m2) = w2 · (0, e).
Equation (2.8) defining uq says

χ2 ◦ f̄ �
q − χ1 ◦ f̄ �

q = uq · e, (4.1)

with χi : Se → N the generization maps. With our presentation, χ1 and χ2 are induced by the
projections Se ⊂ Z2 → Z to the second and first factors, respectively. Hence

(
χ2 ◦ f̄ �

q − χ1 ◦ f̄ �
q

)
(m1) = w1 · e,

(
χ2 ◦ f̄ �

q − χ1 ◦ f̄ �
q

)
(m2) = −w2 · e,

showing (2).
Statement (3) is obtained by evaluating (1) on ρq:

0 = Indq ·〈uq, ρq〉 = w1〈n2, ρq〉 − w2〈n1, ρq〉 = w1μ2 − w2μ1.

For (4) observe from (1) that Indq ·uq is the vector connecting the extremal elements w2n1 and
w1n2 of P∨

q . Thus Indq ·�(uq) equals the integral length of ρ−1
q (h) for h = 〈w1n2, ρq〉 = μ2w1 =

μ1w2 = 〈w2n1, ρq〉. This length equals h · λ(q), yielding the stated formula. This finishes the proof
of (I).

Marked point. Turning to (II), let x ∈ C be a smooth point with f(x) ∈ X
[1]
0 and again assume

without restriction C is defined over the standard log point. If su ∈ MX,f(x) is a lift of m1, then
by transversality, f �

x(su) ∈ MC,x maps under the structure homomorphism MC,x → OC,x to zw1 ,
with z a local coordinate of C at x. Thus x = p is a marked point, MC,x = N2 and

f̄ �
p : Pp −→ N2

mapsm1 to (0, w1). Here we are taking the morphism C → Spec(N → k) to be defined by N → N2,
1 	→ (1, 0). Moreover, by compatibility of f �

p with the morphism of standard log points that C
and X0 are defined over, f̄ �

p(ρp) = (b, 0) for some b ∈ N \ {0}. Thus by Lemma 4.5(2), ρp =
(μ1/Indp)m2 spans an extremal ray of Pp. In particular, f(p) is contained in only one irreducible
component of X0 and up(m2) = 0. Thus

up(m1) = w1 =
w1

Indp
〈n2,m1〉, up(m2) = 0 =

w1

Indp
〈n2,m2〉.
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This shows (2), which implies (1) since n2 is a primitive vector.
Finally, at a free marked point p ∈ C, commutativity over the standard log point again

readily implies up = 0. �

Remark 4.7. If X0 is reduced, then in Proposition 4.6(I) there is a well-defined contact order
w = w1 = w2 of f with the double locus, and the formulas simplify to

uq =
w

Indq

(
n2 − n1

)
, �(uq) = w�(ρq).

4.2.6 Transverse pre-logarithmic maps. Summarizing the necessary conditions of Proposition
4.6, we are led to the following definition.

Definition 4.8. Let X → B be as above, and let f : C/Spec k → X0 be a transverse map. We

say f is a transverse pre-logarithmic map if any x ∈ C with f(x) ∈ X
[1]
0 is a special point and if

in the notation of Proposition 4.6 the following holds.
(I) Constrained node. If x = q is a constrained node then the two branches of C at q map

to different irreducible components of X0. In addition, μ1w2 = μ2w1 and the reduced branching
order

w̄q :=
wi

μi
�(ρq), i = 1, 2 (4.2)

is an integer.
(II) Constrained marking. If x = p is a constrained marking then f(x) is a smooth point of

X0 and w1/ Indp ∈ N.

Note that if a logarithmic enhancement of f exists, then by Proposition 4.6 the reduced
branching order w̄q agrees with �(uq). Note also that in the case of reduced X0, we have �(ρq) = 1
and all μi = 1, and hence w̄q = w1 = w2.

Definition 4.9 (Base order). For a transverse pre-logarithmic map f : C/Spec k → X0 define
its base order b ∈ N to be the least common multiple of the following natural numbers: (1) all
multiplicities of irreducible components of X0 intersecting f(C) and; (2) for each constrained
node q ∈ C the quotient μ1w2/ gcd(Indq, μ1w2), notation as in Proposition 4.6.

Theorem 4.10. Let X → B be as above, and let f : C/Spec k → X0 be a transverse map.

Suppose that there is an enhancement of f to a basic stable logarithmic map f : C/S → X/B.

Then we have the following.

(1) f is a transverse pre-logarithmic map.

(2) The combinatorial type of f is uniquely determined up to possibly a number of marked

points p with up = 0, and the basic monoid Q is

Q = N ⊕
⊕

q a free node

N.

(3) The map S = Spec(Q→ k) → B induces the map Mb0 = N → Q given by 1 	→ (b, 0, . . . , 0),
where the integer b ∈ N is the base order of f .
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Proof. Parts (1) and (2) follow readily from Proposition 4.6. For (3), recall that the basic monoid
Q is dual to the monoid Q∨ ⊂ Q∨

R
, the latter being the moduli space of tropical maps h : Γ →

Σ(X) of the given combinatorial type, and Q∨ consists of those tropical maps whose edge lengths
are integral and whose vertices map to integral points of Σ(X).

If η is a generic point of C, denote by μη the multiplicity of the irreducible component of
(X0)red in X0 containing f(η). Thus the induced map N → Pη � N coming from the structure
map X → B is multiplication by μη. Write ρ : Σ(X) → Σ(B) for the tropicalization of X → B.
The restriction of ρ to the ray Hom(Pη,R≥0) of Σ(X) corresponding to the irreducible component
of X0 containing f(η) is multiplication by μη. Thus given a tropical map h : Γ → Σ(X) with
vertex vη for η ∈ C and b the image of ρ ◦ h in Σ(B), we see that h(vη) is integral if and only if
μη|b.

The edges of Γ corresponding to free nodes have arbitrary length independent of μ. But an
edge corresponding to a constrained node q must have length

eq = b
λ(q)
�(uq)

= b
Indq

μ1w2
. (4.3)

This must also be integral for h to represent a point in Q∨. Thus the map Σ(S) → Σ(B) must be
given by (α, (αq)q) 	→ bα where b is as given in the statement of the theorem. Dually, we obtain
the stated description of the map S → B. �

4.3 Existence and count of enhancements of transverse pre-logarithmic maps
We now turn to count the number of logarithmic enhancements of a transverse stable map
f : C → X0. Denote by M := f∗MX0 the pull-back log structure on C and by MZar the corre-
sponding sheaf of monoids in the Zariski topology, noting that the log structure on X0 is assumed
to be defined in the Zariski topology.

4.3.1 The torsor of roots. The count of logarithmic enhancements involves a torsor F under
a sheaf of finite cyclic groups G on a finite topological space encoding compatible choices of roots
of elements occurring in the construction of logarithmic enhancements. The following discussion
is trivial if X0 is reduced and can be skipped by the reader only interested in this case. Given a
transverse map f : C/Spec k → X0, the finite topological space consists of the set of constrained
nodes q ∈ C and generic points η ∈ C. As basis for the topology we take the sets Uη = {η} ∪ {q ∈
cl(η)} and Uq = {q} (which is opposite to the topology as a subset of C). Let ρ ∈ Γ(C,M) be
the preimage of a generator ρ0 of MB,b0 , that we assume fixed in this subsection. The stalks at
a constrained node q ∈ C and at a generic point η ∈ C are various roots of the germs ρx of ρ:

Fq = {σq ∈ MZar
q |σ�(ρq)

q = ρq},
Fη = {ση ∈ MZar

η |σμη
η = ρη}.

