
Infection Control & Hospital Epidemiology (2018), 39, 1196–1201

doi:10.1017/ice.2018.186

Original Article

Improving nested case-control studies to conduct a full
competing-risks analysis for nosocomial infections

Derek Hazard MSc1, Martin Schumacher PhD1, Mercedes Palomar-Martinez PhD2, Francisco Alvarez-Lerma PhD3,

Pedro Olaechea-Astigarraga PhD3 and Martin Wolkewitz PhD1
1Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany, 2Hospital Universitari Arnau de
Vilanova, Lleida, Universitat Autonoma de Barcelona, Barcelona, Spain and 3Service of Intensive Care Medicine, Parc de Salut Mar, Barcelona, Spain

Abstract

Objective: Competing risks are a necessary consideration when analyzing risk factors for nosocomial infections (NIs). In this article, we
identify additional information that a competing risks analysis provides in a hospital setting. Furthermore, we improve on established
methods for nested case-control designs to acquire this information.
Methods: Using data from 2 Spanish intensive care units and model simulations, we show how controls selected by time-dynamic
sampling for NI can be weighted to perform risk-factor analysis for death or discharge without infection. This extension not only enables
hazard rate analysis for the competing risk, it also enables prediction analysis for NI.
Results: The estimates acquired from the extension were in good agreement with the results from the full (real and simulated) cohort
dataset. The reduced dataset results averted any false interpretation common in a competing-risks setting.
Conclusions: Using additional information that is routinely collected in a hospital setting, a nested case-control design can be successfully
adapted to avoid a competing risks bias. Furthermore, this adapted method can be used to reanalyze past nested case-control studies to
enhance their findings.

(Received 12 March 2018; accepted 14 July 2018; electronically published August 30, 2018)

In time-to-event analyses, a competing-risks setting occurs when 1
or several events preclude the observation of an event of interest.1,2

Recent studies have shown that this setting is of special importance
when analyzing risk factors for nosocomial infections (NIs).3,4 For
instance, a cohort study of hospitalized children in Kenya reported
no association between burns and nosocomial bacteremia.5 How-
ever, a complete competing-risks analysis would have detected an
effect on length of stay, which would have yielded a cumulative risk
3 times higher for children with burns.1, 6 This analysis is achieved
by determining the influence of a risk factor on each separate
competing event.7 The decreasing effect of a risk factor (eg, burns)
on the rate of 1 event (eg, discharge from hospital) can have an
increasing effect on the risk of experiencing a competing event (eg,
nosocomial bacteremia). Therefore, ignoring competing risks when
analyzing hospital-acquired infections can lead to biased results and
incomplete conclusions.

When the covariate information is expensive or difficult to
acquire, separate nested case-control (NCC) study designs can be
used to ascertain the influence of risk factors on NI8,9 and its
competing events. An NCC requires the collection of covariate
information for cases and time-matched controls that are a subset
of the total available controls in the full cohort, thus achieving a

reduction in time and resources. In traditional practice, controls
would be sampled for each competing event and would only be
included in the analysis of the competing event for which they
were selected. However, Samuelsen10 proposed pooling these
controls together and employing a weighted Cox model so that all
selected controls are used in the analysis of each competing event.
This method led to improvements in precision over keeping the
controls separated.

In this study, we adapted the methodology of Samuelsen and
applied it to a common setting in hospital epidemiology. Our goal
was to estimate the influence of potential risk factors on acquiring
an NI and on the competing event of dying or being discharged
without infection in 2 Spanish intensive care units (ICUs). By
reusing controls from 1 initial sampling, we avoided the added
effort of sampling with respect to every competing event (ie,
“sample for one, analyze for all”). Furthermore, our extension
requires additional data that are routinely collected (and not any
additional covariate data), thus enabling a competing-risks rea-
nalysis of previously conducted NCC studies. These improve-
ments can be achieved with little cost to the researcher.

Methods

Data were collected from 6,563 admissions in 2 Spanish ICUs
within the ENVIN-HELICS network. We removed 5 individuals
from the original cohort due to missing values. Among the 6,563
patients admitted, 432 (6.58%) acquired an NI (ie, bloodstream
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infection, urinary tract infection, or pneumonia) and 762 (11.6%)
died without acquiring an infection. However, 5,359 of 6,563
patients (81.6%) were discharged alive without acquiring an infec-
tion, and 10 (0.15%) were administratively censored. (Hereafter, we
omit the “without acquiring an infection” description for death or
discharge.) The 2 competing events we examined were the risk of
acquiring an infection (defined as after 24 hours in the ICU) and the
composite event of dying or being discharged. The influence of the
Acute Physiology and Chronic Health Evaluation (APACHE) score
on these competing events was of interest. For ease of analysis, the
APACHE score was categorized into quartiles. Additionally, a
dichotomous covariate for treatment with antibiotics within
48 hours of admission (ATB48H) was also analyzed. Entry and
event or censoring times were needed for the entire cohort to
perform a traditional NCC study. This ‘skeleton’ of information was
required to select controls at the time of the event as well as to
calculate inclusion probabilities.