We note that any of these sets may be empty, as Example 4.12 below shows. In such case we do
not define a sheaf F and declare |Γ(F)| = ∅ in what follows. Otherwise we define the sheaf F as
follows. For q ∈ cl(η), a choice ση with σμη

η = ρη determines a unique ση,q ∈ Fq with restriction to
η equal to σμη/�(ρq)

η . Note that by Lemma 4.5(1) we have μη/�(ρq) ∈ N. We define the generization
map Fη → Fq by mapping ση to ση,q. Observe that a different choice of ρ leads to an isomorphic
sheaf F .
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Replacing the elements ρq and ρη in the definition of F by the element 1, we obtain a sheaf
G of abelian groups, for which F is evidently a torsor.

4.3.2 Global sections of G and F . General theory [SP17, Tag 03AH], or direct computation,
implies that the set of global sections Γ(F) is a pseudo-torsor for the group G := Γ(G). Here G
is computed as the kernel of the sheaf-axiom homomorphism

∂ :
∏
η∈C

Z/μη −→
∏
q∈C

Z/�(ρq), ∂
((
ζη

)
η

)
:=

(
ζ

μη(q)/�(ρq)

η(q) · ζ−μη′(q)/�(ρq)

η′(q)
)
q
. (4.4)

Here η(q), η′(q) are the generic points of the two adjacent branches of a constrained node q ∈ C,
viewed in the étale topology. The notation implies a chosen order of branches. Multiplication of
σq by ζq and of ση by ζη describes the natural action of G = Γ(G) on Γ(F). Note that if X0 is
reduced then all μi = 1 and G is the trivial group.

Lemma 4.11. If Γ(F) �= ∅ the action of G on Γ(F) is simply transitive. In particular, it then

holds |Γ(F)| = |G|. If the dual intersection graph of C is a tree or if X0 is reduced then Γ(F) �= ∅.

Proof. Simple transitivity is the fact that Γ(F) is a pseudo-torsor for G.
If X0 is reduced then μη = 1 for all η and Γ(F) =

∏
q Fq is non-empty. If C is rational we can

construct a section by inductive extension over the irreducible components. Indeed, if σq ∈ Fq

and η is the generic point of the next irreducible component, we can define ση as any μη/�(ρq)-th
root of the restriction of σq to η. By the definition of F this choice then also defines σq′ for all
other q′ ∈ cl(η). �

Example 4.12. Here is a simple example with Γ(F) = ∅, in fact Fη = ∅ for the unique point η in
our space. Let X → B = A1 be an elliptically fibred surface with X0 ⊂ X a b-fold multiple fibre
with smooth reduction. EndowX and B with the divisorial log structures for the divisorsX0 ⊂ X

and {0} ⊂ B. Then the generator ρ̄0 ∈ MB,0 maps to b times the generator σ̄ ∈ Γ(X0,MX0) = N.
The preimage of σ̄ under MXred

0
→ MXred

0
is the torsor with associated line bundle the conormal

bundle N∨
Xred

0 |X . This conormal bundle is not trivial, but has order b in Pic(Xred
0 ). Thus there

exists no section ση with σb
η extending to a global section ρ of MX0 lifting ρ̄ = b · σ̄.

The following statement generalizes and gives a more structural proof of [NS06, Proposition
7.1], which treated a special case with reduced central fibre.

Theorem 4.13. Suppose given X → B as above, and let

f : (C, p1, . . . , pn)/Spec k −→ X0

be a transverse pre-logarithmic map. Suppose further that the marked points {pi} include all

points of f−1(X [1]
0 ) mapping to non-singular points of (X0)red.

Then there exists an enhancement of f to a basic stable logarithmic map if and only if

Γ(F) �= ∅, in which case the number of pairwise non-isomorphic enhancements is

|G|
b

∏
q

w̄q.
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Here G is as in (4.4), the integer b is the base order (Definition 4.9), and the product is taken

over the reduced branching orders (4.2) at constrained nodes.

If X0 is reduced there is no obstruction to the existence of an enhancement and the count is

b−1
∏

q w̄q and w̄q = w1 = w2 either of the two contact orders in Definition 4.4 and Proposition

4.6.

Proof. Counting rigidified objects. We are going to count diagrams of the form

C = (C,MC)
f−−−−→ X0 = (X0,MX0)

π

⏐⏐�
⏐⏐�p

Spec(Q→ k) −−−−→
g

B = (B,MB)

(4.5)

with p and f given by assumption and g determined by b as in Theorem 4.10(3) uniquely
up to isomorphism. For the final count we will divide out the Z/b-action coming from the
automorphisms of Spec(Q→ k) → B.

Simplifying the base. By Theorem 4.10 we have Q = N ⊕ ⊕
free nodes N and the map N =

MB,b0 → Q is the inclusion of the first factor multiplied by the base order b. Pulling back by any
fixed sharp map Q→ N replaces the lower left corner by the standard log point O† = Spec(N →
k). To be explicit, we take Q→ N to restrict to the identity on each summand. Since this map
Q→ N is surjective we do not introduce automorphisms or ramification. The universal property
of basic objects guarantees that the number of liftings is not changed.

The composition MB,b0 → Q→ N is then multiplication by b. We have now arrived at a
counting problem over a standard log point. Note also that the given data already determines
(4.5) at the level of ghost monoids, that is, the data determines the sheaf MC , and maps
f̄ � : M = f∗MX0 → MC and π̄� : MO† → MC , uniquely.

Pulling back the target monoid. Pull-back yields the two log structures M = f∗MX0

and π∗MO† on C. Recall our choice of generator ρ0 of MB,b0 and its pull-back ρ ∈ Γ(C,M),
introduced earlier in § 4.3. For later use let also τ0 ∈ MO†,0 be a generator with g�(ρ0) = τ b

0 .
Then for any log smooth structure MC on C over O† we have a distinguished section τ = π�(τ0).

Simplifying the target monoid. Now define M′
C as the fine monoid sheaf given by

pushout of these two monoid sheaves over π∗g∗MB:

M′
C = f∗MX0 ⊕fine

π∗g∗MB
π∗MO† .

Since MB,b0 = N, by [Kat89, (4.4)(ii)] X0 → B is an integral morphism. Hence the pushout
M′

C in the category of fine monoid sheaves agrees with the ordinary pushout. In particular, the
structure morphisms of X0 and O† define a structure morphism α′

C : M′
C → OC .

Restating the counting problem. Classifying diagrams (4.5) amounts to finding an fs
log structure MC on C together with a morphism of monoid sheaves

φ : M′
C −→ MC

compatible with f � and such that the composition π∗MO† → MC of φ with π∗MO† → M′
C is

log smooth.
We will soon see that φ̄ : (M′

C)gp −→ Mgp
C necessarily decomposes into the quotient by some

finite torsion part and the inclusion of a finite index subgroup.
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Lifting the quotient morphism to M′
C leads to the factor |G|, while the finite extension of the

resulting log structure to MC receives a contribution by the reduced branching order w̄q from
each constrained node. Note that w̄q = �(uq) by Proposition 4.6(I)(4); it is in this form that it
appears in the proof.