Time-dynamic sampling

Incidence density sampling was employed to select a reduced
sample (ie, subcohort) of the full cohort for statistical analysis.
Figure 1 provides a visual representation of the sampling design.
We randomly selected 1 control from the risk set each time a
subject was observed to acquire an infection (ie, each time the
vertical black lines cross the potential controls at each infection
time). For example, patient 29 acquired an infection on day 5
and patients 30–50 were potential controls. Whether a subject is
selected as a control had no bearing on their potential to be
sampled again in the future; individuals may be controls at several
infection times. Furthermore, a subject selected as a control may
acquire an infection at a later follow-up time. For example,
patient 49 was a potential control for both infection case 29 and
45 and later (on approximately day 14) acquired an infection.

Traditional analysis: NCC Design
Nosocomial infection cause-specific hazard ratio estimation. The
normal practice for an NCC design is to employ a conditional
logistic regression model using the time-matched case-control data.

The required cases, controls, and follow-up time (black horizontal
lines) information for the traditional analysis is shown in Fig. 1.

Inverse probability weighting (IPW) analysis: case-cohort
design

Nosocomial infection, death or discharge cause-specific hazard
ratio estimation, nosocomial infection risk ratio estimation
In step 1, “inverse probability weighting” calls for noncases in
the sampled subcohort to be weighted with the inverse of their
inclusion probabilities. This weighting compensates for controls
not selected to the subcohort and thus attempts to reconstruct the
original full cohort. Cases are weighted with 1. These weights are
fixed for the entirety of the patient’s follow-up time. The time-
matching can now be broken and the controls are reused at event
times when they are at risk (akin to a case-cohort design).

Samuelsen10 reviews 2 inclusion probability estimators. The first
is a nonparametric Kaplan-Meier (KM) type estimator. The second
is a standard logistic regression model-type weighting (generalized
linear model, GLM11). The first step is to calculate these inclusion
probabilities with the ‘skeleton’ from the underlying data.

In step 2, the inclusion probabilities from step 1 are subse-
quently used in a weighted Cox partial likelihood to estimate the
cause-specific hazard ratio of interest (infection and death or
discharge). The remaining competing event (death or discharge,
or infection, respectively) is censored. APACHE score quartiles
and a variable for antibiotic treatment within 48 hours (ATB48H)
are included in the regression. Variance estimation is more
complicated due to dependent factors in the weighted likelihood.
For this reason, we used robust variances in our analyses.

For the NI risk estimates, the weights from step 1 were
included in a log-binomial model. General estimating equations
were used for variance estimation.

Results

Time-dynamic sampling

As a result of incidence density sampling, a subcohort of 864
individuals was selected for the traditional analysis. Several controls
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Fig. 1. Nested case-control (NCC) design using incidence density sampling for random sampling of 50 patients from Spanish ICU data. Comparison of information required for
established NCC method and extended method. Covariate information collected for nosocomial infection cases and sampled controls.
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were sampled multiple times resulting in a subcohort of 760 distinct
individuals for the weighted analysis. Among 760 infection cases,
432 (56.8%) were automatically included. Of all 760 cases, 2 cases
(0.3%) were censored and 326 death or discharge cases (42.9%)
were sampled with respect to infection. From the subcohort,
137 cases (18.0%) were in the first APACHE quartile, 189 (24.9%)
were in the second, 184 (24.2%) were in the third, and 250 (32.9%)
were in the fourth. Furthermore, 209 (27.5%) were treated with an
antibiotic within 48 hours of admission, while 551 (72.5%) were not.

Figure 2 shows the weights assigned to the selected controls.
Patients with longer stays in the ICU have a higher chance of
being selected as a control (and consequently lower inverse
probability weights) than patients with shorter stays. Thus, the
weights are higher for sampling times early after admission and
lower for later sampling times (when only patients with longer
stays can be selected).

Infection cause-specific hazard analysis

Table 1 shows the results from the full cohort estimation (the “gold
standard”) as well as the IPW and traditional estimation from a
reduced cohort for the infection endpoint. From the full cohort, we
can conclude that an increasing APACHE score is associated with
an increasing hazard for acquire an infection. The same inter-
pretation would result from the IPW and traditional methods, even
though the reduced cohort estimates did not reach statistical sig-
nificance (P < .05) for the second APACHE quartile. All 4 estimates
indicate that antibiotic treatment within 48 hours is associated with
a lower infection hazard. We observed little difference in accuracy
and precision among the traditional, KM, and GLM estimates.

Death or discharge cause-specific hazard analysis

Table 1 shows the results for the full cohort and IPW estimation
with reused controls for the combined death-or-discharge end-
point. Importantly, traditional estimation (conditional logistic
regression) is not possible for this competing event with the given

data. Here, IPW methods conform to the full cohort interpreta-
tion that higher APACHE scores have a statistically significant
decreasing effect on death or discharge. The estimates for anti-
biotic treatment within 48 hours are also in agreement: full, 0.64
(95% CI, 0.60–0.69); KM, 0.64 (95% CI, 0.44–0.95); and GLM,
0.65 (95% CI, 0.53–0.81). The logistic regression weights have a
slight advantage over the KM weights in precision.

Infection risk analysis

Using a log binomial model to predict risk, the IPW estimates are in
good agreement with the full cohort estimates. Once again, tradi-
tional estimation is not possible for this analysis with the given data.
Interestingly, we observed a far more pronounced influence of the
fourth-quartile APACHE score on the risk ratio (6.92, full cohort)
for acquiring a NI than on the corresponding hazard ratio (2.14, full
cohort). This finding is explained by the strong decreasing effect a
high APACHE score has on the death-or-discharge hazard; these
patients stay longer in the ICU and thus have a higher risk of
acquiring an NI. This phenomenon also explains the seemingly
paradoxical result that ATB48H has a statistically significant
decreasing influence on the NI hazard ratio (0.75) but no influence
on the NI risk ratio. Again, ATB4H is associated with an increased
length of stay in the ICU (decreased death-or-discharge hazard) and
thus a greater risk of acquiring an infection.

Simulated data

In addition to the successful implementation of the methodology
with prospectively collected real data from 2 Spanish ICUs, the
methodology was also applied to simulated competing risks data
with similarly impressive results (see Table 2). Both IPW methods
match the accuracy and precision of the traditional method for
the first simulated event while displaying good agreement with
the full simulated cohort estimates for the second event and risk
analysis. Software code in R for the real and simulated data
analysis is provided in the supplemental material section.
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Fig. 2. Dots represent the weights of individual controls at the time they were sampled. For example, a patient with weight 10 represents 10 patients in the analysis. The aim of
this weighting is to reconstruct the full cohort from the selected subcohort.
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Discussion

In this study, we adapted existing methods to perform a complete
competing risks analysis on the occurrence of hospital acquired
infections. This adapted method of reusing controls not only
matched the accuracy and precision of traditional cause specific
analyses for an event of interest but also extended it to provide
competing event etiological and event-of-interest prediction
analysis, which are 2 substantial improvements. Although the KM
and GLM weights produced similar results, Fig. 2 illustrates that
the nonparametric KM weights are more prone to extreme values,
whereas the GLM weights have a smoothing effect on the weight
distribution. We therefore recommend plotting and studying
the weights of different approaches; extreme weights impact
the robustness of the model. The only additional information

required for this extension analysis was follow-up and event-type
data that are routinely recorded for hospital patients. Considering
that this information was likely recorded for previously conducted
NCC studies, one could easily revisit these studies and enhance
their results.

The method of reusing controls can be extended in several ways.
Matching controls to cases on additional variables can both adjust
for confounding and improve efficiency. For example, we could
have matched controls in our Spanish ICU cohort by sex or age at
admission. In reviewing the role of matching in case-control studies
of antimicrobial resistance, Cerceo et al12 emphasize the importance
of accounting for study design matching in the analysis. The
matching can be resolved in the inclusion probabilities and/or the
regression analysis. Stoer and Samulesen13 addressed this question
by introducing strong correlations between matching variables and

Table 1. Results from Analysis of Spanish ICU Data

NI Etiology Death or Discharge Etiology NI Prediction

Method HR (95% CI)a
SE

(Log HR)b HR (95% CI)a
SE

(Log HR)b RR (95% CI)c
SE

(Log RR)b
Cohort
Sized

APACHE 2nd Quartilee

Full Cohortf 1.58 (1.14–2.20) 0.17 0.62 (0.59–0.66) 0.03 2.86 (2.07–3.94) 0.16 6,563