The ghost kernel. To understand the torsion part to be divided out, note that (M′
C,x)gp at

x ∈ C equals P gp
x ⊕Z Z with 1 ∈ Z mapping to ρ̄x ∈ P gp

x and to the base order b ∈ Z, respectively.
Since �(ρ̄x) divides the multiplicities of some irreducible components of X0, Theorem 4.10(3)
implies b/�(ρ̄x) ∈ N. If ρ̄x has integral length �(ρ̄x) > 1, then (ρ̄x/�(ρ̄x),−b/�(ρ̄x)) is a generator
of the torsion subgroup ((M′

C,x)gp)tor, which has order �(ρ̄x). This element has to be in the
kernel of the map to the torsion-free monoid MC .

The |G| embodiments of the ghost image. The interesting fact is that the lift of
(ρ̄x/�(ρ̄x),−b/�(ρ̄x)) to (M′

C,x)gp is only unique up to an �(ρ̄x)-torsion element in O×
C,x, that

is, up to an �(ρ̄x)-th root of unity ζx ∈ k×. Explicitly, the lift is equivalent to a choice σx ∈ Mx

with σ
�(ρ̄x)
x = ρx by taking the torsion subsheaf in (M′

C)gp generated by (σx, τ
−b/�(ρ̄x)
x ). The

quotient by this subsheaf means that we upgrade the relation f �(ρx) = τ b
x coming from the

commutativity of (4.5) to f �(σx) = τ
b/�(ρ̄x)
x .

To define this quotient of the monoid M′
C globally amounts to choosing the roots σx of ρx

compatibly with the generization maps, leading to a global section of the sheaf F introduced
directly before the statement of the theorem. For this statement note that for x = η a generic
point, �(ρ̄η) equals the multiplicity μη of the irreducible component of X0 containing f(η).

The quotient is a logarithmic structure. Assume now σ ∈ Γ(F) has been chosen
and denote by M′′

C the quotient of M′
C by the corresponding torsion subgroup of (M′

C)gp. Since
α′

C(σx) = α′
C(τx) = 0, the homomorphism α′

C descends to the quotient, thus defining a structure
homomorphism α′′

C : M′′
C → OC .

The log structure MC is determined at smooth points. Note that the map
(π∗MO†)η → M′′

C,η is an isomorphism and hence we must have MC,η = M′′
C,η. The log structure

MC is then also defined at each marked point p ∈ C by adding a generator of the maximal ideal
in OC,p as an additional generator to MC,p. It is also clear that M′′

C,p → MC,p exists and is
determined by the corresponding map at η and by f �.

The log structure MC is determined at free nodes. At a free node q we have
f(q) ∈ (X0)reg and hence there is a unique specialization σq ∈ Mq of ση for the two generic points
η ∈ C with q ∈ cl(η). The log structure MC on C is then determined by f �

η and by the universal
log structure M◦

C of C as follows. Let x, y ∈ OC,q be coordinates of the two branches of C at q in
the étale topology. Then there exist unique lifts sx, sy ∈ M◦

C,q such that sx · sy is the pull-back of
a generator εq of the q-th factor in the universal base log structure Spec

(⊕
nodes of C N → k

)
. Our

choice of pull-back O† → Spec(Q→ k) turns εq into λτ eq

0 for some λ ∈ k× and eq ∈ N determined
by basicness as in (4.3). Thus MC,q is generated by sx, sy and τq with single relation sx · sy = λτ

eq
q

and mapping to x, y and 0 under the structure homomorphism, respectively. The morphism
f � : Mq → MC,q factors over π∗MO† and is therefore completely determined by f �

η(σq) =

τ
b/μη
q .

Constrained nodes: Study of the image log structure M′′
C . It remains to extend

M′′
C to the correct log structure at each constrained node q ∈ C. On the level of ghost sheaves

we have the following situation, where we include the above description of the kernel for
completeness. �
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Proposition 4.14. The homomorphism of abelian groups

P gp
q ⊕ Z −→ Mgp

C,q, (m, k) 	−→ f̄ �
q(m) + k · τ̄q,

has kernel generated by (ρ̄q/�(ρ̄q),−b/�(ρ̄q)) and cokernel a cyclic group of order �(uq).

Proof. The kernel is described in the discussion above. Indeed, if (m, k) ∈ P gp
q ⊕ Z lies in the

kernel then f̄ �
q(m) ∈ Z · τ̄q. Because f̄ �

q is injective and f̄ �
q(ρ̄q) = τ̄ b

q we conclude that (m, k) is
proportional to (ρ̄q,−b). The stated element is a primitive element of this one-dimensional
subspace.

For the determination of the cokernel observe that the composition

P gp
q

f̄�
q−→ Mgp

C,q −→ Mgp
C,q/Zτ̄q � Z

equals uq up to sign. Indeed, the quotient by Zτ̄q maps the two generators of extremal rays
of MC,q to ±1 ∈ Z. Hence mi ∈ P gp

q maps to ±wi, which by Proposition 4.6(I)(2) agrees
with ±uq(mi). The order of the cokernel now agrees with the greatest common divisor of the
components of uq, that is, with �(uq). �

Once again we follow [GS13, § 1.3] and denote by Se ⊂ Z2 the submonoid generated by
(e, 0), (1, 1), (0, e), for e ∈ N \ {0}. Up to a choice of ordering of extremal rays there is a canonical
isomorphism

MC,q
�−→ Seq . (4.6)

Using Proposition 4.14 we can now determine the saturation of M′′
C,q. For readability we write

� = �(uq).

Corollary 4.15. Using the description (4.6), the saturation of M′′
C,q equals S�(uq)eq

⊂ Seq .

Proof. By construction of M′′
C , the image of the homomorphism in Proposition 4.14 equals

(M′′
C,q)

gp. In the notation of (4.6), the statement now follows from the fact that by the propo-
sition, the image has index �(uq) in Mgp

C,q and (eq, 0) ∈ Seq . Hence (�eq, 0) ∈ (M′′
C,q)

gp, which
together with (1, 1) ∈ (M′′

C,q)
gp generates S�eq ⊂ Seq .

The saturation is then computed by taking all integral points in the real cone in Mgp
C,q ⊗Z R

spanned by M′′
C,q. �

Constrained nodes: Extending the log structure. In this step we extend the log
structure to the saturation of M′′

C , described in Corollary 4.15.

Lemma 4.16. The log structure α′′ : M′′
C → OC extends uniquely to the saturation (M′′

C)sat.

Proof. We continue to write � = �(uq). The saturation can at most be non-trivial at a constrained
node q. By Corollary 4.15 we have an isomorphism (M′′

C,q)
sat � S�eq . The definition of the weights

wi implies (w1eq, 0), (0, w2eq) ∈ M′′
C,q, for the appropriate ordering of the branches of C at q.

As a sanity check, notice that wi divides � by Proposition 4.6(I)(2). Let βq : M′′
C,q → OC,q be the

composition of a choice of splitting M′′
C,q → M′′

C,q and the structure morphism M′′
C,q → OC,q.

Then βq((w1eq, 0)) vanishes at q to order w1 on one branch of C and βq((0, w2eq)) vanishes
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to order w2 on the other branch. Thus, étale locally there exist generators x, y ∈ OC,q for the
maximal ideal at q with

βq((w1eq, 0)) = xw1 , βq((0, w2eq)) = yw2 .

Thus any extension βsat
q of βq to a chart for (M′′

C,q)
sat has to fulfill

βsat
q ((�eq, 0)) = ζ1 · x�, βsat

q ((0, �eq)) = ζ2 · y�, (4.7)

with ζi ∈ k, ζw1/�
i = 1. On the other hand, the ζi are uniquely determined by compatibility of

βsat
q with β at the generic points of the two branches of C at q since (�eq, 0), (0, �eq) ∈ MC,q.