Traditionalg 1.39 (0.90–2.13) 0.22 … … … … 760

IPW KM 1.46 (0.96–2.23) 0.22 0.57 (0.40–0.80) 0.17 2.73 (1.55–4.81) 0.29 760

IPW GLM 1.29 (0.84–1.99) 0.22 0.67 (0.51–0.88) 0.14 1.84 (1.17–2.89) 0.23 760

APACHE 3rd Quartilee

Full Cohortf 2.03 (1.47–2.80) 0.16 0.45 (0.41–0.48) 0.04 5.66 (4.15–7.70) 0.16 6,563

Traditionalg 2.16 (1.38–3.37) 0.23 … … … … 760

IPW KM 2.33 (1.52–3.55) 0.22 0.44 (0.26–0.77) 0.28 5.89 (3.05–11.39) 0.34 760

IPW GLM 2.09 (1.36–3.21) 0.21 0.52 (0.39–0.70) 0.15 3.65 (2.27–5.86) 0.24 760

APACHE 4th Quartilee

Full Cohortf 2.14 (1.57–2.93) 0.16 0.41 (0.38–0.44) 0.04 6.92 (5.14–9.32) 0.15 6 563

Traditionalg 2.10 (1.39–3.18) 0.21 … … … … 760

IPW KM 2.28 (1.52–3.55) 0.21 0.28 (0.20–0.39) 0.17 9.08 (5.27–15.65) 0.28 760

IPW GLM 2.09 (1.39–3.16) 0.21 0.43 (0.33–0.55) 0.13 4.48 (2.84–7.07) 0.23 760

Antibiotich

Full Cohortf 0.75 (0.60–0.93) 0.11 0.64 (0.60–0.69) 0.04 1.17 (0.95–1.45) 0.11 6 563

Traditionalg 0.62 (0.45–0.86) 0.16 … … … … 760

IPW KM 0.63 (0.48–0.84) 0.14 0.64 (0.44–0.95) 0.20 0.99 (0.65–1.51) 0.22 760

IPW GLM 0.61 (0.45–0.82) 0.15 0.65 (0.53–0.81) 0.11 0.82 (0.57–1.18) 0.19 760

Note. NI, nosocomial infection; HR, hazard ratio; CI, confidence interval; SE, standard error; RR, risk ratio; IPW, Cox partial likelihood with inverse probability weighting; KM, Kaplan Meier
weights; GLM, logistic regression weights.
aCause-specific hazard ratio for exposure
bCalculated with estimated standard errors for Cox regression and conditional logistic regression, calculated with robust standard errors for inverse probability weighting and log
binomial model.
cUsing log binomial model.
dDistinct patients.
eFirst APACHE quartile reference for second, third, and fourth APACHE quartiles.
fCox regression.
gConditional logistic regression.
hAntibiotic treatment within 48 hours of admission.
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exposure–outcome in simulated data for a subsequent event set-
ting. They found that adjusting for matching in the weight esti-
mation had little influence on the estimates, whereas adjusting in
the Cox regression was essential. Thus, we recommend including
possible confounding variables in the weighted Cox model.

A further extension proposed by Wolkewitz et al14 is con-
ducting subdistribution incidence density sampling and estimat-
ing the cumulative incidence function by assuming a Fine and
Gray model. In this variation, the patients are available for
selection until their (potential) censoring time and the inclusion
probability weights are subsequently adjusted. Simulation studies
and application to the Spanish ICU data showed IPW estimation
to be in good agreement with the full cohort (data not shown).
The method could also be extended to a “subsequent event” set-
ting where a second event is a subset of a first event. For example,
the controls sampled with respect to acquiring infection (first
event) could be reused to analyze death from hospital infection
(second event).

Our study has some limitations. In some situations, breaking
the time-matched risk sets is not recommended. Borgan15 found
that reusing controls when close matching is required (eg, in the
presence of batch effects for biological samples) can lead to bias in
simulation studies. Salim et al16 found that in situations with little
overlap in the distributions of the matching variables for 2
separate outcomes, reusing controls was less efficient than simply
sampling new time-matched controls.

Ohneberg et al17 applied NCC and case-cohort designs to the
same Spanish ICU data set and found that the NCC design had
slight advantages in power and precision in assessing the effect of
a dichotomous APACHE score on acquiring infection. A further
comparison of a case-cohort design and an NCC design reusing
controls in a setting with multiple outcomes is of certain interest.
Our results indicate that an NCC design does not have the pur-
ported disadvantage in such a setting and that a full competing-
risks analysis can be performed without collecting new data. This
methodology provides a clear improvement over established NCC
methods.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2018.186
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