Conversely, with this choice of the ζi, the equations (4.7) provide the requested extension
of α′′. �

Finally, we extend M′′
C to a log structure of a log smooth curve over the standard log point.

The situation is largely the same as with admissible covers, see, e.g. [Moc95, § 3].

Lemma 4.17. Up to isomorphism of log structures over the standard log point, there are

� = �(uq) pairwise non-isomorphic extensions αq : MC,q → OC,q of the image log structure

α′′
q : M′′

C,q → OC,q at the constrained node q to a log structure of a log smooth curve.

Proof. Let
βsat

q : S�eq −→ OC,q

be a chart for the log structure (M′′
C)sat at q. The task is to classify extensions to a chart

β̃q : Seq → OC,q up to isomorphisms of induced log structures. Similar to the reasoning in Lemma
4.16, in terms of coordinates x, y ∈ OC,q with

βsat
q ((�eq, 0)) = x�, βsat

q ((0, �eq)) = y�,

we have to define
β̃q((eq, 0)) = ζ1 · x, β̃q((0, eq)) = ζ2 · y, (4.8)

with ζi ∈ k, ζ�
i = 1. Dividing out isomorphisms amounts to working modulo ϕ ∈ Hom(Seq ,Z/�)

with ϕ((1, 1)) = 1. In other words, we can change ζ1, ζ2 by ζζ1, ζ−1ζ2 for any �-th root of unity
ζ. This leaves us with � pairwise non-isomorphic extensions of the log structure at q. �

Counting non-rigidified lifts. For the final count we need to divide out the action of
Z/b by composition with automorphisms of Spec(Q→ k) over B. The stated count follows once
we prove that this action is free. The action changes τ0 to ζ · τ0 for ζ a b-th root of unity.
For this change to lead to an isomorphic log structure MC requires ζ1ζ2 ∈ k× in (4.8) to be
unchanged at any constrained node q ∈ C. This shows ζeq = 1 for all q. Similarly, for the map
MX0,f(η) → MC,η to stay unchanged relative MB,b0 → MO†,0 requires f �

η(ση) = τ
b/μη
η to stay

unchanged. Thus also ζb/μη = 1 for all generic points η ∈ C. But by Theorem 4.10 the base order
b is the smallest natural number with all eq = b · Indq /μ2w1 and all b/μη integers. Thus the eq
and b/μη have no common factor. This shows that ζeq = 1 and ζb/μη = 1 for all q, η implies ζ = 1.
We conclude that the action of Z/b is free as claimed �

Remark 4.18. The obstruction to the existence of a logarithmic enhancement in Theorem 4.13
can be interpreted geometrically as follows.
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Let μ̄ be a positive integer and B̃ → B be the degree d cyclic cover branched with ramification
index d over b0. Let X̄ = X ×B B̃, and let X̃ → X̄ be the normalization, giving a family X̃ → B̃.
It is a standard computation that the inverse image of a multiplicity μ irreducible component of
X0 in X̃ is a union of irreducible components of X̃0, each with multiplicity μ/ gcd(μ, d).

At the level of log schemes, in fact X̄ carries a fine but not saturated logarithmic structure via
the description X̄ = X ×B B̃ in the category of fine log schemes, while X̃ carries an fs logarithmic
structure via the description X̃ = X ×B B̃ in the category of fs logarithmic structures. Here B̃
carries the divisorial logarithmic structure given by b̃0 ∈ B̃, the unique point mapping to b0.

Similarly, the central fibres are related as follows. The map B̃ → B induces a morphism on
standard log points b̃0 → b0 induced by N → N, 1 	→ d for some integer d. Then X̄0 = X0 ×b0 b̃0
in the category of fine log schemes, and X̃0 = X0 ×b0 b̃0 in the category of fs log schemes.

Given a transverse pre-logarithmic map f : C/Spec k → X, take the integer d above to be
the positive integer b given by Theorem 4.10(3). Then one checks readily that f has a logarith-
mic enhancement if and only if there is a lift f̃ : C → X̃0 of f . Indeed, if f has a logarithmic
enhancement f : C/S → X0 with S carrying the basic log structure, the morphism S → b0 factors
through b̃0 by the description of Theorem 4.10. Thus the universal property of fibred product
gives a morphism f̃ : C → X̃0. Conversely, given a lift, it follows again from the definition of
b in Theorem 4.10 that the multiplicity μ of any irreducible component of X0 meeting f(C)
divides b. So the multiplicity of any component of X̃0 meeting f̃(C) is 1 and by shrinking X0 we
can assume that X̃0 is reduced. One also checks that the reduced branching order w̄q associated
to a node q is the same for f and f̃ , and thus f̃ is still transverse pre-logarithmic. By Lemma
4.11 and Theorem 4.13, f̃ has a logarithmic enhancement, and then the composed morphism
C

f̃−→X̃0−→X0 gives the desired logarithmic enhancement of f .

5. Examples

We will now study explicit examples of the decomposition formula for a logarithmically smooth
morphism X → B. We mostly use the traditional tropical language of polyhedral complexes and
metric graphs discussed in § 2.5.3.

5.1 The classical case
Suppose X → B is a simple normal crossings degeneration with X0 = Y1 ∪ Y2 a reduced union
of two irreducible components, with Y1 ∩ Y2 = D a smooth divisor in both Y1 and Y2. In this
case, Σ(X) = (R≥0)2 and the map Σ(X) → Σ(B) = R≥0 is given by (x, y) 	→ x+ y. Thus Δ(X)
admits an affine-linear isomorphism with the unit interval [0, 1], see Figure 1.

Proposition 5.1. In the above situation, let f : Γ → Δ(X) be a decorated tropical map. Then

f is rigid if and only if every vertex v of Γ maps to the endpoints of Δ(X) and every edge of Γ
surjects onto Δ(X).

Note that necessarily every leg of Γ is contracted, as Δ(X) is compact.

Proof. First note that if an edge Eq is contracted, then uq = 0 and the length of the edge is
arbitrary. By changing the length, one sees f is not rigid, see Figure 2 on the left.

Next, suppose v is a vertex with f(v) lying in the interior of Δ(X). Identifying the latter with
[0, 1], we can view uq ∈ Z for any q. Let Eq1 , . . . , Eqr be the edges of Γ adjacent to v with lengths
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Figure 1. The cones Σ(X) and Σ(B) and the interval Δ(X).

Figure 2. A graph with a contracted bounded edge or an interior vertex is not rigid.

�1, . . . , �r, oriented to point away from v. We can then write down a family ft of tropical maps, t
a real number close to 0, with f = f0, ft(v′) = f(v′) for any vertex v′ �= v, and ft(v) = f(v) + t.
In doing so, we also need to modify the lengths of the edges Eqi , as indicated in Figure 2 on
the right. Any unbounded edge attached to v is contracted to ft(v). So f is not rigid. Thus if f
is rigid, we see that all vertices of Γ map to endpoints of Δ(X), and any compact edge is not
contracted, and hence surjects onto Δ(X). The converse is clear. �

A choice of decorated rigid tropical map in this situation is then exactly what Jun Li terms
an admissible triple in [Li02]. Indeed, by removing f−1(1/2) from Γ, one obtains two graphs
(possibly disconnected) Γ1,Γ2 with legs and what Jun Li terms roots (the half-edges mapping
non-trivially to Δ(X)). The weights of a root, in Li’s terminology, coincide with the abso-
lute value of the corresponding uq. The set I in the definition of admissible triple indicates
which labels occur for unbounded edges mapping to, say, 0 ∈ Δ(X). An illustration is given in
Figure 3.

We emphasize that our virtual decomposition of the moduli space of stable logarithmic maps
in terms of rigid tropical maps does not depend on transversality. Already in this simple situation,
the tropicalization of a basic stable logarithmic map parameterizes a family of tropical maps with
several rigid limits, one for each facet of the basic monoid. The main result of this paper refines
the virtual counting problem in providing a count for each such choice of rigid limit. This count
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Figure 3. A rigid tropical map is depicted with four edges and two legs, the latter correspond-
ing to marked points with contact order 0. The corresponding admissible triple of Jun Li is
depicted on the right, with roots corresponding to half-edges and legs corresponding to the legs
of the original graph. The half-edges marked 1 and 3 have u = 2.

applies even in more general situations where the vertices of the tropical curve do not necessarily
map to vertices of the polyhedron associated to the target, as the next section shows. Note
also that this case has been carried out in detail and with somewhat different notation after
distribution of a first version of this paper in [KLR18].

5.2 Rational curves in a pencil of cubics
It is well known that if one fixes eight general points in P2, the pencil of cubics passing through
these eight points contains precisely 12 nodal rational curves. Blowing up six of these eight points,
we get a cubic surface we denote X ′

1 ⊂ P3, and the enumeration of 12 nodal rational cubics
translates to the enumeration of 12 nodal plane sections of X ′

1 passing through the remaining
two points p1, p2.

We will give here a non-trivial demonstration of the decomposition formula by degenerating
the cubic surface to a normal crossings union H1 ∪H2 ∪H3 of three blown-up planes.

5.2.1 Degenerating a cubic to three planes. Using coordinates x0, . . . , x3 on P3, consider a
smooth cubic surface X ′

1 ⊂ P3 with equation

f3(x0, x1, x2, x3) + x1x2x3 = 0.

We then have a family X ′ → B = A1 given by X ′ ⊂ A1 × P3 defined by tf3 + x1x2x3 = 0. The
fibre X ′

0 is the union of three planes H ′
1 ∪H ′

2 ∪H ′
3. Pick two sections p1, p2 : B → X ′ such

that pi(0) ∈ H ′
i. This can be achieved by choosing two appropriate points on the base locus

f3(x0, x1, x2, x3) = x1x2x3 = 0.

5.2.2 Resolving to obtain a normal crossings family. The total space of X ′ is not a normal
crossings family: it has nine ordinary double points over t = 0, assuming f3 is chosen generally:
these are the points of intersection of the singular lines H ′

i ∩H ′
j with f3 = 0. One manifestation

is the fact that H ′
i are Weil divisors which are not Cartier. By blowing up H ′

1 followed by H ′
2,

we resolve the ordinary double points. We obtain a family X → B, which is normal crossings,
hence logarithmically smooth, in a neighbourhood of t = 0, as depicted on the left in Figure 4.
Denote by Hi the proper transform of H ′

i.
We identify Σ(X) with (R≥0)3, so that Δ(X) is identified with the standard simplex

{(x1, x2, x3) |x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}, as depicted on the right in Figure 4.
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Figure 4. The left-hand picture depicts X0 as a union of three copies of P2, blown up at six,
three or zero points. The right-hand picture depicts Δ(X).

Figure 5. Proper transform of a triangle through a double point. The curve is normalized
where C1 and C4 meet.

5.2.3 Limiting curves: triangles. Since the limit of plane curves on X ′
t = Xt should be a

plane curve on X ′
0, limiting curves on X0 would map to plane sections of X ′

0 through p1, p2. This
greatly limits the possible limiting curves, in particular the image in each of H ′

i is a line.
General triangles do not occur. It is easy to see that a plane section of X ′

0 passing through
p1, p2 whose proper transform in X0 is a triangle of lines cannot be the image of a stable log-
arithmic curve C → X0 of genus 0. Indeed, there would be a smooth point of C mapping to
(X0)sing, contradicting Proposition 4.6(II).

Triangles through double points. On the other hand, consider the total transform of a triangle
in X ′

0 passing through p1, p2, and one of the nine ordinary double points of X ′. The resulting
curve will be a cycle of four rational curves, one of the curves being part of the exceptional set
of the blowup of H ′

1 and H ′
2. We can partially normalize this curve at the node contained in the

smooth part of X0, getting a stable logarithmic curve of genus 0. See Figure 5 for one such case.
Tropical picture. We depict to the right the associated rigid tropical curve. Here the lengths

of each edge are 1, and the contact data uq take the values (−1, 1, 0), (0,−1, 1) and (1, 0,−1).
This accounts for nine curves.

Logarithmic enhancement and logarithmic unobstructedness. Note that the above curves are
transverse pre-logarithmic curves, and, by Theorem 4.13, each of these curves has precisely one
basic logarithmic enhancement. Since the curve is immersed it has no automorphisms. One can
use a natural absolute, rather than relative, obstruction theory to define the virtual fundamental
class, which is governed by the logarithmic normal bundle. In this case each curve is unobstructed:
since it is transverse with contact order 1, the logarithmic normal bundle coincides with the
usual normal bundle. The normal bundle restricts to OP1 ,OP1(1),OP1(1), and OP1(−1) on the
respective four components C1, C2, C3 and C4, and hence it is non-special. We note that this
does not account for the incidence condition that the marked points land at pi. This can be
arranged, for instance, using (5.1) in 5.3.2.
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Figure 6. A curve mapping to a plane section through the origin, and its tropicalization.

It follows that indeed each of these nine curves contributes precisely once to the desired
Gromov–Witten invariant.

5.2.4 Limiting curves: the plane section through the origin. The far more interesting case is
when the plane section of X ′

0 passes through the triple point. Then one has a stable map from
a union of four projective lines, with the central component contracted to the triple point, see
Figure 6 on the left.

There is in fact a one-parameter family W of such stable maps, as the line in H3 is uncon-
strained and can be chosen to be any element in a pencil of lines. Only one member of this
family lies in a plane, and we will see below that indeed only one member of the family admits
a logarithmic enhancement.

Tropical picture. To understand the nature of such a logarithmic curve, we first analyse the
corresponding tropical map. The image of such a map will be as depicted in Figure 6 on the
right, with the central vertex corresponding to the contracted component landing somewhere in
the interior of the triangle. However, the tropical balancing condition must hold at this central
vertex, by [GS13, Proposition 1.14]. From this one determines that the only possibility for the
values of uq are (−2, 1, 1), (1, 1,−2) and (1,−2, 1), all lengths are 1/3, and the central vertex is
(1/3, 1/3, 1/3). The multiplicity of this rigid tropical map Γ according to Corollary 3.8 then is
mΓ = 3.

5.2.5 Logarithmic enhancement using a logarithmic modification. We now show that only one
of the stable maps in the family S has a logarithmic enhancement. To do so, we use the techniques
of § 4, first refining Σ(X) to obtain a logarithmic modification of X. The subdivision visible in
Figure 6 gives a refinement of Σ(X), the central star subdivision of Σ(X). This corresponds to
the ordinary blow-up h : X̃ → X at the triple point of X0. We may then identify logarithmic
curves in X̃ and use the induced morphism M (X̃/B) → M (X/B).

Lifting the map to X̃0. The central fibre X̃0 is now as depicted in Figure 7. We then try to
build a transverse pre-logarithmic curve in X̃ lifting one of the stable maps of Figure 6. Writing
C = C1 ∪ C2 ∪ C3 ∪ C4, with C4 the central component, we map C1 and C2 to the lines L1 and
L2 containing the preimages of p1 and p2, respectively, as depicted in Figure 7, while C3 maps to
some line L3 in H3. On the other hand, by (4.2) in the definition of transverse pre-logarithmic
maps, C4 must map to the exceptional P2 = E, which is of multiplicity 3, in such a way that it
is triply tangent to ∂E precisely at the points of intersection with Li, i = 1, 2, 3.

Uniqueness of liftable map. We claim that there is precisely one such map, necessarily
with image containing a curve of degree 3 in the exceptional P2, with image as depicted in
Figure 7. The number of transverse pre-logarithmic maps can be determined by considering
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Figure 7. The lifted map. The middle figure is only a sketch: the nodal cubic curve C4 meets
each of the visible coordinate lines at one point with multiplicity 3. Moreover, these three points
are collinear.

linear series as follows. The three contact points on C4 � P1 can be taken to be 0, 1 and ∞,
and the map C4 → P2 corresponds, up to a choice of basis, to the unique linear system on P1

spanned by the divisors 3{0}, 3{1} and 3{∞}. Since these points map to the coordinate lines,
the choice of basis is limited to rescaling the defining sections. The choice of scaling of the defin-
ing sections results in fixing the images of 0 and 1, and the image point of ∞ is then uniquely
determined.

This determines uniquely the point L3 ∩ E. In particular, the line L3 is determined. Thus
we see that there is a unique transverse prelogarithmic map f : C → X̃0 such that h ◦ f lies in
the family S of stable maps to X.

Logarithmic enhancement. Since the curve is rational, Theorem 4.13 assures the existence of a
logarithmic enhancement. Only the exceptional component is non-reduced, of multiplicity μ = 3,
and for each node q ∈ C we have Indq = 1 and w̄q = 1/1 = 3/3 = 1. Hence b = 3, G = Z/μ = Z/3
and the count of Theorem 4.13 gives

|G|
b

∏
q

w̄q =
3
3
· 13 = 1

basic log enhancement of this transverse prelogarithmic curve. This gives one more basic stable
logarithmic map h ◦ f .

Unobstructedness. Once again we check that h ◦ f is unobstructed, if one makes use of an
absolute obstruction theory: the logarithmic normal bundle has degree 0 on each line, hence
degree 1 on C4, and is non-special. Again the map has no automorphisms, which accounts
for one curve, with multiplicity 3, because mΓ = 3. Hence the final accounting according to
Theorem 3.11 is

9 + 3 × 1 = 12,

which is the desired result.

5.2.6 Impossibility of other contributions. Note our presentation has not been thorough in
ruling out other possibilities for stable logarithmic maps, possibly obstructed, contributing to
the total. For example, S includes curves where L3 falls into the double point locus of X0, but
a more detailed analysis of the tropical possibilities rules out a possible log enhancement. We
leave it to the reader to confirm that we have found all possibilities.

5.3 Degeneration of point conditions
We now consider a situation which is common in applications of tropical geometry; this includes
tropical counting of curves on toric varieties [Mik05, NS06]. We fix a pair (Y,D) where Y is
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a variety over a field k and D is a reduced Weil divisor such that the divisorial logarithmic
structure on Y is logarithmically smooth over the trivial point Spec k. We then consider the
trivial family

X = Y × A1 −→ A1 = B,

where now X is given the divisorial logarithmic structure with respect to the divisor (D ×B) ∪
(Y × {0}).

5.3.1 Evaluation maps and moduli. Fix a type β of stable logarithmic maps to X over B,
getting a moduli space M (X/B, β). We assume that the curves of type β have n marked points
p1, . . . , pn with upi = 0 (and possibly some additional marked points x1, . . . , xm with non-trivial
contact orders with D). Given a stable map (C/S,x,p, f), a priori for each i ∈ {1, . . . , n} we
have an evaluation map evi : (S, p∗iMC) → X obtained by restricting f to the section pi. Noting
that upi = 0, the map ev�

i : (f ◦ pi)−1MX → MS ⊕ N factors through MS , and thus we have
a factorization evi : (S, p∗iMC) → S → X. In a slight abuse of notation we write evi for the
morphism S → X also, and thus obtain a morphism

ev : M (X/B, β) −→ Xn := X ×B X ×B × · · · ×B X.

If we choose sections σ1, . . . , σn : B → X, we obtain a map

σ :=
n∏

i=1

σi : B −→ Xn.

This allows us to define the moduli space of curves passing through the given sections,

M (X/B, β, σ) := M (X/B, β) ×Xn B,

where the two maps are ev and σ.9

5.3.2 Virtual fundamental class on M (X/B, β, σ). We note that the moduli space
M (X/B, β, σ) of curves passing through the given sections carries a virtual fundamental class.
The perfect obstruction theory is defined by

E• =
(
Rπ∗

[
f∗ΘX/B −→

n⊕
i=1

(f∗ΘX/B)|pi(S)

])∨
, (5.1)

for the stable map (π : C → S,x,p, f). Here the map of sheaves above is just restriction. See
[ACGS20, § 4] for a detailed discussion of how to impose logarithmic point conditions on a virtual
level, cf. also [BL00, Proposition A.1] for an earlier study in ordinary Gromov–Witten theory.

5.3.3 Choice of sections and Δ(X). We can now use the techniques of previous sections to
produce a virtual decomposition of the fibre over b0 = 0 of M (X/B, β, σ) → B. However, to be
interesting, we should in general choose the sections to interact with D in a very degenerate way
over b0. In particular, restricting to b0 (which is now the standard log point), we obtain maps

σi : b0 −→ Y †,

9 Recall that all fibred products are in the category of fs log schemes.
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where Y † = Y ×O† is the product with the standard log point. Note that

Σ(Y †) = Σ(X) = Σ(Y ) × R≥0,

with Σ(X) → Σ(B) the projection to the second factor. So Δ(X) = Σ(Y ) and Σ(σi) : Σ(B) →
Σ(X) is a section of Σ(X) → Σ(B) and hence is determined by a point Pi ∈ Δ(X), necessarily
rationally defined.

5.3.4 Tropical fibred product. We wish to understand the fibred product

M (X/B, β, σ) := M (X/B, β) ×Xn B

at a tropical level. We observe the following.

Proposition 5.2. Let X,Y and S be fs log schemes, with morphisms f1 : X → S, f2 : Y → S.

Let Z = X ×S Y in the category of fs log schemes, p1, p2 the projections. Suppose z̄ ∈ Z with

x̄ = p1(z̄), ȳ = p2(z̄), and s̄ = f1(p1(z̄)) = f2(p2(z̄)). Then

Hom(MZ,z̄,N) = Hom(MX,x̄,N) ×Hom(MS,s̄,N) Hom(MY,ȳ,N)

and

Hom(MZ,z̄,R≥0) = Hom(MX,x̄,R≥0) ×Hom(MS,s̄,R≥0)
Hom(MY,ȳ,R≥0).

Proof. The first statement follows immediately from the universal property of fibred product
applied to maps z̄† → Z, where z̄† denotes a geometric point z̄ with standard logarithmic
structure. The second statement then follows from the first. �

5.3.5 Tropical moduli space. We now provide a simple interpretation for the tropicalization
of S := M (X/B, β, σ). If s̄ ∈ S is a geometric point, let Q be the basic monoid associated with
s̄ as a stable logarithmic map to X. Then by Proposition 5.2, we have

Hom(MS,s̄,R≥0) = Hom(Q,R≥0) ×∏
i Hom(Ppi ,R≥0) R≥0.

Here as usual Ppi = MX,f(pi), which here equals MY,f(pi) ⊕ N. The maps defining the fibred
product are as follows. The map Hom(Q,R≥0) →

∏
i Hom(Ppi ,R≥0) can be interpreted as taking

a tropical map Γ → Σ(X) = Σ(Y ) × R≥0 to the point of Hom(Ppi ,R≥0) which is the image of
the contracted edge corresponding to the marked point pi. The map R≥0 → ∏

i Hom(Ppi ,R≥0)
is

∏
i Σ(σi) and hence takes 1 to ((P1, 1), . . . , (Pn, 1).
This yields the following.

Proposition 5.3. Let m ∈ Δ(S), and let ΓC = Σ(π)−1(m). Then Σ(f) : ΓC → Δ(X) is a trop-

ical map with the unbounded edges Epi being mapped to the points Pi. Furthermore, as m varies

within its cell of Δ(S), we obtain the universal family of tropical maps of the same combinatorial

type mapping to Δ(X) and with the edges Epi being mapped to Pi.

5.3.6 Restatement of the decomposition formula. Write

M (Y †/b0, β, σ) := M (X0, β) ×Xn B
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and, for τ = (τ,A) a decorated type of a rigid tropical map (Definition 2.23),

M (Y †, τ , σ) := M (X0, τ ) ×Xn B.

Theorem 3.11 now translates to the following.

Theorem 5.4 (The logarithmic decomposition formula for point conditions). Suppose Y is

logarithmically smooth. Then

[M (Y †/b0, β, σ)]virt =
∑

τ=(τ,A)

mτ

|Aut(τ)| jτ∗[M (Y †, τ , σ)]virt.

Example 5.5. The above discussion allows a reformulation of the approach of [NS06] to tropical
counts of curves in toric varieties. Take Y to be a toric variety with the toric logarithmic structure,
and fix a curve class β. By fixing an appropriate number n of points in Y , one can assume that
the expected dimension of the moduli space of curves of genus 0 and class β passing through
these points is 0. Next, after choosing suitable degenerating sections σ1, . . . , σn, one obtains
points P1, . . . , Pn ∈ Σ(Y ), the fan for Y . Finally, one explicitly describes M (X/B, β, σ) through
an analysis for each rigid tropical map to Σ(Y ) with the correct topology. In particular, the
domain curve is rational and should have Dρ · β unbounded edges parallel to a ray ρ ∈ Σ(Y ),
where Dρ ⊂ Y is the corresponding divisor. The argument of [NS06] essentially carries out an
explicit analysis of possible logarithmic curves associated with each such rigid curve after a log
blow-up Ỹ † → Y †. Theorem 5.4 also generalizes part of [NS06] to some higher genus cases, with
the determination of the contribution of individual maps left open.

5.4 An example in F2

We now consider a very specific case of § 5.3 above. This example deliberately deviates slightly
from the toric case of Example 5.5 and exhibits new phenomena.

5.4.1 A non-toric logarithmic structure on a Hirzebruch surface. Let Y be the Hirzebruch
surface F2. Viewed as a toric surface, it has four toric divisors, which we write as f0, f∞,
C0 and C∞. Here f0, f∞ are the fibres of F2 → P1 over 0 and ∞, C0 is the unique section
with self-intersection −2, and C∞ is a section disjoint from C0, with C∞ linearly equivalent to
f0 + f∞ + C0.

We will give Y the (non-toric) divisorial logarithmic structure coming from the divisor D =
f0 + f∞ + C∞, deliberately omitting C0.

5.4.2 The curves and their marked points. We will consider rational curves representing the
class C∞ passing through three points y1, y2, y3. Of course there should be precisely one such
curve.

A general curve of class C∞ will intersect D in four points, so we will set this up as a
logarithmic Gromov–Witten problem by considering genus 0 stable logarithmic maps

f : (C, p1, p2, p3, x1, x2, x3, x4) −→ Y,

imposing the condition that f(pi) = yi, and f is constrained to be transversal to f0, f∞, C∞ and
C∞ at xi for i = 1, . . . , 4, respectively. This transversality determines the vectors uxi , while we
take the contact data upi = 0.
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Figure 8. The polyhedral complex Δ(X) = Σ(Y ) and a potential tropical map. The small
arrows indicate Epi

which are contracted to Pi. The suggested positions of Ex3 and Ex4 are
shown below to contribute 0 to the virtual count.

Since the maps have the points x3 and x4 ordered, we expect the final count to amount to
two rather than one.

5.4.3 Choice of degeneration. We will now see what happens when we degenerate the point
conditions as in § 5.3, by taking X = Y × A1 and considering sections σi : A1 → X, 1 ≤ i ≤ 3.
We choose these sections to be general subject to the condition that

σ1(0) ∈ f0, σ2(0) ∈ f∞, σ3(0) ∈ C0.

Since C0 ∩ C∞ = ∅, any curve in the linear system |C∞| which passes through this special choice
of three points must contain C0, and hence be the curve f0 + f∞ + C0.

5.4.4 The complex Δ(X) and the tropical sections. Note that Δ(X) is as depicted in
Figure 8, an abstract gluing of two quadrants, not linearly embedded in the plane. The choice
of sections σi determines points Pi ∈ Σ(X) as explained in § 5.3. For example, if, say, the section
σ1 is transversal to f0 × A1, then P1 is the point at distance 1 from the origin along the ray
corresponding to f0. Since C0 is not part of the divisor determining the logarithmic structure,
P3 is in fact the origin.

5.4.5 The tropical maps. One then considers rigid decorated tropical maps passing through
these points.

• The curves must have seven unbounded edges, Epi , Exj .
• The map contracts Epi to Pi.
• Each Exj is mapped to an unbounded ray going to infinity in the direction indicating which

of the three irreducible components of D the point xj is mapped to.

5.4.6 Rigid tropical maps. It is then easy to see that to be rigid, the domain of the tropical
map must have three vertices, v1, v2, v3, with the edge Epi attached to vi and vi necessarily being
mapped to Pi.
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The location of the Exi is less clear. One can show using the balancing condition [GS13,
Proposition 1.15] that Ex1 must be attached to v1 and Ex2 must be attached to v2. There
remains, however, some choice about the location of Ex3 and Ex4 . Indeed, they may be attached
to the vertices v1, v2 or v3 in any manner. Figure 8 shows one such choice.

5.4.7 Decorated rigid tropical maps. We must however consider decorated rigid tropical maps,
and in particular we need to assign curve classes A(v) to each vertex v. Let ni be the number
of edges in {Ex3 , Ex4} attached to the vertex vi. Since Ex3 and Ex4 indicate which ‘virtual’
components of the domain curve have marked points mapping to C∞, it then becomes clear that

A(v1) = n1f, A(v2) = n2f, A(v3) = C0 + n3f,

where n1 + n2 + n3 = 2.

5.4.8 The seeming contradiction. In fact, as we shall see shortly, there are logarithmic curves
whose tropicalization yields any one of the curves with n1 = n2 = 1, and there is no logarith-
mic curve over the standard log point whose tropicalization is the tropical map with n3 = 2.
Surprisingly at first glance, the only decorated rigid tropical map which provides a non-trivial
contribution to the Gromov–Witten invariant is the one which cannot be realized, with n3 = 2.
We will also see that the case n1 = 2 or n2 = 2 plays no role. Before we exhibit this counterintu-
itive behaviour, we point out that this is no contradiction. Indeed, consider a stable log map to
X0 with non-rigid tropicalization. This stable log map will lie in the intersection of the images
in M (X0, β) of more than one subspace Mτ (X0, β) from (3.3). Tropical geometry cannot thus
tell how these stable log maps with non-rigid tropicalizations contribute to the virtual count on
any of these components.

5.4.9 Curves with n1 = n2 = 1 contribute zero. To exhibit this seemingly contradictory
behaviour, first recall the standard fact that there is a flat family W → A1 such that W 0 �
X0 = F2 and W t � P1 × P1 for t �= 0. Furthermore, the divisor f0 ∪ f∞ ∪ C∞ extends to a nor-
mal crossings divisor on W with three irreducible components: {0} × P1, {∞} × P1, and a curve
of type (1, 1). This endows W with a divisorial logarithmic structure, logarithmically smooth
over A1 with the trivial logarithmic structure. However, no curve of class C0 in W0 deforms
to Wt for t �= 0. Hence no curve representing a point in the moduli space Mτ (X0, β) for τ one
of the decorated rigid tropical maps with n3 = 0 deforms. The usual deformation invariance of
Gromov–Witten invariants then implies that the contribution to the Gromov–Witten invariant
from such a τ is zero.

Another transparent explanation for the vanishing of this count is given by the gluing formal-
ism further developed in [ACGS20]: the moduli space of punctured stable maps corresponding to
the (−2)-curve has negative virtual dimension and by [GS19, Theorem A.16] any moduli space
of stable maps with such a component has vanishing virtual count.

5.4.10 Expansion and description of moduli space for n1 = n2 = 1. To explore the existence
of the relevant logarithmic curves, we again turn to § 4. First let us construct a curve whose
decorated tropical map has n1 = n2 = 1. The image of this curve in Δ(X) yields a subdivision
of Δ(X) which in turn yields a refinement of Σ(X), and hence a log étale morphism X̃ → X. It
is easy to see that this is just a weighted blow-up of f0 × {0} and f∞ × {0} in X = Y × A1; the
weights depend on the precise location of P1 and P2, but if they are taken to have distance 1
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Figure 9. A central fiber with n1 = n2 = 1.

from the origin, the subdivision will correspond to an ordinary blow-up. The central fibre is now
as depicted in Figure 9, with the proper transforms of the sections meeting the central fibre at
the points p1, p2, p3 as depicted.

The logarithmic curve then has three irreducible components, one mapping to C0 and the
other two mapping to the two exceptional divisors, each isomorphic to P1 × P1. These latter two
components each map isomorphically to a curve of class (1, 1) on the exceptional divisor, and is
constrained to pass through pi and the point where C0 meets the exceptional divisor. There is
in fact a pencil of such curves. We remark that all seven marked points are visible in Figure 9,
but the curves in the exceptional divisors meet the left-most and right-most curves transversally,
and not tangent as it appears in the picture. By Theorem 4.13, any such stable map then has a
log enhancement, and composing with the map X̃ → X gives a stable logarithmic map over the
standard log point whose tropicalization is one of the rigid curves with n1 = n2 = 1. Thus the
relevant moduli space of stable log maps to X̃0 has two components, each isomorphic to P1 × P1,
depending on which sides x3 and x4 lie. This moduli space maps injectively to the moduli space
of stable log maps to X0.

To see that the virtual count gives zero, one can again consider the absolute deformation and
obstruction theory of all the maps parameterized by P1 × P1. Over the open subset C∗ × C∗ the
maps admit a normal line bundle with degrees 2,−2, 2 on the three components of the curve.
To account for the point conditions we twist down by the points xi, obtaining a line bundle
N of degrees 1,−3, 1 respectively. Restricting to the middle components gives an isomorphism
of the obstruction space H1(C,N) → H1(P1,O(−3)) = C2. One checks that the isomorphism
extends across the boundary of P1 × P1, giving a trivial obstruction bundle with zero Chern
classes representing the virtual fundamental class 0.

5.4.11 Curves with n1 = n2 = 0. Now consider the case that n1 = n2 = 0 and n3 = 2. This
rigid tropical curve cannot be realized as the tropicalization of a stable logarithmic map over
the standard log point. Indeed, to be realized, the curve must have an irreducible component of
class C0 + 2f = C∞, and we know there is no such curve passing through σ3(0), a general point
on C0. However, this tropical map can in fact be realized as a degeneration of a different, non-rigid
tropical map, as depicted in Figure 10.

To construct an actual logarithmic curve with n1 = n2 = 0, we use refinements again. Assume
for simplicity of the discussion that P1 and P2 have been taken to have distance 2 from the origin.
Subdivide Δ(X) by introducing vertical rays with endpoints P1 and P2, and in addition introduce
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Figure 10. A realizable tropical map with n1 = n2 = 0.

Figure 11. A logarithmic map with n1 = n2 = 0.

vertical rays which are the images Ex3 and Ex4 ; again for simplicity of the discussion take the
endpoints of these rays to be at distance 1 from the origin.

This corresponds to a blow-up X̃ → X involving four exceptional components, and
Figure 11 shows the central fibre of X̃ → A1, along with the image of a stable logarithmic
map which tropicalizes appropriately (once again the curves on the second and fourth compo-
nents of X̃ meet the first and fifth components with order 1, and no tangency). Composing this
stable logarithmic map with X̃ → X then gives a non-basic stable logarithmic map to X over
the standard log point. It is not hard to see that the corresponding basic monoid Q has rank
3, parameterizing the image of the curve in Σ(B) as well as the location of the edges Ex3 and
Ex4 . The degenerate tropical curve where the edges Ex3 and Ex4 are attached to the vertex v3
represents a one-dimensional face of Q∨, so the rigid tropical map with n3 = 2 does appear in
the family Q∨, but only as a degeneration of a tropical map which is realisable by an actual
stable logarithmic curve over the standard log point.

One can again show that the relevant moduli space in X̃0 has two components isomorphic
to P1 × P1. This time the virtual fundamental class of each component is the top Chern class
of O(1) � O(1), which has degree 1. Each of these maps to X̃0 define the same map to X0, and
indeed the corresponding moduli space Mni=0(X0) is discrete and unobstructed.
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5.4.12 Curves with n1 + n2 = 1. In this case A(v3) = C0 + n3f = C0 + f and either A(v1) =
f,A(v2) = 0 or A(v1) = 0,A(v2) = f . The expanded degeneration picture then looks like a
hybrid of Figures 9 and 10, with the depicted behaviour describing one end each. A compu-
tation similar to the one presented for the case n1 = n2 = 1 shows vanishing of this count as
well.

5.4.13 Curves with ni = 2. To complete the analysis, we end by noting that the case n1 = 2 or
n2 = 2 cannot occur. Consider the case n1 = 2. Any stable logarithmic curve over the standard
log point with a tropicalization which degenerates to such a rigid tropical map must have a
decomposition into unions of irreducible components corresponding to the vertices v1, v2 and v3,
with the homology class of the image of the stable map restricted to each of these unions of
irreducible components being 2[f0], 0 and [C0] respectively. In particular, this will prevent the
possibility of having any irreducible component whose image contains σ2(0). Thus this case does
not occur.
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